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Abstract

This work investigates the potential of the particle swarm algorithm for the op-

timization of detailed kinetic mechanisms. To that end, empirical analysis has been

conducted to evaluate the efficiency of this algorithm in comparison with the genetic

algorithm. Both algorithms are built on evolutionary processes according to which a

randomly defined population will evolve, over the iterations, towards an optimal solu-

tion. The genetic algorithm is driven by crossover and mutation operators and by a

selection method. The PSO approach is based on the experience of each individual and

on the group experience to control the direction of its evolution. The success of the

application of an algorithm can be sensitive to the choice of operators and the relative

importance attributed to them. Therefore, to make the comparison as rigorous as pos-

sible, about a dozen strategies were proposed for each algorithm and the performances

were evaluated. A degraded version of the GRI-Mech 3.0 mechanism (i.e. containing

some of the kinetic constants randomly modified) was generated and then optimized

by the two evolutionary algorithms to recover the predictive character of the original

mechanism. The results show that, for the majority of the proposed strategies, PSO

is more efficient than the GA, whereas the latter is generally much more used for the

optimization of detailed kinetic mechanisms.
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1 Introduction

The chemical processes that take place during combustion can be described using detailed

kinetic mechanisms. Depending on the size of the fuel involved and the degree of precision

desired, these mechanisms can be composed of a few very simplified chemical steps or, on

the contrary, of several thousand elementary reactions.1 The reaction rates can be deter-

mined experimentally,2 by means of theoretical approaches3 or by analogy with reactions

of the same type (H-abstration / beta-scission, etc.)4 Nevertheless, the complexity of the

phenomenology of a chemical reaction implies that the uncertainties on the rate constants

generally remain relatively large.5 Similarly, the development of models by combining sets

of reactions, even with a high degree of confidence in the kinetic constants, does not always

guarantee good predictivity.6

The optimization of a kinetic mechanism implies the improvement of its predictability by

the variation of the reaction rate parameters within their uncertainty limits. A distinctive

feature inherent to the optimization of detailed models is the very large number of variables

to be processed. For each reaction modeled by the extended Arrhenius law, three variables

are subject to modification. Thus, a methane combustion mechanism such as the GRI-

Mech, containing 325 reactions, potentially involves the modification of a thousand variables.

Establishing the optimal values of the unknown parameters represents a very complex inverse

problem.

Different numerical approaches have been developed to address this type of problem.

Gradient-based optimization has been used to optimize low dimensional kinetic mechanisms

containing a few tens of reactions.7,8 Such methods can be effective in solving small scale

systems. Nevertheless, gradient based methods are tailored to the search for the nearest

optimum and the objective functions of the problems in chemical kinetics modelling are

generally complex, having multiple ridges and valleys, especially if the dimension of the

kinetic models is large. Therefore, the success of the method is very dependent on the initial

guess since the algorithm can easily get trapped in a local optimum.
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On the other hand, evolutionary algorithms are particularly well suited to finding the

optimum for chemical reaction systems having a large number of variables with a highly

structured response surface.9 These optimization tool of metaheuristic nature are also called

"evolutionary population based method". These algorithms are stochastic and can be used

as a local or global search procedure, tackling optimization problems of non-linear and po-

tentially noisy multimodal functions.10,11

The Genetic Algorithm (GA) is an optimization method inspired by the theory of evolu-

tion. It is regularly used for optimizing kinetic models and represents a very efficient method

for optimizing kinetic models.12–14 In their review, Elliot et al.15 presented the efficiency of

a genetic algorithm for the optimization of hydrogen, methane and kerosene mechanisms,

based on experimental datasets. In addition to a reduction process, this algorithm can also

be exploited in order to compensate for the errors resulting from the loss of information16–19.

Particle Swarm Optimization (PSO) is another evolution algorithm. It consists of ex-

ploiting the swarm intelligence that relies on the independent evolution of particles and their

interactions in a biological type system. Although this algorithm is also well adapted to

the optimization of large problems, it has been rarely used for the optimization of kinetic

models.20–23 Ding et al.22 proved the better optimization performances of PSO compared

to GA when applied for three-component parallel reaction mechanism of biomass pyrolysis.

