
HAL Id: hal-03256563
https://hal.sorbonne-universite.fr/hal-03256563

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DAWIS: a detection algorithm with wavelets for
intracluster light studies

A. Ellien, E. Slezak, N. Martinet, F. Durret, C. Adami, R. Gavazzi, C. R
Rabaça, C. da Rocha, D. N Epitácio Pereira

To cite this version:
A. Ellien, E. Slezak, N. Martinet, F. Durret, C. Adami, et al.. DAWIS: a detection algorithm
with wavelets for intracluster light studies. Astronomy and Astrophysics - A&A, 2021, 649, pp.A38.
�10.1051/0004-6361/202038419�. �hal-03256563�

https://hal.sorbonne-universite.fr/hal-03256563
https://hal.archives-ouvertes.fr


A&A 649, A38 (2021)
https://doi.org/10.1051/0004-6361/202038419
c© A. Ellien et al. 2021

Astronomy
&Astrophysics

DAWIS: a detection algorithm with wavelets for intracluster
light studies

A. Ellien1, E. Slezak2, N. Martinet3, F. Durret1, C. Adami3, R. Gavazzi1, C. R. Rabaça4,
C. Da Rocha5, and D. N. Epitácio Pereira6

1 Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France
e-mail: ellien@iap.fr

2 Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
3 Aix-Marseille Univ., CNRS, CNES, LAM, Marseille, France
4 UFRJ, Observatório do Valongo, Rio de Janeiro, RJ, Brazil
5 Independent Researcher, Telschowstr. 16, Garching, Germany
6 Independent Researcher, Est. Caetano Monteiro 2201/65, Niterói, Brazil

Received 14 May 2020 / Accepted 11 January 2021

ABSTRACT

Context. Large numbers of deep optical images will be available in the near future, allowing statistically significant studies of low
surface brightness structures such as intracluster light (ICL) in galaxy clusters. The detection of these structures requires efficient
algorithms dedicated to this task, which traditional methods find difficult to solve.
Aims. We present our new detection algorithm with wavelets for intracluster light studies (DAWIS), which we developed and optimized
for the detection of low surface brightness sources in images, in particular (but not limited to) ICL.
Methods. DAWIS follows a multiresolution vision based on wavelet representation to detect sources. It is embedded in an iterative
procedure called synthesis-by-analysis approach to restore the unmasked light distribution of these sources with very good quality.
The algorithm is built so that sources can be classified based on criteria depending on the analysis goal. We present the case of ICL
detection and the measurement of ICL fractions. We test the efficiency of DAWIS on 270 mock images of galaxy clusters with various
ICL profiles and compare its efficiency to more traditional ICL detection methods such as the surface brightness threshold method.
We also run DAWIS on a real galaxy cluster image, and compare the output to results obtained with previous multiscale analysis
algorithms.
Results. We find in simulations that DAWIS is on average able to separate galaxy light from ICL more efficiently, and to detect a
greater quantity of ICL flux because of the way sky background noise is treated. We also show that the ICL fraction, a metric used
on a regular basis to characterize ICL, is subject to several measurement biases on galaxies and ICL fluxes. In the real galaxy cluster
image, DAWIS detects a faint and extended source with an absolute magnitude two orders brighter than previous multiscale methods.

Key words. galaxies: clusters: general – methods: data analysis – techniques: image processing

1. Introduction

Low surface brightness (LSB) science will improve in this
new decade with the launch of several large observational
programs. The Vera Rubin Observatory Large Synoptic Sur-
vey Telescope (LSST; Ivezić et al. 2019), a ground-based sys-
tem featuring an 8.4 m primary mirror, will lead a ten-year
survey on a 18 000 deg2 sky area, reaching a foreseen lim-
iting depth of µg = 31 mag arcsec−2. In space, the Euclid
mission will perform three deep-field programs in the visi-
ble (VIS) broad band (R + I + Z) covering 40 deg2 in total,
with a conservatively estimated limiting magnitude of µVIS =
26.5 mag arcsec−2. New missions such as the MESSIER sur-
veyor (Valls-Gabaud & MESSIER Collaboration 2017), a space
telescope optimized specifically for LSB imaging in the UV
and the visible wavelengths, are also planned for the upcoming
years.

These new programs will complement current and past LSB
surveys (of which we only give a nonexhaustive review here).
Small telescopes optimized for LSB imaging such as the Drag-
onfly Telephoto Array (Abraham & van Dokkum 2014) or the

Burrell Schmidt Telescope (Mihos et al. 2017) are obtaining
good results from the ground, reaching limiting depths of µg =

29.5 mag arcsec−2. These small telescopes take advantage of
the minimization of artificial contamination sources in a field
in which other instruments not originally dedicated to this type
of studies are strongly disadvantaged in this regard, such as
the MegaCam instrument on the Canada France Hawaii Tele-
scope (CFHT). This last instrument has nevertheless achieved
its share of surveys as its limiting depth has been pushed by
constraining instrumental contamination effects through refined
observational strategies and reduction softwares. The CFHT
Legacy Survey (Gwyn 2012) is a good example, as it allowed
detecting LSB structures such as tidal streams (Atkinson et al.
2013), followed later by the Next Generation Virgo Cluster
Survey (Ferrarese et al. 2012), a survey dedicated to deep imag-
ing of the Virgo cluster. Next in line is the ongoing Ultravio-
let Near-Infrared Optical Northern Survey (UNIONS; Ibata et al.
2017), which features images processed with the Elixir-LSB
pipeline (Duc et al. 2011) and reaches a limiting depth of
µr = 28.3 mag arcsec−2 in the r band on a wide sky area of
∼5000 deg2.
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As these ground-based instruments are still limited by the
atmosphere, surveys for capturing LSB features have also been
led from space with the Hubble Space Telescope (HST), the
prime example being the HST Ultra Deep Field (Beckwith et al.
2006). However, the small field of view (FoV) of the HST does
not allow probing large spatial extents, leading to different sci-
entific goals such as the study of distant objects that are smaller
on the projected sky plane (typically high-redshift galaxies or
galaxy clusters). The ongoing Beyond Ultra-deep Frontier Field
And Legacy Observations survey (BUFFALO; Steinhardt et al.
2020), next in line to the Hubble Frontier Field (HFF; Lotz et al.
2017), follows this trend and targets six massive galaxy clusters
with redshifts in the range 0.3 < z < 0.6 with very deep imaging.

Compared to the ongoing surveys, which are all limited in
their own ways, the new generation of telescopes will bring an
unprecedented amount of data to exploit. As a subfield of LSB
science, the detection and analysis of intracluster light (ICL)
will be strongly be affected because one of the primary require-
ments of studying this faint feature of galaxy clusters in the vis-
ible bands is the gathering of deep images. However, the state
of research in this field is currently not well defined because
there is no consensus on a strict definition of ICL in astronom-
ical images, nor on the best method for detecting it. This leads
to a variety of studies on this subject that can be barely com-
pared in view of the large discrepancies implied by the meth-
ods that are used (for more details, see the review by Montes
2019). The same can be said about surface brightness depth and
the method for computing detection limits from the sky back-
ground in images, as explained by Mihos (2019). Before the
large upcoming data sets can be efficiently used, a much needed
analysis of the currently used detection method properties should
be made.

Because part of this new challenge in LSB astronomy is
purely technical (processing great numbers of images is often
expensive in computing time), new algorithms with an empha-
sis on efficiency need to be developed to analyze images and to
capture the useful information they contain. This is an ideal time
to (re)explore concepts from signal and image analysis and adapt
them to LSB astronomy. With this in mind, we developed DAWIS,
an algorithm optimized for the detection of LSB sources that is
highly parallelized and is to be run on large samples of images.

Such a new algorithm needs to be tested on simulations and
compared with previous detection methods. To run the tests, we
created images of simulated galaxy clusters and ICL using the
Galsim package (Rowe et al. 2015). These images only repro-
duce the photometric aspect of galaxy clusters and cannot be
used to draw conclusions on the properties of ICL. However,
their content is a known value, which allowed us to estimate the
efficiency of DAWIS and of previous methods for detecting ICL.
We were also able to constrain the different biases and contami-
nation effects that occur when these methods are applied.

This paper is organized as follows. In Sect. 2 we give some
context on the various detection methods that are used to detect
ICL in deep images and different effects that limit and contam-
inate this detection. In Sect. 3 we present the technicalities of
DAWIS and the core of the algorithm. In Sect. 4 we describe
our simulated mock images of galaxy clusters with ICL with
the modeling package Galsim. In Sect. 5 we apply the differ-
ent detection methods to the simulations and present the results.
In Sect. 6 we run DAWIS on real data and compare the results
with previous works. In Sect. 7 we discuss the results and the
performances of the methods for simulations and real data. We
assume a standard ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7
and H0 = 70 km s−1 Mpc−1.

2. Overview of ICL detection methods

Behind the term intracluster light detection several choices hide,
starting with the way images are acquired (space-based versus
ground-based, survey strategies with or without image dithering,
long exposures or stacks of short ones), data reduction (depend-
ing on the properties of the instrument), and finally, how the
useful information is separated from noise and contamination
sources (sky background estimation, separation of ICL from
galaxies and foreground objects, point spread function (PSF)
wings, scattered light). We refrain from addressing all these
effects at once, but consider the most fundamental aspect of ICL
detection: separating the ICL component from galaxy luminosity
distributions and taking the sky background noise into account.

A large variety of methods have been used to separate ICL
from bright sources in astronomical images. We group them
roughly into three categories: the surface brightness threshold
(SBT) methods, the profile-fitting (PF) methods, and the multi-
scale analysis (usually making use of wavelet bases) methods. The
literature knows as many procedures for detecting the ICL as there
are papers studying it. This classification therefore simplifies the
larger picture, but is probably a good start for characterizing and
evaluating this great variety of approaches and ICL definitions.

2.1. Surface brightness threshold methods

The first method is the SBT method, which consists of applying
a predefined surface brightness threshold to the image in order
to demarcate the ICL from the galaxy luminosity profiles. The
most common threshold value is given by the Holmberg radius
(defined by the isophote µB = 26.5 mag arcsec−2; Holmberg
1958), which delimits the geometric size of a galaxy in optical
images at first order. This threshold has been used in different
cases either to mask the cluster galaxies (the threshold in this
case defines the limit of the galaxy extension), or simply to sep-
arate the outskirts of the brightest cluster galaxy (BCG) lumi-
nosity profile from the ICL. In any case, the threshold acts as a
decision operator, attributing pixels either to galaxies or to ICL.

This method is quick to implement and has been
used in several works (Krick et al. 2006; Krick & Bernstein
2007; Burke et al. 2012; DeMaio et al. 2018; Ko & Jee 2018;
Montes & Trujillo 2018, e.g.). Different values for the thresh-
old have been tested (Feldmeier et al. 2002, 2004), resulting in
large discrepancies for the results obtained in observational data
(Kluge et al. 2020). From the N-body and hydrodynamical sim-
ulation side, studies have shown similar results (Rudick et al.
2011; Tang et al. 2018). Depending on the choice of the per-
son performing the study, different SBT values have been tested,
with values ranging from µSBT ∼ 23 to µSBT ∼ 27 mag arcsec−2

in the V band, which once again showed strong discrepancies
between them. However, because it is difficult to define ICL even
in simulations, authors have proposed that different definitions
would naturally lead to very different results, without specifying
which result is the most appropriate.

2.2. Profile-fitting methods

Intensity PF methods consist of fitting analytical functions
to the intensity distribution of the galaxies or to the ICL.
The first use of this approach was made by fitting de Vau-
couleurs (dV) profiles to the inner intensity distribution of
BCGs before excesses of light in the outskirts were detected
that were attributed to ICL (Uson et al. 1991; Scheick & Kuhn
1994; Feldmeier et al. 2002; Zibetti et al. 2005). Because the
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BCG and ICL intensity distributions are smoothly blended, sev-
eral studies have tried to characterize the BCG+ICL inten-
sity distribution using a single-Sérsic profile (Krick et al. 2006;
Krick & Bernstein 2007). Other authors have tried to distinguish
the two distributions by fitting sums of profiles, such as double
Sérsic (Seigar et al. 2007; Durret et al. 2019; Kluge et al. 2020),
double exponential profiles (Gonzalez et al. 2005), or composite
profiles (Donzelli et al. 2011). In some cases, different analytical
functions can correctly fit the same distribution (Puchwein et al.
2010), which complicates the physical interpretation of such
results. Most notably, recent works have sown that the decompo-
sition of the BCG+ICL distribution into separate luminosity pro-
files is likely unphysical (Remus et al. 2017; Kluge et al. 2020).

Fitting algorithms such as Galfit usually decompose galaxy
intensity profiles into two components (bulge plus disk), and allow
modeling the radial distribution with Sérsic profiles, while the
angular distribution is controlled by trigonometric functions. This
allows fitting a great diversity of intensity profiles, as long as the
features they present are not too sharp. Most galaxy intensity pro-
files can therefore be fit with such methods. For complex objects
such as strongly interacting galaxies, a high level of interactiv-
ity is required, because in these cases the user needs to manu-
ally adjust the parameters involved in the fitting procedure. This
makes this method difficult to automatize fully, which is a down-
side when many galaxies are present in the FoV (but not impossi-
ble, as shown in Morishita et al. 2017). Additionally, the blending
of galaxy intensity profiles in the high-density regions of galaxy
clusters is another problem for this type of approach.

Recently, more sophisticated fitting algorithms have been
developed, most notably, CICLE (Jiménez-Teja & Benítez 2012;
Jiménez-Teja & Dupke 2016). CICLE models galaxy luminosity
profiles with Chebyshev Fourier (CHEFs) functions. These forms
are implemented into a fitting pipeline using outputs (position and
size of the object) from the SExtractor image analysis software
(Bertin & Arnouts 1996) because a subjective origin needs to be
set for the basis function when each galaxy is modeled. While
this fitting method is very strong in accurately modeling the sur-
face brightness distribution of detected objects, it is therefore still
sensitive to the detection performances of SExtractor or other
detection methods that were used beforehand.

