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ABSTRACT: A general, versatile and automated computational algorithm to design any
type of multiwall nanotubes of any chiralities is presented for the first time. It can be applied
to rolling up surfaces obtained from cubic, hexagonal, and orthorhombic lattices. Full
exploitation of the helical symmetry permits a drastic reduction of the computational cost
and therefore opens to the study of realistic systems. As a test case, the structural,
electronic, mechanical, and transport properties of multiwall carbon nanotubes (MWCNT)
are calculated using a density functional theory approach, and results are compared with
those of the corresponding layered (graphene-like) precursors. The interaction between
layers has a general minimum for the inter-wall distance of ≈3.4 Å, in good agreement with
experimental and computed optimal distances in graphene sheets. The metallic armchair
and semiconductor zigzag MWCNT are almost isoenergetic and their stability increases as
the number of walls increases. The vibrational fingerprint provides a reliable tool to identify
the chirality and the thickness of the nanostructures. Finally, some promising
thermoelectric features of the semiconductor MWCNT are reproduced and discussed.

1. INTRODUCTION
In the last decades, with the advancement of nanotechnology,
different structures emerged, characterized by promising and
appealing properties. Such structures boosted the progress in
material sciences and fostered not only the research but also
the application of nanomaterials in the most diverse areas,
from medicine to electronic devices.1

Alongside the synthesis and the experimental character-
ization of such materials, the development of reliable
computational tools can be a good way to assess their
fundamental properties and explore the effects of chiralities,
thickness, and doping process to obtain a preliminary screening
of potentially interesting systems for technological and
scientific applications.
With this goal, in 2010, Noel and co-workers2 implemented

in the CRYSTAL program an original algorithm that fully
exploits the helical symmetry in a periodic contest and allows
the modeling and simulation of single-wall nanotubes
(SWNTs).3 In particular, by defining very few input
parameters, it is possible to design nanotubes of any diameter
and chirality, starting from slabs and/or bulk of different
materials. The ability of the code to deal with the ground state
properties, its accuracy, and generality has been widely
demonstrated.4−7 Moreover, more recently, ZnO/AlN/GaN
nanotubes have been fully characterized with respect to their
reactivity toward small molecules of catalytic interest.8−10

Unfortunately, this method only allowed single-wall modeling.
Double-wall nanotubes have been conveniently conceived by
wrapping a double-layer slab11,12 but in this kind of strategy,
the structure is subjected to a strain due to the wrapping

procedure that elongates the bonds and deforms the bond
angles. This deformation effect can lead to the calculation of
incorrect or unrealistic properties. Furthermore, the extension
to systems with more than two walls is neither direct nor
general. As far as we know, few studies have been done on
multiwall (MW) systems,13,14 perhaps for this very reason.
Experimentally, MW nanotubes are routinely synthesized

and studied. On the one hand, a greater thickness can be
deliberately sought to increase the strength of the material and
improve its performance. On the other hand, it can be difficult
to control the wall growth during the synthesis process so that
many nanotubes may have a thickness of a few nanometers,
which corresponds to some walls.
To fill the gap between the theory and experiment and to

turn the research in nanotubes more effective, it would be
desirable to have a tool to design, manipulate and computed
MW nanotubes. Hence, the above algorithm was extended by
Noel, based on an original scheme proposed by Dovesi, to
address M-wall nanotubes (M ≥ 2) obtained by wrapping any
type of layered material in different chiralities. This new tool
takes full advantage of the entire machinery and features of the
CRYSTAL package, especially with regard to the use of
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symmetry, with a great saving of time and computational
resources and the consequent ability to completely characterize
large systems.
As a first application, we carried out the study of multiwall

carbon nanotubes (MWCNT), as a prototype of the material
of both scientific and technological interest.
Carbon nanotubes15,16 (CNT) have many potential

applications in different fields, including biomedical sensor,
storage and energy conversion devices, nanoscale molecular
sieves, additives for polymeric bracket materials in catalytic
processes, etc.17−19 Their synthesis is often accompanied or
directed to the formation of multiwall structures, MWCNT.
These can have some characteristics similar to those of the
single wall but with greater structural stability and uniformity.
Or they may have a specific peculiarity, such as a lower thermal
conductivity,20,21 which make them interesting materials from
the point of view of technological applications; in this case as
thermoelectric materials.22 So, in documenting and exploring
the limitations and potential of the new tool, we have also
provided a first glimpse of challenging problems such as the
spectroscopic characterization of MWCNT and the engineer-
ing of semiconductor MWCNT to be exploited in thermo-
electric devices.
The paper is structured as follows: in the next section, the

method to model nanotubes is revised and generalized to the
case of multiwall systems. Then, the algorithm is tested on
different kinds of MWCNT, which are characterized with
regard to their structural, electronic, dynamical, and transport
properties. Results are compared with the experimental and/or
theoretical data, when available in the literature.