However, they used only one set of parameters (further referred as optimization "strategy"),

which limits the comparison. Guo et al.20 compared different PSO strategies to the genetic

algorithm (for which only one strategy was used). They showed that, although the PSO

approach is prone to fall into a local optimal prematurely, the adaptation of the PSO coef-

ficients could allow better optimization performance than the genetic algorithm. However,

and based on the authors’ knowledge, this tool has not been used for the optimization of

large detailed kinetic mechanisms (i.e. with a number of reactions much higher than ten),

so far. The efficiency of this algorithm has been proved in many other different fields24–31.

The main objective of our current study is to evaluate the efficiency of the Particle
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Swarm algorithm for the optimization of detailed kinetic mechanisms. The performances will

be assessed and compared to those of the genetic algorithm. The optimization is performed

using an open-source tool based on Python (Brookesia32) and the well-known methane kinetic

model GRI-Mech 3.0.33

2 Method

2.1 Computing

2.1.1 Simulation conditions and degraded mechanism settings

The conditions evaluated in the present study are composed of six cases of reactor at

atmospheric pressure (constant enthalpy) for CH4/air mixtures at the equivalence ratio

Φ = 0.5, 1, 1.5 of initial temperature 1050 K and 1500 K. Simulations are performed with

GRI-Mech 3.033 and the Cantera solver34. Subsequent evaluation of important reactions and

optimizations are performed with Brookesia.32

In order to evaluate the ability of optimization algorithms to improve the predictivity of

a detailed kinetic model, the GRI-Mech3.0. mechanism has been "degraded". To do this,

the kinetic constants of the 49th "most important" reactions were randomly modified. The

importance of the reactions is evaluated on the basis of the direct interaction coefficients

between a species A and a reaction ri, that are calculated according to the formulation of

Pepiot-Desjardin and Pitch35 as:

rAri =
|νi,Aωi|

max (PA, CA)
(1)

with:

PA =

nreactions∑
i=1

max(0, νi,Aωi)

CA =

nreactions∑
i=1

max(0,−νi,Aωi)

(2)
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νi,A represents the stoichiometric coefficient of species A in reaction i and ωi the net reaction

rates of the ith reaction.

The optimization targets are CH4, CO, CO2, C2H4, C2H6 concentration profiles, the

temperature and the ignition delay time. To calculate the interaction coefficients for the

temperature and ignition delay time targets, CO2 and CH3 species were considered, respec-

tively. Seven reactions with the highest interaction coefficients have been selected for each

species, bringing the total number of modified reactions to 49.

By only modifying the important reactions for the targets, it is possible not to affect

reactions having no, or very little, impact on the simulation results and whose constants

could be strongly modified without control. The variations applied to the terms B, n, and

C of the extended Arrhenius law, expressed in eq. 3 are 15, 5, and 5 %, respectively.

k = B · T n exp(
−C
RT

) (3)

Figure 1 shows an example of a reactor simulation carried out using the initial mechanism

and then using the degraded mechanism. The differences between the results of the two

simulations, and thus the loss of predictivity of the degraded mechanism are clearly observed.

2.1.2 Evaluation of the optimized mechanisms quality

For each optimized mechanism and at each iteration, the relative errors of the targets are cal-

culated and averaged. The relative ignition time error is calculated as the difference between

the ignition time obtained by the reference and the optimized mechanism divided by the

time obtained by the reference. Concerning the variables evolving over time (temperature,

species), errors are calculated as the relative differences between the areas under the curves

obtained with the reference simulations and the simulations resulting from the optimized

mechanisms. Details on the calculations are provided in the documentation of Brookesia.32
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(a) (b)

(c)

Figure 1: C2H6, CO, and CO2 molar fractions evolution computed for CH4/air mixtures Φ =
0.5 and 1500 K. Simulations performed with the GRI-Mech 3.0 mechanism, the "degraded"
version, then "optimized" versions via the GA and PSO algorithms.

Initially, the averaged error calculated for the degraded mechanism is 40.4 %.

The fitness value for the optimization algorithms is calculated as the inverse of the aver-

aged error. In doing so, the best individuals have the highest fitness.

