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1. Introduction

Land surface water area (hereafter LSWA) is of paramount importance to the survival of all life forms (Kar-
patne et�al.,�2016). Water not only provides habitat for aquatic organisms but also affects various aspects 
of human life, such as for agricultural, domestic and industrial purposes (Vörösmarty & Sahagian,�2000). 
LSWA is highly dynamic and variations therein can be used as a direct indicator of climate change (Wil-
liamson et�al.,�2009) or human-induced changes (Pekel et�al.,�2016). LSWA is thus an essential variable in 
ecological, hydrological, climatic, and economic studies (Hirabayashi et�al.,�2013; Raymond et�al.,�2013; 
Willner et�al.,�2018). For such applications, accurate water information at adequate spatiotemporal resolu-
tion is crucial.

Estimation of LSWA relies on three methods: ground surveys, remote sensing, and models. Among these 
methods, ground surveys cannot fully describe the water dynamics due to their slow updating frequency 
(Carroll et�al.,�2009; Lehner & Döll,�2004) and the significant cost of covering a large spatial domain. Re-
mote sensing using satellites is an outstanding method that can provide regular large-scale observations of 
water surfaces. Various satellites have been used to identify LSWA, including Landsat (Pekel et�al.,�2016; Qi 
et�al.,�2009), MODIS (Ji et�al.,�2018; Lai et�al.,�2014), and a combination of passive and active microwave 
satellites (Prigent et�al.,�2007; Schumann & Moller,�2015). Hydrodynamic models provide another method 
for estimating water area and dynamics. They are a powerful tool that can produce continuous water maps 
over time and space, regardless of weather (e.g., cloudy) or vegetation cover. Moreover, models are the only 
way to hindcast the water surface in the past before satellites were launched (Lewin & Hughes,�1980) and 
forecast the future changes when no observational results exist (Hirabayashi et�al.,�2013). Over the past two 
decades, several hydrodynamic models have been developed (e.g., LISFLOOD-FP, HEC-RAS, MIKE-Flood, 
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model-estimated LSWA is larger than Landsat estimates in forest-covered areas (e.g., Amazon basin) due 
to the opacity of vegetation for optical satellite sensing, and in cropland areas due to the lack of dynamic 
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DELFT3D, and CaMa-Flood) and tested under various conditions (Bates & De Roo,�2000; Dingle et�al.,�2020; 
Pappenberger et�al.,�2005; Patro et�al.,�2009; Yamazaki et�al.,�2011). For a detailed review of flood inundation 
models, refer to Teng et�al.�(2017).

Modeling of river hydrodynamics builds on a process chain from climate forcing to runoff and then to rout-
ing. While the simulation of river discharge is relatively straightforward, as it is explained mainly by the 
basin-integrated water budget, simulation of modeled LSWA is more difficult, as it is affected by local topog-
raphy in addition to the basin-wide water budget. Therefore, estimates of LSWA contain multiple sources 
of uncertainties and require validation against observational results, which are generally satellite-derived 
inundation maps. Due to the need for high-quality large-scale topography data and model parameters as 
well as high computational capacity, most validations have been conducted for small catchments (e.g., the 
10�km Alzette River (Schumann et�al.,�2007) and 60�km Severn River (Horritt,�2006)). These studies mainly 
compared inundation during specific flood events within a short period against inundation maps at a rela-
tively high spatial resolution (Horritt,�2000,�2006; Khan et�al.,�2011; Revilla-Romero et�al.,�2015; Schumann 
et�al.,�2007; Try et�al.,�2018; Wilson et�al.,�2007), with a primary focus on evaluating whether the model could 
reasonably reproduce the flooding distribution in the region of interest.

However, those local studies are insufficient for determining the capacity of a model to represent the water 
surface extent under different conditions. For example, previous local studies have generally investigated 
the ability of a model to map inundation in the form of open-to-sky floodplains, and have not tested model 
performance on other water forms, for example, the lakes which account for 1.8% of the land area over the 
globe (2.4� �106�km2, Lehner & Döll,�2004) or potential paddy field which is up to 1.3��106�km2 (Dong & 
Xiao,�2016). In addition, model validation at the local scale cannot attribute simulation errors to globally 
consistent issues related to the model assumptions or satellite characteristics or to locally varying error 
sources such as topography, channel parameters and input forcing data. Therefore, application and vali-
dation at large scales, from continental to global, are required to clarify the applicability of hydrodynamic 
models under various conditions and for different water forms.