2. METHODS

2.1. Theory. CRYSTAL is a computational tool for solid-
state chemistry and physics, based on an original expansion of
the crystalline wave function to a set of localized Gaussian-type
orbitals, centered on each atom of the unit cell. Hartree−Fock
(HF), density functional theory (DFT), and hybrid methods
are available at a low computational cost due to full
exploitation of point and translational symmetry, both in the
direct and reciprocal space. In addition, CRYSTAL can deal, at
the same level of accuracy, with different dimensions (D):
zero-dimensional (0D) (molecules and polymers) one-dimen-
sional (1D) (nanotubes and nanowires) two-dimensional (2D)
(surfaces) and three-dimensional (3D) (bulk). In the case of
nanotubes, the use and exploitation of the additional helical
symmetry have provided a double benefit: (i) a particularly

friendly and simple input and (ii) the possibility to simulate
very large tubes.
Nanotubes are cylindrical structures periodic along a single

direction, usually defined as x. They can be modeled by
wrapping the corresponding 2D layer along the rolling vector,
R, defined as R = n1a1 + n2a2, where a1 and a2 are the lattice
vectors of the slab unit cell and (n1, n2) are integer numbers
that fully define the nanotube. In fact, |R| is the circumference
and the chiral angle, θ, is defined as the angle between R and
a1.

23 According to Hamada et al.,24 the chirality can be defined
as follows: armchair (n1, n1), zigzag (n1, 0), or chiral (n1, n2).
So, from R, the nanotube diameter D = |R|/π and the angle θ
can be calculated as

D d
n n n n

3 1
2

1 2 2
2

π
=

+ +
(1)

n n

n n n n
cos( )

2

2 ( )
1 2

1
2

1 2 2
2

θ =
+

× + + (2)

where d is the C−C bond length. Then, depending on R, two
other lattice vectors are uniquely defined in terms of 4 integers:
(i) the nanotube lattice parameter L, chosen as the shortest
vector perpendicular to R and defining the periodicity along x:
L = l1a1 + l2a2 (with l1 and l2 integers); (ii) the helical (i.e.,
roto-translational) vector H = h1a1 + h2a2, which posses a
rotational component along the circumference vector, R, and a
translational component along the lattice parameter, L, and
then determines the correspondence between a translation in
the flat slab with a roto-translation on the curved surface.
The periodicity along the tube axis, i.e., the existence of the

longitudinal vector L, is not satisfied for all possible 2D (slab)
lattices. In fact, the orthogonality condition between R and L
provides the following equation

l l n n

n l a n l a n l n l a a

R L a a a a( ) ( )

( ) cos 0

1 2 1 21 2 1 2

1 1 1
2

2 2 2
2

1 2 2 1 1 2 γ

· = + · + =

= | | + | | + + | || | =
(3)

However, this equation cannot be satisfied for any
combinations of a1, a2, and γ. The equation generates the l1/
l2 ratio, which is a rational number, whereas cos γ and a1, a2 are
real numbers. This is the reason why, among the five 2D
Bravais lattices, the hexagonal and square ones are the only
ones that can be wrapped in any chirality (n1, n2), whereas the
rectangular and rhombohedral can only give rise to (n1, n1) and

Figure 1. Rolling up a multiwall nanotube structure with CRYSTAL.
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(n1, 0) nanotubes, respectively, and it is not possible to roll up
any tube starting from an oblique lattice.25