2.1.3 Considerations for the comparison of stochastic optimization methods

The global search algorithms addressed in this work are stochastic in nature and therefore the

quality of the optimization depends on many random parameters such as the quality of the

first generation. In a stochastic approach, the output possesses some inherent randomness.

The same set of input parameters values and initial conditions can lead to a set of different

outputs. Thus, to best evaluate the differences between the optimization schemes, each

strategy was evaluated 20 times and the curves were averaged.

It is important to note that the set of GA and PSO strategies has been developed so that

at each iteration, an equal number of simulations is performed. This prerequisite ensures
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that the algorithms can be compared for an equal numerical cost.

2.2 Genetic algorithm

The genetic algorithm, developed by Holland in the 1960s,36 is a stochastic optimization

approach inspired by Darwin’s principle of natural selection. It can be used in the application

of inverse methods, where the solution to be reached is known but the input parameters are

not, or not accurately. The algorithm will then consist of performing many simulations

with different sets of input parameters. At the end of this series of simulations, the sets

of parameters giving the results closest to the optimal solution are retained (Selection).

Operators will have the function of interchanging these parameters or of crossing them by

means of operations such as averages, weighted averages, etc. (Cross-Over), or of randomly

modifying one or more variables (Mutation) to extend the search as far as possible in the

space of the solutions and to avoid as far as possible the trapping of the optimum search in

a local minimum. A more complete description of different operators can be found in the

reference.37

The GA algorithm coded in the Brookesia software integrates 4 selection operators

(Roulette, Rank, Geometric Norm, and Elitism), 4 cross-over operators (Simple, Multiple,

Arithmetic, Heuristic), and 4 mutation methods (Uniform, Non-uniform, Boundary). Details

on the application of each of these operators are provided in the Brookesia documentation.32

To evaluate the potential of the GA algorithm, the impact of each module was evaluated

separately. The table 1 summarizes the choice of operators for the 11 evaluated strategies.

Strategies 1 to 4 each uses a different selection method. Strategies 5 to 8 / 9 to 11 assess

the efficiency of the different crossing/mutation methods.
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Table 1: The choice of GA operators for the 11 evaluated strategies

Strategies Selection Crossover (*) Mutation (*)
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1 x 2 2 4 4 3 3 2
2 x 2 2 4 4 3 3 2
3 x 2 2 4 4 3 3 2
4 x 2 2 4 4 3 3 2
5 x 6 2 2 2 3 3 2
6 x 2 6 2 2 3 3 2
7 x 2 2 6 2 3 3 2
8 x 2 2 2 6 3 3 2
9 x 2 2 4 4 6 1 1
10 x 2 2 4 4 1 6 1
11 x 2 2 4 4 1 1 6

2.3 PSO

2.3.1 Principle

This algorithm was proposed by Russel Eberhart (electrical engineer) and James Kennedy

(socio-psychologist) in 1995.38 Particle Swarm Optimization is a population-based, self-

adaptive research method inspired by the social behavior of groups of birds or fish schools.

The PSO algorithm explores the search space, thanks to a population of particles interacting

with each other and adapting their position and speed during the optimization process. Re-

search of the optimum is guided by a local research method, based on personal experience,

and complemented by a global research method, based on the experience of the group, trying

to balance exploration and exploitation.

The dynamic of a particle i is thus governed by an "inertial" component, relative to its

speed at the previous iteration t, a "cognitive" component based on the best position Pi found

by the individual during the optimization process and a "social" component based on the
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best location of the population found at the iteration t, Pg. In a hyperspace of dimension d,

the velocity and position of a particle i are, respectively, governed by the following equations:

vi,d(t+ 1) = W · vi,d(t)︸ ︷︷ ︸
inertial component

+C1 · a1 · (Pi,d(t)− xi,d(t))︸ ︷︷ ︸
cognitive component

+C2 · a2 · (Pg,d(t)− xi,d(t))︸ ︷︷ ︸
social component

(4)

xi,d(t+ 1) = xi,d(t) + vi,d(t+ 1) (5)

where W represents the inertia weight, C1, C2 represent the acceleration constants, and

a1, a2 are values, ranging from 0 to 1, randomly set at each PSO iteration t and for each

particle i.

