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ABSTRACT
Metabolic disorders represent a growing worldwide 
health challenge due to their dramatically increasing 
prevalence. The gut microbiota is a crucial actor 
that can interact with the host by the production of 
a diverse reservoir of metabolites, from exogenous 
dietary substrates or endogenous host compounds. 
Metabolic disorders are associated with alterations in the 
composition and function of the gut microbiota. Specific 
classes of microbiota-derived metabolites, notably bile 
acids, short-chain fatty acids, branched-chain amino 
acids, trimethylamine N-oxide, tryptophan and indole 
derivatives, have been implicated in the pathogenesis of 
metabolic disorders. This review aims to define the key 
classes of microbiota-derived metabolites that are altered 
in metabolic diseases and their role in pathogenesis. 
They represent potential biomarkers for early diagnosis 
and prognosis as well as promising targets for the 
development of novel therapeutic tools for metabolic 
disorders.

INTRODUCTION
The human intestine harbours a complex and diverse 
system of mutualistic microorganisms, consisting 
of bacteria, fungi, viruses, archaea and protozoa. 
This rich ecosystem contributes to a large number 
of physiological functions: fermentation of indi-
gestible dietary components and vitamin synthesis, 
defenses against pathogens, host immune system 
maturation and maintenance of gut barrier func-
tion.1 2 Thus, this central regulator, sometimes qual-
ified as the ‘second brain’, plays a significant role 
in maintaining host physiology and homeostasis. 
All the species interconnected in the gut produce 
an extremely diverse reservoir of metabolites from 
exogenous dietary components and/or endogenous 
compounds generated by microorganisms and the 
host. Notably, while food is generally examined for 
calories and macronutrients and micronutrients, 
microbial metabolism (and even human enzymes) 
recognises food molecules and transforms them 
into metabolites. These microbial metabolites are 
key actors in host-microbiota cross-talk. The bene-
ficial or detrimental effect of specific microbiota-
derived metabolites depends on the context and the 
host state, suggesting the primordial nature of the 
symbiotic microbiota in ensuring optimal health in 
humans.3

With the widespread westernisation of lifestyles, 
alteration of the gut microbiota composition and 
functions has become a worldwide phenomenon. 
Despite the difficulty to distinct a direct causal rela-
tionship and an association between dysbiosis and 

diseases, several lines of evidence demonstrate that 
the alteration of the gut microbiota is involved in 
the pathogenesis of multiple diseases affecting the 
GI tract, such as IBD4 or colorectal cancer,5 as well 
as many non-digestive systems. Metabolic disorders 
have been recognised to be massively impacted by 
gut microbiota.6 In the last two decades, increasing 
calorie intake and decreasing levels of physical 
activity have contributed to a progression in the 
prevalence of metabolic disorders. Metabolic 
disorders represent a group of disorders with 
the clustering of various inter-related patholog-
ical conditions combining obesity, non-alcoholic 
steatohepatitis (NASH), dyslipidaemia, glucose 
intolerance, insulin resistance, hypertension and 
diabetes that, when occurring together, strongly 
increase the incidence of cardiovascular diseases 
and mortality.7 8 Deciphering the mechanisms of 
host-intestinal microbiota interactions represents a 
major public health challenge in the development 
of new preventive or curative therapeutic strategies. 
In the present review, we will focus on the results 
from the most significant studies dealing with the 
role of microbiota-derived metabolites in metabolic 
disorders.

DISRUPTED EQUILIBRIUM OF THE GUT 
MICROBIOME-HOST INTERACTIONS IN 
METABOLIC DISORDERS
The gut microbiota plays a crucial role in main-
taining the physiological functions of the host. A 
disruption of the fragile host-microbiota interaction 
equilibrium can play a role in the onset of several 

Key messages

►► Metabolic disorders, a growing worldwide 
health challenge, are associated with 
alterations in the composition and function of 
the gut microbiota.

►► Microbial metabolites are key factors in host-
microbiota cross-talk.

►► Specific classes of microbiota-derived 
metabolites, notably bile acids, short-chain 
fatty acids, branched-chain amino acids, 
trimethylamine N-oxide, tryptophan and indole 
derivatives, have been strongly implicated in 
the pathogenesis of metabolic disorders.

