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Abstract
How spatial organization of clouds at the mesoscale contributes to the daily cycle
of shallow cumulus clouds and precipitation is here explored, for the first time,
using three years of high-frequency satellite- and ground-based observations.
We focus on the four prominent patterns of cloud organization – Sugar, Gravel,
Flowers and Fish – which were found recently to characterize well the variability
of the North Atlantic winter trades. Our analysis is based on a simple framework
to disentangle the parts of the daily cycle of trade-wind cloudiness that are due
to changes in (a) the occurrence frequency of patterns, and (b) cloud cover for a
given pattern. Our investigation reveals that the contribution of mesoscale orga-
nization to the daily cycle in cloudiness is largely mediated by the frequency of
pattern occurrence. All forms of mesoscale organization exhibit a pronounced
daily cycle in their frequency of occurrence, with distinct 24-hr phasing. The pat-
terns Fish and Sugar can be viewed as daytime patterns, with a frequency peak
around noon for Fish and towards sunset for Sugar. The patterns Gravel and
Flowers appear instead as night-time patterns, with a peak occurrence around
midnight for Gravel and before sunrise for Flowers. The cloud cover for a given
pattern, however, always maximizes at night-time (between 0000 and 0300 hr),
regardless of the specific pattern. Analyses of the role of large-scale environmen-
tal conditions shows that the near-surface wind speed can explain a large part
of the diurnal variability in pattern frequency and cloudiness.

K E Y W O R D S
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1 INTRODUCTION

As one of the most fundamental modes of tropical cli-
mate variability, the daily cycle has been thoroughly stud-
ied for many cloud types except, surprisingly, for shallow
cumuli in the trade-wind regime. Indeed, the daily cycle

of trade-wind cumuli has only been recently described
in some detail by Vial et al., (2019), 40 years after it was
first documented (Nitta and Esbensen, 1974; Brill and
Albrecht, 1982). In typical conditions of the North Atlantic
winter trades, cloudiness overall maximizes at the end of
the night and is minimum in the afternoon. This daily
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cycle reflects the evolution of two distinct cloud popula-
tions: (a) a daytime population of non-precipitating small
cumuli, which peaks around sunset and has weak verti-
cal extents of only a few hundred metres above the Lifting
Condensation Level (LCL), and (b) a night-time popula-
tion of deeper precipitating clouds, peaking just before
sunrise, which is often accompanied by a stratiform cloud
shield spreading below the trade inversion (Vial et al.,
2019). In storm-resolving and large-eddy simulations run
over large domains, these two cloud populations seem
to be associated with distinct spatial organizations at the
mesoscale (figure 4 in Vial et al., 2019). The daytime pop-
ulation exhibits a multitude of small cumuli scattered in a
regular pattern over hundreds (or even thousands) of kilo-
metres, while the night-time field tends to show fewer and
larger cloud clusters, sometimes organized along exten-
sive lines or arcs reminiscent of gust fronts accompanying
rainfall-generated cold pools (Zuidema et al., 2012; Rup-
pert and Johnson, 2016). However, whether this visual
impression from the simulations is realistic and system-
atic, and whether this type of spatial organization plays a
role in the daily cycle of trade-wind clouds and convection,
remain open questions.

It has long been recognized that shallow convection
can organize spatially into various patterns, the most clas-
sical forms being cloud streets, closed or open cells in cold
air outbreaks or in subtropical upwelling areas (Atkin-
son and Wu, 1996; Wood and Hartmann, 2006; McCoy
et al., 2017). In the North Atlantic trades, different envi-
ronmental conditions (e.g., warmer sea surface, weaker
subsidence) give rise to other forms of cloud organization,
which have been recently discovered and characterized
in satellite- and ground-based observations (Stevens et al.,
2020; Bony et al., 2020; Schulz et al., 2021). Each orga-
nization pattern features a specific type of cloud and a
specific spatial layout of the cloud field on scales from
20 to 2,000 km. The patterns range from isolated, shallow,
non-precipitating cumulus clouds (Sugar organization),
to precipitating cumuli forming along lines or arcs defin-
ing gust fronts (Gravel organization), and to organized
structures of deeper precipitating cumuli with a strati-
form cloud layer at their top that can extend up to hun-
dreds of kilometres and that are separated by large and
well-defined cloud-free areas (Fish and Flowers organiza-
tions). These four patterns are illustrated in Figure 1.

The fact that the daily cycle and mesoscale organiza-
tion of trade-wind cumuli have only recently been dis-
covered (or revived) clearly shows that there is a sig-
nificant gap in our understanding of the dynamics of
trade-wind shallow convection and clouds. This is of par-
ticular concern as the coupling between marine shallow
trade-wind clouds and circulation is known to play a cen-
tral role in the uncertainty of the tropical cloud feedback

and climate sensitivity estimated by models (Rieck et al.,
2012; Brient and Bony, 2013; Sherwood et al., 2014; Bony
et al., 2015; Tomassini et al., 2015, Vogel et al., 2016, Vial
et al.,2016,2017). To help fill this knowledge gap, and to
improve our ability to predict the Earth’s climate response
to warming, in this article we build upon the work of
Vial et al., (2019) to investigate more thoroughly the link
between the daily cycle and the spatial organization of
trade-wind shallow cumulus convection. To our knowl-
edge, this study is the first to question the role of spatial
organization in the daily cycle of shallow cumulus convec-
tion. Specifically, we explore whether the observed occur-
rence of the four aforementioned patterns of organization
exhibits variability on the daily time-scale, and whether
the different patterns of organization influence differently
the daily cycle of trade-wind cloudiness and precipitation.

Our analysis combines satellite- and ground-based
remote-sensing observations, as well as in situ surface
measurements in the North Atlantic trade-wind region,
windward of Barbados, which is known to be represen-
tative of the trade-wind regime in other ocean basins
(Medeiros and Nuijens, 2016; Stevens et al., 2016; Rasp
et al., 2019). We focus on the boreal winter season, when
the Intertropical Convergence Zone is at its southern-
most position, and thus when shallow cumuli predomi-
nate. After a description of the observational datasets and
analysis framework (Section 2), we document the daily
cycle in the occurrence frequency of mesoscale patterns
(Section 3), and investigate the different ways in which
the daily cycle of trade-wind cloudiness and precipita-
tion depend on the mesoscale patterns of organization
(Section 4). Finally, we explore the role of the large-scale
environment in the variability of pattern occurrence and
cloudiness at the daily time-scale (Section 5). Our conclu-
sions are presented in Section 6.

2 OBSERVATIONAL DATASETS
AND METHODOLOGY

We use satellite- and ground-based remote-sensing and
in situ observations over the tropical Atlantic Ocean
around Barbados during the boreal winter months (DJFM)
from 1 January 2018 to 31 March 2020. The different
datasets and their use are described in the following sub-
sections.

2.1 GOES-16 satellite data

The Geostationary Operational Environmental Satel-
lite (GOES)-16 is the current satellite in the GOES-East
location (centred at 75.2◦W), providing data since
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F I G U R E 1 (a) MODIS-Aqua satellite images from NASA Worldview, illustrating the four prominent mesoscale cloud organization
patterns of the North Atlantic trade-wind region over the 10 ◦ × 10◦ Iorg∕S classification domain. The images are positioned in the four
quadrants defined by the lower and upper terciles of the S and Iorgdistributions. (b, lower panel) Illustration of NN-detected pattern
rectangles using the GOES-16 ABI Tb field over the 14 ◦ × 21◦ classification domain (Gravel in yellow, Fish in blue and Sugar in green) and
the corresponding Iorg∕S classification (Fish) over the smaller domain (in grey shading). (b, upper panel) is the corresponding visible MODIS
image from NASA Worldview. The locations of the two sites, BCO and NTAS, are shown in (c). Note that the NN classification domain is
positioned such that BCO and NTAS are equally distant from the lateral edges of the domain, and the Iorg∕S domain is chosen as in Bony
et al., (2020), upwind of Barbados

December 2017. We use 30 min infrared (13𝜇m) bright-
ness temperature (Tb) at a spatial resolution of 2 km
from the Advanced Baseline Imager (ABI) Level 1b data
product (GOES-R Calibration Working Group, 2017).