2.3. Wavelets and multiscale image analysis methods

Another approach to the detection of ICL (and generically of
faint and extended sources among much brighter objects in astro-
nomical images) has been the use of multiscale wavelet-based
algorithms. Isotropic wavelet bases such as the B3-spline scal-
ing function and its associated wavelet transform was used for
the first time in an astronomical context by Slezak et al. (1994)
to detect the large intracluster medium halo in X-ray images of
galaxy clusters. Bijaoui & Rué (1995) then devised a powerful
multiresolution vision model to analyze the three-dimensional
(3D) data set of wavelet coefficients generated by an isotropic
wavelet transform. The related procedure allows detecting signif-
icant structures in the 2D wavelet domains, identifying objects
in this 3D wavelet space, and restoring the denoised lumi-
nosity distribution of these detected structures. This approach
enables the detection of extended sources, and can therefore be
adapted to the detection of ICL in optical images of galaxy clus-
ters, as demonstrated by Adami et al. (2005). Another known
implementation has been the OV_WAV package, developed in
2003 at Observatório do Valongo (OV-UFRJ, Rio de Janeiro)
by Daniel Epitácio Pereira and Carlos Rabaça. This IDL pack-
age has been used in several works to detect diffuse light in

galaxy groups or clusters (Da Rocha & Mendes de Oliveira 2005;
Da Rocha et al. 2008; Guennou et al. 2012; Adami et al. 2013).
More recently, another implementation of the multiresolution
vision model has been developed to process astronomical MHz
radio images, adding another deconvolution step and describing
the problem within the modern framework of sparse representa-
tion (the MORESANE radio astronomical image analysis algorithm;
Dabbech et al. 2015). We describe this type of approach and its
mathematical background in depth below by compiling and stan-
dardizing the various information contained in previous articles.

2.3.1. Choosing a suitable representation space

Beyond the applied algorithm itself, the efficiency of this approach
is tightly connected to the mathematical space used to represent
the information content of the signal. One way to carry out the
detection of the ICL is then to find a new space that highlights the
low surface brightness and large spatial extent of the ICL, which
facilitates distinguishing it from other astronomical sources.

The mathematical space in which the signal is initially repre-
sented (hereafter the direct space) may not be the most efficient
for the pursued goal of our our analysis. This can be the case
in particular when the information of interest is strongly mixed
with other (in that case) components. Identifying a new repre-
sentation space (and consequently the set of basis functions gen-
erating this space) for the data is then of uttermost importance
for the final result of the processing. The transform of the ini-
tial signal from the direct space to this new space is obtained
through inner products with the set of basis functions, defining
what is called a projection. Because detecting the ICL in direct
space is a difficult task with traditional methods, a more suitable
representation space can be sought to facilitate it.

Many basis functions with different regularity properties
are available and can define a basis, orthogonal or not. Con-
sequently, as many representation spaces exist. The choice of
which basis to use then depends on the signal characteristics that
are to be strengthened according to the analysis goals. A generic
approach for this choice is the notion of sparsity: an adequate
function basis separates the signal of interest from the rest by
concentrating the useful information in a few high-valued coef-
ficients while spreading the noise and worthless components to
many coefficients with low values. While a sparse representa-
tion gathers the relevant information, it may simplify it because
features that are very different from the basis functions are lost.

In our case, the typical image of a galaxy cluster in visible
bands can roughly be hierarchically decomposed into several cir-
cular or elliptical components with different characteristic sizes
and intensities: the brightest sources in the FoV are usually PSF-
like Milky Way stars and foreground galaxies, then galaxies at the
cluster redshift, and finally, faint more distant galaxies, and even
fainter extended sources such as the ICL. All are superimposed on
a spatially slowly varying (instrumental or not) sky background.

Because their shapes when projected onto the sky are ellip-
tical, a relevant first approach to describing these sources is to
use isotropic functions that are azimuthally invariant. Because
these sources may have very different characteristic sizes (or spa-
tial frequencies), the function basis also needs to capture local-
ized information (high frequencies) as well as mean behaviors
related to the information averaged over a given region of the
image (low frequencies). The transform associated with such a
basis is called a multiscale transform. It enables studying the sig-
nal at varying scales: the transform at small scales gives access
to the thinnest and local features of the signal, while its trans-
form at large scales captures its overall behavior. As the analysis
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goal here is the detection of any feature of interest, an analysis
that is invariant under translations would be preferred here. The
inner products of the signal with the basis functions then do not
depend on the position of the information in the signal, meaning
that there is no need to set a subjective origin for the transform,
as is the case for shapelets (Refregier 2003).

In our case, an interesting class of functions is the wavelet
family. The first- (admissibility condition) and second-order
moments of wavelets are equal to zero, making them contrast
detectors in the simplest form. An example of such a function
is the Morlet wavelet, which is basically a cosine weighted by
a Gaussian. A wavelet basis is built by shifting and dilating the
same wavelet function (the so-called mother wavelet), and the
associated transform is called a wavelet transform. In contrast to
the Fourier basis, which gives the most accurate frequency infor-
mation in an infinite temporal signal in exchange of the loss of
date information, wavelet transforms are part of the multiscale
transform family. They therefore allow a time-frequency repre-
sentation because different frequency scales are locally explored
by different dilated and translated versions of the same mother
wavelet function, providing thereby a date information for each
analyzed sample from the whole data set.

The 2D isotropic wavelet bases satisfy the criteria listed
above and are consequently adequate at first order to study
astronomical images, specifically, images with bright localized
sources (the signature in the image of objects such as stars
or galaxies) and large diffuse sources (the signature of objects
such as intracluster light halos). On the other hand, 2D isotropic
wavelet bases are certainly not suitable for detection in image
features that are strongly anisotropic or have very sharp edges,
such as elongated rectangles or lines (e.g., the PSF spikes around
stars, cosmic rays, satellite trails, or tidal debris around galax-
ies). Any such transform acts as a measure of similarity between
the set of wavelets and the studied features. Making use of an
isotropic filter implies loose information related to anisotropies,
if any. A popular example of a 2D isotropic wavelet function
is the normalized second derivative of the Gaussian, nicknamed
the Mexican hat (MH) because the shape resembles a sombrero,
when used as a 2D kernel: a disk of positive values surrounded
by an annulus of negative ones, the integral of which is normal-
ized to zero.

2.3.2. Discretization and multiresolution approach

In order to use wavelet transforms to analyze images, they need
to be implemented into algorithms and the continuous theoretical
functions along the scales and image axes need to be discretized.
A discrete set of functions is built, which may constitute what is
called a frame according to the chosen discretization scheme for
wavelets with sufficient regularity properties. This discretization
is not without consequence because part of the information con-
tained in the continuous function might be lost. An upper limit
for the loss of information for a given set of frame bounds, that
is, a discretization scheme, can be computed (Daubechies 1990).
This loss is small for the MH function when a dyadic scheme and
two voices per octave are considered1.

1 The scale parameter has to be discretized when a discrete wavelet
transform is considered. This is commonly done by increasing an initial
scale to positive j integer powers. A dyadic scheme involves powers of
2, so that the different scales are obtained using a factor 2 j/ν, where ν
is an integer parameter greater than one that is often referred to as the
number of “voices per octave”.

A problem with the MH function though is its extended spa-
tial support – the fact that its profile extends to infinity. It is in
practice numerically impossible to compute the exact theoreti-
cal transform as approximations need to be done at the edges.
Consequently, a widely used MH-like function is the B3-spline
wavelet, which is also isotropic and translation invariant with
a controlled loss of information when using dyadic scales, but
with the prime advantage of having a compact support making
the transform computable without any approximation.

A major breakthrough for the understanding and efficient
implementation of wavelets into algorithms resulted from the
multiresolution theory of Mallat (1989), showing that the set of
wavelet functions are no more than a hierarchy or cascades of
filters, also known as filter banks in the domain of applying sig-
nal processing. Within this framework, the mother wavelets are
defined by means of a scaling function, which acts as a low-pass
filter. This mother wavelet function in fact appears to be the dif-
ference between this scaling function and a normalized version
of it dilated by a factor 2 in size. For instance, the MH is the dif-
ference between two differently scaled Gaussian functions, and
the B3-spline wavelet is the difference between two differently
scaled B3-spline functions.

The link between some classes of wavelets (e.g., B3-spline)
and filter banks is also expressed through a dilation equation: the
scaling function at scale 2 can be expressed as a linear combi-
nation of these scaling functions at scale 1. This is true for the
continuous basis and for the dyadically discretized version of
it. Therefore an image can be iteratively convolved with dilated
(and decimated) B3-spline functions using a dyadic scheme, in
this way building a set of increasingly coarser approximations
of the initial 2D signal. The difference between two successive
approximation levels then gives the wavelet coefficients related
to this scale range. These coefficients can be viewed as a mea-
sure of the information difference between the coarser and thin-
ner approximation, or in other words, of the details in the image
with typical sizes within these two scales (cf. bandpass filter).

This iterative approach, which makes use of the so-called
à trous algorithm from Holschneider et al. (1989, cf. spatial
decimation of the low-pass filters), is much faster than using
convolutions with filters of increasing supports to compute the
transform. It does not rely on numeric integrals, but benefits
from a simplified filtering operator based on simple multiplica-
tions and additions. There are different versions of this algorithm
depending on the analysis goal. For the 2D decimated wavelet
transform, the size in pixels of each smoothed image is divided
by four with respect to the previous level of approximation
(and so are the number of associated wavelet coefficients). This
leads to a pyramidal representation that is well suited to encode
the features of the image at a given level with different sizes
in a sparse way when these features and the scaling functions
match well. An undecimated version has also been proposed,
which allows retaining precise spatial information because all
the wavelet planes have the same size as the original image. This
undecimated wavelet transform with the à trous algorithm and
the B3-spline scaling function basis is central to the multireso-
lution vision model of Bijaoui & Rué (1995), a basic conceptual
framework for denoising or source-detection algorithms.

2.3.3. Analysis and restoration

Besides the Haar wavelet, Daubechies has proved (see, e.g.,
Daubechies 1992) that a wavelet basis cannot simultaneously
have a compact support, be isotropic, and be orthogonal.
Because the B3-spline wavelet basis has a compact support and
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is isotropic, its associated representation space is not orthogo-
nal: a source with a single characteristic size in the image is
then not to be seen as a set of wavelet coefficients with high
values at one single scale, but will have non-null wavelet coef-
ficients at several successive scales. An analysis of the wavelet
coefficients is then needed along the spatial axes and the scale
axis to link these coefficients and correctly characterize the asso-
ciated source in the wavelet domain. For the spatial analysis,
the undecimated à trous algorithm of Holschneider et al. (1989),
first used in the astronomical context in Slezak et al. (1990),
and also known as the isotropic undecimated wavelet fransform
(IUWT, Starck & Fadili 2007), is easier to use because the vari-
ous wavelet planes have the same size as the original image.

We briefly explain the properties of the IUWT below, and a
rigorous definition is given in Sect. 3.4. According to a dyadic
scheme, the image is separated into several scales that exhibit
sources with the same characteristic size: the first few high-
frequency scales contain compact sources (small-scale details),
while the low-frequency scales contain extended sources (large-
scale details). Although not perfect because objects in the origi-
nal image are spread through several sources at different scales,
the IUWT is a sparse representation of the initial data. Provid-
ing that the noise affecting the data is white, objects in the direct
space indeed generate wavelet coefficients with much higher val-
ues than those related to the noise-dominated pixels at any except
for the smallest scale.

The fact that the IUWT is sparse makes the detection of any
faint but extended source much easier in the wavelet domain than
in the direct space, especially at the large scales relevant for the
ICL component. A hard thresholding of the wavelet coefficients
is therefore an efficient way to denoise the data and detect objects
or structures, for instance. To do so, the significant wavelet coef-
ficients need to be selected scale by scale and then need to be
grouped into connected domains (see Sect. 3.5). Restoring an
image in the direct space for a single detected object is slightly
more difficult: an interscale analysis must be performed to build
interscale trees using the spatial and scale positions of each sig-
nificant domain, and various constraints can be applied when
these trees are built or pruned. The information from a pruned
interscale tree can then be used to restore (or reconstruct) the
associated object intensity distribution in direct space.

Following the method described in Bijaoui & Rué (1995),
only the wavelet coefficients of the domain are used in which the
interscale maximum of a tree is located (i.e., the region with the
highest value within the tree, hence with the highest information
content), and from every region linked to it at smaller scales.
This pruning of the interscale trees ensures that the restoration
algorithm has access to enough information to compute a sat-
isfying solution, and that the retained information does belong
to the same structure in the direct image. However, this prun-
ing discards the information from domains at lower spatial fre-
quencies than the wavelet scale of the interscale maximum. For
a source with an intensity profile with an inner core that is much
brighter than its outskirts, only the bright core is therefore recon-
structed and most of the outskirts are missed. Faint sources near
bright ones are therefore correctly processed only when an anal-
ysis with such a pruning is performed at least twice.

The restoration step was applied to each tree individually
and can be viewed as an inverse problem that yields an iter-
ative estimation process (see Sect. 3.1). Several solutions to
such optimization problems have been proposed in the literature,
such as conjugate gradient methods or the Landweber scheme
(Starck et al. 1998), based on positivity and other regulariza-
tion constraints. In a more straightforward way, these estimation

algorithms aim to reproduce the direct space intensity profile of
the detected object by adding and subtracting different elements
from a wavelet basis, and using information from the interscale
tree. In this paper, the wavelet basis used for the restoration step
is usually the same as the basis used for the analysis (the B3-
spline wavelet basis).

There are several remarks to make on this overall method.
The first is that it is parameter prior-free because there is no need
to specify a profile for the objects that are reconstructed, in con-
trast to usual fitting methods. However, we recall that a choice is
made through the wavelet basis that is used for the analysis and
the restoration.

Astronomical sources cannot be represented by a single
wavelet function, but rather by linear combinations of elements
from the same wavelet basis. This implies a selection (made
through the estimation algorithm) of the elements of the basis
function that lead to the best representation. This selection is per-
formed to minimize the difference in shape between the source
intensity distribution and the pattern in the direct space that is
linked to the set of wavelet functions that are used to model
it. However, this selection is almost always suboptimal, and
will generically result in artifacts in the restored profile. In the
best-case scenario, the amplitude of these artifacts is very low
compared to the other source distribution attributes. Sometimes,
however, the iterative process fails to compensate for this dif-
ference (and may even amplify it in the worst-case scenario of
strongly overlapping objects with high surface brightness), and
artifacts can then be significant. Because of the nature of the
wavelet pattern, which is a disk of positive pixels surrounded by
an annulus of negative ones, these artifacts, if any, in our case
take the form of spurious rings around restored sources. Like-
wise, choosing an isotropic vision model also leads to slight mor-
phological biases on the reconstruction of anisotropic objects,
typically galaxies with high ellipticities for which the solution
has the same integrated flux but which have a more circular light
profile.

