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Abstract 

Combining multimodal biomarkers could help in the early diagnosis of Alzheimer’s disease 

(AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort. 

Amyloid and neurodegeneration were assessed on 18F-florbetapir and 18F-fluorodeoxyglucose 

PET, respectively. We used a nested cross-validation approach with non-invasive features 

(electroencephalography [EEG], APOE4 genotype, demographic, neuropsychological and MRI 

data) to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ decline to prodromal AD at 5-

year follow-up. Importantly, EEG was most strongly predictive of neurodegeneration, even when 

reducing the number of channels from 224 down to 4, as 4-channel EEG best predicted 

neurodegeneration (negative predictive value [NPV] = 82%, positive predictive value [PPV] = 

38%, 77% specificity, 45% sensitivity). The combination of demographic, neuropsychological 

data, APOE4 and hippocampal volumetry most strongly predicted amyloid (80% NPV, 41% 

PPV, 70% specificity, 58% sensitivity) and most strongly predicted decline to prodromal AD at 5 

years (97% NPV, 14% PPV, 83% specificity, 50% sensitivity). Thus, machine learning can help 

to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers.  

Keywords: Preclinical Alzheimer’s disease; Machine learning; Multimodal; EEG; 

Neurodegeneration.  

Abbreviations: A- = amyloid negative; A+ = amyloid positive; EEG = electroencephalography;  

FCSRT = Free and Cued Selective Reminding Test; INSIGHT-preAD = Investigation of 

Alzheimer’s Predictors in Subjective Memory Complainers; LDA = linear discriminant analysis; 

MMSE = Mini Mental State Examination; MSF = median spectral frequency; N- = 

neurodegeneration negative; N+ = neurodegeneration positive; NPV = negative predictive value; 

PPV = positive predictive value; PSD = power spectral density; SCD = subjective cognitive 

decline; SUVR = standardised uptake value ratio; SVM = support vector machine; wSMI = 

weighted symbolic mutual information  
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1. INTRODUCTION 

Alzheimer’s disease (AD) brain lesions appear several years before cognitive impairment, during 

preclinical AD (de Leon et al., 2007). Recent AD trials suggest that patients are more likely to 

benefit from disease-modifying treatments if treated early in the disease course (Dubois et al., 

2016; Jack et al., 2018). Thus, there is an urgent need for reliable, non-invasive and low-cost 

tools to identify individuals at the earliest stages of AD.  

Previous studies have shown that electroencephalography (EEG) metrics could be predictive non-

invasive biomarkers for AD (Aghajani et al., 2013; Al-Nuaimi et al., 2018; Babiloni et al., 2018, 

2016, 2010; Jeong, 2004; Lehmann et al., 2007; Poil et al., 2013; Yang et al., 2019; Yu et al., 

2018). However, most studies have focused on EEG biomarkers at a clinical stage of AD, after 

the onset of cognitive decline, and not at a preclinical stage.  

A recent study demonstrated significant EEG changes in cognitively normal individuals with AD 

topography-specific neurodegeneration (Gaubert et al., 2019). Thus, quantitative EEG seems to 

be a promising tool to identify preclinical AD subjects, but further studies are needed to assess 

the individual diagnostic accuracy.  

Furthermore, combining multimodal biomarkers could help in the early diagnosis of AD (Frölich 

et al., 2017; Gupta et al., 2019; Li et al., 2017; Ritter et al., 2015). Previous studies have proposed 

multimodal models to predict brain amyloidosis in cognitively normal individuals (Ansart et al., 

2020; Insel et al., 2016; Mielke et al., 2012; ten Kate et al., 2018). Being able to accurately 

predict neurodegeneration would also be important, as biomarkers of neuronal injury appear to 

best predict future cognitive decline, rather than an abnormal amyloid biomarker alone 

(Dickerson et al., 2013; Mormino et al., 2014; Soldan et al., 2016).  

Our objective was to assess the performance of multimodal non-invasive biomarkers to screen 

individuals at high risk of preclinical AD, using a machine learning approach. In 304 subjective 
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cognitive decline (SCD) individuals, we aimed to predict: 1/ amyloid status; 2/ neurodegeneration 

status; 3/ participants declining to prodromal AD at 5-year follow-up, using their baseline data, in 

an exploratory analysis.  