2.3.2 Constriction factor

The optimization of parameters by PSO algorithm was initially of an empirical nature. In

1999, the work of Clerc39 demonstrated the necessity to use a constriction factor to ensure

the convergence of the particle swarm algorithm. A new law, incorporating the constriction

term, governs the velocity of a particle by the following equation:40

vi,d(t+ 1) = χ · [vi,d(t) + c1 · a1 · (Pi,d(t)− xi,d(t)) + c2 · a2 · (Pg,d(t)− xi,d(t))] (6)

where χ is the constriction factor, such as:

χ =
2κ∣∣∣2− φ−√φ2 − 4φ

∣∣∣ (7)

with φ = c1 + c2, φ > 4, κ ∈ [0, 1].
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In this equation, the variable κ controls the speed of convergence: fast convergence to

a stable point shall be obtained when κ equals 0, while a κ equal to 1 results in slower

convergence.

2.3.3 Evolution of different components weights during the iterative optimiza-

tion process

The success of a population-based algorithm depends on the subtle balance between local

and global searching. This equilibrium must be managed globally for the entire optimization

and can also be refined as the process progresses. Thus, it is possible to vary the values of

the parameters w, c1, and c2 to favor a global search at the beginning of the optimization

and then the local search at the end. These approaches are discussed in section 2.3.6.

2.3.4 Score calculation

Other approaches have been developed to improve the efficiency of the algorithm in more

specific contexts. For example, Cai et al.41 introduced a score variable S to rank particles

according to their fitness, following this equation:

Si(t) =
fi(t)− fworst(t)
fbest(t)− fworst(t)

(8)

This variable can be used to weight the inertial component: by affecting a high inertia to

a particle having a low fitness level, the global research is promoted. Conversely, assigning

a low inertia to a particle with a high fitness level favors the local search for the particles

closest to an optimum (which is a maximum in the current study). The weighted inertia of

the particle i ranges between a maximum limit valueWmax and a minimum limit valueWmin:

Wi(t) = Wmin(t) + (Wmax(t)−Wmin(t)) · (1− Si(t)) (9)
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2.3.5 Convergence detector

The PSO algorithm implemented in Brookesia integrates a convergence detector. If the

standard deviation between the fitness levels of the whole population is less than 10 % of the

maximum fitness value, the direction of the inertial component is momentarily multiplied by

a factor of -5 or +5:

Wi(t) = Wi(t) ·


1 if σ(f) > 0.1 · fmax

5 · (−1)a3 otherwise
(10)

with a3, a binary random variable on {0; 1}. In this way, the diversity of the population

is guaranteed during the optimization process. When 90% of the iterations have been per-

formed, this detector is deactivated in order to enable a local search, more relevant at the

end of the optimization process.

Many other tools can be integrated into the PSO code for the improvement of the iden-

tification quality, depending on the application.20,23,29,31,42

2.3.6 Panorama of PSO strategies

Like any evolutionary algorithm approach, the PSO method is prone to the problems of

low convergence, convergence to a local minimum, and so forth. To design the best PSO

configuration for detailed mechanism optimization, 14 strategies have been evaluated and

compared.

In order to visualize more precisely the optimization schemes, criteria for the relative

importance of the inertial, cognitive and social components were defined:

∼
W =

W

W + (1/2) · (C1 + C2)
(11)

∼
C1 =

(1/2) · C1

W + (1/2) · (C1 + C2)
(12)
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∼
C2 =

(1/2) · C2

W + (1/2) · (C1 + C2)
(13)

Note that the absolute values of the terms C1 and C2 have been divided by two to take into

account the influence of the random factors a1 and a2.

The evolution of these criteria during the optimization process is presented, for each of

the strategies described hereafter, in figure 2.

• Strategies with constriction factor (1 to 4)

The first strategy is a reference. It is based on the work of Clerc39 who demonstrated

the necessity to use a constriction factor to ensure the convergence of the particle

swarm algorithm (see equation 6). The parameters of the equation are often set as

c1 = c2 = 2.05 and κ = 1.40,43,44 In such a case, the optimization scheme is similar to

the equations 4 and 5 with the parameters W = 0.730 and C1 = C2 = 1.496.

