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1.  Introduction
Land surface water area (hereafter LSWA) is of paramount importance to the survival of all life forms (Kar-
patne et al., 2016). Water not only provides habitat for aquatic organisms but also affects various aspects 
of human life, such as for agricultural, domestic and industrial purposes (Vörösmarty & Sahagian, 2000). 
LSWA is highly dynamic and variations therein can be used as a direct indicator of climate change (Wil-
liamson et al., 2009) or human-induced changes (Pekel et al., 2016). LSWA is thus an essential variable in 
ecological, hydrological, climatic, and economic studies (Hirabayashi et al., 2013; Raymond et al., 2013; 
Willner et al., 2018). For such applications, accurate water information at adequate spatiotemporal resolu-
tion is crucial.

Estimation of LSWA relies on three methods: ground surveys, remote sensing, and models. Among these 
methods, ground surveys cannot fully describe the water dynamics due to their slow updating frequency 
(Carroll et al., 2009; Lehner & Döll, 2004) and the significant cost of covering a large spatial domain. Re-
mote sensing using satellites is an outstanding method that can provide regular large-scale observations of 
water surfaces. Various satellites have been used to identify LSWA, including Landsat (Pekel et al., 2016; Qi 
et al., 2009), MODIS (Ji et al., 2018; Lai et al., 2014), and a combination of passive and active microwave 
satellites (Prigent et al., 2007; Schumann & Moller, 2015). Hydrodynamic models provide another method 
for estimating water area and dynamics. They are a powerful tool that can produce continuous water maps 
over time and space, regardless of weather (e.g., cloudy) or vegetation cover. Moreover, models are the only 
way to hindcast the water surface in the past before satellites were launched (Lewin & Hughes, 1980) and 
forecast the future changes when no observational results exist (Hirabayashi et al., 2013). Over the past two 
decades, several hydrodynamic models have been developed (e.g., LISFLOOD-FP, HEC-RAS, MIKE-Flood, 
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DELFT3D, and CaMa-Flood) and tested under various conditions (Bates & De Roo, 2000; Dingle et al., 2020; 
Pappenberger et al., 2005; Patro et al., 2009; Yamazaki et al., 2011). For a detailed review of flood inundation 
models, refer to Teng et al. (2017).

Modeling of river hydrodynamics builds on a process chain from climate forcing to runoff and then to rout-
ing. While the simulation of river discharge is relatively straightforward, as it is explained mainly by the 
basin-integrated water budget, simulation of modeled LSWA is more difficult, as it is affected by local topog-
raphy in addition to the basin-wide water budget. Therefore, estimates of LSWA contain multiple sources 
of uncertainties and require validation against observational results, which are generally satellite-derived 
inundation maps. Due to the need for high-quality large-scale topography data and model parameters as 
well as high computational capacity, most validations have been conducted for small catchments (e.g., the 
10 km Alzette River (Schumann et al., 2007) and 60 km Severn River (Horritt, 2006)). These studies mainly 
compared inundation during specific flood events within a short period against inundation maps at a rela-
tively high spatial resolution (Horritt, 2000, 2006; Khan et al., 2011; Revilla-Romero et al., 2015; Schumann 
et al., 2007; Try et al., 2018; Wilson et al., 2007), with a primary focus on evaluating whether the model could 
reasonably reproduce the flooding distribution in the region of interest.

However, those local studies are insufficient for determining the capacity of a model to represent the water 
surface extent under different conditions. For example, previous local studies have generally investigated 
the ability of a model to map inundation in the form of open-to-sky floodplains, and have not tested model 
performance on other water forms, for example, the lakes which account for 1.8% of the land area over the 
globe (2.4  106 km2, Lehner & Döll, 2004) or potential paddy field which is up to 1.3  106 km2 (Dong & 
Xiao, 2016). In addition, model validation at the local scale cannot attribute simulation errors to globally 
consistent issues related to the model assumptions or satellite characteristics or to locally varying error 
sources such as topography, channel parameters and input forcing data. Therefore, application and vali-
dation at large scales, from continental to global, are required to clarify the applicability of hydrodynamic 
models under various conditions and for different water forms.

By reducing the spatial resolution and improving the computation capacity, flood model applications have 
been expanded to the scales of large river basins (Try et al., 2018; Wilson et al., 2007), continents (Decharme 
et al., 2008; Schumann et al., 2016) and the globe (Decharme et al., 2012; Yamazaki et al., 2011). Global 
Inundation Extent from Multi-Satellites (GIEMS) data, which were first released in 2007 and have been 
occasionally updated (Papa et al., 2010; Prigent et al. 2007, 2020), provide the most frequently used ref-
erenced satellite inundation maps for validation of model performance over large areas and long term. 
Wu et al.  (2019) compared global modeling results with fractional water cover retrieved from enhanced 
brightness temperatures acquired by the Soil Moisture Active Passive (SMAP, Chaubell et al., 2018) mission. 
However, both of these applications fail to provide information on smaller water bodies due to their coarse 
spatial resolutions of 25 and 9 km, respectively, and therefore they cannot answer the question of whether 
such water surfaces are well represented by global flood models. Moderate Resolution Imaging Spectrora-
diometer (MODIS, 500 m; Ji et al., 2018) and Landsat (30 m; Pekel et al., 2016) products might be useful for 
answering this question, as they provide global water surface area data at a much finer spatial resolution, 
which can adequately represent individual water bodies. However, these two new products have not yet 
been utilized for large-scale model validation.

As noted above, various types of water bodies are formed and impacted by different external forcing factors 
and land surface conditions (Ji et al., 2018; Lehner & Döll, 2004; Pekel et al., 2016). Satellite-derived results 
from different sources will deviate in their estimates of water extent, depending on the location and size 
of the water bodies, as well as the weather and land surface conditions at the time of observation (Aires 
et al., 2018; Huang et al., 2018; Lamarche et al., 2017; Notti et al., 2018; Pham-Duc et al., 2017). Although 
multiple satellite-derived results have been used for validating hydrodynamic model performance, we have 
not sufficiently investigated when applying to validation how good the satellites themselves can identify 
different water types at a large scale. Meanwhile, hydrodynamic models have specific physics and limita-
tions, and it is not possible to represent all types of water bodies accurately using existing model structures 
and physical assumptions. In order to make the comparison between models and satellites more reliable, 
Decharme et al.  (2012) subtracted cropland area from GIEMS data to validate their model performance 
since their model did not include human processes. However, similar data pre-processing is neglected in 
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most current studies, making interpretation of the agreement or mismatch between model and satellite 
difficult and sometimes misleading. Analyzing results with necessary pre-processing or under the same 
certain conditions will be helpful to understand the real model characteristics and provide more reliable 
estimations.

In this study, we estimate global LSWA using the Catchment-based Macro-scale Floodplain model (Ca-
Ma-Flood), a global hydrodynamic model, at a much finer spatial resolution (3″) than previous global-scale 
model validation studies. The estimation focuses not only on floods but also includes other water forms 
under normal conditions. Evaluation is conducted against the Landsat water-occurrence product (Pekel 
et al., 2016). We discuss where the model and Landsat measurements agree and where globally consistent 
mismatches occur that can be reasonably explained by the limitations or characteristics of the model or 
satellite, rather than locally varying error sources. Then, we introduce various filtering masks and land cov-
er conditions used to make reasonable and adequate comparisons of water surface areas between models 
and satellites. Finally, we provide instructions for improving the comparisons, including areas where the 
comparison of raw values from models and satellites are valid, the types of water surfaces that cannot be 
captured by model simulations, and the filters that should be applied to conduct appropriate comparisons.