By reducing the spatial resolution and improving the computation capacity, flood model applications have 
been expanded to the scales of large river basins (Try et�al.,�2018; Wilson et�al.,�2007), continents (Decharme 
et�al.,�2008; Schumann et�al.,�2016) and the globe (Decharme et�al.,�2012; Yamazaki et�al.,�2011). Global 
Inundation Extent from Multi-Satellites (GIEMS) data, which were first released in 2007 and have been 
occasionally updated (Papa et�al.,�2010; Prigent et�al.�2007,�2020), provide the most frequently used ref-
erenced satellite inundation maps for validation of model performance over large areas and long term. 
Wu et�al.� (2019) compared global modeling results with fractional water cover retrieved from enhanced 
brightness temperatures acquired by the Soil Moisture Active Passive (SMAP, Chaubell et�al.,�2018) mission. 
However, both of these applications fail to provide information on smaller water bodies due to their coarse 
spatial resolutions of 25 and 9�km, respectively, and therefore they cannot answer the question of whether 
such water surfaces are well represented by global flood models. Moderate Resolution Imaging Spectrora-
diometer (MODIS, 500�m; Ji et�al.,�2018) and Landsat (30�m; Pekel et�al.,�2016) products might be useful for 
answering this question, as they provide global water surface area data at a much finer spatial resolution, 
which can adequately represent individual water bodies. However, these two new products have not yet 
been utilized for large-scale model validation.

As noted above, various types of water bodies are formed and impacted by different external forcing factors 
and land surface conditions (Ji et�al.,�2018; Lehner & Döll,�2004; Pekel et�al.,�2016). Satellite-derived results 
from different sources will deviate in their estimates of water extent, depending on the location and size 
of the water bodies, as well as the weather and land surface conditions at the time of observation (Aires 
et�al.,�2018; Huang et�al.,�2018; Lamarche et�al.,�2017; Notti et�al.,�2018; Pham-Duc et�al.,�2017). Although 
multiple satellite-derived results have been used for validating hydrodynamic model performance, we have 
not sufficiently investigated when applying to validation how good the satellites themselves can identify 
different water types at a large scale. Meanwhile, hydrodynamic models have specific physics and limita-
tions, and it is not possible to represent all types of water bodies accurately using existing model structures 
and physical assumptions. In order to make the comparison between models and satellites more reliable, 
Decharme et�al.� (2012) subtracted cropland area from GIEMS data to validate their model performance 
since their model did not include human processes. However, similar data pre-processing is neglected in 
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most current studies, making interpretation of the agreement or mismatch between model and satellite 
difficult and sometimes misleading. Analyzing results with necessary pre-processing or under the same 
certain conditions will be helpful to understand the real model characteristics and provide more reliable 
estimations.

In this study, we estimate global LSWA using the Catchment-based Macro-scale Floodplain model (Ca-
Ma-Flood), a global hydrodynamic model, at a much finer spatial resolution (3�) than previous global-scale 
model validation studies. The estimation focuses not only on floods but also includes other water forms 
under normal conditions. Evaluation is conducted against the Landsat water-occurrence product (Pekel 
et�al.,�2016). We discuss where the model and Landsat measurements agree and where globally consistent 
mismatches occur that can be reasonably explained by the limitations or characteristics of the model or 
satellite, rather than locally varying error sources. Then, we introduce various filtering masks and land cov-
er conditions used to make reasonable and adequate comparisons of water surface areas between models 
and satellites. Finally, we provide instructions for improving the comparisons, including areas where the 
comparison of raw values from models and satellites are valid, the types of water surfaces that cannot be 
captured by model simulations, and the filters that should be applied to conduct appropriate comparisons.

