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Reef-building species are recognized as having an important ecological role and as
generally enhancing the diversity of benthic organisms in marine habitats. However,
although these ecosystem engineers have a facilitating role for some species, they
may exclude or compete with others. The honeycomb worm Sabellaria alveolata
(Linnaeus, 1767) is an important foundation species, commonly found from northwest
Ireland to northern Mauritania, whose reef structures increase the physical complexity
of the marine benthos, supporting high levels of biodiversity. Local patterns and
regional differences in taxonomic and functional diversity were examined in honeycomb
worm reefs from 10 sites along the northeastern Atlantic to explore variation in
diversity across biogeographic regions and the potential effects of environmental
drivers. While taxonomic composition varied across the study sites, levels of diversity
remained relatively constant along the European coast. Assemblages showed high
levels of species turnover compared to differences in richness, which varied primarily
in response to sea surface temperatures and sediment content, the latter suggesting
that local characteristics of the reef had a greater effect on community composition
than the density of the engineering species. In contrast, the functional composition
of assemblages was similar regardless of taxonomic composition or biogeography,
with five functional groups being observed in all sites and only small differences in
abundance in these groups being detected. Functional groups represented primarily
filter-feeders and deposit-feeders, with the notable absence of herbivores, indicating that
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the reefs may act as biological filters for some species from the local pool of organisms.
Redundancy was observed within functional groups that may indicate that honeycomb
worm reefs can offer similar niche properties to its associated assemblages across
varying environmental conditions. These results highlight the advantages of comparing
taxonomic and functional metrics, which allow identification of a number of ecological
processes that structure marine communities.

Keywords: biodiversity, taxonomic diversity, functional diversity, ecosystem engineer, reef, turnover

INTRODUCTION

Unraveling the processes that control how biodiversity is
distributed over space and time are central objectives in
macroecology and biogeography (Addo-Bediako et al., 2000;
Ricklefs, 2004). While biodiversity was first observed to increase
from the poles toward the tropics over 200 years ago (Hawkins,
2001), it is now recognized that latitude per se is not the
main driver of spatial gradients in biodiversity, but rather
a combination of variables and mechanisms that include
ecological, evolutionary and historical processes (Hawkins and
Diniz-Filho, 2004; D’Amen et al., 2017). For example, the
rates of species diversification are thought to be greater in
the tropics due to higher mutation rates in warmer regions
(Rohde, 1992; Mittelbach et al., 2007). In addition, regions
that have greater environmental stability over time may also
host higher species diversity than areas that have suffered
major environmental change, such as glaciations (Fine, 2015;
but see also Fordham et al., 2019). Other variables shown
to influence biodiversity include habitat or organism types,
and organism properties, such as biomass, dispersal rates
and physiology (Addo-Bediako et al., 2000; Hillebrand, 2004;
Buckley et al., 2010; Rolland et al., 2015; Gaucherel et al.,
2018). Given the multitude of factors that can affect diversity,
understanding and predicting spatial and temporal patterns in
biodiversity is challenging.

An important factor that influences biodiversity is whether
a community is found on geogenic (of geological origin:
sedimentary or rocky) or biogenic (of biological origin) substrate.
Many communities co-exist in habitats that are altered by another
living organism, and these are called foundation species or
ecosystem engineers. Foundation species not only build habitat
(Dayton, 1972) but also control the availability of resources
for other organisms (Sarà, 1986; Jones et al., 1994). Through
habitat modification, foundation species can alter the realized
niche of species, at times facilitating niche expansion by buffering
environmental conditions so that they continue to be favorable
within the engineered habitat (Bulleri et al., 2016). Heterogeneity
in the engineered habitat can promote facilitation of a greater
number of species, while dominance of the engineering species
or homogeneity in the habitat can enhance competition and
limit the number of associated taxa (Schöb et al., 2012; Bulleri
et al., 2016). Given that community composition can vary
greatly within biogenic habitats across environmental gradients
(Boström et al., 2006; Boyé et al., 2017), investigating within-
habitat diversity is essential for guiding conservation actions

(Airoldi et al., 2008) and enhances our understanding of
biodiversity over broad geographical scales.

Although the northeast Atlantic is amongst the most studied
marine regions on Earth (Hawkins et al., 2019), spatial structure
in its coastal marine assemblages remains poorly understood.
Variation in diversity over broad spatial scales may be related to
species distributions, but even broad biogeographic delimitations
continue to be contentious. For example, broadly accepted
marine biogeographic frameworks consider two biogeographic
provinces in the northeastern Atlantic: Boreal and Lusitanian
(Briggs and Bowen, 2012), or Northern European Seas and
Lusitania (Spalding et al., 2007), separated by “Forbes’ Line”
(sensu Firth et al., 2021, after Forbes and Godwin-Austen,
1859). They differ, however, on boundary positions between
provinces, and whether or not the southern province includes
the Mediterranean Sea. Further biogeographic subdivision
has been proposed for the northeastern Atlantic such that
four provinces could be recognized: Boreal, Boreal-Lusitanian,
Lusitanian-Boreal, and Lusitanian (Dinter, 2001), but these finer-
scale subdivisions are less often considered or employed in
macroecology. Lack of consensus on biogeographic delimitations
are partially due to competing criteria used for setting boundaries
but may also reflect incomplete distributional knowledge of many
marine species, especially for poorly studied invertebrates. If the
majority of species have restricted distributions, then species
turnover might be expected to be higher over a given spatial scale.
Community structure may therefore be related to some extent to
biogeographic partitioning, such that communities may be more
similar within rather than between biogeographic regions.