2.  Materials and Methods
2.1.  Satellite Products

2.1.1.  Landsat

The historical global surface water occurrence data (GSWO, https://global-surface-water.appspot.com) used 
in this study were generated by Pekel et al. (2016) based on three million Landsat satellite images obtained 
between 1984 and 2015. The months in which water was present were recorded. Water occurrence was 
estimated as the ratio of months with water to the entire time period, excluding time points with invalid 
data (missing data, cloud or snow cover). This exclusion will affect the accuracy of estimates, especially in 
tropical regions where the cloud index is high and at high latitudes where snow cover is common. Due to 
the availability of its high-resolution and long-term data, the Landsat water-occurrence product has been 
used as a reference for water classification (Ji et  al.,  2018; Senyurek et  al.,  2020). The original Landsat 
water-occurrence product has a spatial resolution of 1″ (∼30 m at the equator), which is aggregated to 3″ 
(∼90 m) to match the minimum spatial resolution of CaMa-Flood. Details of the processing of the Landsat 
water-occurrence product can be found in the original study (Pekel et al., 2016).

2.1.2.  GIEMS

The GIEMS product is derived from a series of satellite sensors, primarily passive microwaves (Special 
Sensor Microwave/Imager, SSM/I), with additional data from visible and near-infrared observations and 
active microwave measurements. GIEMS is originally calculated on an equal-area grid of 0.25° at the 
Equator, and has been interpolated in this study to regular grids of 0.25°  0.25° globally for comparison 
with the other products. GIEMS is available monthly, and the latest version, GIEMS-2, extends the availa-
ble period to 1992–2015 (Prigent et al., 2020). For details of data processing, see previous studies (Prigent 
et al., 2001, 2007, 2020). In this study, Landsat water-occurrence data were used as the primary reference, 
with GIEMS as a supplementary data set to explain differences in water surface areas between the model 
and Landsat.

2.2.  CaMa-Flood

CaMa-Flood is a global hydrodynamic model for continental-scale rivers. River networks are discretized 
into irregular unit catchments with sub-grid topographic parameters of river channels and floodplains. 
River discharge and other flow characteristics can be calculated using the local inertial equations along the 
river network map (MERIT Hydro, Yamazaki et al., 2019). Water storage in each catchment unit is the prog-
nostic variable, and is determined using the water balance equation. The water level and flooded area are 
identified from the water storage in each unit catchment based on the sub-grid topographic information. De-
tailed descriptions of CaMa-Flood can be found in the original papers by Yamazaki et al. (2011, 2012, 2014).
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2.2.1.  Model Settings

The overall workflow of this study is illustrated in Figure 1. We ran CaMa-Flood globally from 2001 to 2014. 
The unit catchment in CaMa-Flood was set to 0.1° resolution (∼10 km), meaning that only one unit catch-
ment was assigned to each 0.1°  0.1° grid. This resolution is high for global studies, but still inadequate, 
especially in coastal regions and mountainous headwater catchments where multiple small rivers occur 
within a grid. As an input runoff for CaMa-Flood, we used eartH2Observe runoff data produced by the 
land surface hydrological model HTESSEL and forced with WFDEI weather boundary conditions (Balsa-
mo et al., 2009). Runoff was provided at 0.25° pixels, and therefore was distributed to each unit catchment 
according to the areal proportion of the unit catchment in the corresponding grid. The model has been 
validated in recent studies by Eilander et al. (2020) and Hirabayashi et al. (2021). In this study, only a scat-
ter comparison of the mean discharge and annual maximum discharge with discharge observations from 
Global Runoff Data Center (GRDC, https://portal.grdc.bafg.de) for 172 gauges over the world is provided 
as Figure S1.

2.2.2.  Downscaling

Although 0.1° is a high-resolution for global modeling, it is insufficient for representing small water bodies 
and rapid changes in the water surface area (Fluet-Chouinard et al., 2015; Winsemius et al., 2013). There-
fore, the CaMa-Flood outputs were downscaled to 3″ using high-resolution topography information (MER-
IT DEM, Yamazaki et al., 2017), which is directly comparable to the high-resolution Landsat occurrence 
product. The downscaling process was based on the fundamental assumptions of CaMa-Flood that the 
movement of water within a unit catchment is instantaneous and that the water surface is flat within the 
unit catchment at each time step. The area of the lowest elevation is inundated first, until the total water 
volume approximates the estimated water storage of the unit catchment. To reduce the computational cost, 
we first calculated the depth-duration curve (i.e., the cumulative number of days on which the water level 
was above different elevations at an interval of 0.1 m) for each unit catchment in each year. Downscaling 
was conducted by projecting the number of days when the water surface elevation of the flooded unit catch-
ment exceeded the ground elevation of the corresponding 3″ DEM pixel. The downscaled inundation water 
extent was estimated using the same flood duration for a given elevation. The final result is approximately 
equal to the result from direct downscaling (i.e., first downscaling the simulated flood depth for each day 
and later aggregating the inundation days), but this process saved significant time, as the number of repeats 
used for downscaling was efficiently reduced.
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Figure 1.  Flow chart of data preparation for water surface area from CaMa-Flood and two other data types derived 
from satellite remote sensing (Landsat and GIEMS). GSWO stands for the Global Surface Water Occurrence estimated 
by Landsat. CaMa-Flood, Catchment-based Macro-scale Floodplain model; GIEMS, Global Inundation Extent from 
Multi-Satellites.

https://portal.grdc.bafg.de
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2.3.  Occurrence Selection

Water occurrence ranges from 0% in non-water areas to 100% in permanent water areas. In this study, we 
aim to evaluate the abilities of the model and satellite data to capture different types of water bodies, and 
therefore we primarily examine areas with water occurrences greater than 10%. The water area above this 
threshold includes permanent water and most seasonal water. This threshold removes areas that are flood-
ed only during very extreme flood events, to compare general trends between the model and the satellite 
data. This threshold also reduces the impact on water-area estimates of high sensitivity at the tail end of 
the low-occurrence criterion. Such a low threshold reduces the impact of cloud obstruction, as the affected 
areas are generally counted. The sum of the water areas with greater than 10% occurrence is the LSWA 
discussed in this study (Figure 1). The resolution is 3″, which is aggregated to 0.25° for better visualization 
and comparison with other products at 0.25° resolution (e.g., GIEMS). Meanwhile, water surfaces with dif-
ferent occurrences can be mapped as needed for interpretation of the features present in model and satellite 
results for specific regions.

2.4.  Spatial Masking

Using the data-processing steps described above, occurrence data from CaMa-Flood and Landsat are both 
available at 3″ resolution. However, due to the properties of the model and satellites, discrepancies in water 
surface area occur with typical spatial patterns at the global scale, which are associated with various land 
surface conditions. To facilitate comparison, we applied different filtering masks (maps, 3″) to water-surface 
products from these two sources (Figure 1). Therefore, differences are grouped within the same land surface 
condition, allowing the source of the difference to be attributed to the limitations or characteristics of the 
model or satellite.

2.4.1.  CaMa-Flood Floodplain Mask

A land mask excluding all marine areas was applied to the Landsat occurrence product prior to comparison, 
as marine coasts are included in the Landsat data set. The land mask was prepared from a global hydrogra-
phy data set (MERIT Hydro) (Yamazaki et al., 2019), which is also used as the baseline map for CaMa-Flood. 
Applying the land mask to Landsat data ensures that the two water-surface products cover the same spatial 
extent of land.

The water surface in CaMa-Flood is based on a few assumptions. First, all water from the input runoff data 
(including rainfall-runoff and snowmelt, Balsamo et al., 2009) directly enters the river channel, and the wa-
ter surface is formed by routed river discharge in river networks. Water bodies that are recharged from other 
sources (e.g., shallow groundwater appearing at the surface, tides, or pluvial flooding due to local rainfall, 
melting snow and ice) and local depressions other than river channels are therefore not modeled. Second, 
CaMa-Flood assumes that the water surface is flat within each unit catchment (Figure 2a); however, this as-
sumption is invalid for rivers with high surface gradients, particularly mountainous springs. Third, because 
only one major river can be represented in each unit catchment, small coastal rivers are neglected in favor 
of major rivers. Underestimation of the water surface area is apparent at the local scale, especially where 
small water bodies (e.g., narrow rivers, small lakes, and coastal rivers) are abundant. Although such water 
surfaces are relatively small, they can be captured by Landsat (Pekel et al., 2016).