2.1.1 Cloud organization classification

Two different approaches are employed here to classify
mesoscale patterns of shallow cloud organization using
GOES-16 ABI data.

The first method, developed in Bony et al., (2020) and
referred to here as the Iorg∕S method, characterizes the
organization of a marine shallow cloud population within
a fixed 10 ◦ × 10◦ domain east of Barbados (48◦–58◦W,
10◦–20◦N) based on the mean size (S) and the clustering
(Iorg) of segmented cloud objects, which correspond to pix-
els for which 280 ≤ Tb ≤ 290 K. The index Iorg was defined
by Tompkins and Semie (2017) such that Iorg < 0.5 corre-
sponds to a regularly distributed cloud population, Iorg =
0.5 to a random distribution and Iorg > 0.5 to a clustered

distribution. The lower and upper terciles of S and Iorg
distributions are then used to classify the mesoscale pat-
terns into four categories (Figures 1a and A1): Sugar is
classified as high Iorg and low S; Gravel as low Iorg and low
S; Fish as high Iorg and high S; and Flowers as low Iorg and
high S. The unclassified pattern (also referred to as the No
category in the figures) is defined as all the times when Iorg
and S fall in the intermediate terciles. Bony et al., (2020)
provide more details.

The second method, called the NN method, is based
on the neural network (NN) algorithm originally devel-
oped and trained with visible satellite images in Rasp
et al., (2019), and adapted to infrared images in Schulz
et al., (2021). Rectangles of the four cloud organization
classes (Sugar, Gravel, Flowers, Fish) are detected over a
14 ◦ × 21◦ domain (45◦–66◦W, 9.3◦–23.3◦N) including Bar-
bados, and the No category is considered as the remaining
part of the domain where none of the four patterns is
detected (illustration in Figure 1). Any number of pat-
tern rectangles of various sizes can be detected at a given
time (with a minimum rectangle size of about 10% of
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F I G U R E 2 Relative occurrence (grey bars) and area (yellow bars) of NN-detected patterns overlapping the 10 ◦ × 10◦ classification
area at times when Iorg∕S detects a pattern. The frequencies of occurrence are computed with respect to the number of Iorg∕S-detected
patterns (as indicated at the top of each panel), and the areas are computed over the overlapping part of the NN-detected rectangles with the
10 ◦ × 10◦ domain and normalized by the 10 ◦ × 10◦ area. The sum of occurrences and areas will thus be greater than 100%

the domain area), with potential overlaps between them.
When overlaps occur between several rectangles of the
same pattern (e.g., three overlapping Gravel rectangles),
we merge them into one polygon with the pattern area
being the union of all overlapping rectangles; thus we
only count the overlapping area once. Overlaps can also
occur between different labels (e.g., one Fish overlaps
with one Gravel rectangle) due to ambiguous forms of
organization, or connectivity among patterns (Rasp et al.,
2019; Stevens et al., 2020). This could result either from
a weak machine learning prediction (which is affected
by the quality of the human labels), or it could have
a physical explanation (for instance, the overlaps could
occur during transitions between patterns). Figure 1b
shows an example of an overlap between Gravel and Fish
(on the top-right corner of the domain), since the Fish
here appears as a network of Gravel-like cold-pool struc-
tures – which can be seen particularly well in the visi-
ble image from MODerate-resolution Imaging Spectrora-
diometer (MODIS) at the top. In these situations (i.e., of
overlaps between different labels), we simply count the
total area of all rectangles without removing any overlap.
The total area of patterns (including the unclassified pat-
tern) is thus greater than the domain area; we discuss this
further in Section 2.1.2.

These two classification methods are quite different in
nature. Iorg∕S is based on geometrical and statistical prop-
erties of the cloud field, and as such could be considered as
the most objective of the two approaches. However, since
Iorg and S are continuous measures and the patterns can
only be robustly identified at the extremes (here, subjec-
tively chosen first and third terciles) of the paired (Iorg, S)
distributions, the inner paired tercile is by default unclas-
sified and marks the regime of transitional or unclear
patterns. This transitional regime represents 5/9 of the

paired distributions (∼55% of the time), which thus poten-
tially constitutes an important methodological bias in the
interpretation of our results (cf. Section 3). The NN method
does not suffer from this issue, but given the subjective cat-
egories, which human labelers sometimes did not agree
on, it can sometimes yield ambiguous classifications as
well (cf. Figures 1b and A1 and A2). Stevens et al., (2020)
and Bony et al., (2020) have shown that especially the pat-
terns Fish and Flowers on the one hand, and Gravel and
Sugar on the other hand, can be confused. Examples of
these two ambiguities are shown in Figure A2.

Another difference between NN and Iorg∕S is that the
former can detect several cloud patterns within a domain
and therefore does not have to classify a complete fixed
domain like Iorg∕S. To compare the two methods, we
can ask to which NN-detected predominant pattern does
the domain-scale pattern identification with Iorg∕S corre-
spond. To address this question, we compute the relative
occurrence and area of NN-detected patterns overlapping
the 10 ◦ × 10◦ classification domain at times when Iorg∕S
detects a specific pattern. Figure 2 shows that the two
methods result in fairly consistent classifications. That is,
when Iorg∕S detects a specific pattern, about half (or more)
of the 10 ◦ × 10◦ domain is covered with the NN-detected
patterns of the same category. For instance, in 80% of Sugar
cases detected by Iorg∕S, NN detects predominantly Sugar
patterns with an average coverage of 50% of the Iorg∕S
domain. In the case of Gravel, nearly all Iorg∕S classifica-
tions correspond to NN-detected Gravel patterns covering
on average 80% of the Iorg∕S domain. The Flowers pattern
is the one for which the correspondence between the Iorg∕S
and NN identifications is the least clear, because of a rel-
atively high occurrence of NN-detected Gravel (Figure 2,
third panel). The exact reason for this ambiguity has not
clearly been identified, but it might be related to the
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F I G U R E 3 (a, b) daily cycle in the occurrence frequency of mesoscale patterns for Sugar (green), Gravel (yellow), Flowers (red), Fish
(blue) and No category (grey), with the first harmonics superimposed in thicker lines. (a) shows the 10 ◦ × 10◦ domain-scale Iorg∕S pattern
frequency and (b) shows the occurrence frequency of NN-detected patterns within the 14 ◦ × 21◦ domain. (c, d) contributions to the NN
occurrence frequency owing to (c) the temporal frequency and (d) spatial coverage. (e) temporal frequency of NN-detected patterns over BCO
(solid line) and NTAS (line with markers). Note that, at a single point, the temporal frequency corresponds to the frequency of occurrence

thresholding by terciles chosen in Bony et al., (2020) and
applied here as well. As shown in Figure A1 and A2, the
distributions of Iorg and S are skewed toward high Iorg and
low S values, which disfavour the detection of Flowers
situations (as also evidenced in Figures 2 and 3a by the rel-
atively small sample size of Iorg∕S-detected Flowers), and
in particular, Flowers situations with large mean cloud
size S. This results in the Gravel and Flowers situations
to be quite close to each other in the Iorg∕S space, and
thus perhaps less easily distinguishable with this method.
Note that the smallest ambiguity in the third panel of

Figure 2 occurs for NN-detected Sugar, which is precisely
the furthest from the Flowers pattern in the Iorg∕S space.

The correspondence in pattern detection and classifica-
tion between the two approaches is thus fairly satisfactory.
Nevertheless, as discussed above, each of these two clas-
sification methods has its own limitations, and thus both
methods will be used in our study in order to more robustly
assess the daily cycle of mesoscale cloud organization and
its influence on the daily cycle of cloudiness. It is also
worth mentioning that the NN approach can offer two
additional advantages with respect to Iorg∕S: (a) a more
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accurate characterization of the atmospheric or surface
properties of the patterns (since it does not have to classify
an entire domain), and (b) the possibility to select those
patterns that are located over instrumented sites to charac-
terize the patterns in greater detail using the ground-based
measurements.

2.1.2 Pattern cloud covers

The shallow cloud cover (CC) is computed from the
GOES-16 ABI Tb mask as defined earlier, that is, CC is 1 in
pixels for which 280 ≤ Tb ≤ 290 K, and 0 otherwise.