►► Gut microbiota-derived metabolites represent 
potential biomarkers for the early diagnosis 
and show promise for identifying targets for 
the development of novel therapeutic tools for 
metabolic disorders.
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metabolic diseases. The gut microbiota can interact with the host 
by producing metabolites, which are small molecules (<1500 Da) 
representing intermediates or end-products of microbial metab-
olism. These metabolites can derive directly from bacteria or the 
transformation of dietary or host-derived substrates.9

Gut microbiota incrimination
The implication of the gut microbiota in the regulation of host 
metabolic balance has been demonstrated in the last decade.10 
Studies conducted both in animal models and humans revealed 
a significant role of the gut microbiota in the pathogenesis of 
metabolic disorders, strongly influenced by diet and lifestyle 
modifications.

Evidence from animal experiments
The gut microbiota modulates energy expenditure and homeo-
stasis in several animal models, including germ-free mice (GF 
mice) and genetically induced mice with obesity (ob/ob mice). 
GF mice are protected against obesity in a Western diet setting.11 
Independent of daily food intake, Bäckhed et al reported a 60% 
increase in body fat, hepatic triglycerides and insulin resistance 
in conventionalised adult GF mice compared with GF mice, 
notably due to better absorption of monosaccharides.12 Inter-
estingly, the transfer of gut microbiota from ob/ob mice to GF 
mice results in a significant increase in body weight and fat mass 
compared with colonisation with a lean microbiota, showing a 
causal relationship.13 The gut microbiota composition is unique 
to each individual. Caecal microbiota transplantation, from two 
mice with different responses to high-fat diet (HFD), into GF 
mice leads to the transmission of the donor’s responder (RR) or 
non-responder (NR) phenotype. The gut microbiota of severely 
hyperglycaemic RR mice is enriched in Firmicutes, whereas NR 
is dominated by Bacteroidetes and Actinobacteria.14 Moreover, 
the transplantation of faecal microbiota from human twin pairs, 
discordant for obesity, into GF mice led to the acquisition of lean 
and obese phenotypes according to the donor. This phenotype 
transmission is strongly diet-dependent and notably favoured by 
a low-fat diet enriched in vegetables and fruits and thus enriched 
in fibre.15 The effect of the gut microbiota seems to occur even 
before birth, as the maternal gut microbiota, through short-chain 
fatty acid (SCFAs), triggers embryonic GPR41 and GPR43 and 
influences prenatal development of neural, enteroendocrine 
and pancreatic systems of the offspring to maintain postnatal 
energy homeostasis and eventually prevent metabolic disorder 
development.16

Overall, these animal studies demonstrate the tight intercon-
nection between diet and the gut microbiome in the pathogenesis 
of metabolic disorders as well as in its vertical transmissibility.

Evidence from human studies
Alterations in the gut microbiome composition and functions 
are associated with various traits observed in metabolic disor-
ders. Although there are some conflicting results, the obesity-
associated gut microbiota has been characterised by a decline 
in Bacteroidetes and a compensatory expansion of the Firmic-
utes phylum17 and by a reduction in microbial diversity and 
richness.18 There is notably a negative correlation between the 
severity of metabolic markers and the richness of the gut micro-
biota. Individuals with low microbiota gene content present 
more adiposity, insulin resistance and dyslipidaemia than high 
bacterial richness populations.19 Even in severe obesity condi-
tions, those with diminished gut microbiota richness have a 
more severe metabolic condition.20

In patients with diabetes, the higher proximity of the altered 
microbiota to epithelial cells could promote pro-inflammatory 
signals, contributing to the development of aggravated meta-
bolic alterations.21 In humans, faecal microbiota transplanta-
tion (FMT) demonstrated some positive but moderate effects 
in patients with metabolic syndrome traits, proving the involve-
ment of the gut microbiota in the pathogenesis and its poten-
tial therapeutic role.22–24 However, the efficiency of FMT in 
improving metabolic amelioration was dependent on the recip-
ient gut microbiota profile, with low baseline richness promoting 
gut microbiota engraftment.