2.3.4. Implementation and limitations

A wavelet-based multiscale approach like this was first used
by Adami et al. (2005) to detect a large-scale diffuse compo-
nent within the Coma galaxy cluster. The IDL package OV_WAV
is another implementation of this multiresolution approach,
and was used to detect diffuse sources in astronomical images
of galaxy groups (Da Rocha & Mendes de Oliveira 2005). The
wavelet representation allowed the authors to detect extended
sources down to a signal-to-noise ratio (S/N) ∼ 0.1 per pixel,
which was enough to characterize the intragroup light (IGL) of
HCG 15, HCG 35, and HCG 51 (Da Rocha et al. 2008).

Even with fast à trous algorithms, this analysis proce-
dure is computationally time expensive, mainly because of the
interscale analysis and the object reconstructions. In addition,
a problem met by this approach is the false detections due to
statistical fluctuations of the noise. As previously mentioned,
the noise is dominant in the high-frequency wavelet scales, and
packs of noise pixels with high values can be detected as sources
and have their own interscale tree. This results in the reconstruc-
tion of incorrect detections in the high-frequency scales, which
increases the computing time. The authors of OV_WAV used var-
ious ways of thresholding their wavelet scales in order to limit
the false detections and applied higher thresholds for the high-
frequency scales, but they did not completely solve the problem.

Running OV_WAV on an image allows detecting most of the
bright sources and reconstructing them properly up to a very
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high precision. All the reconstructed sources are then concate-
nated into a single image: the full reconstructed image of the
original field. A residual image can then be computed by sub-
tracting the reconstructed image from the original. Because of
the various reconstruction factors described in Sect. 2.3.3, low
surface brightness features can be missed. Adami et al. (2005)
had the idea of running the algorithm a second time, but on the
residual image, in order to detect outer galaxy halos and other
more diffuse structures. While better results are obtained in this
way, the overall performance of this iterative approach is still
determined by the intrinsic quality of the restored intensity dis-
tribution for the detected source. This is especially the case for
strongly peaked and bright sources because any high-value resid-
ual left from the first pass could then be detected as a signifi-
cant structure in the second pass, once again hiding faint sources
that are superimposed or close to it. Ellien et al. (2019) chose
this approach for a beta version of DAWIS, where the same algo-
rithm was run three times in a row to correctly detect and model
every galaxy in the image. When the ICL is not detected with
the wavelet algorithm after this procedure, it is possible as a fast
alternative to detect it in the final residual image by applying an
appropriate standard sky background threshold. In this case, the
wavelet analysis acted as a simple modeling tool for galaxies,
analogous to PF methods. A fully iterative procedure with this
type of wavelet algorithm is always difficult to apply because of
its computational cost, but it appears to be the best way to sig-
nificantly improve the overall quality of the analysis (especially
with regard to object restoration), and to thoroughly detect ICL
in the wavelet space.

In parallel to the detection of ICL, this multiscale approach
has been adapted to different types of data, where the sci-
entific goals are similar (e.g., detecting faint and extended
sources hidden by bright and compact sources). Most notably,
Dabbech et al. (2015) proposed the algorithm MORESANE (model
reconstruction by synthesis-analysis estimators), developed for
processing radio images of galaxy clusters taking the complex
PSF of radio interferometers into account. As already said, this
algorithm makes use of the multiresolution vision model of
Bijaoui & Rué (1995), embedded in an iterative procedure gen-
eralizing and upgrading the process implied by the earlier works
of Adami et al. (2005) on ICL. This allows solving most of the
problems described in the previous paragraphs. Dabbech et al.
(2015) also provided a description of the overall procedure and
algorithm in terms of sparse representation, called synthesis-by-
analysis approach. We decided to use this latest version of mul-
tiscale image-analysis procedure as a starting point to upgrade
this class of methods for detecting ICL. We propose here our
own version of this strategy, optimized for computation time and
for optical images. We presented it in the next section.

3. DAWIS

In this section we present the operating structure of DAWIS.
While many notions addressed here are already well known, we
still detail them with the global understanding of the algorithm in
mind. The comparison of the ICL detection performance is pre-
sented in Sect. 4. We use the following notations: matrices are
denoted by bold uppercase letters (e.g., A with a transpose A>),
vectors by bold lowercase letters (e.g., u). A component of row
index i and column index j is given by Ai, j. A vector component
of index i is given by ui. Vectors are all column vectors, and row
vectors are denoted as transposes of column vectors (e.g., u>).
Vector subsets and matrix columns or rows are denoted by top
or bottom indexes with parentheses (e.g., u( j) or u( j)).

3.1. Inverse problem and sparse representations

When a signal from observed data is modeled, the solution of this
inverse problem may not be unique. To solve this so-called ill-
posed problem, a penalty term must be introduced in the math-
ematical equation that describes it so that a particular solution
can be selected. This solution must satisfy this added criterion,
thereby leading to an optimization problem. We consider the
generic equation

y = Hx + n, (1)

where y ∈ RM is the measured signal, x ∈ RN is the initial signal,
H : RN → RM is a known (or approximately known) degrada-
tion operator, and n ∈ RM is an additive noise. This structure can
be used to represent many problems in image and signal pro-
cessing such as denoising with H = I or deconvolution with H
an impulse response (i.e., the PSF for a focused optical system).
Recovering the initial signal from the observed (sub-)set of data
is an inverse problem that can be solved with a penalized estima-
tion process, written as

x̂ = argmin
x′

1
2

∥∥∥y −Hx′
∥∥∥2

2 + λR(x′), (2)

where R : RN → R+ is the penalization function and λ ∈ R+

is the regularization parameter. One widely used constraint is
the Tikhonov regularization, which may rely on difference oper-
ators, for instance, to promote a smooth solution or the iden-
tity matrix to give preference to solutions with small `p norms2.
Sparsity of the solution for a given representation space can also
be enforced. To do so, the penalized function R is then a measure
S of the sparsity of the solution when projected onto the basis
defining this new space, that is, after applying a transform γ to
the solution so that the penalty term is written as R(x′) = S(γ)
with γ = γ(x′). This transform γ is usually chosen to be a lin-
ear operator. The normalized matrix aggregating the new basis
functions as columns is commonly referred to as a dictionary,
and each column or vector of it is then an element that is also
called an atom.

A natural choice for the function S is the `p norm with 0 <
p < 1 to favor sparsity. Case p = 0 related to support minimiza-
tion is usually untractable because it is highly nonconvex, hence
an NP-hard problem; case p = 1 corresponds to the tightest con-
vex relaxation to this problem, which may still not be easy to solve
efficiently when the dimension is high. The use of dictionaries (cf.
composite features) in combination with `1 norm gave rise to sev-
eral minimization algorithms with many variants to determine the
best approximation of x by the elements of the dictionary, such as
the method of frame (Daubechies 1988), the basis pursuit scheme
(Chen et al. 2001), or the compressive sensing (Donoho 2006).
Faster than convex optimization but lacking uniformity, a greedy
method such as (orthogonal) matching pursuit (Mallat & Zhang
1993), which is conceptually easier to implement, is also a suit-
able and efficient algorithm to solve the task.

Recovery of the sparse (or compressible) signal x is guar-
anteed providing that the correlation between any two elements
of the dictionary is small (as measured by the mutual coherence
indicator or the K-restricted isometry constant) and the number
of measurements is large enough (Candes et al. 2006). In case of
overcomplete and redundant dictionaries, the successful restora-
tion of the signal relies on the use of a prior as is often the case
for solving many inverse problems, with the maximum a poste-
riori (MAP) estimator, for instance. The prior we are interested

2 The `p norm is given by `p
p =

∑
i |xi|

p for a vector x.
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in is the sparsity of the solution we are looking for, and it can
be introduced following two approaches that are closely related
but not equivalent for such redundant dictionaries, as studied by
Elad et al. (2007).

The first approach relies on an analysis-based prior. The sig-
nal x characterized by its inner products with all the atoms of
a dictionary A is assumed to be sparse for this dictionary, that
is, γa = A>x with γa the sparse representation of x. To be effi-
cient, this approach must involve priors on the signal for select-
ing adequate dictionaries such as wavelet-based ones for nearly
isotropic sources in astronomical images, as was implemented
in the previous algorithm OV_WAV. Given `1(x) =

∑
i |xi|, Eq. (2)

becomes

x̂ = argmin
x′

1
2

∥∥∥y −Hx′
∥∥∥2

2 + λ`1(A>x′). (3)

The second approach is sparse synthesis, where the signal to be
restored, x, is assumed to be a linear combination of a few atoms
from a dictionary, so that x = Sγs, where γs is the sparse repre-
sentation of x and S is the synthesis dictionary (not to be con-
fused with the measure of sparsity S). This leads to the solution
of the inverse problem as

x̂ = argmin
γs

1
2

∥∥∥y −HSγs

∥∥∥2
2 + λ`1(γs). (4)

For redundant dictionaries, solutions for analysis or synthe-
sis priors are different. As far as the authors know, no general
results on their practical comparison are available for usual trans-
forms, even for the `1 norm case. However, the analysis approach
may be more robust than the synthesis approach because it
does not require the signal to be expressed as a linear combi-
nation of atoms of a given dictionary. It is clear that a synthe-
sis approach with dictionaries including too few atoms leads to
a rough restoration and that the number of unknowns for large
dictionaries is computationally expensive and often prohibitive.

3.2. DAWIS: A synthesis-by-analysis approach

We chose a hybrid approach for DAWIS, the analysis-by-
synthesis method first developed for processing radio astronomy
images and explicitly implemented in the MORESANE algorithm
(Dabbech et al. 2015). The principle is to model an image as a
linear combination of synthesis atoms that are learned iteratively
through analysis-based priors. The previous algorithm, OV_WAV,
already follows this path implicitly because (i) it makes use of
wavelet dictionaries to reconstruct images according to an anal-
ysis approach where objects are detected and restored subject to
the wavelet coefficient values, and (ii) it sometimes has to be run
iteratively two or three times to obtain better results, which is the
beginning of a synthesis approach with the successive restored
images as synthesis atoms. However, applying a formal analysis-
by-synthesis method allows us to solve most of the problems met
by the OV_WAV algorithm while keeping the advantages of an
analysis based on wavelet atoms for the detection of low surface
brightness features.

This approach makes DAWIS (like MORESANE) a very versa-
tile tool with a great range of applications, as the nature of the
signal of interest and of the degradation operator are defined
by the person performing the analysis. In the work presented
here, for example, the signal to be recovered is the ICL, and
the degradation operator H can then be seen as effects coming
from instrumental (scattered light, PSF) and physical (blending

of astronomical sources, contamination by diffuse halos, etc.)
origins. However, our goal of using DAWIS here is not to cope
with instrumental effects (this type of degradation must there-
fore have been dealt with before), but to focus on the detection
of diffuse and low surface brightness features (e.g., detecting sig-
nal where standard detection methods fail) and source separa-
tion (e.g., separating the ICL from the galaxies based on nonar-
bitrary parameters). The operating mode of DAWIS is therefore
conditioned by these specific analysis goals. We stress the fact
that other applications are possible (also see Sect. 3.10 for more
details).

3.3. DAWIS: A semi-greedy algorithm

The synthesis-by-analysis approach implemented in MORESANE
by Dabbech et al. (2015) and in DAWIS by us is conceptually
reminiscent of a matching pursuit algorithm (Mallat & Zhang
1993) where the atoms of the dictionary are constructed with
orthogonal projections of the signal on time-frequency func-
tions. At each iteration the best correlated projection is kept as an
atom for the synthesis dictionary, and retrieved from the signal
before the same process is applied to the residual. This method
is efficient in determining atoms that characterize the signal well
because its core strategy is to minimize at each iteration a resid-
ual from the computation of the inner products of the undercon-
struction solution with all the atoms of the analysis dictionary,
hence a so-called greedy method, which has the main disadvan-
tage to be time consuming. A well-known greedy algorithm is
CLEAN, which uses a set of Diracs and a PSF to deconvolve the
image of a field of stars represented by intensity peaks. The algo-
rithm assesses a Dirac function to each peak with a spatial posi-
tion in the image and an amplitude, which makes it sparse by
nature because the observed field is expressed with a few posi-
tive coefficients. The sky image is recovered with the convolu-
tion of the set of Diracs by the PSF, which can be seen as the
product of coordinates by a dictionary with one single atom.

A problem when detecting sources in astronomical images is
blending: a faint source aside a much brighter source is partially
hidden by the bright source, especially if the latter is also larger.
In CLEAN, an iterative process controlled by an empirical factor
called the CLEAN factor is introduced to address this issue. The
highest detected peak in the image is first considered, and instead
of totally removing it from the image before computing and pro-
cessing the new highest peak, only a fraction of it given by this
CLEAN factor is subtracted. By doing so, the risk of accidentally
removing faint blended sources is decreased, hence allowing a
better deconvolution of the image.

In DAWIS the brightest source within the image is detected
at each iteration in the wavelet space before it is restored and
removed from the image. Likewise, a very bright object in the
image (such as a foreground star) translates into wavelet coef-
ficients with very high values that strongly dominate this repre-
sentation space (even at low frequency scales), and contaminates
low surface brightness features. Removing this bright structure
first before detecting fainter sources allows a better recovery of
the objects than in the previous process used in the OV_WAV algo-
rithm. Similarly to MORESANE, we also introduced a parameter
δ ∈ [0, 1] in DAWIS that is equivalent to the CLEAN factor so that
only a fraction of the reconstructed object is actually removed
from the image. This also limits the appearance of artifacts.

The downside of this approach is its slowness. An analysis in
which sources are processed one by one is far too time-expensive
computationally. We therefore decided for DAWIS to implement
the semi-greedy method of MORESANE. The reconstructed atom
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at each iteration is not composed of a single source, but of a set of
sources with similar characteristic sizes and intensities. This set
is defined by a parameter τ ∈ [0.1], setting a threshold relative to
the brightest structure in the image.