Therefore, we prepared a floodplain mask that defines the potential maximum extent that can be simulated 
by CaMa-Flood (red line in the schematic diagrams in Figures 2b and 2c) based on CaMa-Flood sub-grid 
topography. This mask is accomplished through inundation area downscaling from the historical maxi-
mum floodplain water elevation for each unit-catchment estimated by CaMa-Flood from 2001–2014. We 
increased these values to 1.5 times to consider the impact of uncertainties in runoff forcing on CaMa-Flood 
(Figures 2b and 2c), and we set values below 2.0 m (but above 0) to 2.0 m for the same purpose. The flood-
plain mask was then applied to the Landsat occurrence product to separate the results within and outside 
the potential maximum extent covered by CaMa-Flood. CaMa-Flood does not represent water outside this 
floodplain mask due to its modeling structure, and therefore water outside the floodplain mask in Landsat 
is excluded from comparisons when the floodplain mask is applied.
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In addition, as CaMa-Flood calculates the hydrodynamics of only one major river within each unit catch-
ment corresponding to a 0.1° grid box, only inundations of floodplains along the major river within each 
0.1° grid box are simulated. Thus, inundations in small coastal river basins are not represented due to the 
assumptions of CaMa-Flood, and are excluded from the floodplain mask to allow for direct comparison 
against the Landsat water map.

2.4.2.  European Space Agency Climate Change Initiative (ESA CCI) Land Cover Map

The ESA CCI land cover map was utilized in this study to determine land surface conditions (see Figure S2 
for the details about the classifications, http://maps.elie.ucl.ac.be/CCI/viewer/download.php). Water sur-
face areas with different land cover types were grouped and compared between the model and satellite 
results to illustrate the relationship of water surface area with the land cover type (e.g., forests, croplands, 
and wetlands). The original CCI product was at 300 m spatial resolution, which was interpolated to 3″ using 
a simple nearest-neighbor interpolation method.

2.4.3.  Tree Density Map

A limitation of optical satellites is that clouds and thick vegetation cannot be penetrated, thus, the water 
under clouds and thick vegetation is difficult to be detected. In the Landsat occurrence product, images 
with cloud cover are removed, but the impact of vegetation cannot be eliminated from the observations 
(Pekel et al., 2016). Although the CCI land cover map also contains information regarding trees, it does not 
provide tree density, and the performance of model or satellite data differs with the level of tree density. 
Therefore, we prepared a global tree density map (Hansen et al., 2013), which was originally at 3″ resolu-
tion. This high-resolution tree density was averaged to 0.25° for better visualization and comparison with 
other 0.25° maps (Figure S3). The density is a percentage value from 0 to 100, with higher values indicating 
denser vegetation. The maximum tree density is found in the Amazon River Basin, the Congo River Basin 
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Figure 2.  Schematic diagrams of (a) the river and floodplain representations in CaMa-Flood, (b) the realistic river profile and floodplain mask applied in this 
study, and (c) the different water bodies (e.g., rivers, local depressions, streams from hill slopes, coastal rivers, and irrigated fields) and the floodplain mask as 
well as an illustration of the results from Landsat. The floodplain is approximated as a monotonically increasing function in CaMa-Flood, and therefore land 
water surfaces on hill slopes, local depressions, irrigated fields and coastal rivers are not well represented. The floodplain mask was introduced to exclude water 
areas that are not represented by CaMa-Flood from the analysis. In (a), S: surface area, D: water depth, subscript f  denotes floodplain, r represents the channel. 
Three parameters for river channel: channel length, L, channel width, W  and bank height, B. Z is channel altitude (i.e., the elevation of the top of the bank). fA  
is the projected area of the floodplain.  f fD D A  is a floodplain elevation profile for each unit-catchment. Ac is the area of the unit-catchment. More details 
about the denotations can refer to Yamazaki et al. (2011). CaMa-Flood, Catchment-based Macro-scale Floodplain model.

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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and the Indonesian Islands. Notably, the tree density value does not indicate the height of vegetation or the 
thickness of leaves, especially in high-latitude regions where needle-leaved or short vegetation dominates.

2.4.4.  Static Permanent Water Mask

Although channel bathymetry is considered in the model simulation using sub-grid parameters, underwa-
ter topography is not considered in the downscaling procedure because the high-resolution MERIT DEM 
represents mean water surface elevations over all water body pixels. Thus, the downscaled flooded water 
depth represents the water depth above the MERIT DEM, and not water stored below the MERIT DEM 
surface. This process leads to underestimation of CaMa-Flood water surface area during low-water seasons 
when water remains within a sub-grid river channel. Therefore, we extracted the permanent water surface 
where the occurrence is 100% (dark blue line in Figure 2) from the Landsat data. Permanent water is present 
with high confidence. If necessary, CaMa-Flood results within the static permanent water mask can be es-
timated during post-processing by modifying the transitory water (occurrence < 100%) to permanent water 
(occurrence = 100%).

3.  Results
3.1.  Global Land Surface Water From the Model and Landsat

Figure 3 shows the global distribution of land surface water with occurrence greater than 10%. The original 
data set has 3″ (∼90 m at the equator) spatial resolution, which is aggregated to a 0.25° grid for better vis-
ualization. In total, the estimated water surface area is 3.98 million km2 (hereafter Mkm2) in CaMa-Flood 
and 5.53 Mkm2 in Landsat. Except in Greenland, very little water surface is estimated by CaMa-Flood in 
mountainous (e.g., the Rocky Mountains and the Andes Mountains) and dry regions (e.g., Northern Africa, 
Central Asia, and central Austria) (gray in Figure 3a). The lack of water estimates in such areas is either due 
to insufficient surface runoff to form water bodies in dry regions or due to difficulty in representing rivers 
in mountainous areas by CaMa-Flood. In the Landsat water-occurrence product, the corresponding regions 
have larger values than CaMa-Flood, although the absolute values are still small (shown with values lower 
than 20 km2 per 0.25° grid in Figure 3b). As a result, the difference between the two datasets is very small 
in mountainous and dry regions (shown as gray in Figure 3c). Both CaMa-Flood and Landsat can delineate 
rivers and lakes. Large water surface areas (dark blue in Figures 3a and 3b) are shown for lakes (e.g., the 
Caspian Sea, the Great Lakes, and Lake Victoria), large rivers (e.g., the Amazon, the Ob, and the Yangtze) 
and delta regions (e.g., the Mekong, Ganges, and Indus Deltas).

The two methodologies tested in this study show good agreement in water surface area, especially over lakes 
(e.g., the Great Lakes, Caspian Sea, Lake Baikal, Lake Victoria, and Tonle Sap Lake) (Figure 3c). Strong 
agreement is also found along major rivers, aside from the Amazon and river deltas, for which differenc-
es are difficult to identify (Figure 3c). The differences show apparent spatial patterns (Figure 3c). Lower 
estimates are obtained from CaMa-Flood than from satellite data for high-latitude regions, especially in 
the Canadian Shield and in the lower Ob River. Other differing regions included the Tibetan Plateau, the 
middle-lower reaches of the Yangtze and Ganges, and certain rivers in central Asia and northern Europe. 
In contrast, larger water surfaces are found along the Amazon and Indonesian rivers in CaMa-Flood. In 
addition, higher values are found in many river deltas such as those of the Nile, Mississippi, Congo, Tigris & 
Euphrates, Indus, and rivers in Southeast Asia. Two typical regions with high values are in South Sudan and 
the lower Tarim River in China. These discrepancies (overestimation and underestimation) are explained 
and discussed in the following sections, along with additional masks and the topographic maps used in this 
study.