When using the Iorg∕S classification, the cloud cover
is averaged over the 10 ◦ × 10◦ domain at each timestep
and is assigned to one of the four cloud patterns or to the
unclassified category. In doing so, the domain-mean CC
averaged over the entire period (DJFM 2018–2020) can be
expressed as

CC =
∑

k
(CCk × Fk)

where k refers to pattern labels (SU, GR, FL, FI, NO),
CCk is the CC of a given pattern k (also referred to as
“pattern-related cloud cover”) and Fk is the frequency of
occurrence of pattern k at a given time of the 24-hr day,
such that

∑
k Fk = 100% across the daily cycle. The prod-

uct CCk × Fk is the effective contribution of pattern k to the
total cloud cover.

The analysis, based on this simple decomposition,
allows us to both (a) quantify the relative contribution of
mesoscale patterns to the daily cycle in total cloud cover,
and (b) disentangle the part of the daily cycle that is due
to changes in pattern occurrence frequency and the part
due to changes in cloudiness for a given pattern. For refer-
ence, we present in Table 1 the daily characteristics of these
two main quantities (Fk and CCk) derived from the dif-
ferent methods, geographical locations and observational
datasets (as described below).

We follow the same approach when using the NN clas-
sification, but because multiple patterns with different
sizes can be detected at one timestep over the domain, the
frequency of pattern occurrence (Fk) becomes dependent
on both the area of patterns (ak) relative to the domain area
(adom) – that is, ak∕adom – and on their temporal frequency
of occurrence (fk), such that

Fk = fk × ak∕adom,

where adom =
∑

k
ak and thus

∑
k
Fk =

∑
k
fk = 100%.

Note that while in the formulation above, the domain
area corresponds to the sum of all NN-pattern areas

(including unclassified patterns), in practice here adom
tends to overestimate the actual domain size due to the
overlaps between rectangles of different patterns. The
difference between adom and the actual domain size is
somewhat proportional to the number of detected pat-
terns, ranging between 15% in the afternoon and 30% at
night-time (Figure A3). While this difference seems sig-
nificant, tests on the accuracy of pattern detection have
shown that the interpretation of our results is not sensi-
tive to these overlaps (Figures A3 and A4). Our findings
also remain consistent when we discard multiple pattern
occurrences at one timestep and location (Section 2.2 and
Figure A5).

In addition to the “domain-mean” pattern-related
cloud covers, we also consider the GOES-16 ABI cloud
cover for those pattern rectangles that overlap specific
locations on the domain (i.e., the location of the instru-
mented sites described in the following section). In doing
this, we similarly weight the pattern cloud cover by its spa-
tial coverage, except for the ’No’ category (which is not
a distinct class, and thus does not have a delineated area
around the site location).

2.2 Ground-based remote-sensing
and in situ data at BCO and NTAS

Following Vial et al., (2019), we use ground-based radar,
ceilometer, and Micro Rain Radar (MRR) measurements
from the Barbados Cloud Observatory (BCO), which
is located at the most windward tip of Barbados at
59.48◦W, 13.15◦N and samples undisturbed trade-wind
conditions (Nuijens et al., 2014 and Stevens et al., 2016
give detailed descriptions of the BCO and its instru-
mentation). The cloud and rain statistics are aggre-
gated into 5-min averages. Periods with a radar sig-
nal between 4 and 8 km, including the hours before
and after, are discarded to limit our analysis to shallow
convection.

The mean rain rate is derived from MRR data at 325 m
above ground (the lowermost level with reliable data). The
MRR is also used to compute a rain flag, which is set to 1
when rain rates greater than 0.05 mm⋅hr −1 are measured
in at least five range gates in the lowest 3 km (following
Nuijens et al., 2014).

The vertical distributions of hydrometeors (i.e., cloud
and rain droplets) and clouds are derived from a 35.5 GHz
(Ka-Band) Doppler cloud radar. The hydrometeor mask is
derived using a threshold of −50 dBZ on the equivalent
radar reflectivity Ze (a 10 dBZ lower threshold than used
in Vial et al., 2019 to increase the sensitivity to smaller
clouds). Cloud fraction profiles are obtained from the
hydrometeor mask by discarding periods of rain: when the
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ceilometer does not detect a cloud base (due to strong rain)
or when the MRR rain flag is 1. Moreover, radar signals
below the ceilometer-detected cloud-base height are set to
0 in the cloud fraction profiles. Periods when neither the
ceilometer nor the MRR are running are also discarded.

The (rain-corrected) radar cloud profiles are also used
to derive the total cloud cover, as well as the contribution
to the total cloud cover from three distinct categories of
clouds: (a) shallow cumuli with cloud base (CB) below
1 km and cloud top (CT) below 1.3 km, (b) deeper cumuli
with CB < 1 km and CT > 1.3 km, and (c) clouds aloft
with CB > 1 km. This decomposition is slightly different
than the more commonly used decomposition from Nui-
jens et al., 2014, as the use of radar rather than ceilometer
data allows us to further decompose the LCL cloud cat-
egory into two sub-categories according to the cloud-top
height. The decomposition used here is similar to the one
applied to model data in Vial et al., 2019 (details in their
Appendix A).

Note that the rain-correction applied will lead to an
underestimation of total cloud cover, as periods of rain are
usually also periods of cloudiness. Because rain is most
frequent during night-time (Nuijens et al., 2009; Vial et al.,
2019) and because the rain frequency also depends on
the patterns (i.e., Fish is the rainiest, followed by Flowers
and Gravel, as found in Schulz et al., 2021), we tested that
this underestimation does not bias our results by com-
paring the daily cycles of the total cloud cover and the
total hydrometeor cover. The hydrometeor cover includes
both cloud and rain droplets and thus overestimates cloud
cover (being on average ∼10% larger for Sugar, ∼15%
larger for Gravel and Flowers, and ∼20% larger for Fish).
However, we find the daily cycles of total cloud cover and
total hydrometeor cover to be very similar for all patterns
(compare the black and grey curves on the top-right panels
of Figure 7), and thus conclude that the underestimation
of cloud cover due to the rain-correction does not bias our
results.

We also use measurements of sea surface tempera-
ture (SST) and near-surface wind speed from the North-
west Tropical Atlantic Station (NTAS) open ocean surface
mooring at 51.02◦W, 14.82◦N. NTAS measurements have a
temporal sampling rate of 1 min. Wind data are collected
at about 3 m above sea level and SSTs at 1 m depth. To
directly compare the buoy observations of wind speed with
ERA5 estimates (Section 2.3), we adjust the 3 m wind to
conform to the reference height of 10 m, using the simple
power-law wind profile (u2 = u1(z2∕z1)0.11 – where u2 is the
wind speed at the reference 10 m height (z2), and u1 the
wind speed measured at height z1 (= 3.4 m)), which was
shown to be a good approximation for use over the ocean,
where near-neutral stability conditions prevail (Hsu et al.,

1994). This adjustment implies an increase of the wind
speed of about 1 m⋅s −1 between 3 and 10 m.

In a similar way as described in Section 2.1, we con-
struct pattern-related composites for the BCO and NTAS
sites, but we only select the NN-detected patterns overlap-
ping the location of these instrumented sites. The com-
positing is instantaneous in the sense that we average all
measurements within ± 15 min around the classification
time.

As explained above, several pattern rectangles can be
detected at one location, potentially introducing a bias in
the composite when different patterns occur at the same
time. That said, we show in Figure A5 that discarding
the timesteps when multiple labels occur at BCO does not
affect the results, but does reduce significantly the sample
size of our composites. We therefore keep all detected pat-
terns at the site locations to construct the pattern-related
composites.

2.3 The large-scale environment from
ERA5 reanalysis

The ERA5 reanalysis is based on the Integrated Fore-
casting System (IFS) Cy41r2, operational since 2016. It
provides hourly estimates of atmospheric variables at a
horizontal resolution of 31 km (0.25◦ or TL639) and 137
vertical levels from the surface to 0.01 hPa (Hersbach et al.,
2020).