To examine diversity in marine ecosystems, it is important to
consider how diversity is quantified and described. Biodiversity
is a multifaceted concept that includes several components
(Whittaker, 1972). In order to better understand what
mechanisms influence biodiversity, it may be helpful to consider
each of these different facets. While local patterns in diversity
(α diversity; Whittaker, 1972) are most commonly assessed,
regional differences in diversity due to variation in richness or
species composition (β diversity; Whittaker, 1972; Airoldi et al.,
2008) can also provide important insights into the mechanisms
driving community structure (Hewitt et al., 2005; Anderson et al.,
2011; Villéger et al., 2013). Focusing on β diversity is especially
important in the context of global change, where ecological
communities are subject to large environmental fluctuations
and disturbances (Mori et al., 2018). Furthermore, it is now
widely recognized that the integration of functional information
based on species traits provides a better understanding of
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community functioning (Díaz and Cabido, 2001; Anderson
et al., 2011; Pavoine and Bonsall, 2011; Münkemüller et al.,
2012; Mouillot et al., 2014). Thus, comparing taxonomic with
functional diversity (α and β) provides a better understanding
of the ecological processes that shape community composition
(Swenson et al., 2011; Villéger et al., 2013; Mori et al., 2018) and
the impact of biodiversity loss on ecosystem functioning (Cadotte
et al., 2011; Burley et al., 2016). For example, selective processes,
such as environmental filtering, lead to homogenization of traits
in communities, since only species with a specific set of traits
could survive and develop under certain abiotic conditions. As a
result, the loss of species with unique functional characteristics
may have significant consequences for ecosystem functioning
than the loss of species with characteristics that are more
commonly expressed in the community (O’Connor and Crowe,
2005; Queirós et al., 2013). Nevertheless, the comparison of
taxonomic and functional β diversity alone may not reveal the
underlying ecological processes that structure communities
(Baselga, 2010; Villéger et al., 2013; Legendre, 2014). This
is in part because variation in species composition among
sites (β diversity) is the resultant of two components: species
turnover (i.e., replacement of species or functional strategies)
and nestedness (i.e., dissimilarity associated with the loss of
species or functional strategies, in which an assemblage is a
strict subset of another). Partitioning β diversity into turnover
and nestedness thus provides an additional facet for dissecting
community assembly rules. In sum, a combination of tools and
metrics, including taxonomic and functional α and β diversity
(and their components) are essential for better understanding
biodiversity in marine ecosystems.

The honeycomb worm, Sabellaria alveolata (Linnaeus, 1767),
is a physical ecosystem engineer (Berke, 2010) commonly found
along the European coast from northwest Ireland to northern
Mauritania (Curd et al., 2020), where it builds biogenic structures
of varying extent in the intertidal and shallow subtidal zones.
Honeycomb worms build what are considered Europe’s largest
biogenic reefs (Noernberg et al., 2010) and support a unique and
rich assemblage of species (Dias and Paula, 2001; Dubois et al.,
2006; Jones et al., 2018). Honeycomb worms play key functional
roles in the ecosystems they support, by creating new three-
dimensional habitat, which increases the physical complexity of
the initial substrate, increases local biodiversity (Dubois et al.,
2006; Jones et al., 2018), limits coastal erosion (Noernberg et al.,
2010) and fashions biogenic structures (ranging from crusts and
veneers to large reefs, hereafter “reefs” for simplicity) with high
esthetic and recreational fishing value (Plicanti et al., 2016).
Honeycomb worm reefs are broadly distributed across temperate
Europe, however diversity investigations have only been carried
out at local scales (Dias and Paula, 2001; Dubois et al., 2002,
2006; Schlund et al., 2016; Jones et al., 2018). It is therefore
currently unknown how biodiversity supported by these reefs
varies over its range.

The present study examined the patterns of diversity of
benthic marine macrofauna associated with honeycomb worm
reefs from sites spanning the entire European distribution of
the species (but excluding North Africa), in order to address
the following questions: (i) Does taxonomic and functional

diversity of communities associated with honeycomb worms vary
over broad geographical scales, and if so, what environmental
drivers best explain this variation? (ii) Does community
composition within honeycomb worm reefs vary with respect
to currently described biogeographic provinces? (iii) Are there
regional differences in taxonomic and functional β diversity in
assemblages associated with honeycomb worm reefs? (iv) If
so, are they mainly due to differences in species richness or
in turnover? Finally, can differences between taxonomic and
functional diversity help identify the ecological processes that
affect biodiversity on honeycomb worm reefs?

MATERIALS AND METHODS

Study Area and Sampling Methods
Ten sites along the coast of Europe were selected for quantifying
the diversity of benthic macrofaunal assemblages: four in the
United Kingdom, four in France and two in Portugal (Figure 1).
Sampling was carried out in the summer (spring tides of June
and August 2017) following a standard protocol at each site.
The sampling strategy aimed to maximize the number of species
collected by sampling in a variety reef phases (prograding and
retrograding, sensu Curd et al., 2019) within each site, as these
are known to harbor different assemblages (Dubois et al., 2002;
Jones et al., 2018). Reefs were sampled using eight PVC cores
of 5 cm in diameter to a maximum depth of 15 cm. Since
honeycomb worms occur within the first 15–20 cm of the reef
(Gruet, 1986), only the living portion of the reef was sampled. At
UK4, only veneer bio-constructions were available for sampling,
and only five cores were collected because veneers were too scarce
for further sampling. The contents of each core were preserved
in 70% ethanol.

In the laboratory, cores were first weighed (wet weight,
after removal of alcohol), then sieved on a 1 mm circular
mesh. For a given core volume, the weight of the sediment
provides means for comparing porosity or the void fraction of
a sample. Macrofauna was then extracted from the sediments
and enumerated. Individuals were identified to the lowest
taxonomic level, most often to the species level. All species
names were used according the World Register of Marine
Species1 and references used for taxonomic identification can
be found in Supplementary Appendix 1. To ensure consistent
taxonomic resolution across samples, the number of operators
was limited (n = 4) and each uncertain identification was cross-
verified by an expert in benthic taxonomy. However, due to
the uncertainty regarding the morphological distinction at the
species level between Mytilus edulis and Mytilus galloprovincialis,
particularly at the juvenile stage (Jansen et al., 2007) and because
hybridization occurs between the two (Daguin et al., 2001), all
specimens sampled in the hybridization area (UK1, UK4, FR1,
FR2, FR3, and FR4) were considered as Mytilus spp. (Wenne
et al., 2020). All specimens are stored in the Laboratory of Coastal
Benthic Ecology’s collections at Ifremer (Plouzané, France).

1http://www.marinespecies.org/index.php (accessed January 15, 2021)
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FIGURE 1 | (A) Map indicating the locations of the 10 study sites in the United Kingdom, France, and Portugal within the four biogeographic provinces defined by
Dinter (2001). (Eight stations were sampled in each of the ten sites, except for UK4 where five stations were sampled.) (B) Abundance (±SD) of the associated
macrofauna (in number of individuals.m−2) and taxonomic indices (Richness, Hill diversity indices N1 and N2) per site.
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Data Processing and Environmental
Variables
Given that the reef-building species S. alveolata affects resource
availability for the associated community (Dubois et al., 2002), all
analyses considered the density of this species as an explanatory
variable. Hence, S. alveolata abundance was removed from
the species (response) matrix. Although some studies exclude
rare species (i.e., represented by a single individual in one or
two samples) for the calculation of similarity (see Clarke and
Warwick, 2001), they may represent a non-negligible portion
of a functional group, and are likely to have an impact on
ecosystem functioning (Leitão et al., 2016). Rare species were
therefore retained in the analysis in order to avoid reducing the
functional richness of the communities (Mouillot et al., 2013;
Jain et al., 2014).