3.2.  Analysis With the CaMa-Flood Floodplain Mask

The extent of the CaMa-Flood floodplain mask is shown in Figure 4a. The floodplain mask is the theoretical 
boundary where CaMa-Flood may simulate inundation. As the floodplain mask has been enlarged from 
that used in real simulations, applying the floodplain mask does not change the results of CaMa-Flood. 
However, only part of the water surface in the Landsat data set falls within the floodplain mask (marked as 
“W.FM” in Figure 4b), with a total of 4.20 Mkm2 LSWA located within the floodplain mask.
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Figures 4c and 4d show the proportion and amount of water surface in Landsat that falls within the flood-
plain mask relative to the total LSWA, respectively. At 0.25° spatial resolution, the areal ratio is near 1.0 for 
large lakes and rivers (Figure 4c), indicating that these large-scale water types are well covered by the Ca-
Ma-Flood floodplain mask. Low ratios of water surface are found on hill slopes, especially in mountainous 
areas. An example is given of the upstream Missouri River (Figure 5). The yellow color shows the extent 
of the CaMa-Flood floodplain mask, which covers the main river channel and most smaller tributaries. 
CaMa-Flood and Landsat tend to produce the same water surface in the main channel (blue in Figure 5a). 
Because the floodplain mask was already extended from the historical maxima of modeled flood extent, 
some small tributaries lack water in both the simulation results and satellite observations. Outside the 
CaMa-Flood floodplain mask (Figure 5b), Landsat is able to detect small water areas scattered across hill 
slopes, which cannot be modeled by CaMa-Flood due to its physical assumptions. As shown in the enlarged 
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Figure 3.  Global land water surface areas with water occurrences greater than 10%. (a) Results from CaMa-Flood, and (b) results from Landsat. (c) Differences 
between CaMa-Flood and Landsat in terms of the fraction of each grid. Original results are at 3″, but they are aggregated to 0.25° gridded values for 
visualization. The area in km2 and the fraction are values within each 0.25° by 0.25° grid. Areas with no water surface (<0.01 km2) are masked out. CaMa-Flood, 
Catchment-based Macro-scale Floodplain model.
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topographic map (Figure 5c), the water surface is not continuous, and the distribution of the water surface 
is not consistent from lower elevations to higher elevations within each unit catchment. This inconsistency 
is caused by the unique kettle lake landform (Figure 5d) of the Missouri Plateau, which is formed by re-
treating glaciers or draining floodwaters rather than surface river flows (Phillips & Gleckler, 2006). Another 
typical kettle lake landform is found in the Western Siberian Plain, near the Arctic Circle. However, for hill 
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Figure 4.  (a) Distribution of the CaMa-Flood floodplain mask over the globe (3″). (b) Landsat LSWA within the 
floodplain mask (named as Landsat (W.FM)). (c) The ratio of Landsat (W.FM) to total Landsat LSWA. (d) The difference 
in the value of Landsat (W.FM) from the total Landsat LSWA. b,c and d are illustrated at 0.25° resolution for better 
visualization. The values are for each 0.25° by 0.25° grid. CaMa-Flood, Catchment-based Macro-scale Floodplain model; 
LSWA, land surface water area.
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slopes other than this kettle lake landform, the main cause of water surface area underestimation in Ca-
Ma-Flood is the invalid assumption of a flat water surface used for downscaling.

Because the water surface area on hill slopes is relatively small and not widely distributed throughout the 
world, the cumulative area difference is not apparent (Figure 4d) in these regions. Instead, large differenc-
es are found in the Canadian Shield, where the coverage ratio is high. An enlarged map (Figure 6) shows 
that within the floodplain water mask, CaMa-Flood tends to have a good ability to delineate large water 
bodies (lakes) and long rivers. The two methods have consistent results for large lakes (blue in Figure 6a). 
However, many local water depressions are not represented in the floodplain mask (red in Figure 6b). These 
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Figure 5.  Water surface estimates from CaMa-Flood and Landsat for the source of the Missouri River: (a) comparison within the CaMa-Flood floodplain mask, 
and (b) comparison outside the floodplain mask. (c) Landsat water mask (occurrence > 10%) over the topography of the target region indicated in (a) and (b). 
(d) Google Earth image of the target region marked in (c). CaMa-Flood, Catchment-based Macro-scale Floodplain model.

(a) Within mask (b) Outside of mask

Both

Only
CaMa-Flood

Only 
Landsat

CaMa-Flood 
Floodplain 
Mask

101.8oW 101.4oW101.7oW 101.6oW 101.5oW

48.3oN

47.9oN

48.0oN

48.1oN

48.2oN

(c) Enlarged map with elevation (d) Google Earth Image

Figure 6.  Maps showing the consistency of the water surface prediction between CaMa-Flood and Landsat for the Canadian Shield. (a) Comparison within 
the CaMa-Flood floodplain mask, and (b) comparison outside the floodplain mask. (c) Google Earth image of the target region marked in (c). CaMa-Flood, 
Catchment-based Macro-scale Floodplain model.
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smaller water bodies are fed by meltwater (from glaciers, snow or permafrost; Gilbert & Shaw, 1994; Shilts 
et al., 1987, Van Huissteden et al., 2011) and likely by shallow groundwater, which is not considered in the 
forcing of CaMa-Flood. Therefore, the model results are significant underestimations of water surface area 
compared to the Landsat product by 83.7% in the sample 10° by 10° tile (Figure 6). Similar to the kettle lake 
landform, the distribution of wetlands in the Canadian Shield is scattered (Figure 6c), and most local water 
depressions are not modeled in CaMa-Flood.

Other typical regions where the CaMa-Flood floodplain mask cannot cover the water surface identified 
by the satellite include coastlines, especially those around mainland China and the Bay of Bengal (see an 
example of the Indus Delta in Figure S4). On the one hand, the spatial resolution of CaMa-Flood is 0.1°, 
which is insufficient to represent the large number of small rivers along the coast. On the other hand, water 
surface area is caused not only by land-origin water, but also tidal inundation of lowlands, which is not 
considered with the current settings of CaMa-Flood. These small coastal rivers and lowlands do not belong 
to CaMa-Flood catchments.

By applying the floodplain mask, the total global water surface area for Landsat decreases from 5.53 Mkm2 
to 4.20  Mkm2. The underestimation of water surface area is reduced from −1.55  Mkm2 (−28.1%) to 
−0.22 Mkm2 (−5.2%). However, applying the floodplain mask does not alter the spatial patterns of differ-
ences between the two results (Figure 7a) relative to Figure 3c. Underestimation by CaMa-Flood occurs 
mainly at high latitudes, while overestimation is found mainly in low-latitude areas around the Equator 
(Figure 7c). Although the masking effect is also stronger at high latitudes, the pattern is unaffected, like-
ly because we used a floodplain mask with a relatively modest threshold (see Section  2.4.2) to account 
for potential errors in runoff forcing and avoid overestimating the predictive ability of CaMa-Flood. We 
can expect some water outside the CaMa-Flood simulation ability range to be included in the floodplain 
mask. The following sections will explain the remaining differences between the model and satellite results 
(e.g., underestimation at high latitudes, overestimation at low latitudes).
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Figure 7.  Map of differences between CaMa-Flood and Landsat data after masking (in terms of the fraction of grid area); (b) and (c) show the longitudinal and 
latitudinal summaries of the differences in area. Overestimation and underestimation are displayed in blue and red, respectively. The solid line represents the 
results before masking, while the dashed line represents the results after masking. CaMa-Flood, Catchment-based Macro-scale Floodplain model.
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3.3.  Analysis of Land Cover Types

In this section, we discuss the types of water surfaces that can be captured by CaMa-Flood or Landsat 
by investigating the relationship of water surface with land cover type. The total water surface area cor-
responding to different land cover types is illustrated in Figure 8, and related statistics are presented in 
Table 1. The land surface classes were applied to Landsat both before (gray) and after (blue) applying the 
floodplain mask. Application of the CaMa-Flood floodplain mask reduced the water surface extent obtained 
from Landsat by 0.36 Mkm2 (−10.7%) of water bodies (cci_code = 210), and by 0.96 Mkm2 (−44.8%) of other 
areas. The impact varies among land cover types (Figure 8b, Table 1). The impact of masking is significantly 
greater in areas covered with permanent snow and ice (cci_code = 220, −90.8%). Water bodies present in 
areas with snow or ice land cover are generally located in local depressions or on high mountains, and there-
fore are considered to occur outside the floodplain mask. The impact of masking is also strong in coasts 
(cci_code = 170, −65.1%), mainly due to the limitation of CaMa-Flood in representing small coastal rivers.