We here use hourly output for the 10 m wind speed
and the lower tropospheric stability (LTS, defined in
Klein and Hartmann, 1993 as 𝜃700 − 𝜃1000, where 𝜃 is
the potential temperature in Kelvin) over the NN clas-
sification domain (45◦–66◦W, 9.3◦–23.3◦N), in order to
explore how the daily cycles of cloudiness and mesoscale
patterns relate to these large-scale environmental fac-
tors that are known to play a role in the variabil-
ity of trade-wind cloudiness and organization at longer
time-scales (Brueck et al., 2015; Nuijens et al., 2015; Bony
et al., 2020).

Following the approach described in Section 2.1,
we construct the pattern-related composites for the
near-surface wind speed (Uk) and LTS (LTSk) and sample
their daily cycle. The relationship between the large-scale
environment (including U and LTS) and the mesoscale
patterns of organization was first explored in observations
at the day-to-day and interannual time-scales using the
Iorg∕S pattern classification method (Bony et al., 2020).
Here, we extend the analysis by considering the daily
time-scale and patterns detected with the NN approach.
Note also that using the Iorg∕S method, combined with
hourly estimates of the environmental conditions, the
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sample size is too small to see a robust signal on the daily
time-scale.

3 DAILY CHANGES IN THE
OCCURRENCE OF MESOSCALE
PATTERNS OF ORGANIZATION

The first question we address here is whether the observed
occurrence of mesoscale patterns of shallow convection
varies at the daily time-scale.

Figure 3a,b shows that, whatever the method we use
to classify mesoscale organization (Iorg∕S or NN), the fre-
quency of occurrence of all forms of organization exhibits
a pronounced daily cycle with distinct 24 hr phasing. The
patterns Fish and Sugar preferentially occur during day-
time, and as such can be viewed as daytime patterns, while
Gravel and Flowers appear rather as night-time patterns.
More specifically, the frequency of Fish patterns increases
in the morning and reaches a maximum at 1200 hr; the
peak in the Sugar pattern frequency is shifted towards
the afternoon, at 1400 hr for Iorg∕S and 1700 hr for NN
(Table 1); Gravel increases during the afternoon and peaks
at midnight; and the Flowers population grows soon after
sunset until reaching a peak at the end of the night
between 0300 and 0600 hr depending on the method.

The amplitude of these daily cycles is substantial, with
a minimum of 20% relative to the daily mean for the
NN-detected Fish, between 35 and 60% for NN-detected
Gravel, Sugar and Flowers, and more than 100% daily vari-
ation for the Iorg∕S-detected Sugar and Flowers patterns
(Table 1).

When using the NN approach, the frequency of pat-
tern occurrence depends both on the temporal frequency
(Figure 3c) and spatial coverage of patterns (Figure 3d).
These two attributes of pattern occurrence exhibit very
similar diurnal phasings, which means that when the NN
detects more of a given pattern, it also extends over a
larger area and vice versa. However, the daily variability in
the occurrence of patterns (Figure 3b) appears to be more
strongly driven by their temporal frequencies – whose vari-
ations range between 10 and 45% with respect to daily
means – than their spatial coverage, which varies between
5 and 15% (relative to daily means) among the different
patterns.

Gravel appears to be the most frequent pattern and on
average covers larger areas of the domain (more than 50%
of the domain area on average). The Flowers pattern also
covers about half of the domain on average, but with a very
pronounced daily cycle in its temporal frequency – it is the
least frequently observed pattern around sunset, as well as
one of the most frequent patterns at night. Sugar and Fish
are the least spatially extended patterns (about 30 and 40%

of the domain, respectively), but they can be frequently
observed, especially during daytime (about 60% of the time
at 1200 and 1700 hr, respectively).

Similar daily phasings as on the entire domain are also
found when looking at the surface sites BCO and NTAS
independently. However, the comparison between BCO
and NTAS (which lies 8◦ east of BCO) reveals a geographi-
cal dependency in pattern occurrence, especially regarding
the daily means and amplitudes of the daily cycles in the
temporal frequency of patterns (Figure 3e). Overall, the
frequency of detected patterns is systematically higher at
NTAS than at BCO, while the frequency of unclassified pat-
terns is greater at BCO. Note that larger differences were
found, especially for the unclassified category, by apply-
ing the NN algorithm on a 5◦-eastward shifted domain
(not shown). This was due to a lower pattern detection at
BCO, which lay closer to the edge of the domain. With the
present domain, however, BCO and NTAS are equally dis-
tant from the edge of the domain (about 6◦), thus we expect
the differences between the two sites to be real.

In particular, the differences for the Gravel and
the Flowers patterns, which are the most important
throughtout the 24 hr daily cycle, might reflect an
east–west gradient in the frequency of occurrence of these
patterns, with a greater occurrence on the east due to
stronger easterlies (not shown). This is consistent with
the findings in Bony et al., (2020) who show that the
Gravel and Flowers patterns mostly occur in conditions of
stronger near-surface wind speed. The frequencies of the
Fish patterns are fairly similar at BCO and NTAS, which
can be expected given the large-scale characteristic of this
pattern which, moreover, is most often oriented along the
east–west direction (Schulz et al., 2021; also Figure 9).
Finally, we note also that the daily amplitude of the Sugar
pattern is higher at NTAS than at BCO due to a much
higher occurrence frequency during daytime.

4 DEPENDENCE OF THE DAILY
CYCLE OF TRADE-WIND CUMULI
AND PRECIPITATION ON
MESOSCALE PATTERNS OF
ORGANIZATION

4.1 Mesoscale pattern signatures on the
daily cycle of GOES-16 ABI cloud cover

Figure 4 shows the averaged daily cycle of GOES-16 ABI
cloud cover associated with the different patterns (CCk)
detected over the entire classification domains (panels a
and b) and over the sites at BCO (c) and NTAS (d). The
similarity between all four panels is salient, and suggests
that the daily cycle in cloudiness is overall independent of
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F I G U R E 4 Daily cycles and first harmonics of patterns cloud cover (CCk) derived from GOES-16 ABI using (a) Iorg∕S classified
patterns, (b) NN-detected patterns over the entire domain, (c) NN-detected patterns over BCO and (d) NN-detected patterns over NTAS. The
dashed lines represent the daily-mean cloud covers. Note that the NO category does not appear in (c, d) as there is no delineated area over
which we can compute a cloud cover. The colour code is as in Figure 3

the classification method, of the patterns themselves, and
of the geographical location.

The weak dependency of the daily phase of cloud cover
on NN patterns is particularly striking, especially so for the
large domain (Figure 4b): cloudiness always minimizes in
the afternoon (between 1300 and 1600 hr) and maximizes
at night-time (between 0000 and 0400 hr), consistent with
Vial et al., (2019) and the 3-year winter-time climatological
daily cycle in cloud cover calculated here (cf. black lines in
Figure 6 below). The exception is for Sugar identified with
Iorg∕S, which shows a phase shift of about 5 hr, although
the robustness of this daily cycle might be questioned given
the small number of Sugar cases identified with Iorg∕S at
night-time (Figure 3a).

From a more quantitative point of view, the daily mean
and amplitude in cloud cover are, to some extent, depen-
dent on pattern, and more precisely, on the mean size
of cloud objects (S): patterns with small cloud entities
(Sugar and Gravel), tend to have a smaller daily mean
and amplitude in cloud cover than the Flowers and Fish
patterns, which have much larger cloud structures and a
larger fraction of stratiform cloudiness near the inversion
that is particularly sensitive to the daily cycle (Vial et al.,
2019). Nevertheless, the daily variability in cloud cover for

a given pattern remains small compared to the differences
in daily-mean cloud cover between the patterns. The cloud
cover varies by at least a factor of two across the differ-
ent patterns (consistent with Bony et al., 2020), while the
daily variations range between 10 and 20% relative to daily
means.

Note that Bony et al., (2020) found a higher cloud cover
(from MODIS cloud products) for the Flowers pattern than
for the Fish pattern identified with Iorg∕S, which is con-
sistent with our daytime estimates (Figure 4a), given that
only daytime measurements of MODIS over the North
Atlantic trade-wind region (mid-morning for Terra and
early afternoon for Aqua) were used. Nevertheless, it
should also be noted that our GOES-16 ABI estimates of
cloud cover are overall lower than MODIS estimates (cf.
Bony et al., 2020), presumably because the Tb cloud mask
and lower resolution of GOES-16 ABI prevent detection of
the smallest clouds (a point that is further discussed at the
end of Section 4.2).

