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ABSTRACT
All the studies of the interaction between tides and a convective flow assume that the large-scale tides can be described as a mean
shear flow that is damped by small-scale fluctuating convective eddies. The convective Reynolds stress is calculated using mixing
length theory, accounting for a sharp suppression of dissipation when the turnover time-scale is larger than the tidal period. This
yields tidal dissipation rates several orders of magnitude too small to account for the circularization periods of late-type binaries
or the tidal dissipation factor of giant planets. Here, we argue that the above description is inconsistent, because fluctuations
and mean flow should be identified based on the time-scale, not on the spatial scale, on which they vary. Therefore, the standard
picture should be reversed, with the fluctuations being the tidal oscillations and the mean shear flow provided by the largest
convective eddies. We assume that energy is locally transferred from the tides to the convective flow. Using this assumption, we
obtain values for the tidal Q factor of Jupiter and Saturn and for the circularization periods of pre-main-sequence binaries in
good agreement with observations. The time-scales obtained with the equilibrium tide approximation are however still 40 times
too large to account for the circularization periods of late-type binaries. For these systems, shear in the tachocline or at the base
of the convective zone may be the main cause of tidal dissipation.

Key words: convection – hydrodynamics – Sun: general – planets and satellites: dynamical evolution and stability – planet–star
interactions – binaries: close.

1 IN T RO D U C T I O N

Tidal dissipation in stars and giant planets plays a very important
role in shaping the orbits of binary systems. For early-type stars,
which have a radiative envelope, tides are damped in the radiative
surface layers. The theory has been very successful at explaining
the circularization periods of these stars (Zahn 1977). For late-
type stars and giant planets, dissipation in the convective regions
is expected to be very important, although dissipation due to wave
breaking in stably stratified layers may also play a role (Barker &
Ogilvie 2010). In convective zones, the standard theory describes
the tides as a mean flow that interacts with fluctuating convective
eddies (Zahn 1966). The rate of energy transfer between the tides
and the convective flow is given by the coupling between the
Reynolds stress associated with the fluctuating velocities and the
mean shear flow. In this approach, it is further argued that the
fluctuations vary on a small enough spatial scale to justify the use
of a diffusion approximation to evaluate the Reynolds stress, leading
to the introduction of a ‘turbulent viscosity’ given by mixing length
theory. In most cases of interest, the tidal periods are significantly
smaller than the convective turnover time-scale in at least part of the
envelope. In such a situation, convective eddies cannot transport and
exchange momentum with their environment during a tidal period,
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and dissipation is suppressed. Rather than motivate a revision of
the basic structure of the model, this has been taken into account
by incorporating a period-dependent term in the expression for the
turbulent viscosity (Zahn 1966; Goldreich & Nicholson 1977). Tidal
dissipation calculated this way is orders of magnitude too small to
account for either the circularization period of late-type binaries, or
the tidal dissipation factor of Jupiter and Saturn inferred from the
orbital motion of their satellites. This is still the case even when the
correction to the turbulent viscosity for large turnover time-scales
is formally ignored, or when resonances with dynamical tides are
included (Goodman & Oh 1997; Terquem et al. 1998; Ogilvie 2014,
and references therein).

Numerical simulations have attempted to measure the turbulent
viscosity and its period dependence in local models (Penev et al.
2009; Ogilvie & Lesur 2012; Duguid, Barker & Jones 2020), and the
first global simulations have been published very recently (Vidal &
Barker 2020a, b). Interestingly, the simulations (in the four more re-
cent publications) show that the turbulent viscosity actually becomes
negative at large forcing frequencies. This suggests that the standard
picture of convective turbulence dissipating the tides is dubious when
the period of the tides is smaller than the turnover time-scale, even
though negative viscosities are only obtained for unrealistically low
tidal periods (Duguid et al. 2020; Vidal & Barker 2020b).

In this paper, we revisit the interaction between tides and con-
vection in this regime. In Section 2, we show that, when the
time-scales can be well separated, traditional roles are reversed:
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the Reynolds decomposition yields energy equations in which the
tides are the fluctuations, whereas convection is the mean flow.
The spatial scales on which these flows vary is not relevant in
identifying the fluctuations and the mean flow. In Section 3, assuming
equilibrium tides, we give an expression for the rate DR at which
the Reynolds stress exchanges energy between the tides and the
convective flow. Although the sign of DR is not known, we make the
strong assumption that energy is locally transferred from the tides
to the convective flow (DR > 0), and investigate whether such a
coupling yields an energy dissipation at the level needed to account
for observations. In Section 4, we give expressions for the total
dissipation rate corresponding to both circular and eccentric orbits,
and for the orbital decay, spin-up, and circularization time-scales. We
apply those results in Section 5. We calculate the tidal dissipation Q
factor for Jupiter and Saturn, the circularization periods of pre-main-
sequence (PMS) and late-type binaries and evolution time-scales for
hot Jupiters. Apart from the notable exception of the circularization
periods of late-type binaries, all these results are in good quantitative
agreement with observations. In Section 6, we discuss our results. We
also review numerical simulations and observations of the Sun, which
show that the interaction between convection and rotation leads to
large-scale flows and structures that are quite different from the
traditional picture, and may produce the convective velocity gradients
required to make DR > 0.

2 C O N SERVATIO N O F EN ER G Y IN A
C O N V E C T I V E FL OW SU B J E C T TO A FA S T
VA RY ING TIDE

We consider a binary system made of two late-type stars that orbit
each other with a period Porb. The period of the tidal oscillations
excited in each of the stars by their companion, which is P = Porb/2 for
non-rotating stars, is on the order of a few days for close binaries. We
can estimate the convective turnover time-scale tconv in the convective
envelope of the stars by assuming that all the energy is transported
by convection. The largest eddies cross the convective envelope on a
time of order tconv, transporting the kinetic energy of order MenvV2,
where V is the velocity of the eddies and Menv is the mass of the
convective envelope. The luminosity of the star is therefore L ∼
MenvV2/tconv. To within a factor of order unity, V ∼ R/tconv, where R
is the radius of the star. This yields tconv ∼ 40 d for the Sun, which is
significantly larger than P. More precise solar models confirm that
the convective turnover time-scale is larger than a few days in a large
part of the envelope. This time-scale can be interpreted as the lifetime
of the convective eddies. Therefore, the time-scale P on which the
velocity of the fluid elements induced by tidal forcing varies is much
smaller than the time-scale tconv on which the velocity of the largest
convective eddies induced by buoyancy varies.

2.1 Reynolds decomposition and exchange of energy between
the tides and convection

We now consider a simplified model in which a flow is the superposi-
tion of two flows that vary with very different time-scales τ 1 and τ 2 �
τ 1, and outline for clarity the derivation of the standard equations that
govern the evolution of the kinetic energy of the two flows, as this is at
the heart of the argument we present in this paper (see e.g. Tennekes
& Lumley 1972 for details). Compressibility is not important for the
argument, so we assume that the flow is incompressible (the analysis
done in this section will be applied to equilibrium tides, which
correspond to incompressible fluid motions). We use the Reynolds
decomposition in which the total velocity u is written as the sum of

the velocity V of the slowly varying flow and that u′ of the rapidly
varying flow:

u = V + u′, (1)

where V = 〈u〉 and
〈
u′〉 = 0, with the brackets denoting an average

over a time T such that τ 1 � T � τ 2. A similar decomposition can
be made for the pressure p and the viscous stress tensor σ ij:

p = � + p′, σij = Sij + σ ′
ij , (2)

where

σij = ρν

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (3)

with ν being the (molecular) kinematic viscosity, and � = 〈p〉,
Sij = 〈σ ij〉, 〈p′〉 = 〈σ ′

ij 〉 = 0. The indices i and j refer to Cartesian
coordinates. Molecular viscosity is not important for the dissipation
of tides, but we keep this term as it helps to interpret the energy
conservation equations. Incompressibility implies

∇ · (V + u′) = 0. (4)

Taking a time average of this equation yields

∇ · V = 0. (5)

Subtracting from equation (4) then gives

∇ · u′ = 0, (6)

which means that both the average flow and the fluctuations are
incompressible. We also assume that ρ is constant with time and
uniform. Although this model is of course not a realistic description
of the convective flow in a star, it contains the key ingredients for the
argument that is presented here.

The flow satisfies Navier–Stokes equation, which i-component is

∂ui

∂t
+ (u · ∇) ui = − 1

ρ

∂p

∂xi

+ 1

ρ

∂σij

∂xj

+ 1

ρ
fi, (7)

where f includes all the forces per unit volume that act on the fluid,
and we adopt the convention that repeated indices are summed over.
Substituting the Reynolds decomposition above and averaging the
equation over the time T yields

∂Vi

∂t
+ (V · ∇) Vi + 〈(

u′ · ∇)
u′

i

〉 = − 1

ρ

∂�

∂xi

+ 1

ρ

∂Sij

∂xj

+ 1

ρ
〈fi〉 ,(8)

where we have used the fact that the time and space derivatives can
be interchanged with the averages (for the time derivative, this is
because τ 1 � T � τ 2).

The average kinetic energy per unit mass is〈
1

2
uiui

〉
=

〈
1

2

(
Vi + u′

i

) (
Vi + u′

i

)〉 = 1

2

(
ViVi + 〈

u′
iu

′
i

〉)
,

which is the sum of the kinetic energy of the mean flow and that of
the fluctuations.