Many small water bodies are found at high latitudes with needle-leaved tree cover (cci_code = 70, 0.25 Mkm2), 
sparse vegetation (cci_code = 150, 0.17 Mkm2), or lichens and mosses (cci_code = 140, 0.15 Mkm2) (see 
distributions in Figure S5). Such water bodies are difficult to simulate with CaMa-Flood, as 48.5%, 69.7%, 
and 59.2%, respectively, of the water surface area from Landsat, is removed with the CaMa-Flood floodplain 
mask. The reason for this discrepancy was explained using the example of the Canadian Shield in the previ-
ous section, as many water bodies within local depressions are excluded from CaMa-Flood. For other land 
cover types, the effect of masking is less significant. The main reason for this difference could be that small 
water bodies fed by local runoff are not represented in the model. The CaMa-Flood floodplain mask may 
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Figure 8.  Comparison of LSWA among groups of land cover types. All land cover types other than water bodies (cci_code = 210) are grouped in the type 
“others” in (a). The orange bars represent the results of CaMa-Flood. The gray bars represent Landsat observations before application of the CaMa-Flood 
floodplain mask, and the blue section represents the results of Landsat after applying the floodplain mask. A list of cci_code values and definitions of the 
land cover types is attached (ESA, 2017). All land cover types can be categorized as cropland-related land cover types, forest-related land cover types, short 
vegetation, wetland-related land cover types and others including water bodies (shown in different colors in the list and figure). CaMa-Flood, Catchment-based 
Macro-scale Floodplain model; LSWA, land surface water area.
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also miss areas that are seldom flooded, causing further differences asso-
ciated with masking. On the other hand, such small water bodies might 
not be precisely represented at the original resolution of the CCI (300 m).

In terms of the differences between CaMa-Flood and Landsat after 
masking, excluding water bodies (cci_code  =  210) and the aforemen-
tioned land cover types (cci_code = 70, 140, and 150) at high latitudes, 
CaMa-Flood results are higher than Landsat results. The regions with 
the largest differences included forest-related regions (cci_code  =  50), 
with an overestimation of 0.25 Mkm2 (441.6%) in CaMa-Flood, and crop-
land-related regions (cci_code = 10 and 20, +0.09/0.08 Mkm2), with an 
overestimation ratio greater than 66%. For regions with short vegetation 
or wetlands, the modeled water surface in CaMa-Flood is generally larger 
than that from Landsat, except in regions concentrated at high latitudes. 
However, the reasons underlying the differences between CaMa-Flood 
and Landsat differed among land cover types. These reasons will be dis-
cussed in the following sections.

3.3.1.  Forest-Related Regions

Optical sensors have difficulty detecting surface water when clouds or 
vegetation are present. Invalid data collected on cloudy days were re-
moved when calculating the water occurrence based on Landsat (Pekel 
et al., 2016). Given that we investigate the water area with occurrence 
larger than 10% (see section 2.3), the effect of clouds can be minimized 
to a low level. However, the impact of vegetation is hard to be eliminated 
especially where tree density is high and dominated by evergreen levees. 
A typical region affected by thick vegetation is the Amazon River Basin 
(Figure 9a). In this case, Landsat is able to detect water only along the 
main channels where tree density is relatively low (Figure 9c). In contrast, 
CaMa-Flood can simulate floodplain water along the main channel (Fig-
ure 9b), even in regions with thick vegetation. This improvement is relat-
ed to the tree bias removal in the MERIT DEM, upon which CaMa-Flood 
is built (Yamazaki et  al.,  2017). In terms of the spatial pattern, at tree 
densities lower than 30%, CaMa-Flood and Landsat have high consisten-
cy for water surface estimation (blue in Figure 9d), while at tree densities 
greater than 30%, only CaMa-Flood can model the water surface effec-
tively (green in Figure 9e). A histogram of the summed area (Figure 9f) 
shows that when tree density is greater than 60%, the difference in water 
surface area between Landsat and CaMa-Flood will increase significant-
ly. As noted above, GIEMS is based mainly on microwave observations, 
and thus can detect water covered with thick vegetation. Because GIEMS 
has relatively a low spatial resolution (0.25°), the water surfaces from Ca-
Ma-Flood and Landsat were also aggregated to 0.25° (Figures 9g and 9h). 
Notably, CaMa-Flood values are similar to those in GIEMS, especially 
along the mainstream channel, whereas Landsat had low values in that 

map tile. The histogram plot (Figure 9f) also shows similar values for CaMa-Flood and GIEMS, especially 
when the tree density is less than 90%. However, as GIEMS cannot detect small water surfaces easily due to 
its coarse spatial resolution, the water surfaces in smaller tributaries are not well captured when the water 
surface is less than 10% of the fractional coverage of equal-area grid cells (Figure 9i, Papa et al., 2010). Such 
differences are mainly distributed in areas where the river density is very low and vegetation is dense (Fig-
ure 9b). As a result, the total water surface area obtained from GIEMS for tree densities above 95% is only 
half of the corresponding value from CaMa-Flood (Figure 9f).
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CCI code
CaMa-
flood Landsat

Landsat 
(W.FM)

Diff. Due 
to masking 

(%)
Diff. 

(Mkm2)
Diff. 
(%)

C0 C1 C2 C3 C4 C5 C6

10 0.21 0.22 0.12 −47.3 0.09 80.7

20 0.20 0.16 0.12 −27.9 0.08 66.6

30 0.07 0.04 0.02 −44.7 0.05 244.4

40 0.06 0.04 0.02 −43.1 0.04 187.7

50 0.30 0.07 0.06 −23.1 0.25 441.6

60 0.09 0.04 0.03 −40.2 0.07 259.2

70 0.06 0.25 0.13 −48.5 −0.07 −54.8

80 0.03 0.06 0.04 −36.9 −0.01 −14.6

90 0.01 0.02 0.01 −42.0 0.00 0.5

100 0.06 0.05 0.03 −42.2 0.03 88.4

110 0.01 0.01 0.00 −46.1 0.00 81.9

120 0.18 0.11 0.06 −44.4 0.11 186.0

130 0.09 0.15 0.08 −48.9 0.02 20.9

140 0.00 0.15 0.04 −69.7 −0.04 −89.6

150 0.04 0.17 0.07 −59.2 −0.02 −34.1

160 0.12 0.04 0.03 −22.9 0.09 283.3

170 0.02 0.04 0.01 −65.1 0.00 29.5

180 0.24 0.26 0.18 −32.3 0.07 39.2

190 0.01 0.02 0.01 −52.6 0.00 11.6

200 0.15 0.22 0.12 −43.3 0.02 19.4

210 2.01 3.38 3.02 −10.7 −1.01 −33.4

220 0.00 0.01 0.00 −90.8 0.00 30.9

Summary 3.98 5.53 4.20 −24.0 −0.22 −5.3

The areas for Landsat before and after application of the floodplain mask 
are both shown. Areas, where the water area is larger than 0.1 Mkm2, are 
shown in bold. C0: CCI land cover map codes (as defined in Figure 8); C1: 
water surface area in CaMa-Flood; C2: water surface area in the original 
Landsat result; C3: water surface area in Landsat within the CaMa-Flood 
floodplain mask; C4: the change ratio of the Landsat water surface with 
the application of the floodplain mask (C4 = (C3-C2)/C2*100); C5: water 
surface area difference between CaMa-Flood and Landsat after applying 
the floodplain mask (C5 = C1-C3); C6: difference ratio between CaMa-
Flood and Landsat (C6 = C5/C3*100%).