Overall, our results suggest that the mesoscale patterns
of cloud organization constitute a fairly robust constraint
on cloud cover, and that the dependence of the daily
cycle on mesoscale organization is essentially due to the
daily changes in pattern frequency of occurrence. This also
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F I G U R E 5 Daily cycle in the effective pattern cloud covers (CCk × Fk, solid lines) from GOES-16 ABI using (a) Iorg∕S classified
patterns and (b) NN-detected patterns over the entire domain. The dashed lines represent the product CCk × Fk but with CCk fixed to the
daily mean. The colour code is as in Figure 3

means that, knowing the daily variation in pattern occur-
rence and the mean cloud cover for a given pattern, we
can recover to a large degree the daily cycle in the effective
cloud cover of the different patterns (Figure 5).

4.2 Contribution of mesoscale patterns
to the daily cycle of cloud cover

Combining the daily cycles in Fk (Section 3) and CCk
(Section 4.1) into the product CCk × Fk allows us to quan-
tify more explicitely the relative contribution of mesoscale
patterns to the daily cycle in total cloud cover. We present
this “effective pattern cloud cover decomposition” in
Figure 6 for GOES-16 ABI cloudiness and detected pat-
terns over the entire classification domains (panels a and
b), as well as for the radar cloud cover at BCO and the
NN-patterns overlapping the BCO site (panel c). Recall
that, when using the NN-patterns, the sum of all contri-
butions is greater than the total cloud cover (black lines)
because of the overlaps between multiple label occur-
rences (Section 2.1.1).

Overall, the contribution to total cloudiness from the
four defined patterns is greater at night – when the total
cloud cover is a maximum – than during the day. However,
the extent to which the patterns explain the total cloudi-
ness strongly depends on the classification method. When
using Iorg∕S, about 60% of total cloudiness is explained by
the No category throughout the 24 hr cycle (Figure 6a).
This percentage reflects the frequency of occurrence of the
No category (Figure 3a) which is set by the classification
criteria of patterns (Section 2.1.1). With the NN method,
only about 30% of the cloud cover is due to the No cat-
egory, and the daily cycle for this contribution remains
weak (Figures 6b,c) owing to the opposite diurnal phasing
of FNo and CCNo (compare for instance Figures 3b and 4b).

However, the contribution of the No category to the
overall daily cycle in cloud cover deserves some more dis-
cussion. It is notable that adding the percentage of cloud
cover due to the overlaps between NN patterns (i.e., the
difference between the sum of all contributions and the
actual total cloud cover in Figure 6b) and the percent-
age of CCNo × FNo (the grey area in Figure 6b), leads to
a similar contribution of unclear patterns as that of the
No category for Iorg∕S. This further supports the coher-
ence between these two intrinsically different methods.
Moreover, it suggests that using the NN method, we can
unravel the contribution to total cloud cover due to forms
of cloud organization that are somehow related to the four
predefined patterns (i.e., the contribution from overlaps)
and that due to organization forms that are not related
to the predefined patterns (i.e., contribution from the No
category). Therefore, we argue here that the most likely
contribution of unclassified forms of organization to total
cloud cover is about 30% (the percentage given by the NN
method) – and thus that the largest extent of cloud cover
can be explained by these four forms of mesoscale cloud
patterns, as follows.

The Fish pattern is the most important contribution
to the afternoon cloudiness regardless of the classification
method (Figure 6a,b). This is partly because this pattern
occurs more frequently during daylight hours (especially
when using Iorg∕S), but also because the other patterns
are less frequent and therefore contribute relatively lit-
tle to cloudiness at this time. Actually, when using the
NN method, the effective contribution of the Fish pattern
to the daily cycle in cloud cover tends to be quite small
(Figure 6b,c), because of opposing phases between FFI and
CCFI (Figure 5b) and relatively weak daily amplitudes in
FFI (Table 1 and Figure 3). Note that the Fish pattern is
often associated with a synoptic disturbance that persists
for several days, continuously forced by a convergence line
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F I G U R E 6 Daily cycle of total cloud cover (black thin line,
with the first harmonics superimposed in thicker line) and relative
contributions of the different mesoscale patterns of cloud
organization (CCk × Fk): Sugar (green), Gravel (yellow), Flowers
(red), Fish (blue) and No classification (grey). In (a, b) the pattern
cloud covers are derived with GOES-16 ABI Tb cloud mask on (a)
the 10 ◦ × 10◦ Iorg∕S domain and (b) the NN-detected patterns
within the entire 14 ◦ × 21◦ classification domain. (c) is as (a, b) but
the cloud covers are diagnosed from the radar at BCO using
NN-detected patterns overlapping the BCO site

(Aemisegger et al., 2021; Schulz et al., 2021). This may thus
explain the small daily cycle in the occurrence frequency
of the Fish patterns.

When using the NN method, Gravel and Flowers are
the dominant contributions at night-time, both over the
entire classification domain and at BCO. Gravel explains

about 45% of the total cloud cover around midnight, while
the Flowers contribution maximizes just before sunrise
with values ranging between 30% (at BCO) and 40% (over
the large domain). A similar 24 hr phasing is observed
for these two patterns when using Iorg∕S, although their
contribution to total cloudiness remains small (Figure 6a).

The case of the Sugar pattern is interesting because
it can occur quite frequently (Figures 3c,e) but its spa-
tial extent is relatively small (Figure 3d). Consequently,
its contribution to total cloudiness appears much larger at
BCO (Figure 6c) than over the large domain (Figure 6b).
Moreover, the daily phases of FSU and CCSU are opposed
(Figures 3b and 4b), which reduces the effective contribu-
tion of this pattern to the daily cycle of total cloudiness.
With Iorg∕S, Sugar is the pattern that contributes the least
to the total cloud cover and its daily cycle.

Overall, these results reveal that unclassified and Fish
patterns are the most important for daytime cloudiness,
while Gravel and Flowers contribute most to night-time
cloudiness. The contribution from the Sugar pattern,
although never dominant, maximizes around sunset (with
NN) and can be more important when viewed locally than
at large-scale.

Finally, we draw attention to the three different cloud
cover estimates in Figure 6 (black lines). We note, in par-
ticular, that the cloud cover from the radar at BCO is
about 3 to 10% larger than the satellite-based estimates
over the large domain. This difference is even larger when
using the ceilometer-based cloud cover (not shown). This
difference, which has also been reported in previous stud-
ies comparing BCO data with other satellite-based prod-
ucts (Nuijens et al., 2015; Vial et al., 2019), is likely due
to different capabilities of the instruments to measure
low-level clouds – the BCO radar or ceilometer being much
more sensitive to low-level cumuli than the GOES-16 ABI
infrared channel. Moreover, the Tb cloud mask is defined
such as to exclude some of the shallowest clouds, in par-
ticular those with a cloud-top height below 1 km (Bony
et al., 2020). So we might expect the difference in the
cloud cover estimates (between GOES-16 ABI and the
BCO radar or ceilometer) to be particularly pronounced
for the Sugar pattern which essentially consists of clouds
with little vertical extent above the LCL (Schulz et al.,
2021). Although this difference is indeed slightly larger for
the Sugar pattern, it remains, nevertheless, of the same
order of magnitude regardless of the pattern (compare the
different pattern-related values of CCk in Table 1). This
could be explained based on findings from Schulz et al.,
(2021) showing that the cloudiness near the LCL does not
vary substantially from pattern to pattern, and therefore
the difference between the BCO and satellite-based esti-
mates should also remain relatively similar from pattern to
pattern.
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4.3 Mesoscale pattern signatures
on the daily cycle of clouds
and precipitation at BCO

We here take advantage of the BCO dataset (Section 2.2) to
characterize further the different cloud and precipitation
properties associated with each pattern of organization.
Schulz et al., (2021) provides a detailed description of the
mean structure of clouds and of the convective boundary
layer for each pattern. Here, we focus more on the daily
evolution of precipitation and of the vertical distribution of
cloudiness (Figure 7). We show that, even if the daily cycle
of the overall cloud cover (CCk) is very similar among the
different patterns (Section 4.1), each organization pattern
appears with its own daily cycle of shallow convection:

• The Sugar pattern essentially consists of small
non-precipitating cumuli with a cloud-base height close
to the LCL (below 1 km) and weak vertical extent dur-
ing daylight hours. Near sunset, the overall cloud cover
starts to increase due to a blooming of slightly deeper
clouds reaching the upper cloud layer (above 1.3 km)
between 1900 and 0200 hr. The proportion of shallower
clouds (i.e., CT < 1.3 km) is dominant and remains
fairly constant throughout the day. However, despite
this overall cloud deepening at night, the precipitation
rates measured at the surface remain low throughout
the day.