Starting from the same theory used for the single-wall
nanotubes, the implementation of the multiwall nanotubes
follows. The novelty consists of the possibility to generate M
separately single-wall tubes, starting from a given 2D (or 3D by
cutting the proper slab) system, according to the rules just
outlined, as shown in Figure 1. That is, once the rolling vector
R of each wall is defined, the code calculates the corresponding
L and H vectors, and from the atoms in the asymmetric unit
generates the full nanotube.
The self-consistent field (SCF) cycle becomes a double-step

procedure: first, the wave function of each wall, with its own
symmetry, is calculated; then, eventually, using as initial guess
the density matrix just calculated for each tube, the energy of
the whole multiwall structure is computed. In the last step,
only common symmetry operators are kept. For sake of clarity,
the corresponding input examples are given in Table S1 of the
Supporting Information (SI).
In the case of geometry optimization, two procedures have

been implemented. The first, ruled by the OPTWALL
keyword, is a full optimization (atomic coordinates, cell
parameters, and volume) of each wall, as a separate moiety.
Therefore, with this option, each wall is relaxed as if it were
isolated. The second, controlled by the keyword OPTMULTI,
performs a complete optimization of the entire multiwall
system, and only the common symmetry operators (if any) are
retained along the process. The two strategies, documented in
Table S2, can be used together in the search for the minimum
energy configuration, potentially saving a lot of CPU time.
Besides, nanotube walls can be manipulated and reoriented

with respect to the others using two new keywords.
ROTWALL allows rotating the nanotube wall of any angle
between 0 and 360° along the periodic axis, x. TRANSWALL
performs a rigid shift of the atomic position of the selected wall
along the x-axis. Both options can be used in association with
the optimization keywords to optimize the interlayer stack.
Input examples are reported in Table S3.
2.2. Computational Setup. The calculations are per-

formed with a β version of the CRYSTAL code, using both the
generalized gradient approximated Perdew−Burke−Ernzerh
(PBE) functional26 and the global hybrid B3LYP,27 which
includes 20% of the exact exchange. To account for dispersion,
the B3LYP-D3 functional, as originally proposed by Grimme28

and implemented in the code, is also employed. Carbon atoms
are described by the standard all-electron basis set 6-21G*.29

The DFT integration is performed within a grid containing
99 radial and 1454 angular points, as specified by the
XXLGRID keyword.30 The accuracy of the truncation criteria
for the bielectronic integrals, Coulomb and HF exchange
series, is controlled by a set of five thresholds for which the
strict values of [8, 8, 8, 8, 16] are adopted. In the self-
consistent field (SCF) procedure, the shrinking factor for both
the diagonalization of the Fock matrix and the calculation of
the energy is set to 4, corresponding to 4 independent k-points
in the irreducible part of the Brillouin zone. The total and
projected density of states (DOS) and the band structure are
plotted using the same k-point sampling as in the SCF. The
vibrational frequencies at the Γ point were computed within
the harmonic approximation by diagonalizing the mass-
weighted Hessian matrix.31,32 Intensities were evaluated with
a Berry phase approach by the calculation of the atomic Born
tensors, and the corresponding infrared (IR) spectra are

produced using a Lorentzian shape with a full width at half-
maximum (FWHM) of 10 cm−1 attributed to each peak.33

The Seebeck coefficient (S) and the power factor (PF) of
semiconductor MWCNTs were calculated using the semi-
classical Boltzmann transport equation (BTE) theory,34 the
frozen band approximation, and assuming the energy
relaxation time for carriers as a constant parameter, derived
on the basis of experimental measurements.35

Carbon nanotubes are obtained from the roll-up of a single
sheet of graphite, i.e., graphene. Graphite belongs to the
hexagonal space group P63/mmc with unit cell parameters a =
2.47 Å and c = 6.60 Å, and consists of flat layers of hexagons of
carbon atoms. In each layer, the sp2-hybridized carbon atoms
are covalently bonded to three other carbon atoms. Starting
from the graphite bulk, it is possible to cut a one-layer slab,
orthogonal to the c axis, characterized by the four Miller
indexes [0001], and roll it up to design nanotubes of any
chirality. As an alternative, carbon nanotubes can be wrapped
starting from the slab, belonging to the point group P6/mm
with cell parameter a = 2.47 Å. The input files for both
possibilities are reported in Table S1.
It is worth noting that CNT are usually built starting from a

hexagonal cell, with γ = 60°, whereas the adopted convention
in CRYSTAL is γ = 120°, and this has to be carefully
considered while choosing the n1 and n2 parameters that define
the R rolling vector.2