2. Materials and Methods

2.1. Satellite Products

2.1.1. Landsat

The historical global surface water occurrence data (GSWO, https://global-surface-water.appspot.com) used 
in this study were generated by Pekel et�al.�(2016) based on three million Landsat satellite images obtained 
between 1984 and 2015. The months in which water was present were recorded. Water occurrence was 
estimated as the ratio of months with water to the entire time period, excluding time points with invalid 
data (missing data, cloud or snow cover). This exclusion will affect the accuracy of estimates, especially in 
tropical regions where the cloud index is high and at high latitudes where snow cover is common. Due to 
the availability of its high-resolution and long-term data, the Landsat water-occurrence product has been 
used as a reference for water classification (Ji et� al.,�2018; Senyurek et� al.,�2020). The original Landsat 
water-occurrence product has a spatial resolution of 1� (� 30�m at the equator), which is aggregated to 3� 
(� 90�m) to match the minimum spatial resolution of CaMa-Flood. Details of the processing of the Landsat 
water-occurrence product can be found in the original study (Pekel et�al.,�2016).

2.1.2. GIEMS

The GIEMS product is derived from a series of satellite sensors, primarily passive microwaves (Special 
Sensor Microwave/Imager, SSM/I), with additional data from visible and near-infrared observations and 
active microwave measurements. GIEMS is originally calculated on an equal-area grid of 0.25° at the 
Equator, and has been interpolated in this study to regular grids of 0.25°��0.25° globally for comparison 
with the other products. GIEMS is available monthly, and the latest version, GIEMS-2, extends the availa-
ble period to 1992–2015 (Prigent et�al.,�2020). For details of data processing, see previous studies (Prigent 
et�al.,�2001,�2007,�2020). In this study, Landsat water-occurrence data were used as the primary reference, 
with GIEMS as a supplementary data set to explain differences in water surface areas between the model 
and Landsat.

2.2. CaMa-Flood

CaMa-Flood is a global hydrodynamic model for continental-scale rivers. River networks are discretized 
into irregular unit catchments with sub-grid topographic parameters of river channels and floodplains. 
River discharge and other flow characteristics can be calculated using the local inertial equations along the 
river network map (MERIT Hydro, Yamazaki et�al.,�2019). Water storage in each catchment unit is the prog-
nostic variable, and is determined using the water balance equation. The water level and flooded area are 
identified from the water storage in each unit catchment based on the sub-grid topographic information. De-
tailed descriptions of CaMa-Flood can be found in the original papers by Yamazaki et�al.�(2011,�2012,�2014).
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2.2.1. Model Settings

The overall workflow of this study is illustrated in Figure�1. We ran CaMa-Flood globally from 2001 to 2014. 
The unit catchment in CaMa-Flood was set to 0.1° resolution (� 10�km), meaning that only one unit catch-
ment was assigned to each 0.1°��0.1° grid. This resolution is high for global studies, but still inadequate, 
especially in coastal regions and mountainous headwater catchments where multiple small rivers occur 
within a grid. As an input runoff for CaMa-Flood, we used eartH2Observe runoff data produced by the 
land surface hydrological model HTESSEL and forced with WFDEI weather boundary conditions (Balsa-
mo et�al.,�2009). Runoff was provided at 0.25° pixels, and therefore was distributed to each unit catchment 
according to the areal proportion of the unit catchment in the corresponding grid. The model has been 
validated in recent studies by Eilander et�al.�(2020) and Hirabayashi et�al.�(2021). In this study, only a scat-
ter comparison of the mean discharge and annual maximum discharge with discharge observations from 
Global Runoff Data Center (GRDC, https://portal.grdc.bafg.de) for 172 gauges over the world is provided 
as Figure�S1.