Gut microbiota-derived metabolite implications in metabolic 
diseases
The gut metabolome
Metabolomics, which consists of the study of the small molecules 
present in any type of biological sample, has proven to be helpful 
in enriching the knowledge on microbiota-host interactions.25 
Several hundred faecal or serum metabolites have been associ-
ated with clinical features associated with metabolic disorders.26 
Moreover, a combination of metagenomics and metabolomics 
was used to elucidate the associations between gut microbiota 
imbalances and metabolic disturbances. This field is still in its 
infancy and, for some metabolites, it remains difficult to deter-
mine whether they are fully microbiota-derived or if other 
sources are involved, including diet or the host itself.

Metagenome and metabolome studies led to the discovery 
of new associations between microbial-derived metabolites and 
metabolic syndrome, but additional arguments are needed to 
establish a potential causality link. Notably, the decreased abun-
dance of Bacteroides thetaiotaomicron, a glutamate fermenting 
commensal, in subjects with obesity is inversely correlated with 
serum glutamate.27 Furthermore, positive correlations between 
insulin resistance and microbial functions are driven mainly by 
a few species, such as Prevotella copri and Bacteroides vulgatus, 
suggesting that they may directly impact host metabolism.28 
Metabolomics studies in plasma, saliva or urine identified 
different biochemical classes of metabolites that may be altered 
in metabolic disorders in association with gut microbiota pertur-
bations. Dysregulation of lipolysis, fatty acid oxidation and 
aminogenesis and ketogenesis, as well as changes in the levels 
of triglycerides, phospholipids and trimethylamine N-oxide 
(TMAO) are described in samples from humans with metabolic 
disorders,29–32 and more recently, imidazole propionate (IMP) 
was discovered as being involved in insulin resistance.33 Shotgun 
metagenomics data suggest that hepatic steatosis and meta-
bolic alterations are associated with dysregulated aromatic and 
branched-chain amino acid (BCAA) metabolism.34 The dysregu-
lation of SCFA35 and bile acid (BA)36 metabolism are also asso-
ciated with metabolic diseases, including obesity, type 2 diabetes 
mellitus and non-alcoholic fatty liver diseases.

Bile acids
BAs are small molecules synthesised in hepatocytes from choles-
terol. The primary BAs chenodeoxycholic acid (CDCA) and 
cholic acid (CA), conjugated to glycine or taurine, are essential 
for lipid/vitamin digestion and absorption. Ninety-five per cent 
of them are reabsorbed actively from the terminal ileum and are 
recycled in the liver (enterohepatic circulation). Primary BAs are 
also transformed into secondary BAs and deconjugated by gut 
microbiota. They can be either passively reabsorbed to reenter 
the circulating BA pool or excreted in the faeces (figure 1).37
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Increased total circulating BA levels in individuals with 
obesity positively correlate with body mass index and serum 
triglycerides in patients with hyperlipidaemia.38 BAs regu-
late their synthesis through FGF19/FGF15, but they also have 
metabolic effects through their receptors Farnesoid-X receptor 
(FXR) and Takeda-G-protein-receptor-5 (TGR5). Activation of 
FXR and TGR5 (1) promotes glycogen synthesis and insulin 
sensitivity in the liver; (2) increases insulin secretion by the 
pancreas; (3) facilitates energy expenditure, especially in the 
liver, brown adipose tissue and muscles (browning); (4) favours 
thermogenesis, resulting in a decrease in body weight and (5) 
mediates satiety in the brain.39 BAs also impact lipid metabo-
lism, especially by exerting profound effects on triacylglycerol. 
The perturbations of the intestinal microbiota composition in 

metabolic disorders strongly impact BA metabolism, especially 
characterised by a failure to metabolise primary BAs, thus 
leading to their accumulation. Indeed, an increase in primary 
CDCA levels induces a decrease in very low-density lipopro-
tein production and plasma triglyceride concentrations. Short-
term antibiotic supplementation in mice induces a decrease in 
secondary BA-producing bacteria and a reduction in hepatic 
deoxycholic acid (DCA) and lithocholic acid concentrations as 
well as serum triglyceride levels, suggesting that secondary BAs 
can act as regulators to maintain metabolic host homeostasis.40 
Moreover, this alteration in the primary to secondary BA pool in 
metabolic disorders might play a role in the observed low-grade 
intestinal inflammation, as conjugated primary BAs exhibit pro-
inflammatory effects on intestinal epithelial cells. Conversely, 