Multiwall carbon nanotubes (MWCNT) are used as a test
case to verify the reliability of the implemented algorithm and
explore the generality of the method. Calculations were
performed on a set of double-wall (DW) systems, considering
the tubes obtained from both the bulk and the slab and with
different chiralities, i.e., armchair, zigzag, and chiral. Then, to
investigate the influence of the number of walls on the
electronic structure and mechanical properties, starting from
the most stable armchair and zigzag double-wall systems, a set
of MWs of increasing diameter, with M > 2, has been designed
and characterized.
Graphene (gr), and the corresponding single-wall(SW)

tubes, were simulated and optimized at the same computa-
tional level to allow a fruitful and unavoidable comparison. In
particular, the multiwall stability is discussed according to the
following two quantities. The formation energy per atom, Eform,
is defined as the energy difference with respect to an optimized
M-layers slab of graphene

E
E

n
E

n
(MW) (Mgr)

form
MW Mgr

= −
(4)

where E(MW) and E(Mgr) are the energies of the optimized
M-wall nanotube and M-layer graphene, respectively, and nx
are the number of atoms in the corresponding reference cells.
The inter-wall energy, Eiw, which is an estimate of the
interaction between walls, normalized on the number of walls,
M

E
M

E E

n
1

( 1)

(MW) (SW)
iw

M M

MW
=

−
− ∑

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (5)

where EM(SW) are the energies of the isolated single-wall
nanotubes. In this case, an estimate of the basis set
superposition error (BSSE) is provided adopting the counter-
poise method, proposed in the 1970s by Boys and
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Bernardi.36,37 The corrective term, EBSSE(SW), is calculated for
each wall as

E
E E

n
(SW)

(SW ) (SW )
BSSE

f f
ghosts

SW
=

−
(6)

and added to Eiw. The two quantities in the equation above
refer to the energy of the single nanotube frozen in the final
MW optimized geometry, isolated, E(SWf), and surrounded by
ghost functions placed in the same position of the other walls,
E(SWf)

ghosts, respectively.

3. RESULTS AND DISCUSSION
3.1. Internal Check. After several tests on different

structures, based on their relative stability, we have selected
three double-wall carbon nanotubes, namely (7,7)@(12,12),
(12,6)@(20,10), and (11,0)@(20,0) as the representative of
different chiralities; see Table 1. The internal consistency and
the accuracy of the computational scheme were verified by
exploring the following possibilities: (A) tubes are built starting
from the 3D or 2D precursor; (B) relaxed or unrelaxed M-
layers are used as a starting point; (C) the two optimization
procedures (OPTWALL+OPTMULTI vs OPTMULTI) are
compared.

The three strategies provide the same final results in terms of
total energy, atomic positions, lattice parameters, band gap
(Egap), and Mulliken charges. The difference is in the required
CPU time, which for the present simple models is not essential
but can become crucial when hundreds or thousands of atoms
are involved. It is worth saying that the very high symmetry
characterizing each tube, which is fully exploited during the
OPTWALL procedure, is generally lost in the MW calculation
in which few (if any) symmetry operators are retained.
With regard to (C) tests, the two optimization procedures

provide equivalent results, as documented in Figure S1, and
the OPTWALL + OPTMULTI option is the most time-
efficient.
Finally, the TRANSWALL and ROTWALL options, which

can become a useful tool for materials with more complex
structures that may require elaborate modeling, were tested. In
the case of carbon wall nanotubes, the possibility of exploring
these further degrees of freedom is particularly interesting
because of the well-known influence of the interlayer stacking
on the main properties of graphene-like materials.38,39

The translation along the periodic axis occurs without any
energy barrier, both at the PBE and B3LYP-D3 levels. Instead,
by rotating the outer wall of the armchair (7,7)@(12,12) and

Table 1. Structural Properties of the Armchair, Zigzag, and Chiral Double-Wall Nanotubesa

nAT C−C C-Ĉ-C dIW Din Dext Egap Eform nsym ncyc CPU

Armchair
(6,6)@(12,12) 72 1.43 119.6 4.08 8.28 16.44 0.0 0.062 24 7 806
(7,7)@(12,12) 76 1.43 119.7 3.46 9.69 16.48 0.0 0.056 4 10 5804
(8,8)@(12,12) 80 1.44 120.3 3.02 10.79 16.66 0.0 0.076 16 11 2490
(9,9)@(12,12) 84 1.44 119.7 2.06 11.79 17.35 0.0 0.162 12 14 5626