To obtain information on the environmental conditions
at each site, water and air temperature data were recorded
using iButton R© temperature loggers (accuracy ±0.5◦C, hourly
measurements) (Lima and Wethey, 2009), deployed between
August and October 2016 for a period of approximately 1 year
prior to the sampling campaign. In order to mimic temperatures
similar to those experienced within the reefs, the loggers were
coated with sand from the reefs and fixed onto rocky substrate
at a constant shore level (corresponding approximately to the
mid-tide level where the majority of reefs develop).

Taxonomic Diversity
Multivariate analyses were used to test for differences in
macrofaunal assemblages across four biogeographic provinces (as
delimited by Dinter, 2001). Non-metric multidimensional scaling
(nMDS) was used to plot sample stations on a two-dimensional
ordination plane based on taxa composition dissimilarities and
labeled with the corresponding collection site. nMDS was also run
using species abundances averaged across all stations sampled in
a given site. In addition, a hierarchical cluster analysis (HCA) was
run on all samples using the Ward method (Ward, 1963). All
analyses were carried out on the basis of Bray–Curtis similarity
matrices. Abundance data were transformed by the log (x + 1)
function to reduce the weight of the most abundant species.

In order to examine regional variation in α diversity, each site
was coded as belonging to one of four biogeographic regions:
Boreal, Boreal-Lusitanian, Lusitanian-Boreal, and Lusitanian
(Figure 1; Dinter, 2001). Differences in community composition
within and among regions were tested using PERMANOVA
with a two-factor design (4999 residual permutations under a
reduced model), with region as the fixed factor and site as the
nested random factor. The weight of sediment was included as
a co-variable in all analyses. Paired tests between regions were
performed where the main effect was significant (P < 0.05). Prior
to the PERMANOVA, differences in within-site multivariate
dispersion were examined using the PERMDISP routine. When
significant differences in assembly structure between regions
were detected, a SIMPER analysis was performed to determine
and rank the taxa responsible for the dissimilarities among sites
and biogeographic regions. Variation of univariate assemblage
metrics (i.e., abundance, species richness, the exponential of

Shannon entropy (N1), and the inverse Simpson concentration
(N2); Hill, 1973; Jost, 2006) were examined with permutational
ANOVA, using the Euclidean distance in the PERMANOVA
procedure (Anderson, 2017).

To qualify the link between the environment and
macrobenthic community structure at each site, a distance-
based redundancy analysis (dbRDA; Legendre and Andersson,
1999) was carried out. In addition to the variables recorded
in the field (density of the engineering species S. alveolata,
weight of sediment, maximum water and air temperatures),
mean monthly values spanning 2000–2014 were obtained for
30 variables from BioORACLE2 (Tyberghein et al., 2012; Assis
et al., 2018). In order to eliminate multicollinearity among
these environmental variables, Spearman rank correlations
were calculated for all pairs of variables. Pairs with a Spearman
correlation coefficient >0.7 were considered highly correlated.
Only the following uncorrelated variables were kept in the
analysis, in addition to the variables recorded in the field:
mean surface water temperature (◦C), mean chlorophyll a
concentration (mg.m−3) and maximum current speed (m.s−1)
(Dormann et al., 2013). Prior to analysis, all values for the
environmental variables were standardized, then a DISTLM
routine was used to obtain the most parsimonious model using a
stepwise selection procedure and adjusted R2 selection criterion
(McArdle and Anderson, 2001).

Functional Diversity
To characterize the functional diversity at each site, a biological
trait analysis (BTA) was conducted (Statzner et al., 1994).
Eight biological traits (divided into 32 modalities) were selected
(Table 1), providing information linked to the ecological
functions performed by the associated macrofauna. The selected
traits provide information on: (i) resource use and availability
(by the trophic group of species, e.g., Thrush et al., 2006); (ii)
secondary production and the amount of energy and organic
matter (OM) produced based on the life cycle of the organisms
(including longevity, maximum size, and mode of reproduction,
e.g., Cusson and Bourget, 2005; Thrush et al., 2006); and (iii)
the behavior of the species in general (i.e., how these species
occupy the environment and contribute to biogeochemical fluxes
through habitat, movement, and bioturbation activity at different
bathymetric levels, e.g., Solan et al., 2004; Thrush et al., 2006;
Queirós et al., 2013). Species were scored for each trait modality
based on their affinity using a fuzzy coding approach (Chevenet
et al., 1994), where multiple modalities can be attributed to
a species if appropriate, and allowed for the incorporation
of intraspecific variability in trait expression. The information
concerning polychaetes was derived primarily from Fauchald
and Jumars (1979) and Jumars et al. (2015). Information on
other taxonomic groups was obtained either from databases3 of
biological traits, publications (Caine, 1977; Leblanc et al., 2011;
Rumbold et al., 2012; Jones et al., 2018) and publications listed in
Supplementary Appendix 1.

2https://www.bio-oracle.org/
3www.marlin.ac.uk/biotic
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TABLE 1 | Selected biological traits and modalities for analysis of biological traits (BTA).

Traits Modalities Definition Information

Maximum size (mm) <10 Very small Breathing, excretion, and carbon degradation (Thrush et al.,
2006).

(10–50) Small

(50–100) Medium

>100 Large

Longevity <1 year Annual Secondary production (Cusson and Bourget, 2005).

1–2 years Short

2–5 years Average

>5 years Long

Movement None <1 m
1–10 m >10 m

Daily capacity of
adult movement

Breathing, excretion, anaerobic mineralization,
remineralization of the organic matter (Solan et al., 2004;
Queirós et al., 2013).

Habitat tdw Tube Biogeochemical trophic dynamic fluxes (Lam-Gordillo et al.,
2020).

bdw Burrow dwelling

att Fixed

fl Free

Trophic group SusP Suspensivore Respiration, excretion, and carbon degradation (Thrush
et al., 2006).