2.2.2. Downscaling

Although 0.1° is a high-resolution for global modeling, it is insufficient for representing small water bodies 
and rapid changes in the water surface area (Fluet-Chouinard et�al.,�2015; Winsemius et�al.,�2013). There-
fore, the CaMa-Flood outputs were downscaled to 3� using high-resolution topography information (MER-
IT DEM, Yamazaki et�al.,�2017), which is directly comparable to the high-resolution Landsat occurrence 
product. The downscaling process was based on the fundamental assumptions of CaMa-Flood that the 
movement of water within a unit catchment is instantaneous and that the water surface is flat within the 
unit catchment at each time step. The area of the lowest elevation is inundated first, until the total water 
volume approximates the estimated water storage of the unit catchment. To reduce the computational cost, 
we first calculated the depth-duration curve (i.e., the cumulative number of days on which the water level 
was above different elevations at an interval of 0.1�m) for each unit catchment in each year. Downscaling 
was conducted by projecting the number of days when the water surface elevation of the flooded unit catch-
ment exceeded the ground elevation of the corresponding 3� DEM pixel. The downscaled inundation water 
extent was estimated using the same flood duration for a given elevation. The final result is approximately 
equal to the result from direct downscaling (i.e., first downscaling the simulated flood depth for each day 
and later aggregating the inundation days), but this process saved significant time, as the number of repeats 
used for downscaling was efficiently reduced.
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Figure 1.  Flow chart of data preparation for water surface area from CaMa-Flood and two other data types derived 
from satellite remote sensing (Landsat and GIEMS). GSWO stands for the Global Surface Water Occurrence estimated 
by Landsat. CaMa-Flood, Catchment-based Macro-scale Floodplain model; GIEMS, Global Inundation Extent from 
Multi-Satellites.
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2.3. Occurrence Selection

Water occurrence ranges from 0% in non-water areas to 100% in permanent water areas. In this study, we 
aim to evaluate the abilities of the model and satellite data to capture different types of water bodies, and 
therefore we primarily examine areas with water occurrences greater than 10%. The water area above this 
threshold includes permanent water and most seasonal water. This threshold removes areas that are flood-
ed only during very extreme flood events, to compare general trends between the model and the satellite 
data. This threshold also reduces the impact on water-area estimates of high sensitivity at the tail end of 
the low-occurrence criterion. Such a low threshold reduces the impact of cloud obstruction, as the affected 
areas are generally counted. The sum of the water areas with greater than 10% occurrence is the LSWA 
discussed in this study (Figure�1). The resolution is 3�, which is aggregated to 0.25° for better visualization 
and comparison with other products at 0.25° resolution (e.g., GIEMS). Meanwhile, water surfaces with dif-
ferent occurrences can be mapped as needed for interpretation of the features present in model and satellite 
results for specific regions.

2.4. Spatial Masking

Using the data-processing steps described above, occurrence data from CaMa-Flood and Landsat are both 
available at 3� resolution. However, due to the properties of the model and satellites, discrepancies in water 
surface area occur with typical spatial patterns at the global scale, which are associated with various land 
surface conditions. To facilitate comparison, we applied different filtering masks (maps, 3�) to water-surface 
products from these two sources (Figure�1). Therefore, differences are grouped within the same land surface 
condition, allowing the source of the difference to be attributed to the limitations or characteristics of the 
model or satellite.

2.4.1. CaMa-Flood Floodplain Mask

A land mask excluding all marine areas was applied to the Landsat occurrence product prior to comparison, 
as marine coasts are included in the Landsat data set. The land mask was prepared from a global hydrogra-
phy data set (MERIT Hydro) (Yamazaki et�al.,�2019), which is also used as the baseline map for CaMa-Flood. 
Applying the land mask to Landsat data ensures that the two water-surface products cover the same spatial 
extent of land.

The water surface in CaMa-Flood is based on a few assumptions. First, all water from the input runoff data 
(including rainfall-runoff and snowmelt, Balsamo et�al.,�2009) directly enters the river channel, and the wa-
ter surface is formed by routed river discharge in river networks. Water bodies that are recharged from other 
sources (e.g., shallow groundwater appearing at the surface, tides, or pluvial flooding due to local rainfall, 
melting snow and ice) and local depressions other than river channels are therefore not modeled. Second, 
CaMa-Flood assumes that the water surface is flat within each unit catchment (Figure�2a); however, this as-
sumption is invalid for rivers with high surface gradients, particularly mountainous springs. Third, because 
only one major river can be represented in each unit catchment, small coastal rivers are neglected in favor 
of major rivers. Underestimation of the water surface area is apparent at the local scale, especially where 
small water bodies (e.g., narrow rivers, small lakes, and coastal rivers) are abundant. Although such water 
surfaces are relatively small, they can be captured by Landsat (Pekel et�al.,�2016).