2. MATERIAL AND METHODS 

2.1. Participants 

Participants were recruited in the French INSIGHT-preAD cohort, which includes baseline data 

of 318 cognitively normal individuals, between 70 and 85 years old, with subjective memory 

complaints but unimpaired cognition (Dubois et al., 2018). Demographic, cognitive, biological, 

imaging including brain structural and functional MRI, 18F-fluorodeoxyglucose (FDG) PET and 

18F-florbetapir PET, EEG and other assessments were performed at baseline and regularly during 

a 5-year follow-up. 304 subjects were included in this machine learning study, because 14 

subjects had missing baseline data. The ethics committee of the Pitié-Salpêtrière Hospital 

approved the study protocol. Written informed consent according to the Declaration of Helsinki 

was provided by all participants.  

2.2. PET acquisition and processing 

PET scans were acquired 50 min after injection of 370 MBq (10 mCi) ¹⁸F-florbetapir or 30 min 

after injection of 2 MBq/kg ¹⁸F-FDG. Reconstructed images were analysed with a pipeline 

developed by the Centre d’Acquisition et Traitement des Images (http://cati-neuroimaging.com). 

A 18F-florbetapir PET standardised uptake value ratio (SUVR) threshold was set at 0.7918 for 

positive versus negative amyloid deposition (Dubois et al., 2018). Neurodegeneration status was 

assessed on 18F-FDG PET scans. Cortical metabolic indices were calculated in four bilateral 

regions of interest that are specifically affected by AD (Jack et al., 2012): posterior cingulate 

cortex, inferior parietal lobule, precuneus, and inferior temporal gyrus, and the pons was used as 

the reference region. Individuals were considered neurodegeneration positive if the mean 18F-

http://brain.oxfordjournals.org/sites/default/files/pdf/Helsinki.pdf
http://cati-neuroimaging.com)/
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FDG PET SUVR in the four AD-signature regions was below 2.27 (Gaubert et al., 2019). All 

PET scan data used in this study were acquired at baseline.  

2.3. MRI acquisition and processing 

MRI scans were obtained over a 1 h period on a 3T Magnetom VERIO system (Siemens Medical 

Solutions, Erlangen, Germany). Scanning sessions were as follows: three-dimensional T1-

weighted magnetisation-prepared rapid gradient echo; two-dimensional fluid-attenuated inversion 

recovery; two-dimensional T2* diffusion tensor imaging acquisition; T2*-weighted gradient-echo 

echo-planar series; and a pulsed arterial spin labelling scan for measurement of cerebral blood 

flow at rest. Hippocampal volume was measured on three-dimensional T1 sequences with our in-

house SACHA software, normalised to the mean total intracranial volume. 

2.4. EEG acquisition and processing 

EEG data were acquired with a high-density 256-channel EGI system (Electrical Geodesics Inc., 

USA) with a sampling rate of 250 Hz and a vertex reference. 60 seconds of eyes-closed resting-

state recording were selected for the analysis. We used a pipeline (Engemann, 2015, 2018; King 

et al., 2013; Sitt et al., 2014) that automates processing of EEG recordings with artifact removal 

and extraction of metrics (Gaubert et al., 2019). A band-pass filtering (from 0.5 to 45 Hz) and a 

notch filter at 50 Hz and 100 Hz were applied. Data were cut into 1 second epochs. Channels that 

exceeded a 100 µv peak-to-peak amplitude in more than 50% of the epochs were rejected. 

Channels that exceeded a z-score of four across all the channels mean variance were rejected. 

This step was repeated two times. Epochs that exceeded a 100 µv peak-to-peak amplitude in 

more than 10% of the channels were rejected. Channels that exceeded a z-score of four across all 

the channels mean variance (filtered with a high pass of 25 Hz) were rejected. This step was 

repeated two times. The remaining epochs were digitally transformed to an average reference. 

Rejected channels were interpolated. 
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2.5. Calculation and analysis of EEG metrics  

We analysed 304 high-density 256-channel EEG recordings from INSIGHT-preAD baseline data. 