SurF Surface deposit-feeders

SubS Sub-surface deposit-feeders

PreDScaV Predator/scavenger

GraZ Grazers

Reproduction asx Asexual reproduction Colonization, recolonization, and resilience potential
(Lam-Gordillo et al., 2020).

bsp Gamete emitter in the water column (broadcast spawner)

ind Laying or brooding eggs with larval phase (indirect)

dir Egg laying or brooding without a larval phase (direct)

Bioturbation EpiF Epifauna Anaerobic mineral regenerator, remineralization of organic
matter (Solan et al., 2004; Thrush et al., 2006; Queirós
et al., 2013).

OnMod Surface modifier

UpDown Vertical transporter

BioD Biodiffuser

ReG Regenerator

Bathymetric level InterT Intertidal species Resistance to climatic variation and temperature changes
(Costello et al., 2015; Martini et al., 2020).

SubT Subtidal species

Ordination of the functional trait data was done using a
Fuzzy coded multiple Correspondence Analysis (FCA) (Chevenet
et al., 1994). Then, a hierarchical clustering analysis based on the
Ward algorithm (Ward, 1963) was carried out using Euclidean
distances (Usseglio-Polatera et al., 2000) to define homogeneous
functional groups comprising species with similar biological trait
associations. The frequencies of the modalities of each trait were
calculated in order to visualize the biological profiles of identified
functional groups.

Partitioning of Taxonomic and
Functional β Diversity
Regional differences in diversity (β diversity) were estimated
from presence-absence data using Sørensen’s (1948) dissimilarity.
For each pair of cores, taxonomic β diversity and its two
components, turnover and nestedness, were computed using

the Baselga partitioning scheme (Baselga, 2017; Schmera
et al., 2020). Functional β diversity was computed based
on the multidimensional functional space from the Fuzzy
Correspondence Analysis, where axes were synthetic components
summarizing functional traits (Villéger et al., 2010). The first
four axes were used for calculating Sørensen dissimilarity
according to Villéger et al.’s (2013) equation for all pairwise
comparisons between samples (1) belonging to the same
region (within bioregion), or (2) belonging to different
regions (among bioregion). Correlations between taxonomic
and functional β diversity as well as between their respective
components were tested using Mantel permutational tests
(Villéger et al., 2013).

All index calculations and statistical analyses were performed
using the “betapart” (Baselga, 2012), “ade4” (Dray and Dufour,
2007) and “vegan” (Oksanen et al., 2020) packages in R 3.4.4
(R Development Core Team, 2008) as well as using PRIMER 7
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(Clarke and Gorley, 2015) for PERMANOVA, PERMDISP,
SIMPER and DISTLM analyses.

RESULTS

Taxonomic Diversity
A total of 129 taxa were observed in association with
honeycomb worm reefs across the 10 sampled sites (77 stations,
Supplementary Table 1). Taxon richness varied from two taxa
(core from UK3, FR2, and PO2) to 34 taxa per station (core
from FR2). In all sites except FR3, S. alveolata was the dominant
species, with densities ranging from 6,450 ind.m−2 at UK2
to 80,000 ind.m−2 at FR2 (Supplementary Figure 1A). In all
sites except FR3, S. alveolata was the dominant species, with
densities ranging from 6,450 ind.m−2 at UK2 to 80,000 ind.m−2

at FR2 (Supplementary Figure 1A). The highest densities
were observed in UK4 (130,000 ind.m−2) but this most likely
corresponds to a recent recruitment event, as individuals were
on average much smaller (diameter of the opercular crown
less than 2 mm; Gruet, 1986). The ratio of individuals of
S. alveolata to individuals of associated macrofauna showed a
clear dominance of the engineering species at UK4 and UK3
(94 and 87%), while at other sites, this ratio varied from 43 to
68% (Supplementary Figure 1B). It was also at these two sites
that the number of individuals of the associated macrofauna
were the lowest, reaching up to 5,820 ind.m−2 at UK3 (with an
average of 3,507 ± 2,313 ind.m−2) and 7,500 ind.m−2 283 at
UK4 (with an average of 6,194± 1,304 ind.m−2; Supplementary
Figure 1A). The fauna associated with honeycomb worm reefs
were primarily of annelids and arthropods and to a lesser
extent, mollusks and nematodes (Supplementary Figure 2).
However, community composition varied significantly among
sites. Annelids were dominant in UK2, UK3, FR4, and PO2,
where they represented between 36 and 56% of individuals.
At UK1 and PO4, arthropods dominated the community,
representing 47 and 51% of individuals, respectively. For the
other sites, mollusks were dominant (53% of individuals in UK4
and 39% in FR2) as well as nematodes (36% of individuals in FR1
and 39% in FR3). Sites FR1 and FR3 had a higher abundance of
nematodes and mollusks compared to other sites.

Taxon richness and abundance did not show any significant
variation between sites within the same region but showed
significant differences between regions (Table 2). As for N1
and N2 indices, honeycomb worm reef communities were
characterized by low values (Figure 1). For both metrics, there
was no significant effect of site or region. Sediment weight had
a significant effect, but only on the N2 index (Table 2). The
PERMANOVA also detected a significant effect of sediment
weight on taxon richness but not on abundance (Table 2).

Hierarchical cluster analysis based on species composition
and abundances per station defined four groups of assemblages
(Figure 2B). Group I included stations sampled in UK1 and
UK4, plus two stations from UK3 and one station from FR1.
Group II included all stations in UK2 and the remaining stations
from UK3. Group III included all but one station in France
(FR1, FR2, FR3, and FR4) and Group IV included stations in

Portugal (PO1 and PO2). The nMDS indicated some degree of
partitioning among sites, with two of the British sites (UK1 and
UK4) being distinct from two of the southern sites (nMDS1 and
nMDS2; Figure 2A). However, much overlap was observed in
community composition among sites found in the center of the
distribution, particularly FR1, FR3, and UK3, which exhibited
considerable variability among stations within each site (F = 7.98,
P < 0.001; PERMDISP; Figure 2A). PERMANOVA detected
significant variability between regions and between sites within
regions, as well as a significant effect of the sediment covariate
(Table 2). Regional differences were driven by differences in

TABLE 2 | Results of PERMANOVA to test for differences in benthic macrofaunal
assemblages between bioregions (fixed) and sites (random, nested within
bioregion).