3.4. DAWIS: the B3-spline wavelet as analysis dictionary

We described above that we used an analysis-based method
to obtain the synthesized atoms of S. As ICL is believed to
have an isotropic or quasi-isotropic shape, we chose as ade-
quate dictionary the well-known B3-spline wavelet dictionary,
with w = A>x, where w is the vector of the wavelet coefficients.
The choice of this symmetric and compact mother wavelet also
grants a very efficient way to compute these coefficients using
the IUWT, for which there is no need to compute the prod-
uct between A> and x. Benefiting from the so-called à trous
algorithm (Holschneider et al. 1989), the original image x is
smoothed consecutively J times using an adaptive B3-spline
kernel, giving J coarse versions of x, with c( j) ∈ RN being
the version at the scale j. The vector w can then be writ-
ten as the concatenation of J + 1 vectors w( j) ∈ RN such as
w = {w(1)| . . . |w( j)| . . . |w(J)|c(J)}, where w( j) = c( j+1) − c( j) (Mallat
1989; Shensa 1992). Each vector w( j) basically represents the
details of two consecutive smoothed levels, and the components
of these vectors are called the wavelet coefficients. An image of
size N pixels gives a maximum number of scales J ≤ log2(N)−1.

3.5. DAWIS: Noise filtering and multiresolution support

Determining which wavelet coefficients are of interest (filter-
ing step) requires knowing how the noise in the direct space
translates into the wavelet space. Because the wavelet trans-
form is linear, the noise statistics remain the same. To be able to
select wavelet coefficients using a simple thresholding method
involving Gaussian statistics, we need to ensure such a Gaussian
distribution for the noise in the wavelet space. For this purpose,
DAWIS makes use of a variance stabilization transform. Consid-
ering an image x with a combination of Gaussian noise and
Poissonian noise, DAWIS involves the generalized Anscombe
transformA : RN → RN (Anscombe 1948), which is given by

A(x) =
2
g

(
gx +

3
8
g2 + σ2 − gµ

) 1
2

, (5)

with g being the gain of the detector, and µ and σ are the mean
and standard deviation of the Poissonian-Gaussian noise in the
original image, respectively, computed here with a bisection-like
method. The result x̃ = A(x) is an image with a Gaussian noise
of σ = 1, which has a very nice behavior in the wavelet space.
The à trous algorithm can then be applied to the output image to
create the stabilized wavelet coefficient vectors w̃( j).

The statistically significant pixels are then selected at each
scale using a thresholding method, and a multiscale support is
identified (Bijaoui & Rué 1995), which is given a scalar operator
T , a vector M = {M(1)| . . . |M( j)| . . . |M(J)} with M( j) ∈ RN such
as

M( j)
i =

{
1 if T (w̃( j)

i ) > 0
0 otherwise.

(6)

The computation of the multiscale support fills two objectives.
First, it acts as a `0 sparsification of the analysis coefficients,
discarding small (nonsignificant) wavelet coefficients and indi-
cating the position of interesting features. Second, it allows us to

very easily translate this acquired knowledge from the variance-
stabilized wavelet space into the nonstabilized space (e.g., the
vector w generated by A>x), where the actual object identifica-
tion is made.

Because the noise in the initial image is considered to be spa-
tially uncorrelated (which is not always the case in reality) and
therefore generates wavelet coefficients with high values only
at the first two high-frequency scales, a first relevant approach
is to estimate the standard deviation of the noise and its mean
at these two first scales. The IUWT being a linear transform,
the rms values can then be extrapolated to the higher wavelet
scales where (i) the noise becomes highly correlated as a result
of the large size of the related filters, and (ii) the mean source
size increases, leaving increasingly fewer background pixels to
estimate the noise statistics.

The threshold operator applied to the wavelet coefficients T
can take many forms. DAWIS implements the usual hard thresh-
old operator, which operates as

T (w̃( j)
i ) =

{
w̃( j)

i if |w̃( j)
i | ≥ t

0 otherwise.
(7)

The threshold t applied to each w̃( j) is different, such as t =
kσ( j), with σ( j) being the standard deviation of the noise of
w̃( j) and k a constant usually chosen to be 3 or 5 according
to the chosen probability for false alarms. Other formulations
for T can be used, such as the soft threshold operator (Mallat
2008) or the combined evidence operator used in OV_WAV
(Da Rocha & Mendes de Oliveira 2005).

3.6. DAWIS: Object identification through interscale
connectivity

We first repeat that a source in the original image generates sig-
nificant wavelet coefficients at several successive scales for a
nonorthogonal transform. Consequently, an analysis along the
scale axis has to be performed in order to identify the set of
wavelet coefficients related to this source. To this end, DAWIS
once again follows the recipe first proposed by Bijaoui & Rué
(1995) and also implemented in MORESANE. It relies on the con-
struction of interscale trees.

We denote with α the set of significant wavelet coefficients
of w. The location of these coefficients is given by the multiscale
support M defined in Sect. 3.5. When this mask is applied, a clas-
sical segmentation procedure is first performed to group these
coefficients into regions (e.g., domains) of connected pixels. α
can then be written as a concatenation of vectors α( j) so that
α = {α(1)| . . . |α( j)| . . . |α(J)} with α( j) ⊂ w( j), each α( j) being com-
posed of a set of domains d with different sizes. As usual, each
significant region is characterized by the location and amplitude
of its coefficient with the highest value, allowing us to define a
local maximum. Let w( j)

i be this local maximum value for the
region d(1) ⊂ α( j). Region d(1) is then defined as linked to a
region d(2) ⊂ α

( j+1) when w( j+1)
i belongs to d(2). Finally, by test-

ing this connectivity for each region d ⊂ α, interscale trees are
built throughout the whole segmented wavelet space.

With this procedure, an object O is then defined by the con-
catenation of K connected regions in the wavelet space d(k) such
as O = {d(1)| . . . |d(k)| . . . |d(K)}. A region is linked to at most one
other region at the next lower frequency scale, but can be linked
to several regions at the next higher frequency scale. One cri-
terion must be satisfied to consider that such a tree is related
to a genuine object in the direct image, and not an artifact. An
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interscale tree must include at least three regions that are linked
at three successive scales.

3.7. DAWIS: Object reconstruction

Applying the procedure summarized in the previous section,
each object in direct space is therefore related to an interscale
tree of significant wavelet coefficients. Beyond the structure of
the tree itself, the amount of information about this object is dis-
tributed throughout the linked regions and can be measured by
the value of their maxima once normalized. Because wavelets
act as a contrast detector, the average values of the wavelet coef-
ficient amplitudes tend to be indeed lower at small scales than at
large scales in astronomical images, thereby creating an implicit
bias when wavelet coefficient values at different scales are com-
pared. As a normalization factor for each scale j, DAWIS uses
the standard deviation at this scale j of the IUWT of a Gaussian
white-noise image with unit variance, denoted σ( j)

1 . For an object
O, this results in the normalized vector α̃ of size K, with given
d(k) ⊂ α

( j), α̃k = max d(k)

σ
( j)
1

.

The region d(k) ⊂ O in the tree that contains most of the
information about the object is especially relevant for the infor-
mation content. This region of maximum information is the
interscale maximum. It is denoted by an index kobj and a scale
jobj such as

kobj = argmax
k

α̃k. (8)

This interscale maximum gives an easy way to characterize an
object O because the parameter jobj provides its characteristic
size 2 jobj . Moreover, the parameter α̃kobj giving its normalized
intensity is also used by DAWIS to compare it to other objects
and rank them for the restoration step. As indicated in Sect. 3.3, a
parameter τ defines a threshold relative to the brightest identified
object, which has the highest parameter α̃kobj , denoted α̃max. Only
objects for which α̃kobj ≥ τα̃max are restored at a given iteration
of the processing and are included in the associated dictionary
atom.

Objects are reconstructed individually, using their specific
support Mspec giving the location in w of every significant coef-
ficient belonging to O. Here DAWIS also strictly follows the
procedure of Bijaoui & Rué (1995) and that regions at scales j
higher than jobj are discarded for the restoration. This restora-
tion is a direct application of Eq. (2), where positivity of the
solution is used as a regularization term, with y = Mspecw and
H = MspecA>. DAWIS uses the conjugate gradient algorithm
from Bijaoui & Rué (1995), which makes use of the adjoint
operator †A of the analysis dictionary A (see their article for
an explicit definition of this operator). This algorithm iteratively
finds the solution x̂, which is the reconstructed object. This con-
jugate gradient version algorithm makes use of the Fletcher-
Reeves step size β (Fletcher & Reeves 1964). This process is
applied to all objects before they are concatenated into a single
restored image z ∈ RN such as z =

∑
l x̂(l).

3.8. DAWIS: Architecture of the algorithm

We present the general architecture of DAWIS in the form of
a simplified pseudo-code in this section: Algorithms 1 and 4
summarize the synthesis-by-analysis approach as explained in
Sects. 3.2 and 3.3, while Algorithms 2, 3, and 5 describe
the wavelet-atom-based analysis as described in Sects. 3.4–3.7.
For the operating mode of DAWIS, which is iterative, some

Algorithm 1: DAWIS – main algorithm
Input: τ, δ, ε, Nit, original image x with size N.
Output: synthesized dictionary S, restored image ztot,

residual r.
1 Initialize J = 3, i = 1, r(0) = x.
2 while J < log2(N) − 1 do
3 while i ≤ Nit do
4 i = i + 1.
5 Compute w and M with Algorithm 2.
6 Compute {O(1)|...|O(n)} and {α̃(1)|...|α̃(n)} with

Algorithm 3.
7 Compute z(i) and nobj with Algorithm 4.
8 Update dictionary S = {S | z(i)}.
9 Update residuals r(i) = r(i−1) − z(i).

10 Update restored image ztot = ztot + z(i).
11 Compute σ(i) standard deviation of r(i).

12 if ‖σ(i−1)−σ(i)‖
nobjσ(i−1)

≤ ε then
13 Break loop on i.

14 J = J + 1
15 Final residual r = r(i).

parameters have to be defined to control the convergence of the
algorithm.

To ensure that the algorithm correctly peels the image start-
ing by the bright sources, we imposed an upper scale J so that
the brightest detected object at each iteration cannot have an
interscale maximum α̃max at scale jmax > J. This also decreases
the computation time because there is no need to perform the
wavelet and interscale analyzes for all scales for the first few
iterations. The upper scale is initialized at J = 3 because an
interscale tree needs domains that are connected at least at three
successive scales to be considered as related to an object.

The main convergence parameter is defined as ‖σ(i−1)−σ(i)‖
σ(i−1)

and
is computed from the variation of the standard deviation of the
residual at each iteration i. However, the nature of the synthe-
sis atom for different iterations can induce instability for this
convergence parameter. One atom can indeed be composed of
many bright objects, which means strong variation in the stan-
dard deviation, and another of a single faint object, hence a low
variation in the standard deviation, which might break the loop
while there are still sources in the residual. Therefore we normal-
ized this convergence parameter by the number of objects nobj to
stabilize it. When the value of this parameter decreases below a
threshold ε, the value of the upper scale J is increased by one,
so that larger sources can be processed by the algorithm. A hard
limit Nit is also given to the algorithm to restrict the number of
possible iterations.

3.9. DAWIS: implementation and parallelization

DAWIS is implemented with an emphasis on modularity (e.g., a
set of modules that can be moved or replaced by new versions)
because the algorithm can still be upgraded to increase the qual-
ity of the method or modified according to new analysis goals. We
chose to write the main layer of modules in Python because it is a
very widely used versatile and accessible open-source language.
However, this versatility has a cost in terms of numerical perfor-
mance, which led us to support the Python modules by Fortran 90
codes where the main numerical computations are done.
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Algorithm 2: DAWIS – wavelet analysis & multiscale
support

Input: Maximum scale J, residual r.
Output: wavelet coefficients w and multiscale support M.

1 Apply Anscombe transform r̃ = A(r).
2 Compute w̃ = A> r̃ with à trous algorithm for scale j = 1

to J.
3 Apply hard threshold w̃ = T (w̃).
4 Compute multiscale support M from w̃.
5 Compute w = A>r with à trous algorithm for scale j = 1

to J.

Algorithm 3: DAWIS – interscale analysis
Input: wavelet coefficients w, multiscale support M.
Output: objects {O(1)|...|O(n)}, interscale maximums

{α̃(1)|...|α̃(n)}.
1 Initialize m = 1, n = 1.
2 Compute domains d = {d(1)|...|d(M)} from w and M with

segmentation algorithm.
3 while m ≤ M do
4 Compute spatial position imax and scale jmax of local

maximum max(d(m)).
5 if w( jmax+1)

imax
∈ dm′ then

6 Link dm and its linked domains to dm′ .
7 else
8 Define interscale tree O(n) as d(m) and its linked

domains.
9 if O(n) has at least 3 linked domains then

10 Compute interscale maximum α̃(n) as in
Sect. 3.7.

11 Update objects {O(1) |...| O(n)}.
12 Update interscale maximums {α̃(1) |...| α̃(n)}.
13 n = n + 1.

14 m = m + 1.

Algorithm 4: DAWIS – atom synthesis
Input: τ, δ, objects {O(1)|...|O(n)}, interscale maximums

{α̃(1)|...|α̃(n)}.
Output: synthesized atom z and nobj number of objects in

it.
1 Initialize nobj = 0, l = 1.
2 Brightest object α̃max = max({α̃(1)|...|α̃(n)}).
3 while l ≤ n do
4 if α̃(l) ≥ τα̃max then
5 nobj = nobj + 1.
6 Compute restored object x̂(l) with Algorithm 5.
7 Update z = z + x̂(l).
8 l = l + 1.
9 Apply CLEAN factor z = δz.

As explained in Sect. 2.3.4, one of the main limitations of
wavelet-based algorithms is computation time, which prevents
the application of previous packages such as OV_WAV to large
samples of images or to very large images. Great effort has
been made with DAWIS to parallelize the algorithm. This is not
straightforward because the main algorithm is iterative, which
means that only the content of one iteration can be sped up.

Algorithm 5: Conjugate gradient algorithm
Input: Flux convergence parameter ε, original object

image x, object wavelet coefficients y = Mspecw,
maximum number of iterations Niter.

Output: Restored object image x̃.
1 Initialize k = 0.
2 Initialize x̃(0) = †Ay.
3 Initialize w(0)

r = y − Ax̃(0).
4 Initialize r(0) = u(0) = †Aw(0)

r .
5 while k < Niter do
6 Compute the step size δ(k) =

∥∥∥r(k)
∥∥∥ / ∥∥∥w(k)

r

∥∥∥.
7 Update the restored image x̃(k+1) = x̃(k) + δ(k)u(k).
8 Set negative coefficients of x̃(k+1) to 0 (positivity of the

solution).
9 Update the wavelet residuals w(k+1)

r = y − Au(k).
10 Update the direct space residual r(k+1) = †Aw(k+1)

r .

11 Compute the step size β(k) =
‖r(k+1)‖

2
2

‖r(k)‖
2
2

.