We obtain an energy conservation equation for the mean flow by
multiplying equation (8) by Vi. Using equations (5) and (6) then
yields

∂

∂t

(
ViVi

2

)
+ Vj

∂

∂xj

(
ViVi

2

)

= ∂

∂xj

(
−Vj�

ρ
+ νVi

∂Vi

∂xj

− Vi

〈
u′

iu
′
j

〉)

+ 1

ρ
Vi 〈fi〉 − ν

∂Vi

∂xj

∂Vi

∂xj

+ DR, (9)
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where we have defined

DR ≡ 〈
u′

iu
′
j

〉 ∂Vi

∂xj

. (10)

This equation indicates that the Lagrangian derivative of the kinetic
energy of the mean flow per unit mass (left-hand side) is equal to
the divergence of a flux, which represents the work done by pressure
forces, viscous and Reynolds stresses on the mean flow, plus the
work done on the mean flow by the forces that act on the volume of
the fluid, plus a term expressing dissipation of energy in the mean
flow due to viscosity, plus the term DR, which represents the rate
at which energy is fed into or extracted from the mean flow by the
Reynolds stress Rij = −ρ〈u′

iu
′
j 〉.

A similar conservation equation for the fluctuations can be ob-
tained by multiplying equation (7) by u′

i . Substituting the Reynolds
decomposition, averaging over time and using equations (5) and (6)
then yields

∂

∂t

(〈
u′

iu
′
i

〉
2

)
+ Vj

∂

∂xj

(〈
u′

iu
′
i

〉
2

)

= ∂

∂xj

(
−
〈
u′

jp
′〉

ρ
+ ν

〈
u′

i

∂u′
i

∂xj

〉
−

〈
u′

iu
′
iu

′
j

〉
2

)
+ 1

ρ

〈
u′

ifi

〉

−ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
− DR. (11)

Here again, this equation indicates that the Lagrangian derivative of
the kinetic energy of the fluctuations per unit mass (left-hand side) is
equal to the divergence of a flux, which represents the average of the
work done by the fluctuating pressure forces, viscous and Reynolds
stresses on the fluctuations, plus the work done on the fluctuations by
the forces that act on the volume of the fluid, plus a term expressing
dissipation of energy in the fluctuations due to viscosity, minus the
same DR term as in equation (9).

As can be seen from equations (9) and (11), DR represents the rate
of energy per unit mass that is exchanged between the mean flow
and the fluctuations via the Reynolds stress: when DR < 0, energy
is transferred from the mean flow to the fluctuations whereas, when
DR > 0, energy is transferred from the fluctuations to the mean flow.

2.2 Comparison with previous work

All the studies that have been done to date on the interaction between
tides and convective flows have relied on a description where the
fluctuations are identified with the convective flow, whereas the mean
flow is identified with the tidal oscillations. It is then assumed that
energy is transferred from the tides to the convective eddies, in much
the same way that energy is transferred from the mean shear to the
turbulent eddies in a standard turbulent shear flow. This is described
using a turbulent viscosity, which is assumed to be a valid concept
because the mean flow is perceived to vary on large scales, whereas
the fluctuations are viewed as varying on small scales.

In his pioneering study of tides in stars with convective envelopes,
Zahn (1966) assumed that convection could be described using a
turbulent viscosity, which yields a viscous force acting on tidal
oscillations. He recognized that dissipation was reduced when the
period P of the oscillations was smaller than the convective turnover
time-scale tconv, and proposed a reduction by a factor P/tconv in this
context. In Zahn (1989), he further commented that the concept of
a turbulent viscosity relies on a diffusion approximation, only valid
when the convective eddies vary on a spatial scale much smaller
than that associated with the tides. In a seminal paper, Goldreich

& Soter (1966) derived constraints on tidal dissipation in planets
in the Solar system based on the evolution of their satellites. They
further estimated the amount of dissipation in Jupiter by assuming
that damping of the tides occurred in a turbulent boundary layer at
the bottom of the atmosphere, where a solid core is present. Later,
Hubbard (1974) investigated tidal dissipation in Jupiter assuming the
existence of a viscosity in the interior of the planet. He estimated its
value using the constraints derived by Goldreich & Soter (1966),
and concluded that the likely origin of this viscosity was turbulent
convection. His calculation did not take into account a reduction
of dissipation for P/tconv < 1. Goldreich & Nicholson (1977)
subsequently pointed out that Hubbard (1974) had overestimated
tidal dissipation, and proposed a reduction of the turbulent viscosity
by a factor (P/tconv)2 in the regime P/tconv < 1. Neither Hubbard
(1974) nor Goldreich & Nicholson (1977) referred to Zahn (1966),
which indicates that they were not aware of his earlier work. This may
be because Zahn’s 1966 papers were written in French. Following
these earlier studies, there has been much discussion about the factor
by which turbulent viscosity is reduced when P/tconv < 1, but it
has always been assumed that, in this regime, convection could still
be described as a turbulent viscosity damping the tides. As already
pointed out, this implicitly assumes that the spatial scales associated
with convection are much smaller than that associated with the
tides.

As we will see below, the assumption that the tides vary on a
scale larger than the largest convective eddies is not always justified.
But, even more importantly, equations (9) and (11) are obtained by
identifying and separating the mean flow and the fluctuations based
solely on the time-scales on which they vary, not on the spatial
scales. Therefore, in the case of fast tides (τ 1 = P) interacting
with slowly varying convection (τ 2 = tconv), the fluctuations are the
tidal oscillations and the mean shear flow is provided by the largest
convective eddies. This implies that the Reynolds stress −ρ〈u′

iu
′
j 〉 is

given by the correlations between the components of the velocity of
the tides, not that of the convective velocity. It is the coupling of this
stress to the mean shear associated with the convective velocity that
controls the exchange of energy between the tides and the convective
flow.

As far as we are aware, the term DR given by equation (10)
has never been included in previous studies of tidal dissipation in
convective bodies. This term, however, is present in the energy
conservation equation for the fluctuations even when a linear analysis
of the tides is carried out, as it comes from the u′

j (∂Vi/∂xj ) term in
Navier–Stokes equation. In Goodman & Oh (1997), it is eliminated
on the assumption that it does not contribute to dissipation and, in
Ogilvie & Lesur (2012) and Duguid et al. (2020), it cancels out for
the particular form of the flow chosen to model the tides.

3 TR A N S F E R O F EN E R G Y BE T W E E N T H E
T I D E S A N D T H E LA R G E C O N V E C T I V E ED D I E S

In the case of a standard turbulent shear flow, the Reynolds stress is
given by the correlations between the components of the turbulent
velocity, and the coupling to the background mean shear determines
how energy is exchanged. Because the length-scale of the turbulent
eddies is small compared to the scale of the shear flow, eddies are
stretched by the shear flow, and conservation of angular momentum
then produces a correlation of the components of the turbulent
velocity yielding DR < 0 (see e.g. Tennekes & Lumley 1972).
This corresponds to a transfer of energy from the mean flow to
the largest turbulent eddies and the subsequent cascade results in a
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5792 C. Terquem

small-scale viscous dissipation of the free energy present in the shear
flow.

In the case of fast tides interacting with slowly varying convection,
fluid elements oscillating because of the tidal forcing cannot be
stretched by the mean flow associated with convection in the same
way as described above, because the length-scale of the tides may be
larger, sometimes even much larger, than that of the eddies and also
because the tides are imposed by an external forcing. Therefore, in
this context, there is no reason why energy would be transferred from
the mean convective flow to the tides, which would correspond to DR

< 0. In addition, if DR were negative, the amplitude of the tides would
be increased by the interaction with convection, which in turn would
increase the orbital eccentricity of the binary (see Goldreich & Soter
1966 for a physical explanation of how tidal interaction modifies
the eccentricity of the orbit). Also, this would lead to a decrease
of the orbital period when the rotational velocity of the body in
which the tides are raised is larger than the orbital velocity of the
companion. This would not be in agreement with observations, which
indicate that tides are dissipated when interacting with a convective
flow: this is evidenced by the circularization of late-type binaries
and the orbital evolution of the satellites of Jupiter and Saturn. This
implies that there is a net transfer of kinetic energy from the tides
to the convective eddies, that is to say the integral of ρDR, where
ρ is the mass density, over the volume of the convective zone is
positive. Equations (9) and (11) have been obtained by averaging
the motion over a time T which is small compared to the time-scale
τ 2 = tconv over which the convective eddies vary, which amounts to
considering they are ‘frozen’. Therefore, these equations cannot be
used to understand how energy is transferred from the tides to the
convective eddies. If fast tides always transfer kinetic energy to the
largest convective eddies, there has to be some universal mechanism
by which the flow re-arranges itself to make the integral of ρDR

positive. In the envelope of the Sun, convection interacting with
rotation does not look like the standard picture of blobs going up and
down. In particular, the Coriolis force inhibits radial downdrafts near
the equator, and rotation produces prominent columnar structures,
as expected from the Taylor–Proudman theorem (Featherstone &
Miesch 2015). This will be discussed further in Section 6. Calculating
DR requires knowing the gradient of the convective velocity which,
as of today, cannot be obtained even from state-of-the-art numerical
simulations. Therefore, in order to progress, we have to make very
crude assumptions and approximations. Thereafter, we will then
assume that the gradient of the convective velocity is such that
DR is everywhere positive in convective regions. The idea is to
investigate whether the maximum energy dissipation obtained in that
ideal case would be at the level needed to explain the circularization
period of late-type binaries and the tidal dissipation factor of Jupiter
and Saturn. Note that, although this is a very strong assumption,
it is similar to the assumption made in all previous studies that
the turbulent Reynolds stress associated with convection couples
positively to the gradient of the tidal velocities to extract energy
from the tides.