Figure 1  Bile acid (BA) dysmetabolism in metabolic syndrome. BA metabolism is altered in patients with metabolic syndrome (MetS) and is 
associated with hepatic steatosis and glucose and lipid dysmetabolism. Dietary animal fat consumption promotes taurocholic acid (TCA) production, 
which favours the proliferation of sulfite-reducing bacteria, Bilophila wadsworthia, leading to an increase in intestinal permeability and inflammation 
(panel 1). Gut microbiota alterations induce an impairment in the ileal absorption of BAs, which occurs normally via the apical-sodium BA transporter 
(ASBT). This induces a decrease in the expression of nuclear Farnesoid-X receptor (FXR) and fibroblast growth factor 19 (FGF19) in intestinal epithelial 
cells and the abundance of colonic primary conjugated BAs (panel 2). Gut microbiota dysfunction leads to a decreased transformation of primary 
conjugated BAs to secondary BAs in the colon, leading to defective activation of Takeda-G-protein-receptor-5 (TGR5). The effect of TGR5 activation 
on the increase in glucagon-like peptide 1 (GLP-1) and white adipose tissue (WAT) browning was thus inhibited (panel 3). Gut microbiota alterations 
impair bile salt hydrolase (BSH) activity, leading to primary conjugated BA accumulation in the colon (panel 4). BMI, body mass index; HDL, high-
density lipoprotein; LDL, low-density lipoprotein.
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secondary BAs have anti-inflammatory properties.41 In addition, 
Parséus et al showed that the promoting effect of the gut micro-
biome on obesity and hepatic steatosis is dependent on the FXR 
pathway.42 However, the FXR-dependent role of secondary BAs 
in the regulation of glucose and lipid metabolism is debated and 
might be context-dependent. The accumulation of hepatic lipids, 
triglycerides and cholesterol has been observed in FXR-deficient 
mice on a normal chow diet,43 while in HFD-fed mice or an 
obese background, FXR deficiency improves glucose homeo-
stasis and decreases body weight,42 44 possibly a consequence of 
different basal gut microbiota. The effects of FXR in the patho-
genesis of metabolic disorders are also likely to be different from 
one tissue to the other, as demonstrated by studies in conditional 
knockout mice.45 46 FXR induces the transcription of fibroblast 
growth factor 19 (FGF19) in intestinal epithelial cells, which 
reach the liver and inhibit BA synthesis in a feedback loop. Mice 
overexpressing FGF19 exhibit increased metabolic activity and 
energy expenditure by increasing brown adipose tissue and 
decreasing liver expression of acetyl coenzyme A carboxylase 
2, thus leading to protection against HFD-induced metabolic 
injury.47 Gut microbiota perturbations induce impairment in the 
ileal absorption of BAs, which normally occurs via the apical-
sodium bile acid transporter, resulting in decreased expression of 
FXR and FGF19 and an imbalance of BAs, notably characterised 
by an increase in colonic primary conjugated BAs.48 Transgenic 
mice overexpressing TGR5 exhibit improved glucose tolerance 
with increased secretion of glucagon-like peptide 1 (GLP-1) and 
insulin.49 This BA-TGR5 axis elicits beige remodelling in subcu-
taneous white adipose tissue and may contribute to improve-
ment in whole-body energy homeostasis.50 The alteration of 
gut microbiota-dependent BA metabolism, through qualitative 
(primary vs secondary and conjugated vs deconjugated BAs) or 
quantitative modification of the BA pool, is likely to participate 
in the pathogenesis of metabolic disorders. Moreover, BAs have 
an important impact on intestinal epithelium function. Primary 
BAs, such as CA and CDCA, and some secondary deconjugated 
BAs, such as DCA, increase epithelial permeability through the 
phosphorylation of occludin in intestinal Caco-2 cells.51 52 Some 
correlations have been observed between BA levels and intestinal 
permeability in mouse models.53 The effect of the BA-microbiota 
dialogue is massively impacted by diet. High consumption of 
animal fat promotes taurocholic acid production, leading to a 
shift in microbiota composition with a bloom of sulfite-reducing 
microorganisms such as Bilophila wadsworthia and to increased 
susceptibility to colitis in IL-10−/− mice and more severe liver 
steatosis, barrier dysfunction and glucose metabolism alter-
ation in HFD-fed mice.54 55 Moreover, bile salt hydrolase (BSH) 
activity, which is responsible for BA deconjugation in the normal 
gut microbiota, is impaired in metabolic disorders and likely 
plays a role in the accumulation of primary conjugated BAs in 
the colon of these patients. In mouse models, correcting BSH 
defects by the administration of BSH-overexpressing Escherichia 
coli improved lipid metabolism, homeostasis and circadian 
rhythm in the liver and GI tract, resulting in protection against 
metabolic disorders.56