We calculated 10 EEG metrics that have been shown to be highly relevant for the study of 

preclinical AD in a previous work (Gaubert et al., 2019): power spectral density (PSD) in delta 

(1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-45 Hz), median spectral 

frequency (MSF), spectral entropy, algorithmic complexity and weighted symbolic mutual 

information (wSMI), a metric of functional connectivity, in theta and alpha band (Gaubert et al., 

2019; King et al., 2013; Sitt et al., 2014). EEG metrics were averaged across all epochs. We 

calculated the mean value of each EEG metric across all scalp electrodes. For the 256-channel 

EEG setup, scalp (non-facial) electrodes were the first 224 electrodes. All markers were 

computed using NICE (https://github.com/nice-tools/nice), the NICE pipeline web-

implementation (demo.doc-eeg.net) and MNE-Python (Gramfort et al., 2014). The collection of 

scripts used are publicly available at https://github.com/fraimondo/insight-pread. 

2.6. Clinical progression to prodromal AD  

Clinical progression to prodromal AD during the 5-year follow-up was defined using the IWG-2 

criteria (Dubois et al., 2014). An amnestic syndrome of the hippocampal type or another typical 

clinical presentation (e.g. logopenic aphasia) (Dubois et al., 2014), persistent on two consecutive 

visits, at least 6 months apart AND positive amyloid-β deposition on the last 18F-florbetapir PET 

was categorised as prodromal AD. Medical files were reviewed by an independent committee of 

experts, who validated the participants’ status.  

2.7. Statistical analysis 

Statistical and machine learning analyses were performed using R 3.6.1. (R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/). 

 

https://www.r-project.org/
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2.7.1. Analysis of baseline characteristics  

We compared baseline characteristics between groups using Welch's t test for continuous 

variables and Fisher’s exact test for qualitative variables.   

2.7.2. Reduction of the number of electrodes 

Reducing the number of electrodes is an essential step to use EEG as a diagnostic tool in clinical 

practice for preclinical AD detection. We evaluated agreement between mean EEG metrics on 

224 electrodes, and using a reduced number of electrodes (128, 64, 32, 16, 8, 4 and 2 electrodes). 

We calculated intraclass correlation coefficients (ICC) with two-way mixed effects, absolute 

agreement, single measurement (McGraw and Wong, 1996). Channels were selected so that their 

configuration was close to a realistic EEG configuration respecting the international 10-20 

system, or its 10-10 or 10-5 variants (Supplementary Figure 1).  

2.8. Machine Learning analysis 

We built three models, to predict: 1/ amyloid positive (A+) versus amyloid negative (A-) status; 

2/ neurodegeneration positive (N+) versus neurodegeneration negative (N-) status; 3/ participants 

declining to prodromal AD at 5-year follow-up (AD-decliners) versus cognitively stable 

individuals (non-decliners), using their baseline data. 

2.8.1. Input features 

We defined seven groups of features: three EEG groups of features, socio-demographic data, 

APOE4 status, neuropsychological data and hippocampal volume measured on MRI. The 

complete list of features is reported in Table 1. The following eight combinations of groups of 

features were compared in the analysis: 1) Socio-demographic and neuropsychological data; 2) 

Socio-demographic, neuropsychological data, ApoE4 status, and hippocampal volume; 3) 4-

channel EEG; 4) 16-channel EEG; 5) 224-channel EEG; 6) 4-channel EEG + combination N°2; 

7) 16-channel EEG + combination N°2; 8) 224-channel EEG + combination N°2. For each model 
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(A+/A-, N+/N-, AD decliners/non-decliners), we first implemented a feature preselection step 

using student t-test for continuous data or chi-squared test for categorical data to select the five 

and the ten most significantly different features between each group. In the machine learning 

analysis, each of the eight combinations of groups of features was tested using: 1) the five best 

pre-selected features; 2) the ten best pre-selected features; 3) all features, which led to 8 × 3 = 24 

combinations of features tested.   

2.8.2 Machine learning pipeline 

We compared three classification algorithms: Random Forest (Breiman, 2001) (R package 

randomForest version 4.6-14), logistic regression, linear support vector machine (SVM) (Müller 

et al., 2001) (R package e1071 version 1.7-3). We tuned SVM classifier by optimizing gamma 

and C-constant parameters. For each model we used the oversampling method (Chawla et al., 

2002) to handle the imbalanced datasets and rebalance the class distribution to 50_50%. 

Predictive performance was evaluated using the following nested cross-validation procedure 

(Figure 1): data was repeatedly (50 times) separated into a training and a test set (85%/15%). The 

training set was used to find the best algorithm/group of features/pre-selected features 

combination, which was then applied on the test set on subjects independent of the classifier 

construction to evaluate the performances. We randomly created 100 bootstrap samples from the 

training set. A 5-fold cross validation was done for each bootstrap sample. We calculated a 

median training Youden index for each algorithm/group of features/pre-selected features 

combination, averaged over the 100 bootstrap samples. The combination with the highest median 

Youden index was selected in the training part and was then applied on the test set. 