We now evaluate the correlation of the components of the tidal
velocity, 〈u′

iu
′
j 〉, assuming equilibrium tides (which satisfy the

assumption of incompressible fluid motions made in the analysis
of Section 2). The equilibrium tide approximation is actually rather
poor in convective regions where the Brunt–Väisälä frequency is
not very large compared to the tidal frequency, and this yields to an
overestimate of tidal dissipation by a factor of a few for close binaries
(Terquem et al. 1998; Barker 2020). It also does not apply in the thin
non-adiabatic region near the surface of the convective envelope
(Bunting, Papaloizou & Terquem 2019). However, given all the

uncertainties in estimating tidal dissipation here, the equilibrium tide
approximation is sufficient. To zeroth order in eccentricity and for
a non-rotating body, this gives u′ = ∂ξ/∂t with (e.g. Terquem et al.
1998):

ξr (r, θ, ϕ, t) = f ξr (r) × 3 sin2 θ cos (mϕ − nωorbt) , (12)

ξθ (r, θ, ϕ, t) = f ξh(r) × 6 sin θ cos θ cos (mϕ − nωorbt) , (13)

ξϕ (r, θ, ϕ, t) = −f ξh(r) × 3m sin θ sin (mϕ − nωorbt) , (14)

where

ξr (r) = r2ρ

(
dp

dr

)−1

, (15)

ξh(r) = 1

6r

d

dr

[
r2ξr (r)

]
, (16)

and n = m = 2. Here, p is the pressure, ωorb is the orbital frequency
and f = −GMp/(4a3), with Mp being the mass of the companion that
excites the tides, a being the binary separation and G being the gravi-
tational constant. The frequency of the tidal oscillation is ω = nωorb,
while the period is P = Porb/n, with Porb = 2π /ωorb being the orbital
period. Using the equation of hydrostatic equilibrium, equation (15)
yields ξ r(r) = −r4/[GM(r)], where M(r) is the mass contained
within the sphere of radius r. Therefore, if M(r) varies slowly
with radius, as in the convective envelope of the Sun for example,
ξ h(r) 
 ξ r(r).

This equilibrium tide is the response of the star obtained ignoring
convection and any other form of dissipation. To calculate tidal
dissipation in a self-consistent way, we should in principle solve
the full equations including convection, and this would in particular
introduce a phase shift between the radial and horizontal parts of the
tidal displacement. However, as dissipation is expected to be small
(i.e. the energy dissipated during a tidal cycle is small compared to the
energy contained in the tides), first-order perturbation theory can be
used. This means that the tidal velocities can be calculated ignoring
dissipation, which can then be estimated from these velocities. This
is the approach used in Terquem et al. (1998).

The expressions above imply that 〈u′
ru

′
ϕ〉 = 〈u′

θu
′
ϕ〉 = 0 and,

since ξ r(r) varies on a scale comparable to r, |〈u′2
θ 〉| ∼

|〈u′2
ϕ 〉| ∼ |〈u′2

r 〉| ∼ |〈u′
ru

′
θ 〉| ∼ u′2, where u′ is the character-

istic value of the tidal velocity. Therefore, from equa-
tion (A6), which gives DR in spherical coordinates, we
obtain

DR ∼ u′2 V

Hc

, (17)

where V is the characteristic value of the convective velocity and
Hc is the scale over which it varies. In standard studies of tides
interacting with convection, it is assumed that the fluctuations are
associated with the convective flow whereas the mean flow is the
tidal oscillation. In this picture, dissipation by large eddies, with a
long turnover time-scale, is suppressed, which is accounted for by
adding a period-dependent term to the dissipation rate per unit mass,
which is then given by

Dst
R =

〈
ViVj

〉
1 + (tconv/P )s

∂u′
i

∂xj

, (18)

where the superscript ‘st’ indicates that this dissipation rate corre-
sponds to the standard approach. The value of s = 1 was originally
proposed by Zahn (1966), but it was later argued by Goldreich &
Nicholson (1977) that s = 2 should be used instead (see Goodman
& Oh 1997 for a clear presentation of the arguments). Mixing length
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theory is then used to calculate the Reynolds stress, which gives

∣∣〈ViVj

〉∣∣ ∼ νtu
′

r
, (19)

where ν t ∼ HcV is the turbulent viscosity. The new dissipation rate
we propose can be compared to the standard value:

DR

Dst
R

∼
(

r

Hc

)2 [
1 +

(
tconv

P

)s]
. (20)

If r/Hc � 1 and/or tconv � P, then DR � Dst
R .

4 TOTA L D I S S I PAT I O N R ATE IN STA R S A N D
G I A N T P L A N E T S A N D E VO L U T I O N
TIME-SCALES

The dissipation rate per unit mass in spherical coordinates is given
by equation (A6). This equation shows that, in addition to 〈u′

ru
′
θ 〉,

the quantities 〈u′2
r 〉, 〈u′2

θ 〉, and 〈u′2
ϕ 〉 may contribute to DR. The

corresponding terms in DR would add up to zero if the tides were
isotropic and convection incompressible. Although we have assumed
in the analysis above that convection was incompressible, it is not the
case in reality, and as all these terms may contribute we will retain
them. Of course the analysis is not consistent, since extra terms
would have to be included in the energy conservation equation for
compressible convection. However, our conclusions do not depend
on whether we include 〈u′2

r 〉, 〈u′2
θ 〉, and 〈u′2

ϕ 〉 or not, as we will justify
below. Equation (A6) shows that 〈u′2

r 〉 couples to V/Hc, whereas 〈u′2
θ 〉

and 〈u′2
ϕ 〉 couple to V/r. For 〈u′

ru
′
θ 〉, the coupling is to both V/Hc and

V/r, with the dominant term being that associated with V/Hc (as will
be seen below, in the parts of the envelopes that contribute most
to dissipation, Hc < r). The dominant component of the convective
velocity is usually taken to be in the r-direction, but as here we
investigate the maximum dissipation rate that could be obtained, we
allow for the possibility that horizontal components may play a role
as well.

Therefore, we approximate DR as

DR = (∣∣〈u′
ru

′
θ

〉∣∣ + ∣∣〈u′2
r

〉∣∣) V

Hc

+ (∣∣〈u′2
θ

〉∣∣ + ∣∣〈u′2
ϕ

〉∣∣) V

r
, (21)

where we have assumed that DR is positive, as discussed above.
If the body in which the tides are raised rotates synchronously with

the orbit, the companion does not exert a torque on the tides. In that
case, if the orbit is circular, the semimajor axis stays fixed. However,
if the orbit is eccentric, although there is no net torque associated
with the tides, there is still dissipation of energy. This leads to a
change of semimajor axis, which has to be accompanied by a change
of eccentricity e to keep the orbital angular momentum constant.
For the parameters of interest here, e always decreases (Goldreich &
Soter 1966).

Therefore, energy dissipation in a synchronously rotating body
requires the perturbing potential to be expanded to non-zero orders
in e. Such an expansion is also needed to calculate the circularization
time-scale, whether the body is synchronous or not, as both zeroth-
and first-order terms in e in the expansion of the potential contribute
to this time-scale at the same order (e.g. Ogilvie 2014). An expansion
to first order in e is sufficient, as higher order terms lead to short time-
scales and therefore a rapid decrease of e. Most of the circularization
process is therefore dominated by the stages where e is small (Hut
1981; Leconte et al. 2010). We now calculate the total dissipation
rate for both circular and eccentric orbits, in the limit of small e.

4.1 Dissipation rate for a circular orbit

The total rate of energy dissipation in the convective envelope is

(
dE

dt

)
c

= 2
∫
(

tconv>
Porb

n

)
∫ π/2

0
ρDR × 2πr2 sin θdθdr, (22)

where the subscript ‘c’ indicates that the calculation applies to a
circular orbit. Using equations (21), this yields(

dE

dt

)
c

= 6

5
πn2ω2

orbf
2I1 (ωorb, m, n) , (23)

with

I1 (ωorb, m, n) =
∫

(tconv>Porb/n)
dr ρ(r)

×
{[

rξr (r)
d

dr

(
r2ξr (r)

) + αmr2ξ 2
r (r)

]
V (r)

Hc(r)

+ βm + 5m2

18

[
d

dr

(
r2ξr (r)

)]2
V (r)

r

}
. (24)

where αm=8 and βm=4 for m=2 (which applies to the circular orbit
considered here), and αm=12 and βm=36 for m=0 (which will be
considered below). Note that I1 may depend on ωorb and n, as the
domain of integration covers the region where tconv > P = Porb/n. In
principle, we should add the contribution arising from Dst

R over the
domain where tconv < P. However, this is very small compared to the
integral above, as will be justified later, so it can be neglected.

For a binary system where a body of mass Mp raises tides on a
body of mass Mc, we can make the scaling of dE/dt with ωorb and Mp

clear by using f = −Mpω2
orb/[4(Mc + Mp)]. This yields

(
dE

dt

)
c

= 3n2

40
π

(
Mp

Mc + Mp

)2

ω6
orbI1 (ωorb, m, n) . (25)

For a fixed n, if ωorb increases, P decreases and therefore I1 may
increase (it happens if tconv > P only in part of the envelope). This
implies that (dE/dt)c ∝ ω

q

orb with q ≥ 6. For comparison, Terquem
et al. (1998) obtained (dE/dt)c ∝ ω5

orb using the standard model with
turbulent viscosity.