Therefore, we prepared a floodplain mask that defines the potential maximum extent that can be simulated 
by CaMa-Flood (red line in the schematic diagrams in Figures�2b and�2c) based on CaMa-Flood sub-grid 
topography. This mask is accomplished through inundation area downscaling from the historical maxi-
mum floodplain water elevation for each unit-catchment estimated by CaMa-Flood from 2001–2014. We 
increased these values to 1.5 times to consider the impact of uncertainties in runoff forcing on CaMa-Flood 
(Figures�2b and�2c), and we set values below 2.0�m (but above 0) to 2.0�m for the same purpose. The flood-
plain mask was then applied to the Landsat occurrence product to separate the results within and outside 
the potential maximum extent covered by CaMa-Flood. CaMa-Flood does not represent water outside this 
floodplain mask due to its modeling structure, and therefore water outside the floodplain mask in Landsat 
is excluded from comparisons when the floodplain mask is applied.

ZHOU ET AL.

10.1029/2020WR029256

5 of 23



Water Resources Research

In addition, as CaMa-Flood calculates the hydrodynamics of only one major river within each unit catch-
ment corresponding to a 0.1° grid box, only inundations of floodplains along the major river within each 
0.1° grid box are simulated. Thus, inundations in small coastal river basins are not represented due to the 
assumptions of CaMa-Flood, and are excluded from the floodplain mask to allow for direct comparison 
against the Landsat water map.

2.4.2. European Space Agency Climate Change Initiative (ESA CCI) Land Cover Map

The ESA CCI land cover map was utilized in this study to determine land surface conditions (see Figure�S2 
for the details about the classifications, http://maps.elie.ucl.ac.be/CCI/viewer/download.php). Water sur-
face areas with different land cover types were grouped and compared between the model and satellite 
results to illustrate the relationship of water surface area with the land cover type (e.g., forests, croplands, 
and wetlands). The original CCI product was at 300�m spatial resolution, which was interpolated to 3� using 
a simple nearest-neighbor interpolation method.

2.4.3. Tree Density Map

A limitation of optical satellites is that clouds and thick vegetation cannot be penetrated, thus, the water 
under clouds and thick vegetation is difficult to be detected. In the Landsat occurrence product, images 
with cloud cover are removed, but the impact of vegetation cannot be eliminated from the observations 
(Pekel et�al.,�2016). Although the CCI land cover map also contains information regarding trees, it does not 
provide tree density, and the performance of model or satellite data differs with the level of tree density. 
Therefore, we prepared a global tree density map (Hansen et�al.,�2013), which was originally at 3� resolu-
tion. This high-resolution tree density was averaged to 0.25° for better visualization and comparison with 
other 0.25° maps (Figure�S3). The density is a percentage value from 0 to 100, with higher values indicating 
denser vegetation. The maximum tree density is found in the Amazon River Basin, the Congo River Basin 
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Figure 2.  Schematic diagrams of (a) the river and floodplain representations in CaMa-Flood, (b) the realistic river profile and floodplain mask applied in this 
study, and (c) the different water bodies (e.g., rivers, local depressions, streams from hill slopes, coastal rivers, and irrigated fields) and the floodplain mask as 
well as an illustration of the results from Landsat. The floodplain is approximated as a monotonically increasing function in CaMa-Flood, and therefore land 
water surfaces on hill slopes, local depressions, irrigated fields and coastal rivers are not well represented. The floodplain mask was introduced to exclude water 
areas that are not represented by CaMa-Flood from the analysis. In (a), : surface area, : water depth, subscript  denotes floodplain,  represents the channel. 
Three parameters for river channel: channel length, , channel width,  and bank height, .  is channel altitude (i.e., the elevation of the top of the bank).  

is the projected area of the floodplain.  is a floodplain elevation profile for each unit-catchment. Ac is the area of the unit-catchment. More details 

about the denotations can refer to Yamazaki et�al.�(2011). CaMa-Flood, Catchment-based Macro-scale Floodplain model.
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and the Indonesian Islands. Notably, the tree density value does not indicate the height of vegetation or the 
thickness of leaves, especially in high-latitude regions where needle-leaved or short vegetation dominates.