12 Compute the new conjugate direction
u(k+1) = r(k+1) + β(k)r(k).

13 if ‖x̃
(k+1)−x̃(k)‖
‖x̃(k)‖

≤ ε then
14 Set final restored object image x̃ = x̃(k+1).
15 End loop on k.
16 Set k = k + 1.

Therefore we parallelized the modules inside an iteration. When
large data arrays are worked (which is typically the case when
the wavelet data cube and the multiresolution support are com-
puted with Algorithm 2 and when the multiscale analysis is per-
formed with Algorithm 3), the Fortran modules are parallelized
in shared memory using OpenMP3. Conversely, we use the new
Python package Ray4 to distribute processes when we work on
many small arrays (the restorations of numerous objects to com-
pute the associated synthesis atom are independent from each
other and can be distributed, such as Algorithms 4 and 5).

We display here a central processing unit (CPU) computing-
time scaling test on mock data for both types of parallelizations.
For the shared memory parallelization, the test was set on an
image of size 4096 × 4096 pixels (giving a wavelet data cube of
4096×4096×10 wavelet coefficients). Algorithms 2 and 3 were
run on the image first serially (one CPU), and then with pro-
gressively increasing the number of CPUs. As shown in Fig. 1,
the gain of computing time is high when the number of CPUs
is increased from 1 to 16: it changes from a computing time of
∼40 min to a computing time of ∼6 min. However, these mod-
ules do not scale linearly with the number of CPUs, and the gain
in computing time is rather negligible for 32 and more CPUs,
where the computing time converges toward a value of ∼4 min.

For the distributed memory parallelization, the test was run
on 1000 copies of the same object array of size 128×128 pixels.
Algorithms 4 and 5 were run on the arrays, and the resulting
CPU computing times are also displayed in Fig. 1. Similar to the
shared-memory parallelization, the gain in CPU computing time
is most effective when the number of CPUs is increased to 16,
for which the computing time changes from ∼25 min to ∼2 min.
It is rather negligible with higher numbers of CPUs, however,

3 https://www.openmp.org/
4 https://ray.readthedocs.io/en/latest/
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Fig. 1. CPU computing-time scaling test for the two types of paralleliza-
tion used in DAWIS. The scale for the computing time is logarithmic.
This gain in time is achieved for the modules inside one main iteration
of the algorithm, and does not represent the total CPU computing time
of DAWIS (see the text for more details).

and converges toward a computing time of ∼2 min. The objects
that are to be restored are not always of size 128 × 128 pixels,
and the number of objects that is to be restored can also differ
from 1000. In some cases, the object sizes might even be a large
fraction of the image. In these cases, however, there are rarely
more than one or two objects that need to be restored. In our
experience, the computation time of an iteration with one or two
large objects that are to be restored does not differ very much
from the computation time of an iteration in which many small
objects are restored.

This simple test is not representative of the performance
of the complete algorithm. Because of the greedy nature of
Algorithm 1, the CPU computing time of DAWIS largely depends
on the content of the image. An image that contains complex
structures will always take longer to process than an image with
very simple shapes because more main iterations are needed
to accurately model these complex structures (in our experi-
ence, the number of main iterations ranges from a hundred
to a few hundred, depending on the image). Additionally, the
length of a main iteration also greatly depends on the content
of the image. For example, the algorithm will sometimes choose
to restore only one very bright source. In this case, the paral-
lelization in distributed memory is of no use because only one
object is to be restored. Nevertheless, these parallelization pro-
cesses ensure that the complete CPU computing time of DAWIS
does not disproportionately increase in case of ‘heavy’ main
iterations.

3.10. Astrophysical priors on object selection

We showed in Sect. 3.2 that the columns of the final synthe-
sized dictionary S are atoms that are no more than the restored
images zi at each iteration i. Then, the restoration ztot of the
whole original image is given by the sum of all these atoms such
as ztot =

∑
i z(i). The generic operating mode of DAWIS therefore

produces a fully (denoised) restored image every time the algo-
rithm is run. However, in this way, a large part of the information

recovered by the sparse synthesis-by-analysis method is not
used because all synthesized atoms are concatenated into the
same image in which the information of individual spatial fre-
quencies or characteristic sizes is no longer accessible. How-
ever, depending on the analysis goals, the subsets of atoms of
S alone might be of interest, or even more specifically, alter-
native synthesized dictionaries might have to be compiled, the
atoms of which would be selected differently throughout the
synthesis-by-analysis procedure. To allow for these possibilities,
a discrimination operator D was applied to the detected objects
before we constructed the associated synthesis atoms such as
z′ =

∑
lD x̂(l). We do not present a rigorous definition of such

an operator here because it can take many forms and use dif-
ferent properties to distinguish objects depending on the desired
goal.

In this paper, the main goal is to detect the bright compo-
nents characterizing ICL. The discrimination operator D then
becomes a way of classifying sources as ICL-type structures,
denoted x̂ICL, and to extract them from components associated
with galaxies. A very simple way of doing so is to consider jobj
for each object and to use this parameter as a constraint because
the characteristic size of galaxies is not the same as the char-
acteristic size of any structural element of the ICL. The dic-
tionary atom zICL can then be built in parallel of z such that
zICL =

∑
i x̂ICL

(i) . This atom is then added to the ICL-synthesized
dictionary SICL, and a fully restored ICL image can be com-
puted by summing all its atoms. A distinction based on the spa-
tial position of the interscale maximum kobj can also be applied
because atoms describing galaxies belonging to a galaxy cluster
would also be considered (a catalog of the cluster member posi-
tions is needed in this case) for ICL fraction studies, for exam-
ple, or again to ensure that atoms associated with ICL are well
centered on the galaxy cluster. More complete discrimination
operators can be developed based on morphological properties
of sources in the wavelet scales, for instance, granularity (i.e.,
the number of regions linked to an interscale maximum), depth
of the interscale tree (i.e., the number of scales composing the
tree), or the color of the restored object (when several bands are
available).

4. Simulations

A new detection algorithm such as DAWIS must be tested and
compared to more traditional methods. For this purpose, we took
an image analysis approach and created monochromatic mock
images of galaxy clusters simulated with the Galsim package
(Rowe et al. 2015), emulating the photometric aspect of galaxy
clusters (galaxies + ICL) and the properties of the CFHT wide-
field camera MegaCam. The choice of MegaCam was made to
prepare upcoming ground-based surveys such as the UNIONS
survey (Ibata et al. 2017). However, the same approach can (and
should in the future) be applied to simulations of HST images,
for example.

From an astrophysics point of view, this approach is not
the most realistic because the simulated images contain only
light profiles and an artificial background. However, it allows
a complete control over the different included components and
allowed us to compare different detection methods and their per-
formances in different situations. Even if they are more realistic,
it is not possible to repeat this with N-body or hydrodynam-
ical simulations because the way in which ICL is defined in
those simulations is also subject to debate (Rudick et al. 2011;
Tang et al. 2018).
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4.1. Photometric calibration

We retrieved the MegaCam properties on the MegaPrime web-
site5. The MegaCam-type images are set with a pixel scale
s = 0.187 arcsec pixel−1, a detector gain g = 1.62e−/ADU, an
exposure time texp = 3600 seconds, and a readout noise level
σreadout = 5e−. We calibrated the photometry for the r band
with a zeropoint ZP = 26.22, and set the sky surface bright-
ness µsky to the corresponding average dark sky value, which is
µsky = 21.3 mag arcsec−2. The sky background level in ADU/pix
is then given by

FADU/pix
sky =

s2texp

g
10

µsky−ZP

−2.5 . (9)

The sky background in our images was simulated using
the Galsim function ‘CCDNoise(sky_level = FADU/pix

sky , gain =

g, read_noise =σreadout)’, which generates a spatially flat noise
composed of Gaussian readout noise plus Poissonian noise.

We neither tried to model the MegaCam PSF and the associ-
ated complex scattered light halos in a refined way nor to mea-
sure the effect of its extended wings, and we did not include any
spatial variation or anisotropy to it. We therefore chose a con-
stant value for the seeing. We modeled the PSF with a Moffat
profile using the Galsim function ‘galsim.Moffat’ with parame-
ters β = 4.765 and a half-light radius of 0.7′′, which is a generic
value for the MegaCam seeing.

4.2. Creating catalogs

We first created a galaxy cluster catalog. Because the vast major-
ity of ICL detections in the literature was made at low redshift
(z < 0.5, with a few exceptions such as Adami et al. 2005;
Burke et al. 2012; Guennou et al. 2012; Ko & Jee 2018), we
picked three redshift values such as z ∈ [0.1, 0.3, 0.5] in which
ten different galaxy clusters per bin were simulated. This choice
of redshift values was made to study the effect of cosmological
dimming on the ICL detection for each detection method. While
the number of clusters per bin seems at first fairly low, different
parameter spaces for each cluster ICL profiles were explored by
multiplying the number of processed images to several hundred
and allowing us to lead a statistically significant study.

A Navarro-Frenk-White (NFW; Navarro et al. 1997) dark
matter (DM) gravitational potential was simulated at the cen-
ter of an image for each cluster. The mass of the potential
was set to an average value of 1015 M�, and its concentration
followed the N-body simulation concentrations of Klypin et al.
(2016). Recent works have shown that the spatial distribu-
tion of ICL should follow the concentration of the DM halo
(Montes & Trujillo 2019). This was not the case in our simu-
lations, and we did not explore the effects of the mass and con-
centration parameters on our results. Our goal was to mimic the
photometric aspect of galaxy clusters and their ICL, and not to
determine the physical properties of their gravitational potential
or the effect of these parameters on ICL.

Galaxy catalogs for each cluster were simulated by drawing
galaxy properties (redshift zgal, half-light radius rh, apparent
magnitudes in the RC band mRC , and the ellipticity parameters
ε1 and ε2) from the COSMOS 2015 catalog (Laigle et al. 2016)
following a Poissonian distribution. First, a homogeneous field
of galaxies was generated following the COSMOS 2015 field

5 https://www.cfht.hawaii.edu/Instruments/Imaging/
Megacam/

galaxy luminosity function (GLF) normalized by the size of
the simulated image. When the galaxy field was set, the clus-
ter members were also drawn from the COSMOS 2015 catalog,
but this time specifically following the GLF in the same red-
shift bin as the cluster redshift. The field GLF number counts
were rescaled with the projected 2D mass density profile of the
cluster, so that the number counts reflect those of the cluster
rather than those of the field. By doing so, we assumed a con-
stant mass-to-light ratio in the cluster. Galaxy distances to the
center are imposed by the cluster mass profile, but their position
angles were chosen randomly.

These galaxy catalogs do not reflect all the galaxy cluster
properties such as the morphological segregation or the actual
surface distribution of galaxies in a cluster (which is usually
not exactly proportional to a NFW halo), but they represent
typical galaxy clusters at optical wavelengths fairly well: an
overdensity of galaxies that spatially follows a halo mass pro-
file superimposed on randomly placed field galaxies. Because
the position or the fraction of elliptical and spiral galaxies in the
cluster images are not expected to affect the detection of ICL in
a significant way, we did not add any supplementary properties
to the catalogs. We did not include foreground stars in our sim-
ulations either because we tried to estimate the different ways
in which galaxies can be separated from ICL in galaxy clusters
and not the effect of strong contamination sources such as these
stars. Another missing component in these catalogs is a BCG at
the center of the galaxy cluster, which was later added by hand
(see Sect. 4.3).

We chose a size for the images and the galaxy catalogs of
383 × 383′′, corresponding to images of 2048 × 2048 pixels for
images like those from the CFHT MegaCam images. This size
is very convenient because DAWIS can be run on a statistically
significant sample of these images while giving an exact limit of
J = 10 on the number of wavelet scales (see Sect. 3.4).

4.3. Generating galaxy light profiles

The galaxy luminosity profiles were generated using the mod-
eling package Galsim in a way similar to Euclid collaboration
(2019). Galaxies were represented by a Sérsic profile and drawn
into the images using the function ‘galsim.Sersic’. The input
half-light radius rh was taken from the catalogs computed in
Sect. 4.2, and the value of the Sérsic index n was drawn ran-
domly following a uniform distribution with n ∈ [0.5, 5.5]. The
input flux in ADU of each galaxy was computed with the relation

Fgal =
texp

g
10

mgal−ZP

−2.5 , (10)

with g being the detector gain, texp the exposure time, ZP the
zeropoint of the image, and mgal the galaxy magnitude from the
catalogs computed in Sect. 4.2. The ellipticity of each galaxy
was then computed with the function ‘galsim.Shear(e1 = ε1, e2 =
ε2)’. Each galaxy profile was also convolved with the instrument
PSF (see Sect. 4.1) using the function ‘galsim.Convolve’.

To compute the flux of a cluster, we retained only its galax-
ies within 350 kpc from its center. Applying a physical scale
cut allowed us to compare different redshift cases coherently.
This ensured that there was no redshift bias when we computed
the total flux of a cluster because low-redshift galaxy clusters
display a larger apparent size than high-redshift galaxies. Real
galaxy clusters are usually much larger, with sizes up to a few
megaparsec, but the measure of ICL fractions is dependent on
the spatial extent that is probed and on the number of clus-
ter members in it. We therefore imposed this physical radius
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as a membership constraint, which was also chosen so that the
equivalent image radius of clusters in the redshift bin z = 0.1
(r ∼ 189.8 ′′, the largest radius of the three redshift values) fits
in CFHT MegaCam-type images of 2048×2048 pixels. The flux
of a galaxy member was then added to the total flux of the galaxy
cluster Fcluster, which was then used to compute the ICL luminos-
ity profile.

A BCG was also simulated in the middle of each image by
simulating a Sérsic profile. The BCG flux FBCG was computed
by taking the flux of the brightest galaxy of the image and apply-
ing a cosmological dimming factor corresponding to the cluster
redshift to it. This was done by multiplying its flux by a factor
(1 + z)4 corresponding to the initial redshift value of the galaxy,
and then dividing it by the same factor, but instead with the clus-
ter redshift value. In order to avoid cases in which a very bright
foreground galaxy is drawn into the image, which results in a
value for FBCG that is too high, we added the constraint that the
absolute magnitude of the BCG is not brighter than −23. Follow-
ing values from the literature (Gonzalez et al. 2005; Seigar et al.
2007; Durret et al. 2019), the BCG Sérsic index was drawn from
a uniform distribution in the conservative range [1.5, 5.5], and
FBCG was added to the cluster total flux F input

cluster. We assigned the
same ellipticity to the BCG as we applied to the ICL light profile
generated in the next section.