Zigzag
(10,0)@(20,0) 120 1.43 119.9 3.93 7.95 15.81 0.45 0.080 40 12 2650
(11,0)@(20,0) 124 1.43 120.0 3.63 8.76 15.84 0.34 0.076 4 13 10 494
(12,0)@(20,0) 128 1.43 120.1 3.26 9.47 15.84 0.07 0.085 32 33 6281
(13,0)@(20,0) 132 1.45 119.1 3.03 10.16 16.09 0.02 0.095 4 15 23 277
(15,0)@(20,0) 140 1.47 121.5 2.81 11.37 16.78 0.00 0.200 20 25 11 345

Chiral
(6,12)@(10,20) 448 1.43 119.7 4.16 12.57 20.89 0.11 0.043 8 11 450 176
(7,14)@(10,20) 476 1.42 121.0 3.12 14.56 20.80 0.16 0.050 2 13 1 460 165

aThe number of atoms (nAT), bond lengths (C−C), bond angles (C-Ĉ-C), inter-wall distances (dIW), internal and external diameters (Din and Dext),
the fundamental energy gap, Eform, at the PBE level, and the number of symmetry operators (nsym) are reported. Distances are in Å, angles in
degrees, and energies in eV. For a single SCF, the number of cycles, ncyc, and the total CPU time, in seconds, on 16 processors of an Intel Xeon 3.00
GHz cluster, are reported.

Figure 2. Energy dependence (PBE, in meV) on the orientation of the outer tube. The same trend is calculated at the B3LYP-D3 level. Left and
right panels represent the armchair (7,7)@(12,12) and zigzag (11,0)@(20,0) DW nanotubes when the outer wall is rotated between −4.3° < γ <
4.3° while the inner wall is kept fixed.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c01682
J. Phys. Chem. A 2021, 125, 4003−4012

4006

http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.1c01682/suppl_file/jp1c01682_si_001.zip
https://pubs.acs.org/doi/10.1021/acs.jpca.1c01682?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c01682?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c01682?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c01682?fig=fig2&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c01682?rel=cite-as&ref=PDF&jav=VoR


of the zigzag (11,0)@(20,0) nanotubes between −4.3 and 4.3°,
we obtained the energy curves as in Figure 2. This angle
represents the difference in degrees between two equivalent
inner/outer-wall configurations. In the case of armchair
(zigzag), a rotation of 2° yields a configuration that is 0.05
(0.03) eV more stable than the starting one, indicating that a
favorable stacking of the layers can significantly stabilize the
structure.
3.2. Structures and Energies. The first set of calculations

was performed on double-wall (DW) nanotubes exploring the
three chiralities, armchair, zigzag and chiral, and the effect of
the inter-wall distance. The main results are collected in Table
1 and Table S4.
In general, the distortion with respect to graphene is

uniformly distributed over all of the atoms of the lattice as
imposed by symmetry. Bond angles and distances deviate by
only a small amount from those of the planar geometry. In
particular, the distances between adjacent carbon atoms are in
the range of 1.42−1.47 Å, while in the two layers of graphite,
the average C−C length is 1.43 Å. The C C C‐ ‐ Ĉ-Ĉ-C angles
present a small deviation from the ideal value of 120°.
The effect of symmetry on the CPU time is evident when

comparing the (6,6)@(12,12) and (7,7)@(12,12) DW
nanotubes, which have 24 and 6 symmetry operators,
respectively. Given the same number of SCF cycles to
converge and a negligible difference in the number of atoms
in the cell, it can be argued that the CPU speed-up is
proportional to the ratio of the number of symmetry operators.
The formation energy of these systems is found as a balance

between two contributions, the strain energy, defined as the
force to wrap M-flat surfaces, and the inter-wall interaction.
Regardless of the functional adopted, Eform is always positive

indicating that a given amount of energy is needed to
synthesize these materials starting from their 2D precursor. As
expected, the less stable structures, with higher Eform, are those
with the smallest inter-wall distance and the most distorted
geometries in terms of bond lengths and angles.
Interestingly, the two structures with the lowest formation