• For the Gravel pattern, clouds overall reach higher lev-
els in the cloud layer, with about 2/3 of the cloud popu-
lation having their top above 1.3 km. The daily cycle of
the total cloud cover is mainly driven by the population
of thicker clouds (CB < 1 km and CT > 1.3 km), which
increases in the afternoon and maximizes at 0000 hr.
The cloud cover from both the very shallow clouds (CB
< 1 km and CT < 1.3 km) and clouds aloft (CB > 1 km)
remains roughly constant throughout the day. Interest-
ingly, the precipitation peak is delayed by about 6 hr
with respect to the maximum in cloud cover. Seifert and
Heus (2013) noted a similar feature in large-eddy sim-
ulations of shallow convection with cold-pool organiza-
tion (cf. their figure 2). One reason could be that there
is, first, a reduction of rainfall due to evaporation below
cloud-base and that, later, the generated cold pools cre-
ated a moister environment allowing more rainfall at
the surface. Further investigation is needed to verify the
robustness of this time shift between cloudiness and
precipitation and to provide an explanation for it.

• The Flowers pattern has to be interpreted with caution
as the number of detected patterns is small over BCO,
especially between 1800 and 2100 hr (Figure 3), at times
when the peak in cloudiness is observed (Figure 7).

Nevertheless, we find that about 80% of the cloud cover
is explained by clouds with cloud-top height above
1.3 km, and the cloud fraction near the inversion tends
to be more pronounced at late night hours. The daily
cycle in precipitation seems weak and local maxima
are not always correlated with peaks in cloudiness (for
instance at 1200 hr) – a feature that could also be
explained by the presence of cold pools as for the Gravel
case.

• For the Fish pattern, the relative contributions of shal-
low and deeper clouds are similar to the Flowers pat-
tern. The daily variability in CC exhibits two local max-
ima, around sunset and at early morning hours, but
with an overall tendency (given by the first harmonic)
for a daily maximum in cloudiness around sunset. The
vertical cloud fraction profiles reveal that the night-time
inversion and clouds can reach higher levels than dur-
ing the day. The precipitation daily cycle given by the
first harmonic is similar to the Gravel pattern, albeit
with more pronounced variability.

• The unclassified cloud scenes (the “No” category) might
be the most variable on the daily time-scale. The cloud
profile is fairly similar to that of the Sugar pattern dur-
ing the day, whereas at night it appears as a mixture
between the Gravel and the Fish patterns (with both a
strong inversion near 2 km and a significant cloud frac-
tion above). Despite the night-time cloud deepening,
surface rainfall remains quite low throughout the day.
However, there is a small difference in the amplitude of
the daily cycle between the total hydrometeor cover and
the total cloud cover (of about 3% – between the grey
and black curves in the top-right panel), which suggests
a night-time enhancement of clouds with precipitation
at higher levels.

One notable feature worth mentioning is the differ-
ent 24 hr phasing in pattern-related cloud cover at BCO
whether the cloud cover is derived using GOES-16 ABI
(Figure 4c) or BCO remote-sensing instruments (Figure 7).
When using the BCO measurements, the peak in cloud
cover is systematically earlier in time than when GOES-16
ABI retrievals are used (with a phase shift of several
hours – between 2 and 7 hr – depending on the pattern;
Table 1). The time difference in the solar forcing between
the western and eastern boundary of the NN classifica-
tion domain is at most 1 hr 24 min (4 min for every degree
longitude), which cannot explain the aforementioned time
shifts. However, one reason for these differences could be
related to sampling: a small number of detected patterns at
BCO (e.g., Flowers at 1800 hr) and/or a too small temporal
averaging for a given pattern to capture the averaged prop-
erties of the pattern at a given time. For example, given the
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F I G U R E 7 Pattern-related daily cycle of cloudiness and precipitation from the Barbados Cloud Observatory for (top-to-bottom) Sugar,
Gravel, Flowers, Fish and No patterns. Left panels: rain-corrected cloud fraction derived from the radar. Middle panels: profiles at selected
times for the rain-corrected (cloud) and hydrometeor (cloud and rain droplets) fraction derived from the radar. Right panels: (top)
radar-derived cloud covers and (bottom) rain rate derived from the Micro Rain Radar (MRR). In the right panels, the thin solid lines
represent the actual data, the thicker lines are the first harmonics, and the thin dotted horizontal lines are the daily means. Also shown in the
top right panels (grey curve) is the daily cycle in total hydrometeor cover (HC), with the difference in the daily means between HC and CC
removed (for ease of readability in the figure). The daily means in HC are 31.5% for Sugar, 40.6% for Gravel, 49.8% for Flowers, 57.4% for Fish
and 46.3% for No
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large size of Flowers (∼ 100 km or more), they can take sev-
eral hours to cross entirely over BCO (figure 7 in Stevens
et al., 2020). Complementary tests of the influence of spa-
tial/temporal scales on our results support this explanation
(Figure A6).

5 THE ROLE
OF ENVIRONMENTAL FACTORS

Two related questions that can be asked now are what
controls, on the one hand, the daily variability of pattern
frequency and, on the other hand, the constancy in the
night-time peak of cloudiness regardless of the pattern. We
shed light on these questions by diagnosing the daily cycle
of some of the environmental factors that are known to
be either determinant for pattern occurrence (Bony et al.,
2020) and/or controlling factors of winter trade cloudiness
at time-scales longer than a day (Brueck et al., 2015; Nui-
jens et al., 2015). In those studies, the near-surface wind
speed and LTS appear to be the most influential factors
on the day-to-day and interannual time-scales. We thus
consider those two variables, as well as the SST, which is
known to be an important ingredient for the daily cycle
of convection when the near-surface wind speed is weak
(Bellenger et al., 2010; Ruppert and Johnson, 2016).

The results presented in Figure 8 show that these three
variables exhibit a daily cycle, with distinct phasings and
amplitudes depending on the variable itself, on the pattern,
and on the dataset that is considered.

5.1 Relation to the daily cycle
in pattern frequency

For daily means in large-scale wind speed and LTS,
our findings are consistent with Bony et al., (2020): the
large-scale environment tends to be less stable with weak
winds for Sugar, less stable with strong winds for Gravel,
more stable with strong winds for Flowers, more stable
with weak winds for Fish (Figure 8a, empty circles). Here,
we show that this holds at any time of the day, and that
the daily cycle in wind speed amplifies the relationship
between wind speed and pattern occurrence (Figure 8a,
filled circles). The large-scale wind tends to be stronger
at night regardless of the pattern (Figure 8b), and thus
it discriminates the occurrence of the organization pat-
terns in the same way at sub-daily, daily and interannual
time-scales: Gravel and Flowers occur mostly at night
when the wind is stronger, while Fish and Sugar occur
mostly during daytime when the wind is weaker. However,
it is worth noting that this relationship can be different
depending on whether the wind speed is diagnosed at

large-scale (here, with ERA5 over the large NN classifi-
cation domain in Figure 8b) or locally (e.g., at NTAS in
Figure 8f). Indeed, the overall increased variability in the
pattern-related daily cycles in wind speed at NTAS could
explain the difference for the Sugar pattern (compare the
thin lines between Figure 8b and f).

The daily cycle in LTS can be different from one pat-
tern to another (Figure 8c), and the relationship between
LTS and pattern occurrence at daily time-scale is opposite
to that found at longer time-scales: at times of maximum
occurrence of Fish and Flowers patterns, the environment
is the least stable of the day, and at times of maximum
occurrence of Gravel and Sugar patterns, the environment
tends to be more stable compared to the pattern-related
daily-mean LTS (Figure 8a).

The SSTs tend to be lower for the Flowers pattern and
higher for the Sugar pattern (as in Bony et al., 2020), but
overall this variable does not significantly explain the vari-
ability in pattern occurrence on the day-to-day or daily
time-scales (Figure 8a).