2.8.3 Performance measures 

The best algorithm/group of features/pre-selected features combination was used on the test set to 

calculate the following performance measures: area under operating characteristic curve (AUC), 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and 
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balanced accuracy ([sensitivity + specificity]/2). This procedure was repeated 50 times. Fifty 

classifiers as well as performance measures were therefore obtained and were summarized with 

number and percentage or median and quantile 0.025 and 0.975. Finally, the classifier that was 

most often selected on 50 iterations was considered as the best classifier.  

3. RESULTS 

3.1. Reduction of the number of electrodes 

Evaluation of agreement between mean EEG metrics on 224 electrodes and using a reduced 

number of electrodes showed excellent agreement for 8 of the 10 EEG metrics when reducing the 

number of electrodes from 224 down to 4 (ICC > 0.9), for the following EEG metrics: PSD delta, 

theta, alpha, beta, gamma, MSF, spectral entropy and algorithmic complexity. We found near 

perfect agreement for the same 8 EEG metrics when reducing the number of electrodes from 224 

down to 16 (ICC > 0.98). For wSMI alpha, reliability was good for 128-channel EEG (ICC 0.87 

[0.70;0.93]) and poor when reducing the number of channels to 64 and below. For wSMI theta, 

reliability was poor when reducing the number of channels to 128 and below. Based on these 

results we created three groups of EEG features for the upcoming machine learning analysis: 

“224-channel EEG”, “16-channel EEG” and “4-channel EEG” (Table 1).  

3.2. Prediction of amyloid status 

3.2.1. Population characteristics according to amyloid status 

At baseline, on 304 participants, 85 subjects were A+ and 219 subjects were A- (Table 2). The 

mean age of all participants was 76.1 years (SD 3.5) and 68.1% of the participants had a high 

educational level. There were no sex or education differences between A- and A+ groups. 

Participants in A+ group were older versus A- (76.8 SD 3.5 versus 75.8 SD 3.5, p=0.018). The 

proportion of APOE4 carriers was higher in A+ versus A- group (36.5% versus 12.8%, 

p<0.0001). The two groups did not differ for cognitive scores except for Mini Mental State 
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Examination (MMSE) and Frontal Assessment Battery (FAB) where A+ group had lower scores 

than A- group (p = 0.03). The mean 18F-FDG PET SUVR did not differ between A+ and A- 

groups. The total hippocampal volume was lower in A+ versus A- subjects (p=0.002). 

3.2.2. Prediction of amyloid status on the test set 

3.2.2.1. Best classifier 

The best classifier for the prediction of amyloid was random forest with the following 

combination of groups of features: demographic, neuropsychological data, APOE4 genotype and 

hippocampal volumetry (with 10 features pre-selected), enabling a median AUC of 0.62, a 62% 

balanced accuracy, a 58% sensitivity, 70% specificity, a 41% PPV and 80% NPV (Table 3).   

3.2.2.2. Best features 

The best features for the prediction of amyloid were the following (according to the frequency of 

selection of each feature on 50 iterations): APOE4 genotype (60%), MMSE (60%), hippocampal 

volumetry (58%), age (52%), FAB (50%), FCSRT Delayed Free Recall (38%), education level 

(36%), FCSRT Immediate Total Recall (34%), FCSRT Immediate Free Recall (34%), FCSRT 

Delayed Total Recall (34%) and sex (34%). The other features were selected in a proportion 

lower than 2%.   

3.3. Prediction of neurodegeneration status 

3.3.1. Population characteristics according to neurodegeneration status 

At baseline, on 304 participants, 72 subjects were N+ and 232 subjects were N- (Table 4). There 

were no age or education differences between groups. There were more women in the N- group 

(68.1%) compared to the N+ group (45.8%, p<0.0001). The proportion of ApoE4 carriers did not 

differ between the N+ and N- groups. The two groups did not differ for cognitive scores except 

for the Free and Cued Selective Reminding Test (FCSRT) delayed free recall where the N+ group 
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had lower scores (p=0.03). The mean amyloid SUVR was higher in the N+ group (p=0.006). The 

total hippocampal volume was lower in N+ versus N- subjects (p=0.04). 