The second strategy proposes to keep the same values for the terms c1 and c2. On the

other hand, the value of κ is divided by 2 (κ = 0.5) to evaluate the effect of an a priori

faster convergence.

c1 and c2 parameters evolve from 2.5 to 3.5 and 1.5 to 3.5, respectively, in strategies 3

and 4 to favor a local search at the end of the optimization process. The value of κ is

1 in strategy 3 and is reduced to 0.5 in strategy 4.

• Strategies without constriction factor, with decreasing inertia, constant cog-

nitive component, and increasing social component (5 to 8)

To favor a global search at the beginning of the optimization then the local search at

the end, strategies 5 to 8 and the corresponding parameters w, c1 and c2 have been de-

fined such that the relative influence of the inertial component (favorable to the global

search) decreases over iterations, the cognitive component remains constant, and the
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social component (favorable to the local search) increases. On this basis, several pat-

terns are possible according to the initial importance given to each of the components

at the beginning of the process. It is to be noted that strategy 8 is composed of the

same parameters as strategy 7 but the inertia term W is weighted by the individual’s

score (see equation 8).

• Strategies without constriction factor, with decreasing inertia, decreasing

cognitive component, and increasing social component (9 to 12)

In these strategies, the relative weights of inertia and cognitive components decrease

over the iterations while that of social component increases which favors local search

as long as the optimization progresses. The parameters of strategies 10 and 12 are

similar to those of strategies 9 and 11, respectively, but the inertia term W is weighted

by the individual’s score.

• Strategies without constriction factor, with constant inertia, decreasing cog-

nitive component, and increasing social component (13 to 14)

In these strategies, the relative importance of inertia remains constant, which maintains

a non-negligible share of randomness throughout the optimization. To tend towards

a local search, the weight of the cognitive and social components decreases and in-

creases, respectively. Strategy 14 integrates the individual’s score in the calculation of

the inertial weight.
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(a) Scheme of the PSO
components

(b) Strategie 1 & 2 (c) Strategie 3 & 4

(d) Strategie 5 (e) Strategie 6 (f) Strategie 7

(g) Strategie 8 (h) Strategie 9 (i) Strategie 10

(j) Strategie 11 (k) Strategie 12 (l) Strategie 13

(m) Strategie 14

Figure 2: Relative importance of the different components in the strategies adopted for
optimization by the PSO method
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Table 2: Selected parameters for the development of PSO strategies

Strat κ
c1 c2

init final init final
1 1 2.05 2.05 2.05 2.05
2 0.5 2.05 2.05 2.05 2.05
3 1 2.5 3.5 1.5 3.5
4 0.5 2.5 3.5 1.5 3.5

Strat W C1 C2 Score
init final init final init final Wmin

5 0.6 0.2 1.1 1.2 1 2
6 0.8 0.3 1.6 2 0.5 2
7 1.1 0.4 1.75 1.4 1.3 2
8 1.1 0.4 1.75 1.4 1.3 2 0.4
9 1 0.2 1 2 1 2
10 1 0.2 1 2 1 2 0.2
11 1 0.2 2 1 1 2
12 1 0.2 2 1 1 2 0.2
13 0.7 0.7 2 0.8 0.8 2
14 0.7 0.7 2 0.8 0.8 2 0.2

3 Results & Discussion

3.1 Convergence curves comparison

3.1.1 Genetic algorithm

The convergence curves obtained using the genetic algorithm strategies are presented in

graph a) of figure 3. The evolution of the mean error found for the estimation of the

optimization targets is presented as a function of the number of iterations. It is important to

remember here that each curve presented in the figure is the average result of 20 independent

optimizations (see section 2.1.3). This approach intends to take into account the stochastic

nature of the optimization algorithms and to ensure rigorous comparisons.

The assessment of the different strategies for the genetic algorithm shows an impor-

tant sensitivity to the selection method. The algorithm efficiency with rank-based selection

is much worse than that obtained with other methods. The selection by geometric norm

presents slightly inferior results compared to the selection by roulette and elitism. Never-
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theless, considering the standard deviations between the optimizations (discussed in section

3.1.3), the performances can be considered as quite similar.

The GA_5 to GA_8 strategies differ in the importance devoted to the different crossover

operators. The convergence curves presented in figure 3 a) show that the quality of opti-

mization is very slightly affected by these choices. The choice of the mutation method, on

the other hand, has a greater impact. The results indicate that the quality of optimization

is higher when non-uniform or boundary mutation operators are predominantly used.