Table 1 
Comparisons Between LSWA Estimates Based on CaMa-Flood and Those 
Derived From Landsat Data (unit: Mkm2)
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Similar situations occur in Indonesia (Figure S6) and the Congo River Basin (see Figure S5, cci_code = 50 
and 60), as CaMa-Flood has higher values than Landsat where the tree density is high. However, the results 
from CaMa-Flood are much closer to the GIEMS values, which are not affected by vegetation, indicating the 
superior performance of CaMa-Flood compared to Landsat in these areas. CaMa-Flood results are higher 
than those of GIEMS over regions of very high tree density (>90%), where numerous small, narrow rivers 
may flow through forests.

3.3.2.  Cropland-Related Regions

In cropland-related areas (cci_code = 10 and 20), CaMa-Flood tends to estimate larger water surface areas 
than does Landsat (Figure 7c). Such regions are mainly distributed around river deltas including those of 
the Nile, Indus, Mekong, Chao Phraya in Thailand, Irrawaddy in Myanmar (shown in Figure 10a), and 
lower Mississippi. This difference is likely caused by man-made infrastructures that regulate river flows for 
human purposes.
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Figure 9.  Comparisons of surface water area in CaMa-Flood, Landsat, and GIEMS for the central Amazon River Basin. (a) Tree density; (b) and (c) surface 
water occurrences in CaMa-Flood and Landsat at 3″; (d) and (e) indicate the consistency of water surface results from CaMa-Flood and Landsat using 
categories of tree density lower and higher than 30%. (f) Histogram of the water surface areas in CaMa-Flood, Landsat and GIEMS in terms of tree density. (g)–
(i) Spatial maps of water surface area (occurrence >10%) at 0.25° from CaMa-Flood, Landsat and GIEMS, respectively. CaMa-Flood, Catchment-based Macro-
scale Floodplain model; GIEMS, Global Inundation Extent from Multi-Satellites.
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Slight differences are found for agricultural and flood defense structures, as canals built for irrigation will 
alter natural topography and flow paths. In contrast, the construction of flood defenses (e.g., levees) only 
increases the height of the riverbank, while maintaining the natural river flow path. In low plains where 
agriculture is dense and developed, irrigation water is transferred by pumping water from rivers, which 
then flows through canals. These canals, especially the smallest ones, are not represented in the model, and 
therefore flowing water is assumed to spread over a large area rather than flowing through canals. On the 
other hand, due to the presence of canals, the flow path is no longer natural. Thus, the flow directions as-
sumed from natural topography are invalid. The continuity of flow is also affected by numerous floodgates. 
These differences cause inaccuracy in the downscaling of flooding to the high-resolution inundation map. 
The effect of canals is especially apparent for river deltas in dry climates (e.g., the Nile River, the Tigris & 
Euphrates Rivers and the Lower Indus River). Levees are built to protect residences and farms from the 
effects of river floods or tides. In CaMa-Flood, the height of riverbanks is estimated through empirical re-
gression, which does not represent the real conditions of the rivers (see Data and Methods). The presence 
and height of levees are also neglected, which increases the possibility of flooding in CaMa-Flood estimates.

The Nile Delta has one of the highest population densities in the world. This region includes large urban 
areas (red color in CCI map, Figure 10c), with major cities located along the main river channel. Although 
observational evidence is lacking, there must be levees along the river channel, resulting in the water sur-
face estimated by Landsat aligning perfectly with the main channel (and canals) and not covering the riv-
erbanks (Figure 10b). In contrast, a high occurrence of the water surface is estimated by CaMa-Flood along 
riverbanks and in flat plains used for agriculture (Figure 10a, green color in Figure 10d). As a result, the Ca-
Ma-Flood results show larger water areas compared to Landsat and GIEMS, which represent reality better. 
The constraint of levees is also found in the lower Mississippi River, where houses are built along tributaries 
(Figure S7), as well as in Baghdad, the capital city of Iraq, where the Tigris River flows through an urban 
area (Figure S8).
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Figure 10.  Comparisons of surface water areas based on CaMa-Flood and Landsat, as well as CCI land cover types, for the lower Nile Delta region: (a) and (b) 
show the water occurrences obtained from CaMa-Flood and Landsat, respectively; (c) is a land cover map; (d) shows the differences in water coverage between 
CaMa-Flood and Landsat (occurrence >10%); and (e) is a histogram of water surface area against tree density. CaMa-Flood, Catchment-based Macro-scale 
Floodplain model.
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Another possible reason for the overestimation of water surface area when using CaMa-Flood relative to 
Landsat is the lack of water losses (e.g., re-infiltration, evaporation, and water consumption) in the routing 
processes. This impact is stronger for rivers in dryer regions (e.g., the Tarim, Tigris and Euphrates Rivers). 
In the example of the Tarim Basin (Figure 11), water surface areas are found with a high occurrence at 
the foot of the Tian Shan Mountains and around a small tributary to the north of the main Tarim River 
stem. However, no large water surface is detected in the Landsat data. In this area, a large proportion of 
water is extracted for irrigation. Due to the local soil properties and high rate of potential evaporation, the 
amount of water remaining in some rivers will be much less than that calculated by CaMa-Flood. Therefore, 
only seasonal rivers (occurrence less than 90%) are identified using Landsat data (Figure 11f). Discontin-
uous river flow in the lower Tarim has been reported in the media and documented in the literature (Xu 
et al., 2008). A similar situation can occur in the Tigris and Euphrates Rivers, as no supplemental water 
enters the lower river section before it reaches the lower delta. The loss of water to soil or evaporation to 
the atmosphere leads to a lower occurrence of small inundation areas in reality (Landsat) relative to the 
results of CaMa-Flood. Neglecting water consumption and evaporation also enhances the overestimation 
of CaMa-Flood results in the Nile Delta.

Exceptions to this trend, where CaMa-Flood underestimates the irrigated water surface area, are around 
the lower Ganges River in Bangladesh and the lower Yangtze River in China (see Figure S5, cci_code = 20). 
These two regions have very high densities of rice paddy fields (Dong & Xiao, 2016). Standing water in the 
rice-growing season is not represented in CaMa-Flood, while it is highly likely to be detected by Landsat. In 
these regions, soil moisture is much higher than elsewhere and the water surface area identified in GIEMS 
is higher than those of both CaMa-Flood and Landsat, as GIEMS may misclassify saturated soil as a water 
surface (Aires et al., 2018). Water surfaces in other areas of Northeastern China, the Lower Mekong Delta, 
and the Lower Irrawaddy River Delta are also underestimated by CaMa-Flood due to paddy fields (see 
Figure S5).

3.3.3.  Short Vegetation and Wetlands

In regions with short vegetation or wetlands, extraction of the real topography or river bathymetry becomes 
more difficult. Biases in the topography will have strong impacts on water surface estimation in such areas. 
In particular, CaMa-Flood overestimates the water surface area in Sudd Swamp in the Nile Basin, which is 
one of the world's largest wetlands (Figure 12a, shrub or grass, cci_code = 120 and 180). The Sudd Swamp 
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Figure 11.  Comparisons of surface water areas based on CaMa-Flood and Landsat, as well as CCI land cover types for the lower Tarim River: (a) and (b) show 
water occurrences from CaMa-Flood and Landsat, respectively; (c) is the land cover map; (d) shows the differences between water coverage from CaMa-Flood 
and Landsat (occurrence >10%); and (e) is a histogram of water surface area against occurrence level. (f) Google Earth image of the study region.
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region is extremely flat (blue in Figure 12c) and the land surface gradient of the floodplain is very difficult to 
discern in the MERIT DEM, even after error removal. Downscaling to a high resolution (3″) results in over-
estimation of the inundation extent due to inaccurately flat topography (Figure 12b). This effect is especially 
strong on estimates of water extent with occurrences greater than 95% (Figure 12d). For comparison, the 
water extent extracted from GIEMS is significantly smaller than that from CaMa-Flood, providing further 
evidence of overestimation by CaMa-Flood (Figure 12e). On the other hand, the GIEMS result is larger than 
that of Landsat, indicating the shortcoming of optical sensors for detecting water surfaces with vegetation 
cover. The re-infiltration of flooded water into the ground and evaporation are secondary reasons for the 
overestimation of CaMa-Flood, as these natural processes are not considered in the model. Similar regions 
can be observed in Figure S5 with cci_code values of 120 and 180 in the Pantanal in Brazil, Niger Inland 
Delta, and other areas.
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Figure 12.  Comparisons of surface water area estimate from CaMa-Flood, Landsat and GIEMS for the Sudd Swamp. (a) Land cover map; (b) and (c) show 
inundation maps (occurrence > 10%) from CaMa-Flood and Landsat at 3″ overlaid with the topographic map; (d) and (e) are histograms of water surface area 
against water occurrence and tree density, respectively. CaMa-Flood, Catchment-based Macro-scale Floodplain model; GIEMS, Global Inundation Extent from 
Multi-Satellites.