4.4. Generating the ICL light profile

The procedure of simulating an ICL luminosity profile in a
galaxy cluster is relatively unknown, with a variety of biases in
the literature due to the various recipes that have been applied
to detect it in real images, and because ICL can show different
morphologies from cluster to cluster and when the observation
wavelength is changed. This is true for the smooth component of
ICL, without even mentioning other substructures (tidal streams,
shells, etc.). Another unknown area is the fact that there is still
no meaningful proof that the stellar populations emitting the ICL
and those that compose the galaxies can be separated in a consis-
tent way without star kinematic information and using only pho-
tometric data. However, for simplicity we assumed that the ICL
has its own light profile and we chose to simulate a large expo-
nential ICL profile with no substructures for each cluster. While
this may not be the most realistic approach, it allowed us to probe
at first order how the different detection methods we tested act to
separate a simple but faint and extended source superimposed on
small bright objects. In addition, several studies (Gonzalez et al.
2005; Seigar et al. 2007; Durret et al. 2019) found that the best
fits for BCG+ICL systems were usually two-component fits with
an internal Sérsic profile and an external profile (exponential or
Sérsic, depending on the study).

The ICL profile was simulated using the Galsim function
‘galsim.Exponential(half_light_radius = re, flux = F input

ICL )’. In
order to obtain a profile that agrees with the cluster in the same
image, we computed the ICL flux in ADU from the total cluster
flux F input

cluster as

F input
ICL =

f input
ICL .F input

cluster

1 − f input
ICL

, (11)

with f input
ICL the input ICL fraction in our images. In the literature,

the measured ICL fractions of galaxy clusters at intermediate
redshifts usually range from 0.1 to 0.4 (Montes & Trujillo 2018;
Jiménez-Teja et al. 2018). Based on these values and because

part of our simulated profile is masked by the sky background
and the measured ICL fractions will always be lower than the
input ICL fractions in our images, we set f input

ICL ∈ [0.2, 0.4, 0.6].
While the amount of flux in the ICL profile is controlled by

the input ICL fraction, another driver parameter for the profile
average surface brightness is the half-light radius re because it
controls the concentration of the profile: while a very extended
profile would likely fall below the sky background level, a profile
with the same input ICL fraction but with smaller re would stand
out above. The measured half-light radii from the literature cover
a very wide range because they strongly depend on the nature
of the study and the quality of the applied fitting method, and
the values range from a few dozen to several hundred kilopar-
sec in the most extreme cases (Gonzalez et al. 2005; Kluge et al.
2020; Durret et al. 2019). In addition and as stated in Sect. 4.3,
the characteristic size of our galaxy clusters is set by a physi-
cal radius of 350 kpc from the cluster center, giving an intrin-
sic upper limit in our simulations for our choice of values for
re because an ICL profile with a larger half-light radius would
make no sense. This led us to set re = [50, 100, 150] kpc, a range
of values probing quite concentrated ICL profiles (50 kpc) and
extended ones (150 kpc).

As the effects of the cosmological dimming, the re parameter
and the f input

ICL parameter on the ICL surface brightness are degen-
erated, we show in Fig. 2 ICL surface brightness radial profiles
with different sets of values for these parameters to illustrate
their effect. We also display the typical 3σ detection limit in our
images for a better visualisation (see Sect. 5.1 for details on how
the detection limit was computed). We note that concentrated
profiles (re = 50 kpc) display surface brightnesses brighter than
µ = 26.5 mag arcsec−2 in their inner parts and could be qualified
as ‘unrealistic’, but we nevertheless included them in the study.
We also note that some ICL profiles fall completely below the
detection limit, making it difficult for traditional detection meth-
ods to characterize them.

To summarize, we simulated ten galaxy clusters per redshift
bin, and for each of them we varied the re and f input

ICL param-
eters in three bins each, giving for each cluster nine different
images corresponding to nine different ICL profiles. Because we
also wished to ensure a diversity of morphologies for the ICL,
we applied a shear to each elliptical profile with the function
‘galsim.Shear(e = ε, beta= θ)’ with ε the magnitude of the shear
in the Galsim distortion definition drawn in the range [0.0, 0.8]
and θ the angle of the shear drawn in the range [0, 180] degrees,
both following a uniform distribution. For consistency, the same
shear was applied to the nine different galaxy cluster ICL profiles
(see Fig. 3 for an example showing the nine MegaCam images
of one of the clusters at z = 0.1).

4.5. Drawing images

We drew a full set of 270 MegaCam-type images using the
parameters of Sect. 4.1. In parallel to the generation of these
generic cluster images (hereafter GAL+ICL+NOISE), we cre-
ated alternative MegaCam-type images of these clusters: images
containing only the galaxies and the noise (GAL+NOISE), and
images containing only the ICL and noise (ICL+NOISE). These
alternative versions allowed us to constrain the contamination
due to the superposition of galaxies and ICL and the limitations
of the different detection methods tested in Sect. 5. Another type
of MegaCam-type image was generated during this step specif-
ically for the PF method (see Sect. 5.2 for details). In total,
we analyzed 270 different GAL+ICL+NOISE MegaCam-type
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Fig. 2. Evolution of integrated radial ICL profiles with input ICL fraction, redshift, and half-light radius computed from one of the simulated
galaxy cluster catalogs. The typical 3σ detection limit (computed from an image containing only CCD noise) in our MegaCam type images is also
displayed as a dashed black line. The half-light radius re controls the concentration of the profile, and the redshift z and the input ICL fraction fICL
control its amplitude, with a stronger effect from fICL. Because the detection of ICL is strongly background limited, the outskirts (or the totality in
some cases) of the profiles fall below the detection limit and are lost. This loss is estimated in Sect. 5 (also see Fig. 6).

images with a great diversity of ICL light profiles in morphology
and in flux. We also analyzed the equivalent 270 ICL+NOISE
MegaCam-type images and 30 GAL+NOISE MegaCam-type
images (as there are 30 different galaxy cluster catalogs), making
a total of 570 images, which allowed us to statistically evaluate
the efficiency of the three detection methods we tested.

5. Applications of detection methods

In this section we describe and apply three different methods
to detect ICL in the simulated images of galaxy clusters from
Sect. 4. The methods are labeled as follows: surface bright-
ness threshold (SBT), ideal profile-fitting (PF), and DAWIS. We
applide the following procedure to each detection method:
1. Application of the method to the ICL+NOISE MegaCam-

type images to separately measure the ICL flux, hereafter
Fsep

ICL.
2. Application of the method to the GAL+NOISE MegaCam-

type images to separately measure the flux of cluster galax-
ies, hereafter Fsep

cluster.

3. Computation of the ICL fraction f sep
ICL = Fsep

ICL/(F
sep
ICL+Fsep

cluster).
Comparison of the results with input values to constrain the
method limitations.

4. Application of the method to the GAL+ICL+NOISE
MegaCam-type images to measure the fluxes FICL and
Fcluster.

5. Computation of fICL = FICL/(FICL + Fcluster). Comparison of
the results with Fsep

ICL, Fsep
cluster and f sep

ICL to constrain the effect
of the superposition of galaxies and ICL.

5.1. Surface brightness threshold

We chose to consider a threshold µSBT = 26.5 mag arcsec−2

on our images to constrain this approach and compare it to
other detection methods because this value is still the most fre-
quently used in the literature (we also tried different threshold
values, as displayed in Appendix A, but only describe the case
µSBT = 26.5 mag.arcsec−2 in detail). The procedure is straight-
forward: for the GAL+ICL+NOISE image, pixels with values
brighter than this SBT (taking cosmological dimming for the

A38, page 14 of 26

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038419&pdf_id=2


A. Ellien et al.: Presenting DAWIS

-3'

-2'

-1'

0.0'

+1'

+2'

+3'

Re = 50 kpc, fICL = 0.2 Re = 50 kpc, fICL = 0.4 Re = 50 kpc, fICL = 0.6

-3'

-2'

-1'

0.0'

+1'

+2'

Re = 100 kpc, fICL = 0.2 Re = 100 kpc, fICL = 0.4 Re = 100 kpc, fICL = 0.6

-3'

-2'

-1'

0.0'

+1'

+2'

Re = 150 kpc, fICL = 0.2 Re = 150 kpc, fICL = 0.4 Re = 150 kpc, fICL = 0.6

-3' -2' -1' 0.0' +1' +2'
01

-3' -2' -1' 0.0' +1' +2' -3' -2' -1' 0.0' +1' +2'

Fig. 3. Mock MegaCam images of a
simulated galaxy cluster at redshift z =
0.1 with different ICL light profiles (the
cluster is the same as was used for
Fig. 2). The concentration of the pro-
file is controlled by the half-light radius
re, and its amplitude is controlled by the
input ICL fraction fICL. The green circle
is the radius rin = 350 kpc, delimiting
the core of the cluster. At this redshift,
it covers almost the entire image. The
intensity scale is logarithmic to high-
light the faint ICL halo.

threshold into account) were masked (their pixel values were set
to zero). The pixels included in rin and with values greater than
the 3σ detection limit (computed by applying a sigma-clipping
algorithm on an image containing only the CCD noise gener-
ated in Sect. 4.1) were defined as significant and were associated
with ICL. FICL was computed by summing their values. The pix-
els with values brighter than µSBT were grouped into regions of
pixels. A cross-correlation between the catalog of cluster mem-
ber positions and the position of the pixel with the highest value
of each newly defined region of pixels is performed. Matching
regions were identified as cluster members and the fluxes of the
cluster galaxies Fcluster were computed by summing their values.

This method has a few intrinsic limitations. First, part of the
ICL light profile is lost below the 3σ detection limit in the orig-
inal image, and another part is lost as it is masked by galaxies.
The detected ICL flux is also contaminated by galaxy flux from
the outskirts of galaxies falling below µSBT (see Fig. 4, where a
quick assessment by eye shows this effect) and from undetected
galaxies below the 3σ detection limit. To constrain these effects,
a similar procedure was applied to the images with separated
galaxies and ICL. Fsep

cluster was computed from pixels with val-
ues brighter than µSBT in the GAL+NOISE image. Because we
wished to constrain the loss of ICL flux masked by galaxies, the
same masks were applied to the ICL+NOISE image (therefore
masking part of the ICL light profile). After this, when any pixels
were left that were brighter than µSBT in the ICL+NOISE image,
we also masked them because part of the ICL profile might be
brighter than this threshold and also masked with galaxies. Fsep

ICL

was then computed from the significant pixel values above the
3σ detection limit. Therefore the difference between F input

ICL and
Fsep

ICL gives the effect of the masks and of the background noise
on the quantity of ICL detected, while the difference between
Fsep

ICL and FICL gives the effect of galaxy contamination.
We emphasize the fact that in the literature, studies using

this method to separate ICL from galaxies in observational data
applied a first pass to extensively mask foreground objects and
avoid contamination from bright sources as much as possible
before applying the SBT (Burke et al. 2015; Montes & Trujillo
2018, for two examples), using, for example, the SExtractor
package. We did not apply such a first pass here. On the one
hand, applying this method could lead to stronger contamination
effects in the detection of ICL in our simulations. On the other
hand, relative to the quantity of actual ICL flux in the image,
more ICL is expected to be detected in our work because the
spatial area that is degraded by masks is smaller.

5.2. Profile-fitting

The second detection method is based on the galaxy intensity PF,
where the fitted profiles are removed from the image before ICL
is detected in the residuals. The result of this method strongly
depends on the quality of the fits and on the quality of the anal-
ysis package used to perform the analysis (packages such as
Galfit or CICLE; Peng et al. 2002; Jiménez-Teja et al. 2018).
Here again there is a large variety of studies that are different
from one another, and we did not try to exactly replicate each of
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Fig. 4. GAL+ICL+NOISE MegaCam-type images of nine galaxy clusters with varying surface brightness thresholds (the color bar indicates the
surface brightness threshold: 26 ≤ µSBT ≤ 28 mag arcsec−2). We display here clusters with generic ICL profiles (half-light radius of re = 100 kpc,
input ICL fraction of fICL = 0.4, and a redshift z = 0.1) with different ellipticities. The pixels with µ < 26 mag arcsec−2 as well as the non-
significant pixels below the detection limit are masked (e.g., white). The galaxy Sérsic profile outskirts contaminating the detection of ICL are
easily discernible by eye everywhere in the image when the threshold used to mask galaxies is too bright. In the same way, part of the ICL profile
is accidentally masked with galaxies when the threshold is too faint.

them. Our approach here was to consider an ideal PF method in
which the fitting algorithm allows perfectly recovering the inten-
sity profile of each detected galaxy. While it is unlikely that such
an algorithm exists or will ever exist, it gives an upper limit to the
quality of fitting methods and allows us to compare them easily
with other approaches.

The procedure for this method was different from the other
two because we did not use exactly the same GAL+ICL+NOISE
image. Instead, in parallel of the drawing of the galaxy light pro-
files in Sect. 4.3, we applied the 3σ detection limit (the same as
in Sect. 5.1) to each drawn galaxy, and galaxies without any pixel
above this limit were defined as undetected. Every undetected
galaxy was added to the generic GAL+ICL+NOISE image (used
for the two other detection methods) and to a second image in
which we only drew these faint galaxies. The ICL profile and
the noise (see Sect. 4.4) were then also added to this image. This
image has the same properties as the generic GAL+ICL+NOISE
image but without the light profile of detected galaxies, as if a
fitting algorithm were able to perfectly remove them. The ICL
flux FICL for this method is detected in this image by apply-
ing the detection limit to it and keeping the significant pixels
included in rin. The cluster galaxy flux Fcluster was computed

directly from the light profiles that were not drawn onto this
image. With this method, the detected cluster flux is the same for
the GAL+NOISE image as for the GAL+ICL+NOISE image,
Fcluster = Fsep

cluster.
Even when the light profiles of galaxies are perfectly

removed from the image, this method is still sensitive to galaxy
contamination from undetected galaxies that are below the 3σ
detection limit. It is also sensitive to the loss of ICL flux below
the 3σ detection limit. To constrain these effects, we computed
Fsep

ICL by summing the values of significant pixels above the
3σ detection limit in the ICL+NOISE image. The difference
between F input

ICL and Fsep
ICL gives the amount of flux lost below

the detection limit, and it can be compared with the value from
the SBT method, which gives the amount of flux lost below
the detection limit and behind the galaxy masks. The difference
between Fsep

ICL and FICL then gives the amount of ICL flux that
is contaminated by faint undetected galaxies with this method,
which can once again be compared with the values from the
SBT method, where unmasked outskirts of galaxies and unde-
tected faint galaxies contaminate FICL. We also recall that a real
PF method would have ICL flux contaminated by residuals, and
we did not consider this effect here.
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5.3. DAWIS tuned parameters

The detailed operating structure of DAWIS has been explained
in Sect. 3, and we provide some additional information about
a few parameters here. Various values for the CLEAN factor
δ and the relative threshold parameter τ were tested for the
MORESANE algorithm, and Dabbech et al. (2015) suggested val-
ues τ ∈ [0.8, 0.9] and δ ∈ [0.1, 0.2] for a good convergence of
their algorithm in parallel with a good quality of source restora-
tion. However, their tests were run on more complicated simula-
tions than our mock images of galaxy clusters; the fact that all the
sources in our mock images are quasi-circular and the absence
of unreasonably bright objects such as foreground Milky Way
(MW) stars simplifies the analysis in our case. We set τ = 0.9
and δ = 0.5, a higher value that boosts the convergence of DAWIS
slightly. The same values as for these parameters were used for
all the processed images.