The GA_9 to GA_11 strategies have different importances in the use of mutation opera-

tors. Mutation consists of randomly varying the variables to be optimized. In the Brookesia

code, about 30 % of the variables are modified. Note that the non-uniform mutation takes

into account the progress of the optimization process. Thus, the more the number of iter-

ations evolves, the less the modifications on the variables are important (more details on

these methods are provided in the documentation of Brookesia32). This allows to maximize

the exploration of the search space at the beginning of the optimization and to focus on

a local search at the end. The comparison shows that, in the context of the optimization

of detailed kinetic models, the latter method should be preferred to uniform mutation. It

should also be noted that an important use of the boundary mutation operator also gives

good results. Nevertheless, the use of this method leads to a large increase in the standard

deviation between optimizations (see figure 4) indicating that the quality of the optimization

can vary significantly from one run to another.

This work highlighted the sensitivities in the choice of genetic algorithm operators for the

optimization of detailed kinetic mechanisms. The main observations are that the algorithm is

not very sensitive to the choice of selection operators (except the rank selection) and crossing

operators and is more sensitive to the choice of mutation, for which the non-uniform operator

should be preferred. Moreover, the convergence curves established for a large number of GA

strategies provide a consistent basis for comparison to evaluate the efficiency of the PSO

method, which has not, to the authors’ knowledge, been used for the optimization of detailed
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kinetic mechanisms, so far.

3.1.2 Particle Swarm Optimization

The convergence curves for the PSO strategies are presented in figure 3 b). Strategies 1 to

4 integrate the implementation of a constriction factor to ensure theoretical convergence.

Strategies 1 to 4 integrate the implementation of a constriction factor to ensure theoretical

convergence. As illustrated in figure 2, the relative influences of the inertial, cognitive and

social components are constant for strategies 1 and 2 and are evolutive for strategies 3 and

4. Strategies 2 and 4 are affected by a constriction factor equal to 0.5, instead of 1 used for

strategies 1 and 3, to accelerate the speed of convergence. It is noticeable that the distinction

of the optimization quality between these four strategies is made almost exclusively on the

choice of the convergence speed. Thus, strategies 2 and 4 present significantly better results

than strategies 1 and 3. Given the very large number of variables to be optimized in a detailed

mechanism optimization problem, it appears more appropriate to favor rapid convergence.

The set of strategies 5 to 8 gives, surprisingly, very different results and integrates both

the strategy with the highest performance (6) and the least effective strategy (8). A more

global analysis of the strategies seems to show that, for this type of problem, the higher

relative importance of the cognitive component has a positive influence on the optimiza-

tion, whereas the high importance of the inertial component is in contrast quite unfavorable.

Thus, strategies 7 and 8, which have a strong inertial weight at the beginning of the opti-

mization, give poorer results. We also note, when comparing these two strategies, that the

score parameter integrated into the strategy 8, and which was intended to promote global

research for individuals with low fitness levels, has an unfavorable effect on the quality of the

optimization. Interestingly, this difference, although relatively small, is found for all pairs of

strategies with/without score (7/8, 9/10, 11/12, and 13/14).

The comparison between the pairs of strategies 9/10 and 11/12 shows that the inversion

of the weight evolution for the cognitive component during the optimization process while
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keeping W and C2 coefficients equal, has little effect on the quality of the optimization.

Besides, the pair of strategies 13/14, with coefficients C1 and C2 comparable to those of pair

11/12 and whose influence of the inertial component is modified (less important initially but

higher at the end) provides more efficient optimizations.

3.1.3 Comparison between GA and PSO strategies

A global comparison of the set of strategies shows that, overall, the PSO algorithm provides

better optimization than the GA. Thus, among the 5 best strategies, 4 are obtained by the

PSO algorithm while among the 5 least efficient, 3 were obtained when the GA algorithm was

applied. Nevertheless, the efficiency of optimization is more variable between PSO strategies.

Thus, except for strategy 2, which stands out from the other trends, the average error at the

end of optimization by GA is between 3 and 4.5 %. It is between 2 and 5 % for the PSO

algorithm. This indicates a higher sensitivity to the choice of optimization parameters when

applying the PSO algorithm.