energy, the armchair (7,7)@(12,12) and the zigzag (11,0)
@(20,0), have an interlayer distance of diw = 3.46 and 3.63 Å,
respectively. These values are extremely close to that of 3.35 Å
measured in graphite40 and of 3.48 Å recently determined for
bilayer graphene41 and only slighter longer than the
experimental inter-wall distances of 3.41−3.35 Å observed
for multiwall carbon nanotubes by Saito et al.42 The good
agreement with the experimental data confirms that the
algorithm is able to predict the most likely structures. It can
therefore be concluded that (7,7)@(12,12) and (11,0)
@(20,0) double-wall systems are almost iso-energetic, so that
both armchair and zigzag chiralities can be obtained, as already
stated in the previous work on single-wall carbon nanotube9

and confirmed by several experimental findings.43

Then, starting from (7,7)@(12,12) and (11,0)@(20,0), two
sets of nanotubes up to 5 walls, of increasing outer diameter,
are drawn, keeping the distance between the walls equal to the
optimal value of diw = 3.46 and 3.63 Å for armchair and zigzag,
respectively. Structural details are reported in Table S5. The
largest 5W tubes have a diameter of ≈37 Å, already in the
order of some synthesized experimental samples.44,45 The
formation energies, computed according to eq 4, using a fully
optimized M-layer sheet of graphite as a reference system, are
shown as a function of the MW diameter in Figure 3. In
accordance with experimental observation, Eform decreases as
the number of walls increases. For the largest armchair and

Figure 3. Eform, at the PBE level, for armchair and zigzag MW nanotubes of an increasing number of walls. For both chiralities, Egap as a function of
the outer wall diameter is also reported (red curves).

Table 2. The (7,7) Tube Contains 28 Carbon Atoms. Number of Atoms, nAT, Inter-wall Distance, dIW, Eform and Inter-wall
Energy BSSE Corrected as Evaluated at the PBE, B3LYP and B3LYP-D3 Level Are Reported. Energies Are in eV per Atom

PBE B3LYP B3LYP-D3

nAT dIW Eform Eiw
BSSE dIW Eform Eiw

BSSE dIW Eform Eiw
BSSE

@(11,11) 72 3.01 0.089 0.0568 2.96 0.080 0.0747 2.89 0.056 −0.0119
@(12,12) 76 3.41 0.056 0.0155 3.51 0.034 0.0203 3.40 0.030 −0.0221
@(13,13) 80 4.11 0.050 0.0024 4.07 0.031 0.0119 3.38 0.039 −0.0193
@(14,14) 84 4.76 0.049 0.0001 4.94 0.021 0.0007 4.74 0.049 −0.0109
@(15,15) 88 5.63 0.046 0.0002 5.44 0.018 0.0003 5.47 0.051 −0.0059
@(16,16) 92 6.13 0.044 0.0002 6.13 0.015 0.0002 6.16 0.051 −0.0035
@(18,18) 100 7.51 0.040 0.0001 7.49 0.010 0.0001 7.48 0.049 −0.0014
@(20,20) 108 8.85 0.036 0.0000 8.93 0.007 0.0001 8.83 0.046 −0.0006
@(30,30) 148 15.83 0.026 0.0000 15.91 0.001 0.0000 15.65 0.003 0.0000
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zigzag systems, containing 340 and 580 atoms in the reference
cell, respectively, Eform = 0.03 and 0.04 eV/per atom.
Finally, to explore the inter-wall interaction as a function of

the inter-wall distance, a set of armchair (7,7)@(X,X)
characterized by outer walls at an increasing distance was
designed, ranging from diw = 2.85 (for X = 11) to diw = 15.8
(for X = 30). Structural and energetic details of this DW
family, as evaluated at the PBE, B3LYP, and B3LYP-D3 levels,
are reported in Table 2. For all functionals, the BSSE
correction does not change either the general trend or the
position of the minimum, resulting in negligible inter-wall
distances up to 5 Å. The interlayer distances, as evaluated at
the B3LYP-D3 level, are slightly shorter than those in PBE and
B3LYP geometries. On the contrary, the functional adopted is
crucial in determining the correct energy balance of these
structures. As expected, an attractive interlayer interaction is
calculated only at the B3LYP-D3 level, confirming the
fundamental role played by the dispersive forces in these
materials.
3.3. One-Electron Properties. The band structure and

density of states (DOS) of the most stable DW systems,
namely the (7,7)@(12,12) and (11,0)@(20,0), are calculated
and discussed with reference to the corresponding properties

of the single-wall nanotubes. The results are summarized in
Figure 4.
In the case of armchair SW nanotubes, there are two evident