So far, we have considered a non-rotating body. Calculating the
response of a rotating body to a tidal perturbing potential is very
complicated and beyond the scope of this paper. We can however
make an argument to estimate how the rate of energy dissipation
calculated above would be modified if the body rotated. In the
simplest approximation where the body rotates rigidly with uniform
angular velocity �, the tides retain the same radial structure but each
component rotates at a velocity nωorb − m� in the frame of the fluid
(where for a circular orbit, n = m = 2). A standard approach would
be to use the above derivation of dE/dt and shift the velocity of the
tide accordingly (as done in Savonije & Papaloizou 1984). However,
what matters in calculating the dissipation rate DR in equation (21)
is not the velocity of the tide relative to the equilibrium fluid in the
body, but the velocity of the tide and that of the convective flow in
an inertial frame. This suggests that the calculation of DR is roughly
the same whether the body rotates or not. However, the integral I1

is calculated over the domain where tconv is larger than the period of
the tide, and this does involve the frequency of the tide relative to
the fluid in the body. This suggests that the energy dissipation rate
when the body rotates is still given by equation (23), but with the
appropriate modification for the domain of integration of I1.
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5794 C. Terquem

4.2 Dissipation rate for an eccentric orbit

We now calculate the energy dissipation rate in the limit of small ec-
centricity following the method presented in Savonije & Papaloizou
(1983). To first order in e, and assuming a non-rotating body, the
perturbing potential can be written as

�p = f r2
[
�2,2 + e

(
�0,1 + �2,1 + �2,3

)]
, (26)

where the subscripts indicate the values of m, n. We have (Savonije
& Papaloizou 1983; Ogilvie 2014)

�2,2 = 3 sin2 θ cos(2ϕ − 2ωorbt), (27)

�0,1 = 3(3 cos2 θ − 1) cos(ωorbt), (28)

�2,1 = 3

2
sin2 θ cos(2ϕ − ωorbt), (29)

�2,3 = −21

2
sin2 θ cos(2ϕ − 3ωorbt). (30)

The tidal displacement corresponding to each component can be
written as in equations (12)–(14) but with the appropriate angular and
time dependence [which, for ξ θ and ξϕ , are obtained by applying ∂/∂θ

and ∂/(sin θ∂ϕ), respectively, to the angular and time dependence
of ξ r]. It is straightforward to show that the terms �2,1 and �2,3

contribute an energy dissipation rate given by equation (23) with the
appropriate value of n, but multiplied by e2/4 and 49e2/4, respectively.
For �0,1, the integral over θ in equation (22) has to be re-calculated,
and this yields the same energy dissipation as given by equation (23)
but with the appropriate values of αm and βm and n = 1, and
multiplied by e2. Therefore, the total energy dissipation rate is(

dE

dt

)
e

= 6

5
πω2

orbf
2

{
4I1 (ωorb, 2, 2) + e2

[
1

4
I1 (ωorb, 2, 1)

+ 441

4
I1 (ωorb, 2, 3) + I1 (ωorb, 0, 1)

]}
, (31)

where the terms in braces correspond, in the order in which
they appear, to the contributions from �2,2, �2,1, �2,3, and �0,1,
respectively. The subscript ‘e’ indicates that the calculation applies
to an eccentric orbit.

In some cases, the body is spun up and becomes synchronous
before circularization is achieved. As mentioned above, when the
body rotates, we expect the energy dissipation rate to be given by
the same expression as for a non-rotating body, but with the domain
of integration of I1 to include the region where tconv is larger than
the period of the tide relative to that of the fluid. When the body is
synchronized, this amounts to replacing I1(ωorb, m, n) in equation (31)
by I1(ωorb, m, |n − m|) for the term contributed by �m,n. In addition,
the term due to �2,2 has to be removed as a circular orbit does
not contribute to energy dissipation in that case. We then obtain the
following estimate for the rate of energy dissipation in a synchronized
body:(

dE

dt

)
e,sync

= 6

5
πω2

orbf
2e2

[
1

4
I1 (ωorb, 2, 1)

+441

4
I1 (ωorb, 2, 1) + I1 (ωorb, 0, 1)

]
, (32)

where the terms in braces correspond, in the order in which they
appear, to the contributions from �2,1, �2,3, and �0,1, respectively.
The subscript ‘e,sync’ indicates that the calculation applies to an
eccentric orbit and a synchronous body. This can be written more

simply as(
dE

dt

)
e,sync

= 3π

40

(
Mp

Mc + Mp

)2

ω6
orbe

2

×
[

442

4
I1 (ωorb, 2, 1) + I1 (ωorb, 0, 1)

]
. (33)

4.3 Evolution time-scales

4.3.1 Orbital decay

The energy that is dissipated leads to a decrease of the orbital energy
Eorb = −GMcMp/(2a), such that dEorb/dt = −dE/dt, and therefore to
a decrease of the binary separation. The characteristic orbital decay
time-scale is given by

torb ≡ −a

(
da

dt

)−1

= McMp

Mc + Mp

ω2
orba

2

2 (dE/dt)
. (34)

If the body is synchronized, dE/dt is given by equation (33).
As (dE/dt)e,sync ∝ e2, the time-scale is very long for small ec-
centricities. If the body is not synchronized, the dominant con-
tribution to the rate of energy dissipation comes from �2,2 for
small eccentricities, and therefore dE/dt = (dE/dt)c is given by
equation (23).

4.3.2 Spin-up

When the body of mass Mc is non-rotating (or rotating with a period
longer than the orbital period), the companion exerts a positive torque
� on the tides which corresponds to a decrease of the orbital angular
momentum. An equal and opposite torque is exerted on the body of
mass Mc, which angular velocity � therefore increases as I(d�/dt)
= �, where I is the moment of inertia of the body. Assuming a
circular orbit, we have � = (dE/dt)c/ωorb, which yields the spin-up
(or synchronization) time-scale:

tsp ≡ − (� − ωorb)

(
d�

dt

)−1


 Iω2
orb

(dE/dt)c
, (35)

where we have used � � ωorb, as these are the values of � which
contribute most to tsp.

4.3.3 Circularization

The rate of change of eccentricity is obtained by writing the rate of
change of orbital angular momentum Lorb, where

Lorb = McMp

Mc + Mp

[
G
(
Mc + Mp

)
a
(
1 − e2

)]1/2
. (36)

A mentioned above, to calculate the circularization time-scale, we
need to expand the perturbing potential to first order in e. For each
of the components �m,n of the potential given by equations (27)–
(30), we calculate dLorb/dt and express da/dt as a function of
dE/dt. We then use the following relation (e.g. Witte & Savonije
1999):

nωorb
dLorb

dt
= m

dEorb

dt
= −m

dE

dt
, (37)

to obtain

MpMc

Mp + Mc

ω2
orba

2e2

1 − e2
t−1
circ =

(
1 − 1√

1 − e2

m

n

)
dE

dt
, (38)
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Coupling between fast tides and convection 5795

Figure 1. Atmosphere of Jupiter. Shown are r/lm with lm = 2HP (blue curve), the convective time-scale tconv in hours (green curve), the convective velocity
V in m s−1 (magenta curve), and DR/Dst

R for P = 21 h (red curve) versus r/RJ, where RJ is Jupiter radius, using a vertical logarithmic scale and for a model
provided by I. Baraffe. The horizontal line shows P = 21 h for comparison with tconv.

where the circularization time-scale is defined as:

tcirc = −e

(
de

dt

)−1

. (39)

Using the values of dE/dt contributed by each component of the
potential, as written in equation (31), we calculate t−1

circ to zeroth
order in e for each of these components, and add all the contributions
to obtain t−1

circ produced by the full potential. This yields

(
tnr
circ

)−1 = 3π

10

Mp

Mc + Mp

ω4
orb

Mca2

[
−1

2
I1 (ωorb, 2, 2)

− 1

16
I1 (ωorb, 2, 1) + 147

16
I1 (ωorb, 2, 3)

+1

4
I1 (ωorb, 0, 1)

]
. (40)

The terms in brackets correspond, in the order in which they
appear, to the contributions from �2,2, �2,1, �2,3, and �0,1. The
superscript ‘nr’ indicates that the calculation applies to a non-rotating
body.

If the body of mass Mc rotates synchronously, the argument
developed above suggests that the circularization time-scale can be
written in the same way as for a non-rotating star, but with I1(ωorb,
m, n) in equation (40) being replaced by I1(ωorb, m, |n − m|) for the
term contributed by �m,n. Also, the term contributed by �2,2 should
be removed for synchronous rotation. We then obtain the following
estimate for the circularization time-scale:

(
t sync
circ

)−1 = 3π

10

Mp

Mc + Mp

ω4
orb

Mca2

×
[

73

8
I1 (ωorb, 2, 1) + 1

4
I1 (ωorb, 0, 1)

]
. (41)

The superscript ‘sync’ indicates that the calculation applies to a
synchronous body.

5 A PPLI CATI ONS

We now apply these results to Jupiter, Saturn, PMS, and late-type
binaries and systems with a star and a hot Jupiter.