Therefore, the near-surface wind speed is here the
factor that explains best the daily variability in pattern
occurrence; it discriminates between the daytime and
night-time patterns.

5.2 Relation to the constancy of the
night-time peak of cloudiness

As mentioned earlier, the large-scale wind is overall
stronger at night whatever the pattern (Figure 8b),
and thus correlates quite well with the daily cycle in
pattern-related cloudiness (Figure 4). This co-variability
between trade-wind cloudiness and near-surface wind
speed has already been discussed in the context of slowly
varying observations (Brueck et al., 2015; Nuijens et al.,
2015) or in equilibrated large-eddy simulations (Nuijens
and Stevens, 2012). Here, we show that it happens on
the daily time-scale whatever the organization pattern in
place, and could therefore constitute a basic ingredient
of trade-wind convection: as the winds reinforce, sur-
face evaporation increases, providing the moisture that is
needed for the clouds to grow deeper, which then helps
increase the overall cloud cover. Surface winds, in turn,
can be enhanced at night as radiative cooling destabi-
lizes the boundary layer and strengthens the momentum
transport by the shallow convection (Hourdin et al., 2015;
Schlemmer et al., 2017).

The domain-mean LTS has a small daily cycle with a
maximum at night-time – at times when the cloud cover is
maximum (compare black line in Figures 6b and 8b). This
result is somewhat expected given that large night-time
cloudiness is mainly related to the spreading of a stratiform
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F I G U R E 8 (a) Fractional anomalies (with respect to climatological mean) of pattern-related large-scale 10 m wind speed (U) and LTS
from ERA5 and local SST from NTAS measurements. The empty circles represent the anomalies based on the daily-mean U, LTS and SST,
whereas the filled circles represent the anomalies at the time of the peak occurrence of the specific patterns (which is indicated by the filled
markers in (b–g). (b–e) show pattern-related daily cycle of U, LTS, 𝜃700 and 𝜃1000 sampled over the large NN classification domain when using
ERA5 data. (f, g) show pattern-related daily cycle of U and SST sampled over the NTAS site and using NTAS measurements. The first
harmonics are shown by the thicker line. Note that the 3 m wind speed measured at NTAS has been adjusted to conform to the reference 10 m
height (Section 2.2). The colour code for the patterns is indicated in the legend, and the black line represents the climatological mean (DJFM
2018–2020)
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cloud layer below the trade inversion (Vial et al., 2019),
and that stratiform cloudiness is more likely to occur under
stronger stability (Wood and Bretherton, 2006). Given that
strong LTS is favoured by weak 𝜃1000 and/or strong 𝜃700
and that both 𝜃1000 and 𝜃700 exhibit a daily cycle with a
minimum at night-time, the night-time maximum in LTS
is then primarily due to the minimum in (near-)surface
warming.

Note, however, that the daily cycle in LTS is differ-
ent from one pattern to another; this is related to a 𝜃700
dependency, as the daily cycle in 𝜃1000 is fairly similar for
all patterns (Figures 8d,e). The Flowers pattern in partic-
ular is associated with less stable conditions during the
night, owing to a large decrease in 𝜃700. From these results,
we hypothesize that, while more stable conditions can be
more favourable to stratiform cloudiness at night, once the
Flowers stratiform cloud layer are present they might pro-
duce locally less stable conditions, presumably through
enhanced radiative cooling at cloud-top (e.g., figure 6 of
Albright et al., 2021). Case-studies of the field campaign
EUREC 4A (Stevens et al., 2021) which took place wind-
ward of Barbados in January–February 2020 could provide
new opportunities to further investigate how the cloud
patterns impact the local environment.

Due to the sustained easterlies in this season, the daily
cycle in SST is not expected to be strong and hence also
is not expected to play a major role in the daily cycle of
trade-wind cumuli (Brill and Albrecht, 1982; Vial et al.,
2019). Indeed, as shown in Figure 8e, the daily ampli-
tudes of SSTs remain small, ranging between 0.1 and 0.2◦C
across the different patterns. Moreover, there is an over-
all tendency for higher SSTs during the day, at times when
the cloud cover is minimum, revealing that the nocturnal
increase in cloud cover is not forced by surface warming (a
somewhat obvious fact).

The dependence of the SST daily cycles on the
mesoscale patterns of organization and associated wind
speed does not appear straightforward. Although there is
an anticorrelation between the daily cycles of the wind
speed and of the SST for the three-winter climatology
(black curves in Figures 8d,e), consistently with previous
observational analyses over this area on long time-scales
(e.g., Xie, 2004), more diverse relationships are found at
the daily time-scale for the individual patterns. We note,
for instance, a time shift of about 6 hr between the daily
maximum in wind speed and the daily minimum in SST for
the patterns Sugar and Flowers. Moreover, there does not
seem to be a linear relationship between the daily-mean
wind speed and SST among the different patterns. These
results therefore suggest that different factors (e.g., precip-
itation, upper ocean eddies) might affect the air–sea cou-
pling on short time-scales and depending on the mesoscale
pattern of cloud organization.

6 CONCLUSIONS
AND DISCUSSIONS

High-frequency geostationary satellite observations
over the tropical Atlantic ocean and ground-based
remote-sensing measurements from the Barbados Cloud
Observatory (BCO) are used to explore how the daily
cycle of cloudiness in the winter trades depends on the
spatial organization of shallow convection. We focus on
the four prominent patterns of cloud organization of this
region – Sugar, Gravel, Flowers and Fish – which have
been characterized recently (Stevens et al., 2020). We apply
two existing classification methods on 30 min infrared
brightness temperatures from GOES-16 ABI to sample the
daily cycle of these four forms of organization: one based
on a neural network (referred to as NN) and one based on
the mean size and degree of clustering of segmented cloud
objects (referred to as Iorg∕S). A fifth category is also con-
sidered for unclassified mesoscale cloud scenes. Although
these two classification methods are quite different in
nature, they both yield qualitatively similar results, which
are summarized below:

1. All forms of mesoscale organization exhibit a pro-
nounced daily cycle in their frequency of occurrence,
with distinct phasing and amplitude. The patterns Fish
and Sugar preferentially occur during daytime, with a
frequency peak around noon for Fish and around sun-
set for Sugar. The patterns Gravel and Flowers occur
more frequently during night-time; Gravel maximizes
around midnight and Flowers at early morning hours
before sunrise. From a more quantitative point of view,
the daily characteristics of pattern occurrence (mean,
phase, amplitude) are somewhat dependent on the
classification method and on the geographical location
of the patterns. The dependence of pattern occurrence
to the large-scale environmental factors, such as the
east–west gradient in near-surface wind speed, can
explain some of the geographical disparities.

2. The daily cycle in cloudiness for a given pattern is rel-
atively weak compared to the differences in cloudiness
between the patterns. It is also fairly independent of the
pattern and its geographical location: any given pattern
cloud cover is maximum at night-time (between 0000
and 0300 hr) and minimum in the afternoon (between
1200 and 1500 hr).

3. As a result of points 1 and 2, the effective contribu-
tion of patterns to the daily cycle in total cloudiness
is to a large extent mediated by the frequency of pat-
tern occurrence. The Fish pattern, which mostly occurs
during the day, explains about 30% of daytime cloud
cover. The contribution to total cloud cover from the
Sugar pattern is the most important around sunset,
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representing up to about 25% of total cloud cover at this
time at BCO. Gravel is the dominant form of organi-
zation around midnight (explaining up to 45% of total
cloudiness), and Flowers can contribute up to 40% at
early morning hours before sunrise.

4. A significant contribution of total cloud cover is
also associated with unclassified organization, espe-
cially during daytime, which happens to be at the
time of minimum cloud cover. Nevertheless, and
although the importance of the unclassified contri-
bution depends on the classification method, we find
that the mesoscale patterns of cloud organization can
explain to a large extent the daily cycle in total cloud
cover.