Benthic macrofaunal assemblages

Source df MS F P

Sediment 1 19,830 2.3015 0.0088

Bioregion 3 16,974 2.0381 0.0072

Site (bioregion) 6 10,124 5.9491 0.0002

Residuals 66 1701.8

Total 76

Taxon abundance

Sediment 1 3.7823E+8 1.7416 0.2258

Bioregion 3 2.1007E+9 9.7396 0.0062

Site (bioregion) 6 2.2494E+8 1.239 0.2934

Residuals 66 1.8155E+8

Total 76

Taxon richness

Sediment 1 168.05 9.1909 0.0112

Bioregion 3 327.53 17.508 0.0026

Site (bioregion) 6 16.07 0.56507 0.7518

Residuals 66 28.438

Total 76

N1 index

Sediment 1 9.7505E−2 2.0997 0.1758

Bioregion 3 3.6729E−2 0.80318 0.5312

Site (bioregion) 6 5.015E−2 1.7046 0.126

Residuals 66 2.942E−2

Total 76

N2 index

Sediment 1 6.3026E−2 6.1914 0.0312

Bioregion 3 1.016E−2 1.0022 0.4522

Site (Bioregion) 6 1.0396E−2 1.1316 0.3606

Residuals 66 9.1871E−3

Total 76

Sediment weight provides a proxy for the porosity of the bioconstructions and was
included as a covariable in the analysis. Permutations were based on a Bray–
Curtis dissimilarity matrix generated from log (x + 1) abundance data. Results
of univariate PERMANOVA to test for differences in assemblage-level univariate
metrics in macrofaunal assemblages (taxon richness and total abundance) are also
shown. Permutations for univariate analysis were based on the Euclidean distance
matrix generated from untransformed diversity data. All tests used a maximum
of 4999 permutations under a reduced model; significant effects (P < 0.05) are
shown in bold. An underlined P-value indicates that PERMDISP detected significant
differences in within-group dispersion between levels of that factor (P < 0.05). df,
degrees of freedom; MS, mean squares; F, pseudo F-statistic; P, P-value.
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FIGURE 2 | (A) nMDS representing the variability across sites and stations within sites. (B) Cluster constructed using the “Ward D2”’ method, showing the four
groups of replicates. Height indicates the order in which the clusters were joined. (C) nMDS constructed from data averaged for each site, grouped by cluster
groups. A–C were derived from a Bray–Curtis dissimilarity matrix constructed from log (x + 1) abundance data transformed.

intra-regional variability (F = 18.08, P < 0.001; PERMDISP;
Figure 2A) but also by changes in mean species composition
(Figures 2A,C). Paired tests between regions showed that
assemblages from the Lusitanian Province (PO1 and PO2)
were distinct from those from the Boreal province (UK1, UK2,
and UK3) and the Lusitanian-Boreal province (FR1, FR2, FR3,
and FR4) (Supplementary Table 2). SIMPER analysis indicated
that the differences observed between regions were mainly
due to a higher abundance of the polychaete Syllis armillaris
(Müller, 1776) and the mussel M. galloprovincialis (Lamarck,
1819) in the Lusitanian Province compared to the Lusitanian-
Boreal and Boreal Provinces (Supplementary Table 2).

Distance-based redundancy analysis analyses indicated some
degree of partitioning between regions. The first two axes

represent 12.4 and 10.5% of the explained total variance,
respectively (Figure 3). The species assemblages were structured
along two gradients. The first was driven by the mean chlorophyll
a and mean water temperature variables, which were negatively
correlated, highlighting the differences between the northern and
the southern assemblages. The second was driven by the amount
of sediment in the cores and the maximal temperature of the
air, which separated the middle range sites from the southern
and northern sites, with higher values in the middle range sites
(Figure 3). Note that the amount of sediment in the cores was
also negatively correlated with maximal current velocity, which
was higher in the northern sites. The DISTLM routine was used
to determine links between environmental predictor variables
and variability in assemblage structure (Table 3). Marginal
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FIGURE 3 | Result of the distance-based redundancy analysis (dbRDA) using the Bray–Curtis dissimilarity matrix computed on the log-transformed abundance data
and the seven selected environmental variables. Field data: “Water” and “Air (T◦C max)” = maximum air and water temperature, “Sediment” = amount of sediment in
g.m−2, “Density SA” = density of S. alveolata (ind.m−2). Data extracted from BioORACLE: “Chla” = average chlorophyll level (mg.m−3), “Water (T◦C avg.)” and
“Current (max)” = average maximum current velocity (m.s−1). The first two axes capture 22.9% of the variation explained by these seven variables.

tests showed that mean water temperature and the amount of
sediment in the cores were, individually, the most important
predictor variables. Surprisingly, the density of S. alveolata
did not appear to be a structuring factor for these intertidal
communities. The stepwise selection procedure indicated that the
most parsimonious model included all environmental variables,
explaining 0.38% (adjusted R2 = 0.31) of the total observed
variation in this assemblage structure.

Functional Diversity
Changes in community structure were also analyzed in terms of
functional diversity. Cluster analysis carried out on the FCA axes
revealed five main groups of taxa with distinct trait combinations

(Figure 4A). The most clearly delineated group (Group 1)
was composed mostly of intertidal, suspension-feeding, small,
long-lived organisms that live mostly fixed or in tubes and
release their gametes into the water column (Figure 4B). This
group was represented by 14 taxa, the majority of which were
bivalve mollusks, sabellidae polychaetes, and barnacles. The
four other groups were largely composed of infaunal taxa.
Group 2 was composed of very small, free-living and tube-
dwelling, short-lived, sometimes annual, organisms. Most species
in this group lay or incubate eggs and have no larval phase.
Their contribution to sediment reworking was mainly at the
sediment surface. This group was composed of 47 taxa that
included amphipods and isopods but also pycnogonids and
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TABLE 3 | DISTLM marginal test results for each environmental predictor variable
selected for the most parsimonious model for macrofaunal assemblages.