5.1 Jupiter’s tidal dissipation factor

In this section, we evaluate the rate at which the energy of the tides
raised by Io in Jupiter dissipates. This corresponds to Porb = 42.5 h
and Mp = 8.93 × 1022 kg (Io’s mass). Jupiter’s rotational period
is 9.9 h, which is short compared to the orbital period, so that in
principle the tides should be calculated taking into account rotation.
However, it has been found that Jupiter rotates as a rigid body, with
differential rotation being limited to the upper 3000 km, that is to
say about 4 per cent of its atmosphere (Guillot et al. 2018), and
the tidal response taking into account solid body rotation is very
well approximated by the equilibrium tide (Ioannou & Lindzen
1993). Interestingly, it has been found that Io is moving towards
Jupiter (Lainey et al. 2009). Tidal dissipation in Jupiter increases
Io’s angular momentum and hence its orbital energy, since Jupiter’s
rotational velocity is larger than Io’s orbital velocity. However, the
resonant interaction with the other Galilean satellites induces an
orbital eccentricity that leads to tidal dissipation in Io itself (there
would be no dissipation if the orbit were circular, as Io rotates
synchronously with the orbital motion), decreasing its orbital energy.
The resonant interaction also directly decreases the orbital energy,
and these losses are larger than the gain from the exchange with
Jupiter’s rotation.

To calculate the rate of energy dissipation, we approximate the
scale Hc over which the convective velocity varies by the mixing
length lm, and use the standard approximation lm = αHP, where α

= 2 and HP is the pressure scale height. Fig. 1 shows the convective
time-scale tconv, the convective velocity V, r/lm, and DR/Dst

R for P
= 21 h in the atmosphere of Jupiter, for a model provided by I.
Baraffe (and described in Baraffe, Chabrier & Barman 2008). The
model gives HP and the convective velocity V, calculated with the
mixing length approximation, and we compute tconv = lm/V. This is
not expected to be valid where HP > r, which happens in the deep
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5796 C. Terquem

Figure 2. Equilibrium tide raised by Io in the atmosphere of Jupiter. Shown are fξ r(r) and fξh(r) in m (black and blue curves, respectively, and left y-axis) and
the radial part of u′

r , which is 2ωorbf ξr (r), in m s−1 (red curve, right y-axis) versus r/RJ using vertical logarithmic scales. As the data from Jupiter’s model are
noisy above 0.9RJ, we set ξh(r) = ξ r(r) there, which is a good approximation for the equilibrium tide.

interior of Jupiter below 0.4RJ, where RJ is Jupiter radius, as mixing
length theory does not hold in this regime. However, as we will
see below, the parts of the envelope below 0.4RJ do not contribute
significantly to tidal dissipation.

Fig. 2 shows fξ r(r) and fξ h(r), and the radial part of u′
r , which

is 2ωorbfξ r(r), corresponding to the equilibrium tides given by
equations (15) and (16), in the atmosphere of Jupiter. As the data
from Jupiter’s model are noisy above 0.9RJ, we set ξ h(r) = ξ r(r)
there, which is a good approximation for the equilibrium tides when
the interior mass is almost constant.

The effective tidal dissipation factor is defined as (Goldreich &
Soter 1966)

Q = 2πE

�E
, (42)

where �E is the energy lost by the tides during one tidal period, and E
is the energy stored in the tides themselves. As there is equipartition
between kinetic and potential energy, E = 2EK, where EK is the
kinetic energy:

EK =
∫∫∫

1

2
ρu′2r2 sin θdrdθdϕ, (43)

where the integral is over the whole volume of Jupiter’s atmosphere.
Using u′ = ∂ξ/∂t , with ξ given by equations (12)–(14), yields

EK = 24

5
πn2ω2

orbf
2I2, (44)

where:

I2 =
∫ RJ

Ri

ρr2

{
ξ 2
r (r) + 1

6r2

[
d

dr

(
r2ξr (r)

)]2
}

dr, (45)

with Ri being the inner radius of Jupiter’s atmosphere.
We now calculate �E = (dE/dt)cP. We have argued in Section 4.1

that, when the body rotates rigidly, dE/dt is still given by equa-
tion (23), but with the appropriate modification for the domain of
integration of I1. As tconv in Jupiter’s atmosphere is everywhere much
larger than the period of the tides relative to that of the fluid, I1 is
calculated by integrating over the whole atmosphere whether rotation

is taken into account or not. Therefore, rotation does not make a
difference, and (dE/dt)c is given by equation (23). This yields

Q = 16ωorb
I2

I1
, (46)

where I1 is given by equation (24). Since tconv � P everywhere in
the atmosphere for all the periods involving Jupiter’s satellites, both
I1 and I2 are independent of ωorb and Q ∝ ωorb. For the orbital decay
time-scale, equations (34) and (25) yield torb ∝ ω

−16/3
orb .

For comparison, we see from equations (18) and (19) that standard
mixing length theory gives dE/dt ∼ u′2ω−s

orb, where s = 1 or 2 allows
for suppression of dissipation at high frequency, and E = 2EK ∼u′2.
Therefore, equation (42) yields Q ∝ ωs+1

orb when mixing length theory
is used. Note that, in this context, a different scaling Q ∝ ωs−1

orb was
reported by Ogilvie (2014), based on the energy dissipation rate
calculated by Zahn (1977, 1989). The discrepancy arises from the
fact that Zahn, following Darwin (1879), assumed that dissipation
yielded a phase shift between the equilibrium tide and the tidal
potential given by ω/(tconvω

2
dyn), where ωdyn = (GM/R3)1/2 is the

dynamical frequency of the body in which the tides are raised, with
M and R being its mass and radius, respectively. Such an assumption
has not been used here, where we calculate the energy dissipation
rate directly from equation (22) instead, replacing DR by Dst

R when
using mixing length theory.

For the orbital frequency of Io, we obtain EK = 2.0 × 1027 erg,
(dE/dt)c = 2.6 × 1019 erg s−1, and Q = 1.3 × 104. This is close
to the value of 3.56 × 104 derived by Lainey et al. (2009) based
on the orbital motion of the Galilean satellites. As evidenced by
the fact that Io is moving towards Jupiter, the orbital evolution of
the Galilean satellites is dominated by the resonant interaction, and
therefore the orbital evolution time-scales cannot be calculated from
equation (34).

The upper part of Jupiter’s atmosphere contributes significantly to
Q: calculating (dE/dt)c by including only the region below 0.9RJ

yields Q = 5 × 104, whereas including only the region above
0.9RJ yields Q = 2.7 × 104. This is because both V /Hc = t−1

conv
and the amplitude of the tides in equation (24) increase towards
the surface. The convective velocities at the surface of Jupiter may
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Coupling between fast tides and convection 5797

Figure 3. Atmosphere of Saturn. Model 1 (upper plot): The black and magenta curves show VSat and 0.6VJup, respectively, in m s−1, versus r/RS, where RS is
Saturn radius. We adopt V = VSat below 0.9RS and V = 0.6VJup above 0.9RS. Also shown are r/lm with lm = 0.5HP (blue curve), the convective time-scale tconv

in hours (green curve) and DR/Dst
R for P = 16.45 h (red curve) versus r/RS. The vertical scale is logarithmic. The model is provided by R. Helled and A. Vazan.

The curves are interrupted in the regions that are stable against convection. The horizontal line shows P = 16.45 h for comparison with tconv. Model 2 (lower
plot): Same as upper plot but for a model provided by I. Baraffe. The magenta curve shows the convective velocity V that is an output of the model and for this
model lm = 2HP.

not be well approximated by the mixing length theory, but even if
V/Hc were smaller there we would still obtain Q of the order of a
few 104.

We can write an approximate expression for Q by noting that
the tides enter the expressions for (dE/dt)c and EK in a similar
way. Using V /Hc = t−1

conv in equation (24), we can then approximate
equation (42) by

Q ∼ nωorb

∫ RJ
Ri

ρr2dr∫ RJ
Ri

t−1
convρr2dr

. (47)

This yields Q = 1.6 × 104, very close to the value obtained
with equation (42). Although ρ decreases towards the surface, tconv

decreases faster (while staying larger than the tidal period), so that
the outer regions contribute most to Q. The fact that Q is well

approximated by the expression above confirms that our results do
not depend on the details of the components of the stress tensor we
include in the calculation, as discussed in Section 4.

5.2 Saturn’s tidal dissipation factor

We now calculate the rate at which the energy of the tides raised by
Enceladus in Saturn dissipate. This corresponds to Porb = 32.9 h and
Mp = 1.08 × 1020 kg. Saturn’s rotational period is 10.6 h but, as for
Jupiter, rotation can be neglected for calculating the tidal dissipation
factor.

As Saturn’s models have been subject to recent developments, we
use two different models, one provided by R. Helled and A. Vazan
(model 1, Vazan et al. 2016) and one provided by I. Baraffe (model 2,
Baraffe et al. 2008).
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5798 C. Terquem

Figure 4. Convective envelope of the Sun. Shown are r/lm with lm = 2HP (blue curve), the convective time-scale tconv in days (green curve), the convective
velocity V in m s−1 (magenta curve) and DR/Dst

R for P = 6 d (red curve) versus r/R� using a vertical logarithmic scale and for a 1 M� MESA model. The
horizontal line shows P = 6 d for comparison with tconv, and we set DR/Dst

R = 1 where tconv < P.

Figure 5. Equilibrium tide raised in the convective envelope of the Sun by a 1 M� mass star for an orbital period of 12 d. Shown are fξ r(r)/R� in m (black
curve, left y-axis) and the radial part of u′

r , which is 2ωorbfξ r(r), in m s−1 (red curve, right y-axis) versus r/R�. In the convective envelope of the Sun, ξh(r) 

ξ r(r).

Model 1 supplies the convective velocity VSat, but it is not well
resolved near the surface. However, we find that VSat is very close to
0.6VJup in the bulk of the atmosphere, where VJup is the convective
velocity output by the model of Jupiter described above. Therefore,
for Saturn, we adopt the convective velocity V = VSat below 0.9RS

and V = 0.6VJup above 0.9RS, where RS is Saturn radius. As for
Jupiter, we take the scale over which the convective velocity varies
to be the mixing length lm = αHP. However, it has been argued
that, in planetary interiors, α may be smaller than the value of 2
commonly used in stellar physics (Leconte & Chabrier 2012), and
VSat in model 1 was calculated using α = 0.5 (Vazan et al. 2016).
Therefore, we adopt lm = 0.5HP.