Short-chain fatty acids
SCFAs, such as butyrate, propionate and acetate, are end-
products of microbial fermentation implicated in a multitude 
of physiological functions.57 SCFAs participate in the mainte-
nance of intestinal mucosa integrity,58 improve glucose and lipid 
metabolism,59 control energy expenditure60 and regulate the 
immune system and inflammatory responses (figure 2).35 They 

act through different mechanisms, including specific G protein-
coupled receptor family (GPCR)61 and epigenetic effects.

The amount of SCFA-producing bacteria and SCFAs is 
reduced in faecal samples of dysmetabolic mice62 and in humans 
with obesity and diabetes.63 In rodents with diabetes and obesity, 
supplementation with SCFAs improves the metabolic phenotype 
by increasing energy expenditure, glucose tolerance and homeo-
stasis.64 Adding back fermentable fibres (inulin) to an HFD 
seems to be enough to protect against metabolic alterations.65 
In humans, SCFA administration (inulin-propionate ester, 
acetate or propionate) stimulates the production of GLP-1 and 
PYY, leading to a reduction in weight gain.59 66 The protective 
effects of SCFAs on metabolic alterations might occur as early 
as in utero. In mice, high-fibre diet-induced propionate from the 
maternal microbiota crosses the placenta and confers resistance 
to obesity in offspring through the SCFA-GPCR axis.16

Branched-chain amino acids
The most abundant BCAAs, valine, isoleucine and leucine, are 
essential amino acids synthesised by plants, fungi and bacteria, 
particularly by members of the gut microbiota. They play a 
critical role in maintaining homeostasis in mammals by regu-
lating protein synthesis, glucose and lipid metabolism, insulin 
resistance, hepatocyte proliferation and immunity.67 BCAA 
catabolism is essential in brown adipose tissue (BAT) to control 
thermogenesis. It occurs in mitochondria via SLC25A44 trans-
porters and contributes to an improvement in metabolic status.68 
Moreover, supplementation of mice with a mixture of BCAAs 
promotes a healthy microbiota with an increase in Akkermansia 
and Bifidobacterium and a decrease in Enterobacteriaceae.69 
However, the potential positive effects of BCAAs are controver-
sial. Elevated systemic BCAA levels are associated with obesity 
and diabetes, probably a consequence of the 20% increased 
consumption of calories over the last 50 years.70 In genetically 
obese mice (ob/ob mice), BCAA accumulation induces insulin 
resistance.71 The gut microbiota is a modulator of BCAA levels, 
as it can both produce and use BCAAs. Prevotella copri and B. 
vulgatus are potent producers of BCAAs, and their amounts 
correlate positively with BCAA levels and insulin resistance. In 
parallel, a reduced abundance of bacteria able to take up BCAAs, 
such as Butyrivibrio crossotus and Eubacterium siraeum, occurs 
in patients with insulin resistance.28 Further studies are needed 
to more precisely elucidate the effects of BCAAs in the patho-
genesis of metabolic disorders.

Trimethylamine N-oxide
The gut microbiota can metabolise choline and L-carnitine 
from dietary sources (eg, red meat, eggs and fish) to produce 
trimethylamine (TMA). This gut microbiota-derived TMA is 
then absorbed and reaches the liver where it is converted into 
TMAO72 through the enzymatic activity of hepatic flavin mono-
oxygenases 3.