3.3.2. Prediction of neurodegeneration status on the test set 

3.3.2.1. Best classifier 

The best classifier for the prediction of neurodegeneration was logistic regression with 4-channel 

EEG (with five features pre-selected), as this classifier was selected in 38% of 50 iterations, 

enabling a median AUC of 0.62, a 61% balanced accuracy, a 45% sensitivity, 77% specificity, 

38% PPV and 82% NPV (Table 3). The second-best classifier was logistic regression with 16-

channel EEG (with all variables pre-selected), as this classifier was selected in 36% of 50 

iterations, enabling a median AUC of 0.68, a 60% balanced accuracy, a 45% sensitivity, 73% 

specificity, 34% PPV and 82% NPV.  

3.3.2.2. Best features 

EEG was the most strongly predictive of neurodegeneration (selected in 100% of 50 iterations). 

The best EEG features for the prediction of neurodegeneration were the following (according to 

the frequency of selection of each feature on 50 iterations): 16-channel MSF (54%), 16-channel 

PSD gamma (54%), 4-channel MSF (38%), 4-channel PSD gamma (38%), 16-channel 

algorithmic complexity (36%), 16-channel PSD alpha (36%), beta (36%), delta (36%) and theta 

(36%), and 16-channel spectral entropy (36%). The other features were selected in a proportion 

lower than 8%.  

3.4. Decline to prodromal AD at five-year follow-up  

3.4.1. Baseline characteristics of AD-decliners 

During the five-year follow-up, 14 individuals declined to prodromal AD and 70 were lost to 

follow-up (Table 5). There were no age, sex or education differences between groups. AD-

decliners were more often ApoE4 carriers than non-decliners (57.14% versus 17.95%, p=0.0018). 
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The 14 AD-decliners had lower baseline FCSRT scores compared to non-decliners. There were 

no differences between groups regarding the other cognitive scores. All participants declining to 

prodromal AD were A+ by definition and had higher baseline mean amyloid SUVR compared to 

non-decliners (p<0.0001). Baseline mean 18F-FDG PET SUVR was lower in AD-decliners (p = 

0.023), with more N+ subjects in the AD-decliner group versus the non-decliner group (50% 

versus 22.22%, p = 0.0456). The baseline total hippocampal volume was lower in AD-decliners 

versus non-decliners (p = 0.0005). 

3.4.2. Prediction of decline to prodromal AD: an exploratory analysis 

Given the small number of AD-decliners (n=14) at five-year follow-up, the results of this 

exploratory analysis are described in the supplementary results section.   

4. DISCUSSION  

To our knowledge, this is the first study combining EEG, APOE4, neuropsychological and MRI 

data to predict brain amyloidosis and AD topography-specific neurodegeneration in cognitively 

normal individuals. Moreover, in an exploratory analysis, we set up an algorithm for a 5-year 

prediction of decline to prodromal AD in cognitively normal elderly memory complainers. 

Remarkably, EEG was the feature most strongly predictive of neurodegeneration. The 

combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most 

strongly predicted brain amyloidosis and decline to prodromal AD at 5 years follow-up. This 

work demonstrates how machine learning can help to screen patients at high risk of preclinical 

AD using non-invasive and affordable biomarkers. 

Several studies have focused on EEG biomarkers to classify subjects with prodromal AD or AD 

dementia versus controls (Aghajani et al., 2013; Al-Nuaimi et al., 2018; Babiloni et al., 2018; 

Poil et al., 2013; Yang et al., 2019; Yu et al., 2018). However, given the importance of a timely 

diagnosis to treat patients as early as possible and the shift of clinical trials towards preclinical 

individuals, it is essential to develop biomarkers to identify patients at an earlier stage of the 
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disease, before onset of cognitive decline. In this study we analysed a large sample of cognitively 

normal elderly memory complainers, with a defined amyloid and neurodegeneration status, 

enabling us to assess the potential of EEG as a screening tool for preclinical AD. In addition to 

EEG, we assessed other non-invasive features using a multimodal analysis. Importantly, we 

demonstrated that EEG was the best feature for the prediction of AD topography-specific 

neurodegeneration. Also, reducing the number of channels from a high-density EEG (224 

channels) to a low-density EEG (16-channel and 4-channel EEG) did not alter predictive 

performance. In fact, the best groups of features to predict neurodegeneration were 4-channel 

EEG with two frontal and two parietal channels (AUC 0.62, 61% balanced accuracy, 82% NPV, 

38% PPV) and 16-channel EEG (AUC 0.68, 60% balanced accuracy, 82% NPV, 34% PPV).  