Model 2 supplies HP and V, and we compute tconv = lm/V with
lm = 2HP, i.e. α = 2, as this is the value used to calculate V in this
model.

Fig. 3 shows VSat, 0.6VJup, r/lm with lm = 0.5HP, tconv = lm/V, and
DR/Dst

R for P = 16.45 h for model 1, and V, r/lm with lm = 2HP,
tconv = lm/V and DR/Dst

R for model 2. Note that model 1 has regions
that are stable against convection (Leconte & Chabrier 2012, 2013;
Vazan et al. 2016).

Using astrometric observations spanning more than a century
together with Cassini data, Lainey et al. (2017) have recently deter-
mined the effective tidal dissipation factor Q for Saturn interacting
with its moons Enceladus, Tethys, Dione, and Rhea, which have
orbital periods of 1.37, 1.89, 2.74, and 4.52, d, respectively. Using
equation (42) and model 1, we find QEncel = 4.5 × 103 for Saturn
interacting with Enceladus. This is in very good agreement with
the value published by Lainey et al. (2017), which is 2.45 × 103.
As Enceladus is closer to Saturn than Dione, and torb ∝ ω

−16/3
orb , its

interaction with Saturn yields a shorter orbital decay time-scale than
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that for Dione. However, the two moons are dynamically coupled
through a 2:1 mean motion resonant interaction, which implies that
they both migrate at the same rate corresponding to the strongest
interaction with Saturn. Therefore, QDione ∼ QEncel, consistent with
Lainey et al. (2017). Although these authors do not measure an orbital
evolution time-scale for Mimas, this moon is in a 4:2 mean motion
resonance with Tethys, so the Q value for both satellites interacting
with Saturn should be the same, equal to that of Mimas. Using
equation (42), we obtain QMimas = 6.5 × 103, which is 1.4 times
larger than QEncel, in excellent agreement with the ratio QTethys/QEncel

= 1.3 reported by Lainey et al. (2017). For Rhea, we obtain QRhea

= 1.4 × 103, which is about four times larger than the value of
315 reported by Lainey et al. (2017). Note that, as for Jupiter,
Q ∝ ωorb.

Model 2 with α = 2 yields QEncel = 1.6 × 104. I. Baraffe also
provided model 2 with convective velocities calculated adopting α

= 0.5. Using lm = 0.5HP with this model yields QEncel = 7.3 × 103.
In addition to model 1, R. Helled supplied several models that were
calculated with a planetary evolution code, as described in Vazan
et al. (2016). Finally, Y. Miguel and T. Guillot provided a model that
matches all the gravity harmonics measured by Cassini, mass, radius,
and differential rotation (Galanti et al. 2019). These models do not
output the convective velocities, so we used V = 0.6VJup. The values
of Q obtained in all cases were consistent with the results described
above. Therefore, tidal dissipation in Saturn is not sensitive to the
details of the structure, but to the values of the convective time-
scale. This is consistent with the fact that Q is well approximated by
equation (47).

This suggests that, if tidal dissipation of the equilibrium tides
is responsible for the orbital evolution of Saturn’s moons, the
mixing length parameter in Saturn’s interior may be smaller than the
commonly assumed value of α = 2, in agreement with the models of
Vazan et al. (2016).

5.3 Circularization of late-type binaries

In the literature, the effective tidal dissipation factor has been used for
stars as well as for giant planets. However, it is not an easy quantity
to calculate for stars, because the energy stored in the tides cannot
be evaluated using the equilibrium approximation (see e.g. Terquem
et al. 1998). Also, since the tides are dissipated in only part of the
star, while the energy EK requires integration over the entire volume
of the star, Q depends on the amplitude of the tides and therefore has
a less straightforward dependence on ωorb than in giant planets. For
this reason, we will not compute values of Q in this section.

The results presented in this section have been obtained using
a solar model produced by MESA (Paxton et al. 2011, 2013, 2015,
2016, 2018, 2019), and have been checked not to differ from those
obtained using a solar model provided by I. Baraffe. The code outputs
the pressure scale height HP and the convective velocity V computed
with the mixing length theory and using α = 2. We note lm = 2HP the
mixing length. Fig. 4 shows the convective time-scale tconv = lm/V,
the convective velocity V, r/lm, and DR/Dst

R for P = 6 d (Porb = 12 d)
and using Hc = lm in the convective zone.

Fig. 5 shows fξ r(r)/R� and the radial part of u′
r , which is

2ωorbfξ r(r), corresponding to the equilibrium tides given by equa-
tions (15) and (16), in the convective envelope of the Sun. As the
mass interior to radius r varies slowly with r, ξ h(r) 
 ξ r(r) there.

For the 1 M� MESA model represented in Fig. 4, writing the
moment of inertia as I = 0.07M�R2� and using Hc = lm, we
calculate the time-scales given by equations (34), (35), (40), and (41)
and display them in Fig. 6. The circularization time-scales calculated

that way are about 40 times too large to account for the circularization
of late-type binaries.

As seen from equation (20), the circularization time-scale we
obtain here is about (r/Hc)2 larger than the time-scale t st

circ obtained
with the standard approach when suppression of dissipation by large
eddies is ignored. However, t st

circ is orders of magnitude too large
to account for the circularization time-scale of late-type binaries
(Goodman & Oh 1997; Terquem et al. 1998) and, as r/Hc is only
between about 5 and 10 in the region of the convective envelope
where tconv > P for Hc = lm, the time-scale using the new formalism
is still too long.

It is not clear how the time-scales could be decreased by a factor
of 40 within the context of the mechanism discussed here. Only
by replacing the shear rates V/Hc and V/r by V/P in equation (24)
and integrating over the whole extent of the convective zone do we
get time-scales matching observations. Therefore, circularization of
late-type binaries may occur as a result of other processes than the
interaction between convection and equilibrium tides. The strong
shear at the bottom of the convective zone, where the convective
velocity rapidly reaches zero, or in the tachocline, where the
rotational velocity has a strong radial gradient, may contribute to
the dissipation of tides.

As the formalism presented above yields a Q factor for Jupiter
and possibly for Saturn in good agreement with observations, it may
apply to the interior of giant planets. To be able to infer the orbital
evolution of binaries containing a star and a hot Jupiter, we therefore
scale the time-scales resulting from the tides raised in the star so
that they match the observations for late-type binaries. This is shown
in Fig. 7, where we plot the time-scales given by equations (40)
and (41), using a 1 M� MESA model and Mp = 1 M�, divided by
40, together with data showing the circularization period versus age
for eight late-type binary populations (note that the time-scales are
divided by 2 before applying the scaling as the binary is assumed to
have two identical stars).

We display the circularization time-scale for both non-rotating
and synchronized stars. However, from Fig. 6, we expect the stars
to be synchronized on a relatively short time-scale, so that when
comparing with observations the time-scale for synchronized stars
should be used. Note that solar type stars on the main-sequence lose
angular momentum because of magnetized winds. Gallet & Bouvier
(2013) derive a corresponding time-scale J/|dJ/dt|, where J is the
stellar angular momentum, on the order of a few Gyr for stars which
are a few Gyr old. As this is much longer than the tidal spin-up time-
scale (especially after the scaling is applied), we would expect tidal
synchronization to be achieved despite braking of the stars by winds.

All the data except that for M35 are taken from Meibom &
Mathieu (2005). For M35, the circularization period of 9.9 d is
from Leiner et al. (2015) and the age of 0.18 Gyr from Kalirai
et al. (2003). For PMS binaries, our calculation does not actually
apply, because those stars have a more extended convective envelope
than the Sun. Tides are therefore more efficiently dissipated in those
stars, leading to shorter circularization time-scales for a given period.
A proper calculation for PMS binaries is done in Section 5.4. For
Hyades/Praesepe, the circularization period makes this cluster very
unusual, but it is worth noting that it is based on a small sample.
For field binaries, there is also some discrepancy between the results
presented here after scaling and the data published by Meibom &
Mathieu (2005). However, these authors point out that the age of this
population is not well constrained, which makes the sample not very
reliable. Also, a survey published by Raghavan et al. (2010) report
a circularization period close to 12 d, which would move the data
point for this population closer to the curves in Fig. 7.
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Figure 6. Tides raised in a 1 M� MESA model by a companion with Mp = 1 M�. Shown are, from top to bottom, the orbital decay timescale (magenta curve),
circularization time-scale for a synchronized star (red curve), circularization timescale for a non-rotating star (orange curve), and spin-up time-scale (blue curve)
in Gyr, using a logarithmic scale, versus orbital period in days. The curves correspond to the timescales calculated from equations (34), (41), (40), and (35),
respectively. The circularization time-scales calculated that way are about 40 times too large to account for the circularization of late-type binaries.
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Figure 7. Late-type binaries. Shown are the circularization time-scales in Gyr and the same time-scales divided by 40 using a logarithmic scale for non-rotating
stars (orange curves) and synchronized stars (red curves) versus orbital period in days. The time-scales are calculated from equations (40) and (41) using a
1 M� MESA model, and the results are divided by two assuming the binary is made of two identical stars. The black crosses with error bars represent data from
Meibom & Mathieu (2005), whereas the magenta filled circle is from Leiner et al. (2015).