Variable Adj. R2 SS F P Prop

Mean water temperature 0.89369 24,711 8.4587 0.0002 0.10135

Sediment weight 0.16155 20,056 7.4563 0.0002 0.082260

Maximum water temperature 0.19959 11,598 4.5169 0.0002 0.047571

Density of Sabellaria alveolata 0.22953 9484 3.837 0.0002 0.038898

Maximum current speed 0.258562 9083.8 3.8189 0.0002 0.037257

Maximum air temperature 0.29764 11,154 4.9502 0.0002 0.045748

Mean chlorophyll concentration 0.31250 5544.1 2.5137 0.0036 0.022739

The best solution based on stepwise selection and adjusted R2 is shown. Adj. R2,
adjusted R2; SS, sum of squares (trace); F, pseudo F-statistic; P, P-value; Prop,
proportion of variation explained.

nematodes. Group 3 comprised large, average-lived organisms,
that freely release their gametes into the water column, with
feeding modes mostly associated to scavenging and sub-surface
deposit-feeding, living free or in burrows, and participating to
sediment reworking, either as biodiffusors or through vertical
sediment transport. This group included 23 taxa, belonging
to the polychaete annelids Eunicidae, Lumbrinereidae, and
Oenonidae (formerly part of Eunicidae) and Terebellidae. Group
4 and Group 5 comprised species with heterogeneous and
intermediate trait characteristics relative to the more functionally
homogeneous Groups 2 and 3, the former being represented by
14 taxa, mainly polychaete annelids belonging to the Spionidae,
Capitellidae, and Cirratulidae families, while the latter included
23 taxa, most of them being polychaetes belonging to different
families of the order Phyllodocida (Phyllodocidae, Nereidae,
Syllidae, Glyceridae, and Polynoidae). It also included decapod
crustaceans, gastropods, and oligochaetes (all groups are detailed
in Supplementary Figure 3). The relative frequencies of each
group did not show a significant difference in the proportion of
each functional group with latitude (Supplementary Figure 4).

Taxonomic and Functional β Diversity
Taxonomic β diversity values for macrofauna associated with
honeycomb worm reefs showed greater similarity on average
within regions (19–51%; Figure 5A and Table 4) compared to
among regions (9–33%; Figure 5B and Table 4). However, levels
of similarity within regions remained low, indicating important
heterogeneity across sites of a given region. On average, when
considering pairs of assemblages within regions, 60% of the
species were found in only one assemblage: 50% of them changed
in terms of species identity (turnover) and 10% were unique
to the richest assemblage (nestedness) (Figure 5A – within

region, Table 4). For pairwise comparisons among different
regions, differences were even more pronounced, with an average
of 80% of species being found in only one assemblage, with
70% due to species turnover and 10% linked to nestedness
(Figure 5B – among bioregion, Table 4; for all pairwise
comparisons among regions, see Supplementary Figure 5 and
Table 4). The contributions of nestedness to β diversity were
on average similar within and among regions. Overall, variation
in species composition within and between bioregions were
primarily due to changes in species identity.

Functional β diversity values for macrofauna associated with
honeycomb worm reefs showed a comparable range in similarity
within regions (38–88%; Figure 5A and Table 4) and among
regions (34–84%; Figure 5B and Table 4). This similarity
within and among regions, indicates high levels of overlap in
functional space. On average, two assemblages shared 40% of
their functional space, while functional β diversity was mostly
driven by nestedness (i.e., by difference in the volume of
the functional space filled by the assemblages; 24%) rather
than by turnover (i.e., functional spaces not shared by the
two assemblages; 15%) (Figures 5C,D and Table 4). The
contributions of nestedness to functional β diversity were similar
within and between regions (for all pairwise comparisons among
bioregions, see Supplementary Figure 6).

DISCUSSION

Influence of Honeycomb Worm Reefs on
Local Diversity
Honeycomb worm reefs host diverse invertebrate assemblages.
Here we examined how multiple facets of diversity, including
taxonomic and functional α and β diversity, vary over much
of the Atlantic coast of Europe. In terms of local levels of
diversity, no significant differences were observed in Hill diversity
indices (including richness) over the 10 study sites. Only the
abundances of macrofauna were relatively higher in the southern
sites compared to the northern sites. Our results are in agreement
with a growing number of examples that show that there are
many exceptions to the latitudinal diversity gradient described
by Brown and Lomolino (1998) and Gaston and Chown (1999).
Recent investigations have shown little or no relationship of
diversity with latitude for the European marine benthos (Renaud
et al., 2009; Hummel et al., 2017), particularly for soft sediment
communities (Kendall and Aschan, 1993; Wilson et al., 1993;
Kendall, 1996). Latitude is not a unidimensional environmental
variable but a proxy for a number of primary environmental

TABLE 4 | Taxonomic and functional β diversity and its two components; mean ± standard deviation.

Taxonomic Functional

β diversity Turnover Nestedness β diversity Turnover Nestedness

Within bioregion 0.65 ± 0.16 0.53 ± 0.21 0.12 ± 0.11 0.37 ± 0.25 0.13 ± 0.20 0.24 ± 0.20

Among bioregion 0.78 ± 0.12 0.70 ± 0.16 0.08 ± 0.08 0.39 ± 0.24 0.15 ± 0.21 0.24 ± 0.20

Contributions were calculated for comparisons between pairs of samples belonging: to the same bioregion (within bioregion), or to different bioregions (among bioregion).
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FIGURE 4 | (A) Cluster constructed using the “Ward D2”’ method performed from the Fuzzy Correspondence Analysis (FCA) results. (B) Projection of modalities and
taxa by biological traits on the first two axes of the FCA. (C) Histogram of eigenvalues. The first two axes (in black) were kept in the FCA.

factors that interact and correlate with each other (Hawkins,
2003). For honeycomb worms, it appears that biotic and abiotic
factors associated with the reef environment have contributed to
maintaining constant levels of diversity over broad geographical
scales, as discussed further below.

The assemblages sampled in our study showed a high diversity
of macrofaunal organisms and are typical of the honeycomb
worm reef assemblages reported in previous studies (Gruet, 1986;
Dias and Paula, 2001; Dubois et al., 2002, 2006; Schlund et al.,
2016). Mean species richness was comparable, but notably lower
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FIGURE 5 | Triangular plots illustrating the geographical pattern of (A,B) taxonomic and (C,D) functional β diversity Sorensen dissimilarity between the species
composition (presence/absence data) of the 10 study sites was used to quantify their similarity, and the two components of their beta diversity nestedness (i.e.,
influenced by the difference in number of species between the two communities) and turnover (i.e., species replacement between two communities). Contributions
were calculated for comparisons between samples belonging either to (A,C) the same bioregion (within bioregion) or to (B,D) different bioregions (among bioregion).
Red lines indicate the centroid value for each graph with its associated mean values for the three components of the Sorensen dissimilarity.