A more detailed analysis of the cloud vertical distri-
bution and precipitation at BCO allows to connect our
findings with the description of the daily cycle of shallow
cumuli made in Vial et al., (2019). First, they showed that
during daytime a population of very shallow clouds grows,
reaches a peak at 1800–1900 hr, and decays until dawn.
Here we demonstrate that this behaviour is associated with
an increased occurrence frequency of the Sugar pattern
towards sunset. Second, the overnight cloud deepening
discussed in Vial et al., (2019) is here primarily connected
to the increased occurrence of the Gravel pattern, and to
a lesser extent, to an overall deepening of clouds embed-
ded in the Sugar and Gravel patterns. Third, the dawn
peak in cloud cover owing to the spreading of a stratiform
cloud layer below the trade inversion (Vial et al., 2019) is
here connected to a maximum occurrence of the Flowers
pattern at this time of the day. It thus appears that the
daily cycle in the occurrence of Sugar, Gravel and Flow-
ers together may, to some extent, explain the evolution of
trade-wind cloudiness from the shallowest cumuli in late
afternoon to the night-time population of deeper cumuli.
These insights raise the question of the autocorrelation
time-scale of individual patterns, and of the evolution from
one pattern to another, which we leave for future inves-
tigation. In that respect, we expect the Fish pattern to
be somewhat different, as it appears more strongly con-
nected to non-local synoptic-scale disturbances persisting
on time-scales longer than a day (Aemisegger et al., 2021;
Schulz et al., 2021). This is further supported here with a
relatively weak daily cycle in the occurrence frequency of
the Fish pattern.

The early morning peak in surface precipitation, iden-
tified in previous studies (Nuijens et al., 2009; Vial et al.,
2019), is here associated with both the peak occurrence
of the nocturnal patterns (Gravel and Flowers) and the
enhanced rain rate at the end of the night for the ‘rainy’
patterns (Gravel, Flowers and Fish), regardless of their
time of occurrence. Interestingly, for those three patterns

(and especially for Gravel), the rain rate peak tends to suc-
ceed the cloud cover maximum by a few hours, which
might be related to cold pools. This hypothesis should
motivate further investigation to ascertain whether cold
pools actually play a role in the phasing of rainfall.

Finally, we find that the large-scale near-surface wind
speed can explain some of the geographical disparities
in pattern frequency, it can also robustly discriminate
between daytime and night-time patterns, and it is fairly
related to the daily cycle in pattern cloudiness regardless of
the pattern in place. These insights, combined with find-
ings from previous studies (Brueck et al., 2015; Nuijens
et al., 2015; Bony et al., 2020), suggest that the strength
of the trade winds are overall tightly connected to cloud
amount and organization over a wide range of time-scales
from sub-daily to inter-annual.
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APPENDIX A

A.1 Characterization of shallow cloud organization
from the paired (Iorg,S) distributions
We consider the NN approach as more subjective (than
the Iorg∕S method) in the sense that the NN algorithm is
trained from satellite images classified by the qualitative
and subjective human eye (Rasp et al., 2019; Stevens et al.,
2020). This subjectivity inevitably gives rise to ambiguous
detections, and this is why there are a certain number of
overlaps between multiple pattern rectangles. In addition
to Figure 1b, we here provide two more Examples of such
ambiguous classifications that were identified in previous
studies (Stevens et al., 2020; Bony et al., 2020). One is
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F I G U R E A1 As Figure 1b, but for different dates. The colour code for the rectangles is the same as the one used throughout the
manuscript: red is for Flowers, blue for Fish, yellow for Gravel, green for Sugar. The Iorg∕S classification is indicated in the grey area

F I G U R E A2 (left) characterization of shallow cloud organization from the thresholding by terciles of the Iorg and S distributions.
Sugar is shown in green, Gravel in yellow, Flowers in red, Fish in blue, and the undefined regime is shown in grey. (right) distribution
functions of the (top) clustering index (Iorg) and (bottom) mean size of cloud objects (S)
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due to the confusion between the patterns Flower and Fish
(Figure A1a,c) and the other one is between Gravel and
Sugar (Figure A1b,d).

A.2 Examples of known ambiguities in NN-pattern
detection
Figure A2a shows how the four patterns are distributed
according to their Iorg∕S values. (b, c) show the distribu-
tion functions of Iorg and S. Note that (a) is the same as
figure 1 in Bony et al., (2020), but using a different dataset,
sampling frequency and period. In particular, the shape
of the Iorg and S distributions are similarly skewed toward
high Iorg and low S values. However, the distribution S is
here shifted toward lower values than in Bony et al., (2020),
which is presumably due to the higher spatial resolution of
GOES-16 ABI Tb field (2 km) than the GridSat-B1 product
(0.07◦) used in Bony et al., (2020).

A.3 Impact of multiple pattern overlaps on pattern
frequency and cloud cover
We here test the robustness of our conclusions to the
degree of overlaps between multiple NN-detected patterns
(Figures A3 to A5). This is done in two ways.

First, we vary a score of the neural network
algorithm – which we call a classification score – which
measures how well the detected cloud structure fits to
that of a specific pattern (Figures A3 and A4). When the
score is increased, the chance to detect overlapping pat-
tern rectangles is reduced and the sum of pattern areas
(including unclassified areas) approaches the domain
area. The default value of the score used in this study is 0.4
(Figures A3 and A4, solid line). As shown in Figure A3,
the error due to the overlaps is substantially reduced with
a score of 0.5 (dotted line) and almost zero with a score of
0.6 (dashed line). The drawback of increasing the score is
that less patterns are detected overall: in Figure A4 (right
panels), the temporal frequency of pattern occurrence
(fk) is substantially reduced as the score is increased.
Figure A4 (left panels) shows that the phase and ampli-
tude of the daily cycles in cloud cover for a given pattern
(CCk) are, however, quite robust and independent of the
classification score. The large differences that are seen
occur essentially for a score of 0.6, for which the sample
size of detected patterns per category becomes quite low
(Figure A4, right panels).

Second, we compare in Figure A5 the daily cycle in pat-
tern frequency and cloud cover between two data samples:
one containing all detected patterns overlapping the BCO
site at a given timestep (thus including multiple pattern

F I G U R E A3 Daily cycle of the “error” due to overlaps
between several rectangles of different labels for three values of the
classification score. The horizontal lines are the daily means of the
error. The error is actually the sum of all pattern areas (including
the no classification) normalized by the domain area. A value of 1
means no error

overlaps), and one containing only the timesteps with sin-
gle pattern detection at BCO. Figure A5 shows that the
daily cycles are very simlar whether we allow multiple
pattern overlaps or not.

Overall these two supplemental analyses show that
multiple pattern overlaps have a minimal effect on the
daily cycles of occurrence frequency and cloud cover of
mesoscale patterns.

A.4 Sensitivity of pattern cloud cover to spatial
scales
Figure A6 shows the GOES-16 ABI cloud cover for patterns
overlapping BCO (as in Figure 4c), but the cloud cover
averaging for each detected pattern rectangle is limited to
a 20 km 2 subdomain centred over BCO (Figure A6a), or
located 10 km east of BCO (Figure A6b). The comparison
between Figure A6 and Figure 4c shows that the daily
cycles of pattern-related cloud covers are sensitive to the
spatial scale used to compute the cloud covers. Therefore,
we presume similarly that the results at BCO (Figure 7)
and at NTAS (Figure 8f,g) are to some extent affected by
the relatively small temporal interval (used to average the
surface or atmospheric field for a given pattern) compared
to the size of patterns. On a somewhat different level, the
comparison between Figure A6a,b shows that the results
are very similar whether they are focused over BCO or east
of BCO, suggesting a negligible effect from the island (e.g.,
land/sea breezes).
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F I G U R E A4 Daily cycle of pattern temporal frequency of occurrence (fk, left panels) and pattern cloud cover (CCk, right panels) for
different values of the agreement score. The default score used in the study is s = 0.4
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F I G U R E A5 Daily cycle of (a) pattern
frequency (fk) and (b) BCO radar-derived cloud
cover (CCk) when NN-detected patterns overlap
the site BCO. The solid lines refer to the case for
which we allow multiple pattern occurrences
over BCO and the dashed lines refer to the case
for which only one pattern is detected at a given
timestep

F I G U R E A6 Daily cycle of pattern cloud
covers diagnosed from GOES-16 ABI for patterns
overlapping BCO. The cloud covers are
calculated over the part of the patterns that is
contained in a 20×20 km 2 sub-domain (a)
centred at BCO and (b) 10 km east of BCO