The time-scales given by equations (34), (35), (40), and (41) and
divided by 40 can be fitted by the following power laws for 1 d ≤
Porb ≤ 17 d:

torb (Gyr) = 2.175
(1 + Mp/Mc)5/3

Mp/Mc

(
Porb

10 d

)5.695

, (48)

tsp(Gyr) = 7.997 × 10−4

(
1 + Mc

Mp

)2 (
Porb

10 d

)4.362

, (49)

tnr
circ(Gyr) = 0.403

(1 + Mp/Mc)5/3

Mp/Mc

(
Porb

10 d

)5.586

, (50)

t sync
circ (Gyr) = 0.867

(1 + Mp/Mc)5/3

Mp/Mc

(
Porb

10 d

)6.054

, (51)

where the dependence on Mp is shown explicitly. The ratio of these
fits to the original time-scales is between 0.5 and 1.3.

In calculating dE/dt, we have neglected the contribution from Dst
R

in the region where tconv < P. This becomes important when the
time-scale t st

circ obtained with the standard approach and ignoring
suppression of dissipation by large eddies becomes comparable to
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the circularization time-scale we calculate here. We have checked that
this is the case only for the largest orbital period of 17 d considered
here.

5.4 Circularization of pre-main-sequence binaries

We generate models of 1 M� PMS stars of different ages using MESA.
Fig. 8 shows the convective time-scale tconv = lm/V, the convective
velocity V, r/lm and DR/Dst

R for P = 3.5 d (Porb = 7 d) and using Hc

= lm = 2HP for a 1 Myr old star. The star has a radius of 2.35 R�
and is completely convective. For a 3.16 Myr old star, the radius is
1.63 R� and the convective envelope only extends down to about 0.3
stellar radius.

Assuming a binary with two identical stars, we calculate the orbital
period Pcirc for which the circularization time-scale is equal to the
age tage of the stars. For PMS binaries, the time-scales corresponding
to non-rotating and synchronous stars are roughly the same, so they
are calculated from either equation (40) or (41) and divided by two
to account for the two stars. We find Pcirc = 5.2, 5.9, and 7.3 d
for tage = 3.16, 2, and 1 Myr, respectively. Younger stars would
give larger Pcirc, but our calculations are probably not valid when
a massive disc is still present around the stars, which is the case
during the first Myr or so. Therefore, our results indicate that binaries
circularize early on during the PMS phase up to a period of about
7 d, which is in good agreement with the observed period of 7.1 d
for the PMS population shown in Fig. 7 and which has an age of
3.16 Myr.

5.5 Hot Jupiters

We now consider the case where the central mass is a solar type
star and the companion a Jupiter mass planet. As we are interested
in planets that are close to their host star, we use a model for an
irradiated Jupiter. Fig. 9 shows the convective time-scale tconv, the
convective velocity V, r/lm with lm = 2HP and DR/Dst

R for P = 1 d
(Porb = 2 d) in the atmosphere of an irradiated Jupiter, for a model
provided by I. Baraffe. This model corresponds to a planet that has an
orbital period of about 2 d around an F star, which is slightly hotter
than the Sun. It has a (non-inflated) radius Rp = 1.126 RJ, and there
is a radiative layer near the surface due to irradiation. This model
is more irradiated than the planets that would be consistent with the
parameters we adopt here. However, by calculating results for both
this model and a standard Jupiter, we can bracket all realistic models.
For the moment of inertia of the planet, we adopt I = 0.27MJR

2
p ,

which gives Jupiter’s value when Rp = RJ.
Fig. 10 shows the circularization, orbital decay, and spin-up time-

scales versus orbital period between 1 and 8 d corresponding to both
the tides raised in the star by the planet and the tides raised in the
planet by the star. The time-scales are given by equations (34), (35),
(40), and (41), and have been divided by 40 for the tides raised in
the star. At the short periods of interest here, t sync

circ 
 tnr
circ for both

the tides raised in the star and the planet, as tconv is large enough
compared to the tidal period that the dominant term I1(ωorb, 2, 3) 

I1(ωorb, 2, 1) in equation (40).

Circularization and orbital decay occur predominantly as a result
of the tides raised in the star, and the tides raised in the planet are
only important to synchronize it. We have checked that replacing
the irradiated Jupiter model by the standard Jupiter model described
above led to very similar results, with time-scales corresponding to
the tides raised in the planet being 1.3–1.7 times longer.

5.5.1 Circularization

Fig. 10 shows that the orbit of hot Jupiters should circularize up to
periods of 4–5 d on time-scales of a few Gyr. These results are in
agreement with observations, which indicate a circularization period
of 5–6 d (Halbwachs, Mayor & Udry 2005; Pont 2009; Pont et al.
2011).

5.5.2 Synchronization

Due to the tides raised by the star, the planet is synchronized on time-
scales much shorter than the age of the systems. Our results indicate
that, for periods below about 3 d, the star itself should synchronize
on time-scales of at most a few Gyr because of the tides raised by
the planet. However, as already pointed out above, solar type stars on
the main sequence lose angular momentum because of magnetized
winds. The corresponding time-scale J/|dJ/dt|, where J is the stellar
angular momentum, is of the order of a few Gyr for stars that are a
few Gyr old, and much smaller for younger stars (Gallet & Bouvier
2013). This is shorter or equal to the spin-up time-scales found
here. Therefore, this braking of the star by winds may prevent tidal
synchronization by hot Jupiters. This is suggested by observations
that show that, although stars hosting hot Jupiters spin faster than
similar stars without companions, they are not synchronized (Penev
et al. 2018).

5.5.3 Orbital decay

From Fig. 10, we see that orbital decay becomes significant for
periods below 3–4 d. If both the star and the planet were synchronized
and the orbit circular, orbital evolution would not occur. However,
as pointed out above, stars with hot Jupiters are not observed to be
synchronized, so that our results imply that orbital decay occurs
in these systems. Note that orbital decay with Porb/|dPorb/dt| =
3.2 Myr is compatible with observations for the Jupiter mass planet
WASP-12b, which has an orbital period of 1.09 d (Patra et al. 2017,
see also Maciejewski et al. 2016). This would correspond to torb


 5 Myr, which is very close to the value of 6 Myr we obtain
here.

5.5.4 Energy dissipation and inflated radii

Some giant extrasolar planets are observed to have an anomalously
large radius. Starting with the work by Bodenheimer, Lin & Mardling
(2001), tidal dissipation has been proposed as a mean to inflate
those planets. However, subsequent studies have found that, even if
the rate of tidal dissipation is adjusted such as to account for the
circularization of late-type binaries, it is not large enough to account
for the inflated radius of hot Jupiters (Leconte et al. 2010). As planets
synchronize relatively fast, energy can only be dissipated by tides
raised in the planet by the star if the orbit retains some eccentricity.
In this case, the energy dissipation rate is given by equation (33),
and is proportional to e2. As orbits with periods smaller than about
5 d circularize on time-scales of a few Gyr, eccentricities are very
small, as confirmed by observations, which limits the rate of energy
dissipation.

Fig. 11 shows the rate of energy dissipation (dE/dt)e,sync calculated
from equation (33) for both a standard Jupiter model and an irradiated
Jupiter model in which tides are raised by a 1 M� star, assuming an
eccentricity e = 0.03. This is an upper limit for most of the systems
in which an inflated radius is present (Jackson, Greenberg & Barnes
2008). To explain the inflated radii that are observed to be between
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Figure 8. 1 Myr old PMS star. Shown are r/lm with lm = 2HP (blue curve), the convective time-scale tconv in days (green curve), the convective velocity V in
m s−1 (magenta curve) and DR/Dst

R for P = 3.5 d (red curve) versus r/R� using a vertical logarithmic scale and for a 1 M� MESA model. The horizontal line
shows P = 3.5 d for comparison with tconv, and we set DR/Dst

R = 1 where tconv < P. The star is completely convective.

Figure 9. Atmosphere of an irradiated Jupiter. Shown are r/lm with lm = 2HP (blue curve), the convective time-scale tconv in days (green curve), the convective
velocity V in m s−1 (magenta curve) and DR/Dst

R for P = 1 d (red curve) versus r/Rp, where Rp = 1.126 RJ is the planet radius, using a vertical logarithmic
scale. The horizontal line shows P = 1 d for comparison with tconv.

1.1 and 1.5 RJ for a large number of hot Jupiters, a heating rate
between 1025 and 1028 erg s−1 is needed (Bodenheimer, Laughlin
& Lin 2003; Miller, Fortney & Jackson 2009). These are the values
we obtain only for orbital periods smaller than 3 d. Therefore, our
results confirm that tidal dissipation alone cannot explain the inflated
radius of most hot Jupiters.