2.4.4. Static Permanent Water Mask

Although channel bathymetry is considered in the model simulation using sub-grid parameters, underwa-
ter topography is not considered in the downscaling procedure because the high-resolution MERIT DEM 
represents mean water surface elevations over all water body pixels. Thus, the downscaled flooded water 
depth represents the water depth above the MERIT DEM, and not water stored below the MERIT DEM 
surface. This process leads to underestimation of CaMa-Flood water surface area during low-water seasons 
when water remains within a sub-grid river channel. Therefore, we extracted the permanent water surface 
where the occurrence is 100% (dark blue line in Figure�2) from the Landsat data. Permanent water is present 
with high confidence. If necessary, CaMa-Flood results within the static permanent water mask can be es-
timated during post-processing by modifying the transitory water (occurrence�<�100%) to permanent water 
(occurrence�=�100%).

3. Results

3.1. Global Land Surface Water From the Model and Landsat

Figure�3 shows the global distribution of land surface water with occurrence greater than 10%. The original 
data set has 3� (� 90�m at the equator) spatial resolution, which is aggregated to a 0.25° grid for better vis-
ualization. In total, the estimated water surface area is 3.98�million�km2 (hereafter Mkm2) in CaMa-Flood 
and 5.53�Mkm2 in Landsat. Except in Greenland, very little water surface is estimated by CaMa-Flood in 
mountainous (e.g., the Rocky Mountains and the Andes Mountains) and dry regions (e.g., Northern Africa, 
Central Asia, and central Austria) (gray in Figure�3a). The lack of water estimates in such areas is either due 
to insufficient surface runoff to form water bodies in dry regions or due to difficulty in representing rivers 
in mountainous areas by CaMa-Flood. In the Landsat water-occurrence product, the corresponding regions 
have larger values than CaMa-Flood, although the absolute values are still small (shown with values lower 
than 20�km2 per 0.25° grid in Figure�3b). As a result, the difference between the two datasets is very small 
in mountainous and dry regions (shown as gray in Figure�3c). Both CaMa-Flood and Landsat can delineate 
rivers and lakes. Large water surface areas (dark blue in Figures�3a and�3b) are shown for lakes (e.g., the 
Caspian Sea, the Great Lakes, and Lake Victoria), large rivers (e.g., the Amazon, the Ob, and the Yangtze) 
and delta regions (e.g., the Mekong, Ganges, and Indus Deltas).

The two methodologies tested in this study show good agreement in water surface area, especially over lakes 
(e.g., the Great Lakes, Caspian Sea, Lake Baikal, Lake Victoria, and Tonle Sap Lake) (Figure�3c). Strong 
agreement is also found along major rivers, aside from the Amazon and river deltas, for which differenc-
es are difficult to identify (Figure�3c). The differences show apparent spatial patterns (Figure�3c). Lower 
estimates are obtained from CaMa-Flood than from satellite data for high-latitude regions, especially in 
the Canadian Shield and in the lower Ob River. Other differing regions included the Tibetan Plateau, the 
middle-lower reaches of the Yangtze and Ganges, and certain rivers in central Asia and northern Europe. 
In contrast, larger water surfaces are found along the Amazon and Indonesian rivers in CaMa-Flood. In 
addition, higher values are found in many river deltas such as those of the Nile, Mississippi, Congo, Tigris & 
Euphrates, Indus, and rivers in Southeast Asia. Two typical regions with high values are in South Sudan and 
the lower Tarim River in China. These discrepancies (overestimation and underestimation) are explained 
and discussed in the following sections, along with additional masks and the topographic maps used in this 
study.