In humans, the level of TMAO increases in patients with 
diabetes73 or at risk of diabetes74 and in obesity.72 Increasing 
evidence demonstrates that the gut microbiota-dependent 
metabolite TMAO is also associated with a higher risk of devel-
oping cardiovascular disease and kidney failure. In mice, dietary 
supplementation with TMAO, carnitine or choline alters the 
caecal microbial composition, leading to TMA/TMAO produc-
tion that increases the atherosclerosis risk. This effect is depen-
dent on the gut microbiota, as it is lost in antibiotic-treated 
mice.75 Moreover, transferring the gut microbiota of high-TMAO 
mice recapitulates atherosclerosis susceptibility in recipient 
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low-TMAO mice.76 Importantly, the role of the gut microbiota 
in the production of TMAO from TMA has also been demon-
strated in humans.77 Overall, in metabolic disorders, the altered 
microbiota associated with an increased intake of choline and 
L-carnitine from dietary sources leads to an increase in plasma 
levels of TMAO, which is directly involved in the pathogenesis 
of metabolic disease comorbidities and particularly cardiovas-
cular disorders. However, detailed investigations are needed in 
populations from different countries to understand the interac-
tion between food consumption patterns, TMAO production 
and cardiovascular risks.

Tryptophan and indole-derivative metabolites
Tryptophan is an essential aromatic amino acid acquired 
through common diet sources, including oats, poultry, fish, 
milk and cheese. In addition to its role in protein synthesis, 
tryptophan is a precursor for crucial metabolites. Dietary 
tryptophan can follow two main pathways in host cells, 
namely, the kynurenine78 79 and serotonin80 routes. The third 
pathway implicates gut microorganisms in the direct metabo-
lism of tryptophan into several molecules, such as indole and 
its derivatives, with some of them acting as aryl hydrocarbon 
receptor (AhR) ligands (figure 3).81 82

We have identified in a previous study, in both preclinical 
and clinical settings, that metabolic disorders are characterised 
by a reduced capacity of the microbiota to metabolise tryp-
tophan into AhR agonists.83 Defective activation of the AhR 
pathway leads to decreased production of GLP-1 and IL-22, 

which contribute to intestinal permeability and lipopolysaccha-
ride (LPS) translocation, resulting in inflammation, insulin resis-
tance and liver steatosis.84 In this context, treatment with AhR 
agonists or administration of Lactobacillus reuteri, which natu-
rally produces AhR ligands, can reverse metabolic dysfunction.83 
Similarly, indole prevents LPS-induced alterations of choles-
terol metabolism and alleviates liver inflammation in mice.85 
Moreover, exploring human jejunum samples from patients 
with severe obesity led to the observation that a low AhR tone 
correlated with a high inflammatory score. Interestingly, the use 
of the AhR ligand is able to prevent damage to barrier integrity 
and inflammation in Caco-2/TC7 cells.86

We and others also showed strong activation of the kynurenine 
pathway in metabolic diseases.83 87 Genetic or pharmacological 
approaches inhibiting the activity of indoleamine 2,3-dioxygenase 
(IDO), the rate-limiting enzyme of the kynurenine pathway, are 
protective against HFD-induced obesity and metabolic alter-
ations.88 The mechanism is likely to be mediated by the micro-
biota and AhR. The increased amount of available tryptophan, 
due to the inactivation of IDO, can be converted by the micro-
biota in AhR agonists.89 Conversely, in obesity, the overactivation 
of IDO, associated with an increase in plasma levels of down-
stream metabolites such as kynurenic acid, xanthurenic acid, 
3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic 
acid,90 decreases the tryptophan pool, which is less available for 
the production of AhR agonists by the microbiota.91 The third 
pathway of tryptophan metabolism, serotonin (5-HT), is also 
involved, as it affects feeding behaviour and satiety and is thus 