Dirac cones, one in the conduction band and the other in the
valence band, that intersect each other at a single k point,
determining the metallic behavior of these systems; see Figure
S3. In the DW structure, the Dirac cones of the two nanotubes
almost overlap, giving rise to two points of intersection and an
enhancement of the conductivity.
Zigzag SWs present a band gap that decreases as the

diameter of the tube increases. The resulting DW structure
retains the semiconductor character, although the Egap is
smaller than those of the two isolated tubes.
The projected density of states (PDOS) on the different

atomic orbitals of the carbon atoms can provide useful
information on the band composition around the Fermi
surface. The py and pz are symmetry-equivalent and their
contributions are equal, whereas px is oriented along the
periodic direction. Also in the case of PDOS, both the
armchair and zigzag DWs conserve the main features of the
SW constituents. In particular, s shells contribute to the lowest
part of the valence band, px orbitals contribute to the region
slightly higher in energy, and py and pz are the ones responsible
for the bands immediately below and above the Fermi level.

Figure 4. Band structure and density of states for armchair (7,7)@(12,12) (left) and zigzag (11,0)@(20,0) (right) DW nanotubes. The
corresponding features for the single-wall tubes are reported in Figure S3. To facilitate comparison, the bands have been shifted to bring the Fermi
level of each system to coincide with zero.

Figure 5. IR spectra of 2W and 3W nanotubes, at the PBE level, are shown in the region of the soft modes (left panel) and high frequencies (right
panel). The spectra of the single-wall (7,7) and (12,12) are added for comparison.
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These last bands determine most of the properties related to
electronic mobility (chemical reactivity but also conductivity)
and are indeed particularly interesting.
In the case of zigzag MWCNT, the band gap decreases as

the number of walls increases, ranging from 0.30 eV for M = 3
to 0.08 eV for M = 5; see Table S5. The persistence of a
semiconductor character in these rather stable nanostructures
paves the way for the study of their transport properties and
potential thermoelectric performance.
3.4. Lattice Dynamics. IR and Raman frequencies in Γ

were calculated at the PBE level for two sets of nanotubes: the
armchair [(7,7) and (12,12) SW, (7,7)@(12,12) and (7,7)
@(12,12)@(17,17) MW] and the zigzag [(11,0) and (20,0)
SW, (11,0)@(20,0) and (11,0)@(20,0)@(29,0) MW].
The first-order experimental Raman spectrum of carbon

nanotubes exhibits a line at 1582 cm−1 due to the stretching of
the C−C bond.46 Our calculated values, around 1520 and
1540 cm−1 for armchair and zigzag, respectively, are in rather
good agreement with the experimental findings; see Figure S5.
The weak interactions between layers have almost no effect on
the MW Raman fingerprint, as can be seen from the
coincidence between the DW and the single-wall signals.
Furthermore, the difference between the two sets is below the
numerical precision, and therefore, it is practically impossible
to determine the chirality by calculating the Raman spectra of
such materials.
The IR spectra for armchair and zigzag, shown in Figures 5

and S4, are qualitatively in good agreement with the
experimental vibrational modes obtained by Kastner et al.46

for carbon nanotubes. Transmission infrared spectra show one
broad and asymmetric line at 1575 cm−1 and a line at 868
cm−1. Interestingly, we found IR signals at 1550 and 680 cm−1

only for the armchair nanotubes, while the zigzag spectra
showed a single intense peak around 690 cm−1. This
substantially different spectral profile, whose shape is
maintained as the number of walls increases, could allow the
identification of the chirality of the nanotube without
ambiguity.
Moreover, despite the low values of Eiw, the spectral

fingerprint of 2W and 3W tubes presents original features
that could help determine the thickness of the nanostructures.
In the armchair tubes, the signal corresponding to the wagging
out-of-plane vibration of the carbon atoms (680 cm−1 for SW)
becomes a doublet, and then a triplet, for the 2W and 3W
multiwall. In addition, in the region of the soft modes, two/
three small but distinct peaks emerge at their respective single-
wall signals. For zigzag structures, new down-shifted signal(s)
appear, corresponding to the same displacement of the carbon
atoms, as occurring in the 2(3) tubes.
To summarize, IR spectroscopy can provide clear

information on both the chirality and thickness of MW
nanotubes.
3.5. Transport Properties. We explored the thermo-

electric performance of semiconducting MWCNT in the frame
of the Boltzmann transport formalism.47 To validate our
method and evaluate the effect of multiple walls on these
properties, we first calculated the Seebeck coefficients for
SWCNTs. The results, shown in Figure 6, can be summarized
as follows: (i) S increases with decreasing the diameter of the
nanotube as a consequence of the narrowing of the band gap,
in qualitative agreement with the recent experimental results;48