The convergence rate of the PSO algorithm seems significantly faster than that of the

genetic algorithm. Thus, the residual error for the 6 best PSO strategies drops to about

4 % or less after the first 20 generations, whereas equivalent performance is obtained after

40 generations for GA strategies 10 and 11.

Figure 4 shows the standard deviations calculated between the 20 optimizations per-

formed for each strategy. Overall, the standard deviations of the PSO algorithm are higher

than those of the GA. Excluding the value of GA_2, the mean standard deviation is 16 %

lower for GA than for PSO (1.303 versus 1.550, respectively). Thus, among the 5 highest

standard deviation values, 4 were measured with PSO methods (strategies 1, 7, 8, and 9)

and only one with the genetic algorithm (strategy 7). These results indicate a higher vari-

ability of optimization qualities for the same strategy. It is worth noting that larger values

of standard deviations mean lower reliability of the strategy.
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(a) Genetic Algorithm (b) PSO algorithm

Figure 3: Mean error evolution as a function of the iteration number for the different opti-
mization strategies tested

Figure 4: Standard deviation between optimization processes

3.2 Comparison of mechanisms

As a reminder, 49 reactions of the GRI-Mech 3.0 mechanism were randomly modified to

build a degraded version. The variation of the coefficients B, n, and C ranged up to 15, 5,

and 5 %, respectively. The degraded version was then optimized to recover the predictive

character of the GRI-Mech mechanism.

Figure 5 shows the mean relative deviation of the B, n, and C coefficients of the mod-

ified reactions between the GRI-Mech 3.0 mechanism, the degraded version, and then the

optimized versions. For all the strategies tested in this work, the optimization reduces the dif-

ferences between the kinetic constants of the degraded version and the reference mechanism.
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This observation underlines the reliability of the optimization approach using evolutionary

algorithms. It can also be noted that the difference magnitude between the kinetic constants

of the optimized mechanism and the GRI-Mech 3.0 mechanism reflects, overall, the optimiza-

tion quality. Thus, for the most efficient optimizations identified in the previous section, the

difference amplitudes are among the smallest and can be reduced by up to a factor of 3 (PSO

strategies 5, 6, 13, and 14, for example) compared to the degraded mechanism.

Figure 5: Standard deviation between optimization processes

As indicated in paragraph 2.1.3, the initial error measured between the profiles simulated

by the degraded mechanism and the GRI-Mech 3.0 reference mechanism is 40.4 %. For the

set of strategies presented here, this error is reduced up to about 4 % after the optimization

process. It is reduced on average to 3.0 % after optimization by GA with strategy 10, and

to 2.1 % by strategy 6 of the PSO approach. As an illustration, the simulations obtained by

optimized mechanisms using the two strategies are presented in figure 1. The comparison

clearly illustrates the improved quality of the kinetic model after optimization in both cases,

since a very good agreement is obtained between the simulation made with the optimized

models and the reference mechanism.
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4 Conclusion

The purpose of this work was to evaluate the potential of the Particle Swarm Optimization

(PSO) algorithm for the optimization of detailed kinetic mechanisms. To this end, different

strategies were implemented to optimize an altered version of the GRI-Mech mechanism.

PSO was compared to the genetic algorithm (GA), which is nowadays commonly used for

the optimization of kinetic models. The results show that the best strategies of the algo-

rithm offer higher performance than those obtained for the genetic algorithm. The speed of

convergence observed for a large number of PSO approaches is also significantly faster. Be-

sides, the evolution of the optimized kinetic constants converges, for all the strategies tested

in this work, towards the initial values of the GRI-Mech 3.0 mechanism, which underlines

the relevance of the approaches used. The statistical analysis of the results showed that

the quality of the optimizations can vary significantly from one optimization to another. It

appears that the dispersion of the results is generally higher with PSO than with GA.

In conclusion, this work attests to the good performance of the PSO algorithm compared

to the equivalent GA method, which is much more widely used for the optimization of kinetic

mechanisms. Given the simplicity of the algorithm, this work demonstrates the interest in

considering Particle Swarm Optimization as a good alternative to the Genetic Algorithm,

for such applications.
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