(7–16 species), than most previous reports for honeycomb
worm reef richness (7–33 species; Holt et al., 1998; Dubois
et al., 2002, 2006; Schlund et al., 2016; Jones et al., 2018).
These values are also comparable to the values reported for
epifauna from macroinvertebrate assemblages associated with
Laminaria hyperborea (Gunnerus) Foslie, 1884 kelp holdfasts
(10–30 species; Teagle et al., 2018) but lower than infaunal
assemblages reported for the eelgrass Zostera marina Linnaeus,
1753 (10–60 species; Blanchet et al., 2004; Boström et al., 2006)

in the northeast Atlantic. In terms of richness, maerl beds
(composed of at least two species: Lithothamnion corallioides
and Phymatolithon calcareum; Riosmena-Rodríguez et al., 2017)
hosted, by far, the richest assemblages sampled thus far, with an
average richness of 53 species (32–73 species; Boyé et al., 2019).
Our results confirm that habitats engineered by honeycomb
worms, as with other bioengineered habitats, host higher species
richness than geogenic habitats (8–12 species; Jones et al., 2018;
Boyé et al., 2019).
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While species richness in assemblages associated with
honeycomb worms remained within a narrow range throughout
the coast of Europe, faunal composition did vary among
sites. Two environmental variables were found to significantly
structure assemblages: mean annual water temperature and the
quantity of sediment in the cores. Mean annual temperature
distinguished the United Kingdom sites and France sites from
the Portugal sites and one site (FR4) in the Bay of Biscay.
Thermal regimes affecting faunal composition appear to change
within the Bay of Biscay, south of the Brittany peninsula,
consistent with higher sea surface temperatures in the Bay of
Biscay than in the surrounding areas connected by the Gulf
Stream (Jenkins et al., 2008; Hummel et al., 2017). Sediment
content was a key variable that structured communities, with
sites that had higher sediment content, typically the France sites,
being distinct from sites with lower sediment content, namely
the United Kingdom and Portugal sites. Sediment content
was negatively correlated with current velocity, such that sites
that had lower hydrodynamics accumulated more sediment,
while sites with higher hydrodynamics had higher porosity
within the reef. In areas with high current velocities, the reef-
building activity of S. alveolata is challenged by wave erosion,
generating higher porosity within reefs. Conversely, low current
velocities allow reefs to grow homogeneously but also allows
unconsolidated particles to settle within fissures in the reefs.
Previous studies have reported that within the same site, dense
sections of reef, where S. alveolata is in an active growth phase
(prograding reef, sensu Curd et al., 2019) tend to host assemblages
with lower abundances and diversity than parts of the reef that
are more fragmented (retrograding reef) (Dubois et al., 2002;
Jones et al., 2018).

Sediment content has been found to be an important variable
structuring communities at local scales. In the Bay of Mont-Saint-
Michel, for example, higher sediment content in retrograding
reefs explained the presence of many species typically belonging
to muddy sandy bottom communities (Dubois et al., 2002,
2006). At the regional level, differences in hydrodynamic and
sediment accumulation regimes may therefore lead to differences
in reef density, which in turn affect assemblage compositions
over the Atlantic coast of Europe. Unlike other engineering
species such as haploops (gregarious tube-dwelling amphipods)
(Rigolet et al., 2014), the density of S. alveolata was not the
main factor structuring communities. Unlike haploops, the reef
structures developed by S. alveolata persist after the death of the
individuals, such that characteristics of the reef (here sediment
content) better explain variation in communities than the density
of the engineering species. Our results are consistent with other
studies that have shown that reef structure is more important for
explaining community composition than density of the engineer,
such as in habitats built by Owenia fusiformis Delle Chiaje, 1841
(Fager, 1964); Spiochaetopterus bergensis Gitay, 1969 (Munksby
et al., 2002; Hastings et al., 2007), and Lanice conchilega (Pallas,
1766) (Zühlke et al., 1998; Zühlke, 2001; Callaway, 2006; Rabaut
et al., 2007; Van Hoey et al., 2008; De Smet et al., 2015).

We found five functional groups in association with
honeycomb worm reef formations. Our results show that changes
in taxonomic composition did not result in changes in ecological

role, but rather that the same functional groups were found in
association with honeycomb worm reefs throughout the coasts
of Europe. Foundation species greatly influence the structure
and functioning of species assemblages (Bruno et al., 2003).
However, the effects of foundation species on biodiversity are not
necessarily positive for all species, providing resources for some
but excluding others (Rigolet et al., 2014). Through tube building
activity, honeycomb worms transform unconsolidated sediment
into a complex three-dimensional structure with properties that
differ from both rocky shores or bare sediment. The reefs attract
mostly soft sediment infauna (other polychaetes) and provide
pockets of soft sediment for burrowers, but exclude taxa that
require rocky substrate to settle upon or that compete for space
with S. alveolata, such as barnacles and mussels (Holt et al., 1998;
Dubois et al., 2002, 2006). Brown and red macroalgae cover on
honeycomb worm reefs is reduced compared to rocky shores
(Dubois et al., 2006), hence, excluding a large set of herbivores,
and favoring deposit-feeders, as can be seen in the functional
groups recovered here. Honeycomb worm reefs may therefore act
as a biological filter for a given local pool of organisms. Similar
results have been reported in different bioengineered habitats
such as the communities associated with haploops in the bay of
Concarneau, France (Rigolet et al., 2014). Contrary to adjacent
sandy and muddy bottom communities, the establishment of
haploops communities excluded or limited the colonization
of other burrowers and tube-dwelling suspension-feeders, but
attracted small mobile predators which possibly predate on
haploops or other small associated organisms. The biological
filtering that occurs in honeycomb worm and haploops habitats
may therefore be applicable to other bioengineered habitats.

Relationship Between Taxonomic and
Functional β Diversity
Our results show that while the taxonomic composition of the
fauna associated with honeycomb worm reefs varied over broad
geographical scales, species were replaced by another with the
same functional role, such that only few differences in functional
groups occurred across the reefs of the northeastern Atlantic.
Despite high species turnover observed between biogeographic
regions (70% on average), functional turnover was only 15%
on average. As a result, high functional similarity was observed
between regions and most functional changes across regions
were due to one assemblage being a subset of another (24%
of functional nestedness). For instance, the functional role
performed by the isopod Lekanesphaera levii (Argano and
Ponticelli, 1981) sampled in the northern reefs is the same
as another isopod, Dynamene bidentata (Adams, 1800) in
the southern reefs. This is also the case for two species of
Phyllodocidae: Eulalia clavigera (Audouin and Milne Edwards,
1833) and Eulalia ornata (Saint-Joseph, 1888). E. ornata is more
abundant at Boreal and Boreal-Lusitanian sites but tends to be
replaced by E. clavigera at Lusitanian-Boreal and Lusitanian sites.