(ii) in accordance with theoretical predictions,49,50 the peak of
S is nearly an order of magnitude higher than those observed

experimentally.51,52 To comment on this discrepancy, it can be
noted that the Seebeck coefficient is highly sensitive to the
position of the Fermi energy, which in turn is controlled by the
carrier density. A small shift toward lower values of the
chemical potential provides values for the thermopower in the
range of the experimental findings. In particular, Nakai et al.48

found a positive sign for S, indicating hole-like carriers and a
value of ≈170 μV K−1 for SWCNT with a mean diameter of ≈
20 Å. Our (29,0) tube has a diameter of 23 Å, and the
calculated thermopower at 300 K is S ≈ 280 μV K−1 for a
chemical potential that is 50 meV lower than that of the Fermi
level.
Then, we compute the Seebeck coefficient for MWCNTs. As

measured in several samples, we found that the thermopower is
almost one order of magnitude lower than in SW. Moreover, as
the number of walls increases, the progressive narrowing of the
gap causes a decrease in S with the consequent disappearance
of any thermoelectric power. Both these features are
documented in Figure 7, where S is reported for the zigzag
multiwall, with M > 4, at 300 K. In the inset, the thermopower
of the double wall is compared with that of the SW. The most
interesting system seems to be the double-wall (11,0)@(20,0).
Its thermoelectric behavior shows interesting features that
partially reproduce the experimental results of Miao et al.22

The dependence of S and of the power factor on temperature
is well reproduced and is shown in Figure 8: as T increases, the
Seebeck coefficient decreases while the PF increases slightly.
Moreover, the value of S, corresponding to the maximum of
PF, which occurs for a chemical potential of −4.7 eV, is 36.7
μV K−1, a value that is within the experimental range of 40−30
μV K−1 as reported by Miao.22

Based on these preliminary results, interesting insights could
be hypothesized that unfortunately fall outside the scope of
this paper. In particular, to investigate the effect of different
chirality on the band gap and simulate the doping process,
which can significantly reduce the thermal conductivity with a
sensitive improvement in the thermoelectric figure of merit.

4. CONCLUSIONS
In this paper, a general-purpose robust scheme to model
multiwall nanotubes by rolling up layers cutting from
hexagonal, square, and rectangular lattices is presented. The
entire set of the CRYSTAL3 features can be conveniently used

Figure 6. Seebeck coefficient at 300 K for zigzag SW nanotubes of
increasing diameter. The peak value for (11,0) S = 1300 μV K−1,
which is in perfect agreement with that calculated by Hung et al. for
the same system.50
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to characterize these one-dimensional periodic materials and to
explore their potential technological applications. The full
exploitation of helical symmetry allows for a particular user-
friendly input design, conveniently reduces the computational
cost, and permits the treatment of large systems. In addition,
there is always the possibility to perform a consistent internal
check of every computed property with respect to its values in
the precursor two-dimensional materials.
The algorithm is applied for the first time to a family of

systems of technological and scientific interest as the multiwall
carbon nanotubes.
This preliminary investigation has shown that by working on

chirality, inter-wall distance, and thickness (i.e., number of
walls), it is possible to design rather stable semiconductors to
be used as innovative materials for promising application in the
field of carbon-nanotube-based thermoelectric devices.
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Figure 7. Seebeck coefficient at 300 K for zigzag MW nanotubes (11,0)@(20,0), (11,0)@(20,0)@(29,0), and (11,0)@(20,0)@(29,0)@(38,0).
Inset: S of (11,0)@(20,0) is compared with those of the two constituent tubes to highlight the different orders of magnitude.

Figure 8. Seebeck coefficient of (11,0)@(20,0) at different temper-
atures. Inset: the power factor at different temperatures: its peak
occurs at −4.7 eV, corresponding to a carrier concentration of 4 ×
1022 cm−3.
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