3.2. Analysis With the CaMa-Flood Floodplain Mask

The extent of the CaMa-Flood floodplain mask is shown in Figure�4a. The floodplain mask is the theoretical 
boundary where CaMa-Flood may simulate inundation. As the floodplain mask has been enlarged from 
that used in real simulations, applying the floodplain mask does not change the results of CaMa-Flood. 
However, only part of the water surface in the Landsat data set falls within the floodplain mask (marked as 
“W.FM” in Figure� 4b), with a total of 4.20�Mkm2 LSWA located within the floodplain mask.
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Figures�4c and�4d show the proportion and amount of water surface in Landsat that falls within the flood-
plain mask relative to the total LSWA, respectively. At 0.25° spatial resolution, the areal ratio is near 1.0 for 
large lakes and rivers (Figure�4c), indicating that these large-scale water types are well covered by the Ca-
Ma-Flood floodplain mask. Low ratios of water surface are found on hill slopes, especially in mountainous 
areas. An example is given of the upstream Missouri River (Figure�5). The yellow color shows the extent 
of the CaMa-Flood floodplain mask, which covers the main river channel and most smaller tributaries. 
CaMa-Flood and Landsat tend to produce the same water surface in the main channel (blue in Figure�5a). 
Because the floodplain mask was already extended from the historical maxima of modeled flood extent, 
some small tributaries lack water in both the simulation results and satellite observations. Outside the 
CaMa-Flood floodplain mask (Figure�5b), Landsat is able to detect small water areas scattered across hill 
slopes, which cannot be modeled by CaMa-Flood due to its physical assumptions. As shown in the enlarged 
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Figure 3.  Global land water surface areas with water occurrences greater than 10%. (a) Results from CaMa-Flood, and (b) results from Landsat. (c) Differences 
between CaMa-Flood and Landsat in terms of the fraction of each grid. Original results are at 3�, but they are aggregated to 0.25° gridded values for 
visualization. The area in km2 and the fraction are values within each 0.25° by 0.25° grid. Areas with no water surface (<0.01�km2) are masked out. CaMa-Flood, 
Catchment-based Macro-scale Floodplain model.
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topographic map (Figure�5c), the water surface is not continuous, and the distribution of the water surface 
is not consistent from lower elevations to higher elevations within each unit catchment. This inconsistency 
is caused by the unique kettle lake landform (Figure�5d) of the Missouri Plateau, which is formed by re-
treating glaciers or draining floodwaters rather than surface river flows (Phillips & Gleckler,�2006). Another 
typical kettle lake landform is found in the Western Siberian Plain, near the Arctic Circle. However, for hill 
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Figure 4.  (a) Distribution of the CaMa-Flood floodplain mask over the globe (3�). (b) Landsat LSWA within the 
floodplain mask (named as Landsat (W.FM)). (c) The ratio of Landsat (W.FM) to total Landsat LSWA. (d) The difference 
in the value of Landsat (W.FM) from the total Landsat LSWA. b,c and d are illustrated at 0.25° resolution for better 
visualization. The values are for each 0.25° by 0.25° grid. CaMa-Flood, Catchment-based Macro-scale Floodplain model; 
LSWA, land surface water area.
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slopes other than this kettle lake landform, the main cause of water surface area underestimation in Ca-
Ma-Flood is the invalid assumption of a flat water surface used for downscaling.

Because the water surface area on hill slopes is relatively small and not widely distributed throughout the 
world, the cumulative area difference is not apparent (Figure�4d) in these regions. Instead, large differenc-
es are found in the Canadian Shield, where the coverage ratio is high. An enlarged map (Figure�6) shows 
that within the floodplain water mask, CaMa-Flood tends to have a good ability to delineate large water 
bodies (lakes) and long rivers. The two methods have consistent results for large lakes (blue in Figure�6a). 
However, many local water depressions are not represented in the floodplain mask (red in Figure�6b). These 
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Figure 5.  Water surface estimates from CaMa-Flood and Landsat for the source of the Missouri River: (a) comparison within the CaMa-Flood floodplain mask, 
and (b) comparison outside the floodplain mask. (c) Landsat water mask (occurrence�>�10%) over the topography of the target region indicated in (a) and (b). 
(d) Google Earth image of the target region marked in (c). CaMa-Flood, Catchment-based Macro-scale Floodplain model.
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Figure 6.  Maps showing the consistency of the water surface prediction between CaMa-Flood and Landsat for the Canadian Shield. (a) Comparison within 
the CaMa-Flood floodplain mask, and (b) comparison outside the floodplain mask. (c) Google Earth image of the target region marked in (c). CaMa-Flood, 
Catchment-based Macro-scale Floodplain model.
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