Biogenic habitats tend to show little variation in functional
groups over broad spatial scales with high levels of redundancy
within each group (Hewitt et al., 2008; Barnes and Hamylton,
2015), although this depends somewhat on the foundation
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species (Boyé et al., 2019). High species turnover accompanied
by constant taxonomic richness has also been observed in eelgrass
assemblages (Boyé et al., 2017). Similarly, variation in taxonomic
composition associated with eelgrass beds, mangroves, maerl
beds, and coral reefs did not result in differences in functional
trait composition across approximately 500 km of coastline
from both sides of the Atlantic and from the Caribbean
and coral seas (Hemingson and Bellwood, 2018; Boyé et al.,
2019). Our results support previous work that has shown
that biogenic habitats are important in structuring benthic
assemblages at the regional scale. And as with other biogenic
habitats, communities supported by honeycomb worms show
high functional redundancy that is thought to provide spatial
insurance for benthic ecosystem functioning at local and broad
spatial scales (Boyé et al., 2019). In addition, high functional
redundancy may indicate that honeycomb worm reefs can offer
similar niche properties to its associated assemblages across
varying environmental conditions, as has been found for North
Atlantic eelgrass, Caribbean mangroves or Indo-Pacific coral
reefs (Cornell and Lawton, 1992; Boyé et al., 2017; Hemingson
and Bellwood, 2018; Storch and Okie, 2019). Indeed, the reefs
themselves provide protection from the physical elements, such
as wind, waves, sun exposure, and desiccation, which may mean
that they also act as environmental filters, buffering extremes
in temperature or other environmental variables as is observed
for many foundation species (Bertness and Callaway, 1994;
Bruno et al., 2003; Bouma et al., 2009). As such, they may
override the effect of large environmental gradients such as
latitudinal temperature gradients (Jurgens and Gaylord, 2018),
with important consequences for the spatial and temporal
variation of their associated communities (Bulleri et al., 2018;
Boyé et al., 2019).

Biogeographic Regions
Taxonomic differences were observed in macrobenthic faunal
assemblages associated with honeycomb worm reefs along the
coast of Europe. Hierarchical clustering analyses showed that
assemblages were grouped together into four main clusters, two
of which were found in the United Kingdom, a third represented
by all assemblages in France, and a fourth represented the
assemblages from Portugal. These clusters suggest there may
be greater regional differences in macrobenthic communities
than is currently recognized in biogeographic frameworks which
consider only two main provinces in the northeastern Atlantic
(Spalding et al., 2007; Briggs and Bowen, 2012). The assemblages
observed in our study suggest important differences in species
composition within both Lusitanian (Portugal vs. France sites)
and the Boreal/Northern European Seas provinces (UK1 + UK4
vs. UK2 + UK3). While our results show good agreement
with assemblage differences that could correspond to differences
in species distributions associated with Lusitanian-Boreal and
Lusitanian province subdivisions (defined by Dinter, 2001), it is
less clear whether the northern assemblages found in honeycomb
worms support a Boreal and Boreal-Lusitanian subdivision.
Nevertheless, the differentiation observed here does suggest a
higher degree of partitioning of species within the northeastern
Atlantic that may be in part related to biogeography, with many

species having restricted distributions. Our findings for the four
United Kingdom study sites are in agreement with patterns
of community composition associated with another important
temperate foundation species, the kelp L. hyperborea (Teagle
et al., 2018). While communities associated with holdfasts were
fairly variable throughout the study area, six sites collected
in northern and southern Scotland (Boreal province) were
distinct from six sites in northwestern Wales and Southern
England, supporting partitioning within the Boreal/Northern
European Seas province.

In honeycomb worm assemblages, differences in Boreal
and Boreal-Lusitanian regions were mainly driven by the
occurrence or absence of M. edulis and potential hybrids of
M. edulis × M. galloprovincialis in the two studied regions.
Given the morphological similarities among the three taxa,
identification to the species level was uncertain in UK1 and
UK4, with most identifications being kept to the genus level.
This may partly explain the similarity among the Scottish and
southern England sites in our dataset. Molecular identification
was not attempted here, but could help resolve some of these
taxonomic uncertainties in future work, as has been done
for Mytilus spp. (Wenne et al., 2020). Similarly, nematodes
were identified only to the phylum level, but did contribute
significantly to the observed differences in assemblages between
the Lusitanian and Lusitanian-Boreal regions. Identification to
the species level would likely further differentiate these two
regions (Bhadury et al., 2006). Overall, our results indicate
strong differences in community composition that are related
to taxonomic turnover, which in turn indicates that species
ranges may better correspond with finer-scale biogeographic
partitioning within the northeastern Atlantic, as proposed by
Dinter (2001). Future studies that take into consideration more
extensive species inventories across phyla and habitats may
help refine our understanding of marine biogeography in the
northeastern Atlantic, and resolve some of the current discord
in various frameworks.

CONCLUSION

Our results highlight the importance of considering various
aspects of diversity in order to have a more comprehensive
understanding of the ecological processes that shape marine
communities, which will ultimately better inform conservation
strategies (Meynard et al., 2011; Villéger et al., 2013; Loiseau
et al., 2017). In the case of honeycomb worm reefs, the
environmental filtering that excludes some functional groups
from the reefs would not have been detected if only patterns
in taxonomic diversity had been examined. Similarly, the
high level of taxonomic turnover observed among and within
biogeographic regions would have been overlooked if functional
diversity had been considered alone. Examining multiple facets
of community diversity has enhanced our understanding of
the factors that shape assemblages associated with S. alveolata.
Preserving taxonomic diversity is and will continue to be valuable
for maintaining regional levels of species diversity (De Juan
and Hewitt, 2011). However, while many conservation programs
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prioritize the conservation of local taxonomic community
diversity (Socolar et al., 2016), considering the functional
complementarity of communities across broader spatial scales
in addition may prove to be more efficient in maintaining
healthy ecosystems (Mori et al., 2018). The results presented
here show that honeycomb worm reefs support high taxonomic
diversity, but functional diversity is more limited, with some
key functional groups (such as grazers) being absent from the
community. Adjacent habitats may therefore host very different
sets of species with equally important ecological roles. Benthic
homogenization and loss of complexity of the sea floor may
reduce overall functional diversity in the marine benthos (Airoldi
et al., 2008). Protecting a diversity of benthic habitats may
therefore be necessary for ensuring good ecosystem functioning
in marine communities.
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