In order to measure ICL fractions in the GAL+ICL+NOISE
images with DAWIS, we need to identify the objects related to
ICL and those related to cluster members, and to compute the
associated synthesis atoms (see Sect. 3.10). At each main itera-
tion, each object going through the restoration step goes through
a two-step selection. First, a cross-correlation between the inter-
scale maximum spatial position of the object and the cluster
galaxy catalog was performed. When the wavelet scale of the
interscale maximum jobj was greater or equal to a value jsep (cor-
responding to objects with characteristic sizes of at least 2 jsep pix-
els; we set jsep = 5 for the GAL+ICL+NOISE MegaCam-type
images) it was associated with ICL, otherwise it was associated
with the cluster galaxies. In this way, we computed in parallel
to the total restored image ztot (containing the ICL and all galax-
ies) the total restored image of cluster members and the total
restored image of ICL. A sample of galaxy clusters is shown in
Fig. 5 to illustrate the operating mode of DAWIS. FICL and Fcluster
are given by the sums of the pixels of their respective images.

The main limitation of this approach comes from this
very rough classification based on characteristic size. To con-
strain this limitation, we also ran DAWIS without any classifi-
cation on the ICL+NOISE image to measure Fsep

ICL and on the
GAL+NOISE image to measure Fsep

cluster. The first can be com-
pared with the values from the two other methods to show the
efficiency of DAWIS in detecting faint sources because it is not
limited in the same way by the 3σ detection limit in the origi-
nal image. Then the difference between Fsep

ICL and FICL, as well
as that between Fsep

cluster and Fcluster, shows the effect of the atom
classification.

5.4. ICL and galaxies in separated images

We first analyze the results of each method on the ICL+NOISE
and GAL+NOISE images. We computed for each cluster and for
each method the relative biases,

esep
ICL =

F input
ICL − Fsep

ICL

F input
ICL

(12)

and

esep
cluster =

F input
cluster − Fsep

cluster

F input
cluster

, (13)

with Fsep
cluster the flux of the cluster galaxies measured in the

GAL+NOISE image and Fsep
ICL the flux of ICL detected in the

ICL+NOISE image.

The values of esep
ICL for the different detection methods are

displayed in Fig. 6 as a function of the various ICL light profile
parameters. We first address the results for the PF method, which
show in this particular case the amount of ICL flux lost below the
3σ detection limit (also see Fig. 2). As expected, the loss of flux
is minimal for concentrated and bright ICL profiles. The brighter
the ICL profile, the more it stands out above the sky background.
This is best shown by the case with re = 50 kpc and f input

ICL = 0.6,
where the values of esep

ICL are lower than ∼0.2 at all redshifts for
the PF method. This means that less than 20% of the input ICL
flux injected in the ICL profile is lost below the 3σ detection
limit in that case.

For fainter and more extended profiles, the portion of ICL
flux that is hidden below the 3σ detection limit is higher. The
relative bias esep

ICL for the PF method reaches strong values such
as ∼0.9 for the faintest and most extended profiles (z = 0.5, re =

150 kpc and f input
ICL = 0.2), meaning that about 90% of the input

flux injected in the ICL profile is not detected in this case.
In comparison to the PF method, the esep

ICL values for the SBT
method are always higher. This means that the SBT method
detects consistently less ICL flux than the PF method. This is
expected because it is not only background limited, but also fea-
tures a second degradation source of the ICL profile because
of the masks. This difference is highly amplified for concen-
trated and bright profiles (re = 50 kpc and f input

ICL = 0.6) because
this part of the ICL profile is brighter than the SBT threshold
µSBT = 26.5 mag.arcsec−2 (see Fig. 2) and is therefore masked.

Of all three methods, DAWIS performs the best: in most
cases, esep

ICL is lower than ∼0.2, with an outlier at 0.4 for the
most extended and faintest profile (z = 0.5, re = 150 kpc and
f input
ICL = 0.2). This clearly shows the efficiency of the wavelet-

based analysis in detecting faint and extended sources, even
when they mostly lie close to or below the usual 3σ detection
limit in the original image.

Figure 7 displays the values of the relative bias esep
cluster. For all

methods esep
cluster increases with redshift because cluster galaxies

become fainter, which decreases the number of detections and
results in a loss of detected flux. As expected, the best method
here is the PF method because the flux of the cluster galaxies
Fsep

cluster is computed directly from the galaxy profiles that are
not drawn in the image (see Sect. 5.2 for more details). The
bias in this case comes alone from the faint undetected galax-
ies below the detection limit. This effect is rather weak because
esep

cluster for the PF method is lower than 0.1, meaning that this
effect accounts for a loss of less than 10% of the input flux of the
cluster galaxies.

The second best performing method on average is DAWIS.
The mean esep

cluster values are lower than 0.2 at all redshifts. How-
ever, the error bars show discrepancies between different clus-
ters at the same redshift. The method that performs least is the
SBT method with values of ∼0.3 or higher for all redshifts. This
is also expected as the Holmberg radius defining the threshold
µSBT = 26.5 mag arcsec−2 is only a rough estimate of the galaxy
size. This method misses the outskirts of the Sérsic profiles, in
addition to flux from faint undetected galaxies.

When Figs. 6 and 7 are compared, the relative bias on ICL
esep

ICL is on average higher than the relative bias on the cluster
galaxies esep

cluster for the PF and SBT methods. At z = 0.5, for
example, both methods disclose esep

cluster values lower than 0.4.
For faint and extended profiles at the same redshift (z = 0.5,
re = 150 kpc and f input

ICL = 0.2), the esep
ICL are twice this value. This

shows that these standard detection methods are more limited by
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Fig. 6. Relative biases esep
ICL (see Eq. (12) in the text) given by the different detection methods and displayed against the three different ICL

profile parameters (half-light radius re, input ICL fraction f input
ICL , and redshift z). The biases have been computed for each of the 270 ICL+NOISE

MegaCam-type images, and the displayed values correspond to the average of the ten images with the same input parameters. The error bars
correspond to standard deviations in ten different clusters. Here the values for the PF method give the amount of ICL flux lost below the 3σ
detection limit (also see Fig. 2).

the detection of the ICL profile than by the detection of galax-
ies. In constrast, DAWIS is more stable and discloses equivalent
values lower than 0.2 at all redshifts for esep

ICL and esep
cluster.

The resulting ICL fractions f sep
ICL for separated galaxies and

ICL are displayed in Fig. 10 with dashed lines. When we com-
pare our previous analyses of esep

ICL and esep
cluster, DAWIS on average

measures f sep
ICL better than the two other detection methods. For

bright and concentrated profiles (re = 50 kpc and f input
ICL = 0.6),

the loss of ICL flux due to masking with the SBT method is
very significant and results in a large underestimation of f sep

ICL.
This shows that the SBT is the worst method for detecting ICL
in this case. On the other hand, the PF method obtains excellent
results for the same ICL profiles and performs even better than
DAWIS. For faint and extended ICL profiles (re = 150 kpc and
f input
ICL = 0.2), the SBT and PF methods converge on the same

results and greatly underestimate the ICL fraction f sep
ICL.

However, while the results of the SBT and PF methods
appear to be similar for these faint and extended ICL profiles,

Figs. 6 and 7 showed that the measures of Fsep
ICL and Fsep

cluster for
both methods are different. The SBT method detects less ICL
flux than the PF method, which is compensated by the fact that it
also detects less galaxy flux. For the first time in this work, this
illustrates that a bias on the measure of ICL flux can compensate
for a bias on the measure of cluster galaxy flux when ICL frac-
tions are computed. An amplified version of this effect is shown
in the next section, where the contamination effects due to the
superposition of galaxies and ICL are discussed.

5.5. Results on superimposed galaxies and ICL

We now show the results of the three detection methods on the
GAL+ICL+NOISE MegaCam-type images. We measured FICL
and Fcluster in these images, and computed the following relative
biases

econt
ICL =

Fsep
ICL − FICL

Fsep
ICL

(14)
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Fig. 7. Relative biases esep
cluster (see Eq. (13) in the text) given by the differ-

ent detection methods and displayed against redshift z. They have been
computed for each of the 30 GAL+NOISE MegaCam-type images, and
the displayed values correspond to the average of the ten images at the
same redshift. The error bars correspond to standard deviations in ten
different clusters.

and

econt
cluster =

Fsep
cluster − Fcluster

Fsep
cluster

. (15)

which shows the effect of superposing galaxies on ICL. We call
it the contamination effect. The values of econt

ICL are displayed in
Fig. 8. We first consider the values of econt

ICL for the PF method.
All the values are negative, meaning that more flux is detected
and associated with ICL in the GAL+ICL+NOISE image than
in the ICL+NOISE image. This shows the contamination effect
by faint undetected galaxies because it is the only difference
between the measure of Fsep

ICL and FICL. This effect increases with
redshift because an increasingly higher number of cluster galax-
ies falls below the 3σ detection limit. For faint and extended ICL
profiles (z = 0.5, re = 150 kpc and f input

ICL = 0.2), this contam-
ination effect becomes prominent. The value of econt

cluster reaches
values of almost minus unity, meaning that in this case FICL is
twice as high as Fsep

ICL and that the undetected galaxies account
for half of the detected flux associated with ICL. In comparison
to the PF method, the values of econt

ICL for the SBT method show
the effect of galaxy outskirt contamination (see Fig. 4 for visu-
alisation) in addition to the contamination effect of faint unde-
tected galaxies. The values are also always negative, meaning
that with this method, more flux is detected and associated with
ICL in the GAL+ICL+NOISE image than in the ICL+NOISE
image. The first problem to address are the very high bias values
of this method. We had to truncate them to fit them in the plots
of Fig. 8, as econt

ICL reaches values of −10 for faint and extended
profiles (z = 0.5, re = 150 kpc and f input

ICL = 0.2). This means
that the values of FICL are ten times higher than the values of
Fsep

ICL. This shows the very strong contamination effect of galaxy
outskirts in this case, which completely dominates the detected
flux associated with ICL with the SBT method. The detection of
ICL in these cases can be qualified as highly incorrect.
DAWIS discloses disparate values for econt

ICL . The bias is pos-
itive on average, showing that less ICL flux is detected in the

GAL+ICL+NOISE image than in the ICL+NOISE image. This
means that the superposition of ICL and galaxies decreases
the amount of flux DAWIS is able to detect and restore. This
is expected because DAWIS detects and restores the brightest
objects in the image first (the galaxies). Therefore the residuals
of these bright sources degrade the detection of the ICL. Addi-
tionally, the rough separation based on jsep shows limitations for
concentrated profiles (re = 50 kpc). As their characteristic size is
smaller, the inner part of these bright and concentrated ICL pro-
files is not classified as ICL, but as galaxy. This leads to higher
bias values than for the extended profiles. The values of econt

cluster
are displayed in Fig. 9. For the PF method, the values of econt

cluster
are always equal to zero because the measured flux Fcluster is
equal to Fsep

cluster (see Sect. 5.2 for details). For DAWIS, the bias
values are also very low. In contrast with the values of econt

ICL ,
this shows that the superposition of galaxies and ICL has little
effect on the restoration of galaxies, as explained in the previous
paragraph. The method that returns meaningful econt

cluster values is
the SBT method. The contamination effect of ICL masked with
galaxies is strongly seen for bright and concentrated ICL pro-
files (re = 50 kpc and f input

ICL = 0.6), and once again, we had to
truncate the bias values to fit them into the plot.

The resulting ICL fractions fICL are displayed as continuous
lines in Fig. 10, together with the ICL fractions f sep

ICL previously
computed from the ICL+NOISE and GAL+NOISE images.
First, we address the differences in values of f sep

ICL and fICL for
each method. The greatest discrepancies are seen for the SBT
method. As previously shown, this is mainly due to the coaddi-
tion of several contamination effects: galaxy outskirt contamina-
tion, undetected faint galaxies, and ICL partially masked with
galaxies for bright and concentrated profiles (re = 50 kpc and
f input
ICL = 0.6). This gives SBT fractions fICL that are systemat-

ically higher than their f sep
ICL counterpart, and even higher than

f input
ICL for low-input ICL fractions ( f input

ICL = 0.2). This behavior
also unveils the fact that some of the apparently accurate fICL
values measured by the SBT method are misleading because the
detected flux associated with ICL does not come from the actual
ICL profile, but in the vast majority from contamination effects.
Because they are integrated values, the measured ICL fractions
in these cases are close to the input fractions, but these are coin-
cidences due to the set of input parameters. This shows once
again an effect of bias compensation, where the flux belonging
to ICL is not detected but is replaced by flux from galaxy out-
skirts.

For the PF method, fICL is very close to the f sep
ICL values at

low redshift, especially for the bright and concentrated profiles
(re = 50 kpc and f input

ICL = 0.6). It is increasingly higher with red-
shift, however, giving even higher values than f input

ICL at z = 0.5.
This is caused by the faint undetected galaxy contamination
effect, which is the only effect that contaminates this method.
In the same way as the SBT method, the apparently good fICL
measured for faint and extended ICL profiles at high redshift are
therefore also inflated by contamination effects. However, the
PF method is the best-performing method for bright and con-
centrated profiles ( fICL = 0.6 and re = 50 kpc). The measured
fractions then decrease when re increases because the method is
still background limited and that faint and extended profiles have
a higher tendency to be hidden under it. The performance of this
method is therefore strongly dependent on the surface brightness
of the ICL profile, and gives a good estimate of how much the
flux lost below the 3σ detection limit affects the measurement of
ICL fractions.
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Fig. 8. Relative biases econt
ICL (see Eq. (12) in the text) given by the different detection methods and displayed against the three different ICL

profile parameters (half-light radius re, input ICL fraction f input
ICL and redshift z). They have been computed for each of the 270 GAL+ICL+NOISE

MegaCam-type images, and the displayed values correspond to the average of the ten images with the same input parameters. The error bars
correspond to standard deviations in ten different clusters. The values of minus unity for the SBT method have been truncated for representation
purposes (see text for more details).