Figure 2  Short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs) and Trimethylamine N-oxide (TMAO): relevant effects for metabolic 
syndrome on the host. Microbiota-derived metabolites mediate diverse effects on host metabolism. SCFAs (green frame): (i) increase satiety and 
browning of white adipose tissue (WAT); (ii) induce a decrease in lipogenesis and associated inflammation; (iii) increase the secretion of glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY) and (iv) participate in the maintenance of intestinal barrier integrity. BCAAs (yellow frame): (i) increase 
thermogenesis, protein synthesis and hepatocyte proliferation but (ii) are also associated with insulin resistance and visceral fat accumulation. TMAO 
(red frame): increases cardiovascular risks by inducing hyperlipidaemia, oxidative stress and pro-inflammatory cytokines.
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important for obesity development.92 The gut microbiota, and 
primarily indigenous spore-forming bacteria, represent an essen-
tial modulator of the intestinal production of 5-HT in enteroch-
romaffin cells that represents >80% of the whole body 5-HT 
synthesis.80 These effects are notably mediated by SCFAs and 
BAs. Mice deficient for the production of peripheral serotonin 
are protected from HFD-induced obesity. Mechanistically, 5-HT 
inhibits brown adipose tissue thermogenesis, thus leading to fat 
accumulation.93 Human data support these results, as elevated 
plasma levels of 5-hydroxyindole-3-acetic acid, an end-product 
of serotonin metabolism, are increased in patients with meta-
bolic disorders.94

Imidazole propionate
Exploring the interaction between food intake, gut microbiota 
and derived metabolites might be of interest to discover metabo-
lites impacting metabolic health. As such, it was recently shown 
that IMP, a metabolite produced by histidine utilisation of gut 
microbiota, was enhanced in type 2 diabetes and associated 

with insulin resistance.33 In the liver, IMP appeared to affect the 
insulin signalling pathway via mammalian target of rapamycin 
complex 1 (mTORC1). The examination of IMP in large human 
cohorts also links it with metabolic health and lifestyle. IMP was 
elevated in subjects with prediabetes and diabetes in the MetaC-
ardis cohort and in subjects with low bacterial gene richness and 
Bacteroides 2 enterotype in this cohort. Associations between 
IMP levels and markers of low-grade inflammation were also 
identified. Importantly, relationships were observed between 
serum IMP levels and unhealthy diet measured by dietary quality 
scores emphasising the importance of nutrition in this context. 
Thus, this study confirms that in type 2 diabetes, the intestinal 
microbiota may is switched towards IMP production, which can 
impact host inflammation and metabolism.95

Therapeutic relevance
The mechanistic links between gut microbiota-derived metab-
olites and metabolic disorders make these interactions a prom-
ising therapeutic target in these complex diseases.

Figure 3  Tryptophan metabolism alterations in metabolic syndrome. Tryptophan dysmetabolism is associated with liver inflammation, steatosis and 
insulin resistance. In metabolic syndrome (MetS), the inflammatory state is associated with kynurenine (KYN) production through the activation of 
indoleamine 2,3-dioxygenase 1 (IDO1). This leads to an increase in kynurenine-derived metabolites, such as kynurenic acid (KYNA), xanthurenic acid 
(XA), 3-hydroxykynurenine (3-H-KYN), 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid (QA). In parallel, the gut microbiota presents a defect 
in the production of aryl hydrocarbon receptor (AhR) ligands such as indole-3-propionic acid (IPA). The incretin hormone glucagon-like peptide 1 
(GLP-1) secretion from intestinal enteroendocrine L cells and interleukin (IL)-22 production are decreased, altering gut permeability and promoting 
lipopolysaccharide (LPS) translocation. Serotonin (5-HT) biosynthesis from intestinal enterochromaffin cells is also reduced in the context of MetS due 
to a decrease in the production of microbiota-derived metabolites inducing the production of host 5-HT.  on June 7, 2021 by guest. P
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Lessons from faecal microbiota transplantation
FMT is a drastic strategy to modify the gut microbiome. It is 
highly effective in the treatment of recurring Clostridioides 
difficile infections and has been evaluated in small trials in 
metabolic syndrome and obesity.22–24 The clinical efficacy of 
this strategy is so far mild, with mostly some positive effects 
on insulin sensitivity in subgroups of patients. However, 
these studies had several limitations, including small size and 
limited duration of intervention. Nevertheless, they provide 
relevant information to identify the critical molecules 
involved in biological effects. Following successful FMT, both 
the microbiota composition and metabolomics, such as BA 
and SCFA profiles, can be restored. In patients with obesity, 
FMT can induce engraftment of the butyrate-producing and 
bile-hydrolysing genus Faecalibacterium, leading to a resto-
ration of the BA profile and microbiota BSH activity.96 FMT 
increases the relative abundance of SCFA-producing bacteria 
such as Roseburia intestinalis and the protective strain Akker-
mansia muciniphila,97 with a possible role in the improve-
ment in insulin sensitivity through regulation of GLP-1.98 
A. muciniphila supplementation alone improves metabolic 
parameters in overweight/obese insulin-resistant volunteers 
characterised by better insulin sensitivity and a reduction 
in plasma total cholesterol levels and fat mass.99 In mice, A. 
muciniphila promotes the production of SCFAs100 and the 
restoration of HFD-induced alterations in tryptophan metab-
olism.101 These data highlight the key family of microbiota-
derived metabolites with potential therapeutic effects.