(e) Historgram with tree density
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3.4.  Static Permanent Water Mask

In the analysis described above, the underestimation of water surface area by CaMa-Flood was as high as 
1.01 Mkm2 (Figure 8, Table 1) in areas covered with water bodies (cci_code = 210), which made the largest 
contribution to the difference between model and satellite results. However, because the CCI land cover 
map was originally at 300 m resolution and was interpolated to 3″ and because the processing of CCI land 
cover classifications was based on a combination of observations, surveys and mathematical programs, 
the locations of water bodies were not precise (ESA, 2017). Therefore, in this section, the permanent water 
mask derived from the Landsat occurrence product was applied to the CaMa-Flood results to investigate the 
ability of CaMa-Flood to estimate water surface areas within and outside the water mask.

Within the permanent water mask, CaMa-Flood underestimates the water surface area by −1.03 Mkm2 in 
total for the globe (Figure 13a, Table 2). The underestimates are mainly concentrated at high latitudes (e.g., 
the Canadian Shield, Lake Erie, the Lower Ob River Basin, and two rivers in eastern Europe). Ignorance of 
water inputs to local depressions, which are treated as floodwaters and routed along rivers, may be the rea-
son for this underestimation. For regions outside the permanent water mask (Figure 13b), the spatial pat-

tern of regions with overestimated CaMa-Flood values does not change 
after the application of the permanent water mask. The underestimation 
by CaMa-Flood almost disappears with this mask, especially at high 
latitudes, indicating that underestimation by CaMa-Flood is primarily 
occurring within the permanent water mask. Underestimates obtained 
outside the permanent water mask are caused by rice paddy fields, which 
are identified as seasonal water areas in the Landsat product.

As the permanent water extent is obtained from Landsat, we can mod-
ify CaMa-Flood in post-processing to compensate for the limitation of 
CaMa-Flood in estimating permanent water surfaces under certain 
conditions. If all places previously identified as permanent water in the 
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Figure 13.  Differences in LSWA based on CaMa-Flood and Landsat (W.FM) within and outside the permanent water 
mask defined from Landsat data. The unit is the area for each 0.25° by 0.25° grid. CaMa-Flood, Catchment-based 
Macro-scale Floodplain model; LSWA, land surface water area.
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Landsat data are marked as water surfaces in CaMa-Flood, the total water surface from CaMa-Flood in-
creases to 5.57 Mkm2, which has a very little deviation from the Landsat result obtained without applying 
the floodplain mask (5.53 Mkm2, Table 2; because permanent water is sometimes outside the floodplain 
mask, we used the Landsat water extent without the floodplain mask for this comparison). Furthermore, 
the difference between the model and satellite results decreases to only 0.04 Mkm2.

In summary, we obtained the total water surface area based on water occurrence greater than 10% under 
various conditions. The original water extents were 3.98 and 5.53 Mkm2 based on CaMa-Flood and Landsat, 
respectively, a difference of −1.55 Mkm2. Within the CaMa-Flood floodplain mask, Landsat identified a 
water extent of 4.20 Mkm2. The underestimation by CaMa-Flood compared to Landsat was mainly with-
in the permanent water mask at high northern latitudes (2.21 vs. 3.24  Mkm2), while overestimation by 
CaMa-Flood was distributed in tropical regions and croplands within river deltas. Applying the Landsat 
permanent water mask to the CaMa-Flood increased the CaMa-Flood result from 3.98 Mkm2 to 5.57 Mkm2, 
which reduced the difference between model and satellite results to 0.04 Mkm2.

4.  Discussion
In this study, we investigated land water surface areas extracted from model simulations (CaMa-Flood) and 
compared the results with satellite-derived results, primarily from Landsat data. Due to the limitations of 
the model processes and assumptions for downscaling of low-resolution model results in high-resolution 
inundation areas, CaMa-Flood is not able to represent all types of water bodies that exist in the real world. 
At the same time, the satellite-derived results also have limitations related to the properties of the sensors 
and land surface conditions. Therefore, when comparing the two types of results, we applied filters to allow 
for the most reliable comparison. The agreements and mismatches between the model and satellite were 
discussed with example regions. The reliability of CaMa-Flood results and adaptions to ensure appropriate 
comparison of CaMa-Flood with other methods will be discussed in this section.

Only LSWA with occurrence estimates greater than 10% were selected for comparisons between the model 
and satellite methods in this study. This limitation markedly reduces the impact of clouds on the Landsat 
data, and also focuses the discussion on the types of water surfaces that can be captured by the model and 
satellite. Investigation of this broad occurrence range helps to control uncertainties due to model inputs 
and parameters. Meanwhile, 10% is not too close to 0%, where the modeled water extent is more sensitive to 
the threshold (see Figure 12d). One limitation of this study is that we did not investigate the water surface 
at a specific time, as the values in Landsat for each month are not measured simultaneously around the 
world. We also did not investigate the temporal variability in water surface as conducted previously (Wu 
et al., 2019), as the variability in our results is more closely related to the runoff series than to the accuracy 
of the inundation model. However, now that the long-term water surface area has been evaluated, we have 
the confidence to investigate temporal variations further and make reliable comparisons using the filter-
ing methods proposed in this study; such analysis will support more detailed discussions of local-scale or 
time-variant differences between the performance of the model and satellite.

The modeled water extent is based on a few fundamental assumptions and therefore its applicability is 
limited to certain conditions. The floodplain mask generated using CaMa-Flood results shows the full ex-
tent of the area that CaMa-Flood is able to model. Overall, 24% of the water surface identified by Landsat 
(1.33 Mkm2) was excluded when the floodplain mask was applied. The excluded area is mainly distributed 
at high northern latitudes and in coastal regions, where numerous local depressions and small rivers occur. 
Ignorance of local runoff into local depressions rather than routed river flow (e.g., glacial meltwater and 
shallow groundwater in the Canadian Shield, tidal effects along the coastlines) also reduces the coverage of 
CaMa-Flood. Springs on hill slopes are not well represented in CaMa-Flood due to its limited spatial resolu-
tion and the invalid assumption of a flat-water surface used for downscaling. To overcome the shortcomings 
of CaMa-Flood in modeling those small water bodies, the model's spatial resolution must be upgraded to 
represent more rivers. Currently, CaMa-Flood has a resolution of up to 1′ for routing, but this requires a 
dramatic increase in computational resources, as increasing the number of unit catchments also requires 
shortening the optimal time step for the Courant–Friedrichs–Lewy (CFL) condition. Due to its computa-
tional expense, such an improvement can be applied only to specific regions, rather than globally.
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CaMa-Flood provides larger water extent estimates compared to Landsat data in forest-related regions (e.g., 
the Amazon River), approximating the estimates of GIEMS. This difference indicates the advantage of this 
model compared to Landsat in areas with obstructions caused by vegetation or clouds. CaMa-Flood over-
estimates the water surface in cropland-related areas, as human water infrastructures (e.g., levees, canals, 
and dikes) are not yet represented in the model. Moreover, because water consumption from the systems for 
various uses (especially agriculture) is not considered, river discharge can be overestimated in CaMa-Flood 
compared to reality, which leads to a larger modeled water extent. This impact is cumulative until the end 
of the river (delta). Ignorance of these natural water dynamics in the routing process also leads to an over-
estimation of river flow in the model in lower delta areas (Dadson et al., 2010; Zhan et al., 2019). To prove 
this assumption, validation against discharge observations can be employed. In addition to overestimations, 
ignorance of human interventions can also lead to underestimations by CaMa-Flood in areas comprised of 
rice paddy fields where standing water can be detected by satellites but is not modeled. The extent of water 
in reservoirs formed by dams is not considered and will also lead to underestimation, although the impact is 
negligible at the global scale. Therefore, new modules for natural processes (e.g., re-infiltration and evapora-
tion), water infrastructure (e.g., levees and dikes) and human activities (e.g., irrigation and dam regulation) 
should be developed to better represent inundation processes.