In the case of DAWIS, the atom classification effect is strongly
seen for bright profiles (re = 50 kpc and f input

ICL = 0.6) because
the values of fICL are lower than the f sep

ICL values by a factor two.
Once again, the effect of the rough classification is strongly seen
for these profiles, even in the measure of fICL. DAWIS performs
best for extended ICL halos, even for very faint ones because the
wavelet analysis, in contrast to regular detections in direct space
(original image), uses a spatial correlation to detect sources. The
top row DAWIS fractions are therefore better (less contaminated,
see econt

ICL in Fig. 8) than the other methods, showing its capacity
to detect faint and extended features.

6. Example on real astronomical data

In this section we demonstrate the capabilities of DAWIS on
a galaxy cluster image at optical wavelengths. The targeted
galaxy cluster is LCDCS 0541, which is part of the Las Cam-
panas Distant Cluster Survey (LCDCS; Gonzalez et al. 2001)
and the Dark energy American French Team/French American

DArk energy Team (DAFT/FADA; Guennou et al. 2010) sur-
veys. The redshift of this cluster is 0.542, and a deep 2 ×
2 arcmin2 HST Advanced Camera for Survey (ACS) image in
the F814W filter is available. The photometric depth of the
image was estimated (Guennou et al. 2012, hereafter G12) to
be around µF814W ∼ 24 mag.arcsec−2 for extended sources with
SExtractor (∼1.25 arcsec, 1.8σ detection limit). Details about
the data and the reduction procedure are available in G12.

We chose LCDCS 0541 and these data because this target
was the case study of G12, where a multiscale analysis was per-
formed to detect ICL in the images of ten galaxy clusters using
OV_WAV, which is better suited for this task than SExtractor.
By running DAWIS on the same cluster image, we can compare
the results of DAWIS to those obtained by this earlier multiscale
analysis method (for more details of the differences between the
two approaches, see Sect. 2 for traditional multiscale analysis
methods, and Sect. 3 for an in-depth description of DAWIS).

In G12, OV_WAV was run two consecutive times on the
LCDCS 0541 image. The first run allowed modeling of sources
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Fig. 9. Relative biases econt
cluster (see Eq. (15) in the text) given by the different detection methods and displayed against redshift z. They have been

computed for each of the 270 GAL+ICL+NOISE MegaCam-type images, and the displayed values correspond to the average of the ten images at
the same redshift. The error bars correspond to standard deviations in ten different clusters.

with characteristic sizes up to j = 10 (1024 pixels), and the sec-
ond run up to j = 7 (128 pixels). The detected and restored
sources were removed from the original scene, and the ICL was
detected by applying a 2.5σ detection limit on the residuals. The
background level for the detection limit was computed in a wide
annulus in the outskirts of the residuals. The total flux in the
detected ICL source was measured, and the associated absolute
magnitude was computed assuming a k-correction of an early-
type galaxy: this gave an absolute magnitude of −20.4. With
this procedure, the multiscale analysis made by the authors is
analogous to a PF detection method because the ICL sources are
detected by applying a detection limit in the direct space residu-
als after fitting and removing all bright and small sources (MW
stars and galaxies).

We ran DAWIS on the same LCDCS 0541 F814W image,
and compared the absolute magnitude value and morphological
properties of the resulting ICL source. In our case, we resized
the image to a FoV of 2048 × 2048 pixels, corresponding to
∼1.6 × 1.6 arcmin2. The CLEAN factor was set to δ = 0.5, and
the relative threshold parameter was set to τ = 0.8. Because we
are only interested here in detecting the diffuse ICL source in the

central part of the image, we did not apply any particular crite-
rion for the classification step, except for a separation based on
the wavelet scale of the interscale maximum jsep, and for the fact
that the restored sources composing the atoms associated with
ICL must be centered on the BCG position. We set jset = 8 here,
corresponding to a characteristic size of 256 pixels (∼80 kpc at
z = 0.542).

The resulting restored astronomical field, residual image,
and restored ICL distribution are displayed in Fig. 11. The
restored ICL distribution is anisotropic, with a boxy shape of
∼200 × 100 kpc2, and it has an average apparent surface bright-
ness of ∼26.3 mag.arcsec−2 (corresponding to a mean surface
brightness of ∼24.5 mag.arcsec−2 when correcting for the cos-
mological dimming). The morphology of our restored ICL dis-
tribution agrees with the apparent morphology of the detection
made by G12 (see their Fig. 4), but ours is continuous and seems
slightly more extended. We computed the associated absolute
magnitude using the same k-correction as G12, and found a value
of −22.4. This value is two orders of magnitude brighter than the
source detected in G12. We adopted the same cosmology as G12
to compute these numbers. This detection shows the capabilities
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Fig. 10. ICL fractions displayed for the different ICL profile parameters (half-light radius re, input ICL fraction f input
ICL , and redshift z) as measured by

the different detection methods. The triangles with continuous lines are the ICL fractions fICL computed from each of the 270 GAL+ICL+NOISE
MegaCam-type images, and the displayed values correspond to the average of the ten images with the same input parameters. The filled circles
with dashed lines are the ICL fraction f sep

ICL computed from the images with separated galaxies and ICL. The error bars correspond to standard
deviations in ten different clusters. The input ICL fraction is also displayed as a horizontal black dashed line for better visualization.
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Fig. 11. Outputs of DAWIS when run on the LCDCS 0541 image. Left to right: original astronomical image, complete restored image, residuals,
and restored ICL profile. The images are 1.6 × 1.6 arcmin2. The green circle has a radius of 50 kpc, and the cyan circle has a radius of 100 kpc.

of DAWIS to detect these faint and extended sources where other
multiscale methods could not before, and this in an automated
way.

We now discuss the implications of this comparison. We
detect more flux than G12 with DAWIS, resulting in a brighter
absolute magnitude. This can be attributed to two things: DAWIS
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detects more flux because the ICL component is directly detected
in the wavelet space, and there are differences in classification.
First, it is expected that DAWIS, as a result of the synthesis-by-
analysis and the meticulous removal of all bright sources before
detecting faint ones, detects more flux in faint and extended
sources than what is detected with a simple detection limit in
the direct space residuals. Second, this careful approach allows
us to clearly assess and classify each restored source. In the case
of G12, all the sources in an OV_WAV pass were restored at once,
meaning that no classification was made and that signal from
ICL may have been removed by this approach (especially in the
first pass, which allows the removal of objects with characteris-
tic sizes up to 1024 pixels). This also explains the discrepancy in
flux and absolute magnitude.

The question of the classification criteria, and more specifi-
cally, of the separation wavelet scale jsep and its value must be
brought up again. We chose jsep = 8 because a lower value
would imply a significant increase in the flux associated with
ICL and of its average apparent surface brightness (jumping to
µ ∼ 25.7 mag.arcsec−2). The source we detected already has a
bright average surface brightness compared to results from the
literature. More importantly, the bright inner profile of the BCG
of LCDCS 0541 has a spatial extent of ∼40–50 kpc. It seems
to be an accurate choice to associate sources with characteris-
tic sizes of at least twice this spatial extent with ICL. On the
other hand, a value of jsep = 7 corresponding to a typical size of
∼40 kpc sets a precarious separation. In any case, the question
of whether this extended LSB source should be called ICL or is
rather the outskirts of the BCG intensity profile is still unan-
swered, and it cannot really be answered with certainty with
monochromatic data alone.

7. Conclusions

We presented our novel detection algorithm DAWIS in Sect. 3.
It is based on a synthesis-by-analysis approach with an operat-
ing mode based on an isotropic wavelet dictionary and on inter-
scale connectivity analysis. The algorithm is developed keeping
in mind the limitations and defects of previous wavelet algorithm
packages, and therefore integrates a semi-greedy structure with
parallelized modules. For an input image, DAWIS computes in
this iterative procedure the synthesized dictionary composed of
atoms (e.g., the sum of restored source profiles) and the associ-
ated denoised restored image of the original field. We showed
that there is a great range of possibilities to separate objects and
compose different synthesized dictionaries based on astrophysi-
cal priors and on the goals of the performed analysis.

To estimate the efficiency of the algorithm, we simulated
mock images of galaxy clusters with noise using the modeling
package Galsim in Sect. 4. Galaxies are represented by Sérsic
profiles, and the ICL by a large and faint exponential profile, the
properties of which are controlled by a few parameters, notably
an input ICL fraction. The images only emulate the MegaCam
instrument properties, but the same study with simulations of
other instruments should be conducted in the future. We took
advantage of this work to test the efficiency of other detection
methods in Sect. 5 that we roughly classified into two categories:
surface brightness threshold and fitting algorithms. We applied
these two methods in the same way as DAWIS to the simulations,
and compared the resulting measured fluxes and ICL fractions.

We showed the limitation of the three detection methods in
Sect. 5, especially those of the SBT method, which applies a
constant threshold in surface brightness to the image to separate
ICL from galaxies. As has been shown in Rudick et al. (2011),

galaxy light profiles and ICL overlap and are superimposed, and
the use of a single threshold to separate these two components
leads to strong contamination of the detected ICL (see Sect. 5.5).
While we were able to list at least part of the contamination
and degradation effects (masks, contamination by galaxy out-
skirt profiles, contamination by faint undetected galaxies, and
loss of ICL flux below the 3σ detection limit), these effects are
coadded, and future studies should be conducted to isolate and
constrain them in a more refined way.

The PF method, acting as an upper limit to the fitting method
quality, allowed us to show in Sect. 5.4 the amount of flux lost
below the detection limit when a standard detection procedure
in the mock images is applied. The differences on the measures
of ICL fractions for faint and extended ICL profiles between this
method and DAWIS mainly arise because DAWIS detects sources
in the wavelet scales where spatial correlation information is
used. This warrants serious consideration of the importance of
the method that is used to estimate the limiting depth and detec-
tion level in images and has been addressed by Mihos (2019). It
is not specific to ICL, but rather touches all low surface bright-
ness observations. We advocate here that in order to better con-
strain ICL detection, future studies should concentrate (in par-
allel with methods for separating galaxies from ICL) on the
effects of sky background noise estimation in images, especially
in more complex and realistic cases than the flat background of
our images.

We showed that in most cases, DAWIS measures ICL frac-
tions as little contaminated as possible (see Sect. 5.5). How-
ever, a limitation of the priors we used to separate galaxies from
ICL (based on the scale of the interscale maxima, as detailed
in Sect. 5.3) becomes apparent when DAWIS tries to process
images with bright and concentrated ICL halos; part of the syn-
thesis atoms that should be associated with ICL are incorrectly
classified and associated with galaxies in this case. The classi-
fication operator used in this work is simplistic in nature and
based mainly on the characteristic size and spatial information
of the processed atoms. This fact is accentuated by our results
on LCDCS 0541, for which we discussed the relevance of such
a prior to separate ICL from the BCG intensity distribution in
real astronomical data. The large discrepancy in absolute mag-
nitude between our detection and the detection made by G12
might in part be explained by the different classifications made
in the two studies. In future studies, we plan to implement a more
complete and robust classification for the ICL, using additional
criteria such as morphology or granularity.

Because all methods show flaws in the detection of ICL, we
emphasize here the notion of bias compensation. Some ICL frac-
tions measured with the PF or the SBT method appear accurate
(see Sect. 5.5) not because the measured ICL and galaxy fluxes
are correct, but because different contamination and degrada-
tion effects compensate for each other: because ICL fractions
are fractions of integrated values, an effect of bias compensation
occurs. This effect of bias compensation cannot really be seen
or estimated in real astronomical images, which is problematic.
This would definitely have worrisome effects in multiband stud-
ies (ICL spectral energy distribution, e.g.), where the evolution
of ICL fractions with wavelength could be misinterpreted. Our
conclusion here is that the ICL fraction taken individually is not
a good metric to characterise ICL. We advocate the use of phys-
ical flux values in future studies for galaxies and ICL in order to
better show the results of different approaches to detect ICL.

Our simulations in this work did not integrate several
other components or contamination effects in the detection of
LSB sources: large-scale background spatial variation, bright
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foreground stars, scattered light halos, or tidal streams, to cite
just a few. While the isotropic wavelet dictionary is a good tool
for detecting and restoring quasi-circular sources such as galax-
ies, these other features are not particularly well expressed in
the associated representation space. However, the core operat-
ing mode of DAWIS is versatile enough to allow future upgrades
for these components, not only on the atom classification step
to limit contamination effects, but also in the analysis dictionar-
ies used for the detection or the restoration of sources. Includ-
ing analyses based on other representation spaces and function
bases adequate for these signal shapes is also a good direction to
take when trying to capture the low surface brightness content of
astronomical images.
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Appendix A: Varying SBT

Different values have been tested for the SBT method with 25 ≤
µSBT ≤ 28. We applied exactly the same method as in Sect. 5.1
and measured the ICL fractions in the GAL+ICL+NOISE
images. The results are shown in Fig. A.1, with the same for-
mat as Fig. 10. As expected and consistent with the litera-
ture (Rudick et al. 2009; Tang et al. 2018), the choice of SBT

greatly affects the measured ICL fraction, with values rang-
ing from ∼0% to ∼80% in some cases for the same input
ICL fraction. Most of the time, however, thresholds µSBT =
26.5 mag.arcsec−2 or µSBT = 27 mag.arcsec−2, which are the
generic SBTs considered in the literature, give results that are
more consistent with the input ICL fraction. However, this trend
needs to be compared with our in-depth analysis of biases in the
measure of Fcluster and FICL (see Sects. 5.4 and 5.5).
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Fig. A.1. ICL fractions displayed for the different ICL profile parameters (half-light radius re, input ICL fraction f input
ICL , and redshift z) as measured

with different SBT. The circles with continuous lines are the ICL fractions fICL computed from each of the 270 GAL+ICL+NOISE MegaCam-type
images, and the displayed values correspond to the average of the ten images with the same input parameters. The error bars correspond to standard
deviations in ten different clusters. The input ICL fraction is also displayed as a horizontal dashed black line for better visualization.
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