6 D ISCUSSION AND CONCLUSION

The models for Jupiter in Fig. 1 and Saturn in Fig. 3 show that
the convective time-scales in the envelope of the planets are much
larger than the tidal periods of interest. Therefore, the time-scales
of convection and the tides are well separated, which validates the

analysis carried out in Section 2. This analysis shows from first
principles that the rate DR at which energy per unit mass is exchanged
between the tides and the convective flow via the Reynolds stress
is given by equation (10), where u

′
is the velocity of the tides

and V the velocity of the convective flow. This is in contrast to
the standard approach that has been used in previous studies, and
which identifies the mean flow and the fluctuations based on the
spatial scales on which they vary, rather than on the time-scales,
therefore interchanging the role of the tidal and convective velocities
in equation (10). Fig. 1 also shows that the diffusion approximation,
which has been used to express the convective Reynolds stress as a
turbulent viscosity, is not self-consistent, even in the modified form
that accounts for a suppression of dissipation at long turnover time-
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1023

1024

1025

1026

1027

1028

1029

 1  2  3  4  5  6

irradiated

non irradiated

e=0.03

dE
/d

t (
er

g 
s-1

)

Porb (days)

Figure 11. Rate of energy dissipation (dE/dt)e,sync (calculated from equation 33) in erg s−1 using a logarithmic scale versus orbital period in days for a Jupiter
model (black curve) and an irradiated Jupiter model (red curve) in which tides are raised by a 1 M� star, for an eccentricity e = 0.03.

scales, as the scale of the convective eddies lm is large or comparable
to the radius r in a large part of the atmosphere. Below r = 0.5RJ,
r/lm < 1, and r/lm reaches 5 only at r = 0.8RJ. Similar results apply
to models of Saturn. For the Sun, as seen in Fig. 4, convective time-
scales are large compared to tidal periods of interest in the inner
parts of the convective envelope, and lm is only moderately smaller
than r there. The non-locality of convection in the Sun has of course
been known for a long time, and non-local theories of convection
have been proposed (Spiegel 1963; Unno 1969; Ulrich 1970; Xiong
1979).

Note that, although we are arguing that mixing length theory does
not apply in the envelopes of giant planets and the Sun, we have used

the convective velocities V and time-scales tconv from models based
on this approximation in Section 5. However, for slow rotators like the
Sun, the orders of magnitude of V and tconv (and hence lm = Vtconv) do
not actually depend on the details of the model, and could be obtained
directly from dimensional analysis by matching the convective flux
of energy to the observed flux, as done at the beginning of Section 2.
That being said, it is worth keeping in mind that the convective
velocities required to transport the energy radiated by the Sun seem
to be larger than those needed to establish differential rotation and
those inferred by observations (O’Mara et al. 2016). In fast rotators,
it has been proposed that tconv ∝ Ro2/5, where Ro is the Rossby
number based on convective velocities in the absence of rotation
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(Stevenson 1979; Barker, Dempsey & Lithwick 2014; Gastine, Wicht
& Aubert 2016). In giant planets, Ro ∼ 10−5 to 10−4, which yields
convective time-scales about two orders of magnitude smaller than
those used here. This would correspond to much smaller values of Q,
as shown by equation (47). It is not clear however whether models
including such a dramatic change in the convective time-scales would
agree with observations. The studies leading to this scaling are in
essence an extension of the mixing length theory to rotating systems,
which may not be a good description of convection in fast-rotating
bodies.

The formal derivation of the rate DR at which energy is exchanged
between the tides and the convective flow with large turnover time-
scale is a robust result. However, calculating this term specifically
in the envelopes of the Sun or giant planets would require knowing
the velocity of the convective flow there, which can only be achieved
by numerical simulations. A positive DR would mean that energy
is locally transferred from the tides to the convective flow, whereas
a negative DR would mean that energy is fed to the tides. It may
even be that DR changes sign depending on location. However,
circularization of late-type binaries and the orbital evolution of
the moons of Jupiter and Saturn require tides to dissipate in the
convective envelopes of stars and giant planets. We have accordingly
calculated the evolution time-scales for these systems assuming DR

to be positive everywhere in the interiors of stars and planets, which
yields maximal energy dissipation, and investigated whether this led
to time-scales in agreement with observations. The time-scales we
obtain match very well the observations for Jupiter and PMS binaries,
and also for Saturn when adopting recent models in which the length-
scale over which the convective velocity varies is smaller than that
given by standard mixing length theory (Vazan et al. 2016). Such a
reduction in this length-scale has been suggested for giant planets by
Leconte & Chabrier (2012). It is also consistent with studies which
find that, in rotating bodies, the mixing length is reduced by a factor
equal to Ro

′
(Vasil, Julien & Featherstone 2020) or 2Ro3/5 (Stevenson

1979; Barker et al. 2014; Currie et al. 2020), where Ro
′
is the Rossby

number based on convective velocities in the presence of rotation.
This is because the Taylor–Proudman theorem favours rotation along
cylinders centred on the rotation axis, therefore reducing the scale of
the flow perpendicular to the axis. However, as pointed out above, it
is not clear whether mixing length theory applies in the presence of
fast rotation.

For Jupiter and Saturn, an additional source of tidal dissipation
may be provided by gravity modes which are excited in stably strat-
ified layers. Such layers have recently been shown to be compatible
with Juno’s gravity measurements of Jupiter (Wahl et al. 2017).
For Saturn, stable layers are predicted by recent models (Vazan
et al. 2016) and also by the analysis of density waves within the
rings (Fuller 2014). Resonance locking between satellites and gravity
modes in evolving planets has been proposed as an explanation for
the low Q values of both Jupiter and Saturn (Fuller, Luan & Quataert
2016).

The fact that our results do not match the observations for late-
type binaries, whereas they yield good agreement for bodies that
are fully convective, is indicative that tidal dissipation in solar type
stars may be due to the shear present at the base of the convective
envelope, where convective velocities go to zero rather abruptly, or
in the tachocline, where the rotational velocity has a strong radial
gradient. The component of the Reynolds stress that couples to this
shear is 〈u′

ru
′
ϕ〉. This is zero when there is no dissipation, as u′

r and
u′

ϕ are π /2 out of phase in that case, but this could become significant
in regions where dissipation is large, as this introduces an additional
phase shift (e.g. Bunting et al. 2019).

Dissipation of inertial waves in the convective envelope has
also been considered as a possible explanation for the observed
circularization periods. These waves are excited when the tidal
frequency in the frame of the fluid, |nωorb − m�|, where � is
the (uniform) angular velocity of the star, is smaller than 2�.
As synchronization of the stars happens much more rapidly than
circularization, ωorb = � during most of the circularization phase
and inertial waves are excited by the terms in the tidal potential
that are first order in eccentricity, which correspond to n − m =
±1 (Ogilvie 2014). Ogilvie & Lin (2007), and more recently Barker
(2020), have shown that the rate of energy dissipation of these waves
in the convective zone is much larger than that of equilibrium tides
when mixing length theory is used for those. Barker (2020) obtains
a circularization time-scale of 1 Gyr for an orbital period of 7 d (this
result corresponds to dissipation in a single solar-mass star, but it
would hardly change if tides in both stars were taken into account).
Although this process is slightly more efficient than the one discussed
here, it still does not account for the observed circularization
periods.

The good agreement between our results and the observations for
fully convective bodies is of course not by itself a proof that DR > 0,
but indicates that the model presented here is a route worth exploring
further. It also suggests that there may be a mechanism by which the
convective flow re-arranges itself to always extract energy from the
tides. It has been known for some time that the interaction of rotation
with convection in the envelope of the Sun produces large-scale
axisymmetric flows that extend in the entire convective envelope.
The most striking feature of these flows is the differential rotation
in the latitudinal direction, which makes the poles rotate 30 per cent
slower than the equator all the way through the convective zone.
Global torsional oscillations in the longitudinal direction (Howe et al.
2018) and a large-scale meridional flow have also been observed. The
meridional flow involves motions in both the latitudinal and radial
directions and takes the form of a single cell in each hemisphere of
the Sun (Gizon et al. 2020). Numerical simulations of this meridional
flow show that, like differential rotation, it is established by angular
momentum transport resulting from the convective Reynolds stress
in the presence of rotation (e.g. Featherstone & Miesch 2015; Hotta,
Rempel & Yokoyama 2015). In addition, numerical simulations show
that rotation inhibits radial downdrafts near the equator and produces
prominent columnar structures aligned with the star rotation axis
(Featherstone & Miesch 2015), consistent with the Taylor–Proudman
theorem.

Although the velocities associated with the large-scale flows are
much smaller than the convective velocities, and would therefore
not themselves provide a large shear the tidal Reynolds stress could
couple to, these results suggest that the structure of the convective
flow in a rotating body is very different from the simple standard
picture, where fluid elements move up and down resulting in a
convective velocity that averages to zero spatially.

In Jupiter, as already mentioned in Section 5.1, it has been found
that differential rotation is limited to the upper 4 per cent or so
of the atmosphere. Therefore, convection in this planet may not
generate large-scale flows deeper in the atmopshere. This would
however not be inconsistent with our results, as we have found that
the upper 10 per cent of Jupiter’s atmosphere could account for its
tidal dissipation factor.

Whether the interaction between convection, rotation, and the tides
can produce the convective velocity gradients required for DR to be
positive could be tested by measuring this term in numerical simu-
lations. It would also be interesting to know how the circularization
period of late-type binaries varies with stellar rotation: if large-scale
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flows in convective envelopes are important in providing the right
gradient of convective velocity to make DR > 0, then tidal dissipation
should be more efficient in more rapidly rotating stars, in which more
global structures develop (Featherstone & Miesch 2015).
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APPENDI X A : ENERGY C ONSERVATI ON IN
S P H E R I C A L C O O R D I NAT E S

We consider a spherical coordinate system (r, θ , ϕ) centred on the
star and denote the associated unit vectors er, eθ , eϕ . The equation
for conservation of energy of the mean flow is obtained as described
in Section 2. In spherical coordinates, neglecting viscous dissipation,
this yields
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Locally, we can define a Cartesian coordinate system (x, y, z)
such that the x, y, and z-axes are along eθ , eϕ , and er, respectively.
Therefore, dx = rdθ , dy = rsin θdϕ, and dz = dr. If the curvature is
locally negligible (i.e. r � |dx|, |dy|, |dz|), then DR reduces to
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so that we recover expression (10) in Cartesian coordinates.
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