Therefore, our approach might be successfully implemented with portable equipment featuring 

only a few electrodes. Furthermore, 16-channel and 4-channel EEG features only included 8 

easy-to-obtain EEG metrics (spectral biomarkers and algorithmic complexity) and for which the 

collection of scripts is publicly available, thus facilitating future implementation in clinical 

practice. MSF and PSD gamma were the best EEG features to predict neurodegeneration, which 

is in line with our previous work showing that neurodegeneration in AD-signature regions 

translates into a widespread increase of MSF and an increase in high-frequency oscillations in 

fronto-central regions, these changes having been linked to compensatory mechanisms at the 

preclinical stage of AD (Gaubert et al., 2019).        

Previous studies using resting-state EEG showed accuracies ranging from 77.3% to 98.9% to 

classify between AD dementia and healthy controls (Aghajani et al., 2013; Al-Nuaimi et al., 

2018; Poza et al., 2017; Yang et al., 2019; Yu et al., 2018) and accuracies ranging from 68.5% to 

85% to classify between MCI and healthy controls (Babiloni et al., 2018; Poil et al., 2013). Even 

if some studies show high classification accuracies, results should be interpreted with caution due 

to small datasets, which can lead to overfitting. Classification between AD dementia and controls 

generally demonstrates better performance than classification between MCI and controls, which 
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can be explained by greater contrast between groups in the first case, as AD dementia patients are 

further advanced in the disease course. Regarding our study, we analysed subjects that were at an 

earlier stage, as all participants were cognitively normal at baseline. Thus, the obtention of a 61% 

balanced accuracy, an 82% NPV and a 38% PPV to screen for AD-topography specific 

neurodegeneration in cognitively normal subjects using solely a low-density 4-channel EEG is 

promising.        

The best combination of groups of features to predict amyloid were demographic (age, education 

level, sex), neuropsychological data (MMSE, FAB, FCSRT), APOE4 genotype and hippocampal 

volumetry, enabling a 62% balanced accuracy, an 80% NPV and a 41% PPV. The impact of 

APOE4 genotype is not surprising, considering that it is the major genetic risk factor for AD 

(Farrer et al., 1997) and it is related to higher brain amyloid deposition (Reiman et al., 2009). Our 

findings regarding hippocampal volumetry are consistent with previous studies showing that 

hippocampal volume reduction is related to higher amyloid burden in cognitively normal elderly 

subjects (Hsu et al., 2015; Mormino et al., 2009). Regarding the role of neuropsychological data 

to predict brain amyloidosis, cued memory decline on the FCSRT has previously been linked to 

elevated amyloid burden in cognitively normal adults (Papp et al., 2017). Concerning MMSE and 

FAB, our results are in line with a previous meta-analysis showing that increased amyloid burden 

is associated with lower global cognition scores and executive function in cognitively normal 

subjects (Hedden et al., 2013), but contrasts with another meta-analysis that found no association 

of amyloid pathology with MMSE in participants with normal cognition (Jansen et al., 2018). 

Our results suggest that non-invasive and affordable biomarkers could significantly reduce 

recruitment costs of A+ subjects in clinical trials. Notably, on 50 iterations, EEG was hardly ever 

selected for the prediction of amyloid (proportion lower than 2%). An explanation could be that 

we used averaged EEG metrics across all channels, and chose not to compute several regional 

EEG metrics, in order to limit the number of features, prevent overfitting and excessive 

computational time. However, as previous work has shown that amyloid burden could have a 
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regional effect on EEG signals in cognitively normal individuals (Gaubert et al., 2019; Nakamura 

et al., 2018), future studies could assess the performance of regional EEG features to predict 

amyloid. Nevertheless, our work suggests that EEG is a much stronger predictor of 

neurodegeneration than amyloidosis.   