Synthetic agonists of bile acid receptors
Given their potential benefits in metabolic diseases, BAs and 
synthetic FXR and TGR5 agonists are currently under devel-
opment in the metabolic field. Preclinical trials based on in 
vitro and in vivo studies identified potent synthetic FXR and 
TGR5 agonists, which are currently being investigated in phase 
II or III clinical trials.36 102 Due to the regulatory roles of FXR 
and TGR5 receptors on glucose and lipid metabolism, multiple 
specific agonists have been designed. Obeticholic acid (OCA), 
one of the best-characterised FXR agonists, protects the liver 
from damage in mice with a reduction in hepatic steatosis and 
inflammation36 102 and is currently being evaluated in a phase 
III trial in patients with NASH.103 The synthetic FXR agonist 
GW4064 improves hyperglycaemic and hyperlipidaemia in 
mice with diabetes104 and is able to correct BA dysmetabolism 
and alleviate liver toxicity in rodents with short bowel.105 The 
intestine-restricted FXR agonist fexaramine can also promote 
adipose tissue browning and GLP-1 secretion in wild type (WT) 
and leptin receptor-deficient diabetic mice.106 Finally, a TGR5 
agonist ameliorated insulin resistance and glucose homeostasis in 
mice with diabetes by the cyclic AMP/protein kinase A pathway 
in skeletal muscles.107

Short-chain fatty acid and branched-chain amino acid treatment
Dietary supplementation with fermentable fibres, such as 
inulin in HFD-fed mice or inulin-propionate ester in over-
weight humans, protects against metabolic disturbances by 
restoring the gut microbial composition and the action of the 
IL-22-mediated axis.65 108 Oral SCFA treatment in obese mice 
can modulate lipid synthesis and insulin receptors by upreg-
ulating peroxisome proliferator-activated receptor-γ.109 It 
also improves intestinal barrier functions with a lower serum 
LPS concentration.110 SCFAs exert their beneficial effects 
partly through specific G-protein-coupled receptors, and 

their activation by specific agonists is an attractive strategy 
in the treatment of MetS. GPR40/FFA1,111 GPR41/FFA3,112 
GPR43/FFA2113 and GPR120/FFA4114 agonists induce 
protection against diet-induced obesity in mice through the 
improvement in insulin, GLP-1 and incretin secretion and 
anti-inflammatory effects. In addition, a link between dietary 
BCAAs and energy balance was noted in animals with obesity, 
and reducing the proportion of dietary BCAAs was associated 
with a restoration of metabolic health.115

CONCLUDING REMARKS
Gut microbiota-derived metabolites have a central role in 
the physiology and physiopathology of metabolic disorders. 
The microbial metabolites described above, specifically BAs, 
SCFAs, BCAAs, TMAO, tryptophan and indole derivatives, 
are implicated in the pathogenesis of these complex disorders 
and represent potential biomarkers for the early diagnosis 
and prognosis of these diseases.116 117 Moreover, microbiota-
derived metabolites and their host receptors, possibly in 
combination with dietary intervention, represent promising 
targets for the development of novel therapeutic tools for 
metabolic disorders.
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