Based on our analysis, most of the LSWA differences between the model and satellite show distinct spatial 
features and can be readily explained based on globally consistent reasons. However, some locally varying 
conditions also affected the results. First, we estimated only the water surface driven by a single runoff 
input (see Section 2.2.1). The biases in atmospheric forcing (i.e., WFDEI) and the Land Surface Model (i.e., 
HTESSEL) differ spatially among river basins (Pappenberger et al., 2010). Such biases are propagated to 
the LSWA estimates. Second, the channel parameters in CaMa-Flood (e.g., river width and river depth) are 
estimated through global regression with the estimated mean discharge with globally uniform roughness 
(Yamazaki et al., 2011, 2013). Thus, the bias from runoff generation is again propagated to estimates of 
the river channel parameters. On the other hand, the river channel parameters are affected by the type of 
material comprising the riverbed and riverbank, which varies significantly among river sectors (Dunne & 
Jerolmack, 2020). As these locally varying conditions are difficult to measure or correct for, we suggest the 
use of ensembles with multiple runoff inputs or parameter settings to evaluate the sensitivity of LSWA re-
sults and to possibly identify further globally consistent features.

Given the limitations of the downscaling process and model modules, the estimated water extent shows 
deviations from the Landsat results, especially at high latitudes in the Canadian Shield region. Although 
Landsat has its own limitations, especially related to water, valuable information can be obtained from 
the Landsat-derived results (e.g., permanent water areas). Within the permanent water mask identified 
based on Landsat data (occurrence = 100%), the CaMa-Flood estimate is 1.03 Mkm2 smaller than the value 
from Landsat (3.24 Mkm2). However, because Landsat determines permanent water with high confidence, 
we can add a post-processing step to CaMa-Flood whereby the water occurrence is modified to 100% for 
pixels identified as permanent water based on Landsat. In this case, the total water surface area estimated 
by CaMa-Flood increases to 5.57 Mkm2, showing very little deviation (0.04 Mkm2) from Landsat results 
(5.53 Mkm2). Although post-processing does not change the core structures or parameters of CaMa-Flood, 
this solution is an efficient way to obtain a reasonable result for total water surface area. Moreover, we also 
know in the high latitudes, we should focus on permanent water estimation, while in other places, we need 
to pay more attention to the seasonal/transitory water. Additional validation using available river discharge 
data and model calibration against observations is recommended for regional studies. Data assimilation us-
ing in situ or satellite-derived observations of water surface area would also be useful for improving the abil-
ity of CaMa-Flood to estimate water surface extent (Bates, 2012; Ogilvie et al., 2018; Schumann et al., 2009).

Although the water surface area estimated using CaMa-Flood deviates from that of Landsat, CaMa-Flood 
offers great advantages over satellite results related to the following aspects. CaMa-Flood is flexible in its 
temporal scale and can provide hourly estimates if hourly forcing input data are available. This high tem-
poral resolution is vitally important for evaluating rapid changes in water level or flood extent during flood 
events. However, Landsat has difficulty in capturing rapid changes due to its long revisit time (16 days). 
MODIS can provide daily results, but its spatial resolution is limited to 500 m, which is too large for flood 
estimates in normal rivers. MODIS is also significantly limited during floods with continuous rainfall due 
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to widespread cloud cover. Moreover, when driven by runoff inputs corresponding to different scenarios, 
CaMa-Flood can be used to evaluate the impacts of various factors on water surface area or flood extent. 
For example, the effects of water consumption (e.g., agricultural usage) on the water surface or the individ-
ual contributions of climate variables (e.g., temperature or precipitation) to changes in the water surface 
could be explored in future studies. Models enable the projection of future water surfaces, which will be 
useful for evaluating future changes in flood exposure under various climate change scenarios (Hirabayashi 
et al., 2013). Such studies will be immensely helpful for evaluating the sustainability of water resources 
against the background of global warming.

5.  Conclusions
In this study, we estimated global LSWA using a global hydrodynamic model (CaMa-Flood). The estimates 
of water extent exhibited good agreement in spatial patterns with Landsat-derived results, although mis-
matches also exist. Applying different filters (e.g., floodplain mask, forest, and land cover mask) to the two 
datasets facilitates the comparisons and interpretation. Due to the limitation of the model's original spatial 
resolution (0.1°), small depressions away from main river channels and small coastal rivers within a unit 
catchment are not represented in CaMa-Flood (out of the CaMa-Flood floodplain mask). This results in 
underestimation of water surface area in CaMa-Flood compared to Landsat, especially at high latitudes 
(e.g., Canadian Shield) and for kettle landforms (e.g., the Missouri Plateau) where a cold climate dominates 
and in coastal areas where many small rivers are present. With help of the land cover maps, overestimation 
of the water surfaces in irrigated areas (e.g., delta regions and irrigated districts) can be attributed to igno-
rance of some natural processes (e.g., re-infiltration and evaporation) and human water regulation (e.g., 
canals, levees, and water consumption) in CaMa-Flood. Ignoring irrigation processes in paddy fields leads 
to underestimation by CaMa-Flood, as these seasonal water bodies are captured by Landsat. Water bodies 
covered with thick vegetation (e.g., the Amazon Basin, Indonesia) are better represented in the model, as 
these water bodies cannot easily be detected using optical satellite sensors due to the opacity of clouds and 
vegetation.

Our analysis suggests that these globally consistent mismatches between CaMa-Flood and Landsat can 
be reasonably explained based on the model's physical assumptions (e.g., unit catchment concept, down-
scaling) or limitations of satellite sensing (e.g., weak ability to detect water under vegetation). Applying 
additional filtering masks (e.g., CaMa-Flood floodplain mask, land cover map, and permanent water mask) 
to the two datasets helps to constrain the comparison to an appropriate extent, making it more reliable 
and much easier to attribute their differences to specific causes. Uncertainties in the runoff forcing, model 
parameters and baseline topography are potential reasons for the remaining local-scale differences. In this 
global study, we show that a global hydrodynamic model can represent the areas of different water types 
and that appropriate comparisons can be made between models and satellite-derived results from Landsat. 
By utilizing the findings of this study (e.g., suggested masks for appropriate comparison), more advanced 
analyses of global river model simulations (e.g., uncertainty attribution using land water surface extent 
data) will be possible. Investigation on improved comparisons between other optical satellite results (e.g., 
MODIS) and microwave satellite results (e.g., GIEMS) is also recommended with similar approaches.

Data Availability Statement
All data in this study are publicly available and were accessed at the links given above in the text (Landsat, 
https://global-surface-water.appspot.com; GRDC, https://portal.grdc.bafg.de; ESA CCI, http://maps.elie.
ucl.ac.be/CCI/viewer/download.php), from the literature (Tree density map, Hansen et al., 2013; MERIT 
DEM, Yamazaki et al., 2017; MERIT Hydro Yamazaki et al., 2019; GIEMS-2, Prigent et al., 2020). The output 
of water occurrence estimated from CaMa-Flood is available from Zhou and Yamazaki (2021). The global 
hydrodynamic model CaMa-Flood is available from Yamazaki et al. (2021).
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