A highlight of this work is the 5-year longitudinal follow-up of SCD patients, enabling us to 

identify biomarkers associated with progression to prodromal AD. On the 248 individuals of the 

INSIGHT-preAD cohort that were followed up to 5 years, 14 (5.65%) individuals declined to 

prodromal AD. The number of AD-decliners was lower than expected, compared to progression 

rates described in different cohorts following cognitively normal individuals (Parnetti et al., 

2019). One hypothesis to explain this low progression rate could be that the majority of 

participants of the INSIGHT-preAD cohort had a high education level (70%), possibly in relation 

to the recruitment strategy (volunteer subjects preoccupied by their memory complaints, highly 

motivated to participate in clinical research protocols), with therefore a supposedly high cognitive 

reserve providing protective effect on cognitive decline (Pettigrew and Soldan, 2019). A recent 

study has developed a disease progression model of AD according to education level and 

demonstrated that higher-educated individuals presented slower progression from SCD to 

amnestic MCI than lower-educated individuals, while this trend disappeared from amnestic MCI 

to AD dementia, possibly because of insufficient compensation by cognitive reserve when the 

pathophysiological burden reaches a severe level (Kim et al., 2020). In an exploratory analysis, 

we showed that the best classifier for the prediction of decline to prodromal AD was logistic 

regression with the following combination of groups of features: demographical, 

neuropsychological data, APOE4 genotype and hippocampal volumetry, enabling a 0.70 AUC, 

83% specificity, 50% sensitivity, 97% NPV and 14% PPV. The three most efficient features were 

FCSRT Immediate Free Recall, closely followed by hippocampal volumetry and APOE4. These 

results are in line with a previous study showing that FCSRT may be particularly effective in 

identifying cognitively normal individuals on the AD trajectory at greater risk of clinical 
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progression (Papp et al., 2017). Our findings regarding the role of hippocampal volumetry are of 

interest as hippocampal volume calculation is now facilitated by software enabling automatic 

hippocampal volumetry. Our results argue in favour of hippocampal volumetry as part of routine 

neuroimaging in memory complainers. Given the small number of AD-decliners in this 

exploratory analysis, these preliminary results should be interpreted with caution and need to be 

confirmed in future studies. A number of longitudinal studies have developed multimodal 

biomarker models to predict future decline to AD dementia in individuals at the MCI stage 

(Caminiti et al., 2018; Cheng et al., 2015; Gupta et al., 2019; Lin et al., 2020; Moradi et al., 2015; 

Ritter et al., 2015; Young et al., 2013), but the majority of studies investigating biomarker 

performances in SCD employ a cross-sectional design in which biomarkers are compared 

between SCD individuals and healthy controls (Brueggen et al., 2019; López-Sanz et al., 2019; 

Yan et al., 2019; Zhao et al., 2019), and longitudinal research in this field is still limited. A few 

studies focused on predicting cognitive decline in individuals with normal cognition or SCD 

(Bauer et al., 2018; Hays et al., 2020; Scheef et al., 2012; Vogel et al., 2018; Young et al., 2014), 

but most of them predict non-specific decline in cognitive performance over time (or decline to 

MCI), but do not predict decline to prodromal AD as defined by the IWG-2 criteria (Dubois et al., 

2014) in association with positive amyloid-beta deposition, unlike our study where prodromal 

AD patients are well-phenotyped, based on clinical and amyloid biomarker criteria. One study by 

Dumurgier et al. (2017) investigated the relationship between AD biomarkers and subsequent 

change in cognition in a cohort of cognitively intact older adults during 3-year follow-up and 

showed that baseline CSF total Tau (t-Tau) and phosphorylated Tau 181 (p-Tau181), in vivo 

amyloid load, and hippocampal volume were all independently associated with future decline in 

cognition, with modest predictive performance (AUC = 0.7). Other studies have assessed the 

diagnostic accuracy of CSF biomarkers and/or amyloid PET to predict cognitive decline in 

cognitively normal individuals (Donohue et al., 2017; Roe et al., 2013; Soldan et al., 2016), but 

sampling CSF is an invasive technique and amyloid PET is expensive, which limits their 
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applicability as routine screening tools in cognitively normal adults. Compared to previous 

studies, our work, even if exploratory, presents some strengths and degree of novelty, for instance 

regarding the selected non-invasive biomarkers (e.g. EEG), the targeted population and the long 

follow-up.   

A highpoint of this work is the rigorous machine learning methodology. Repeating the 

training/testing procedure 50 times enabled us to robustly identify the best classifier and to 

reliably estimate final performance measures, avoiding obtention of good performance only “by 

chance” on one iteration. Moreover, we resolved the problem of class imbalance by using the 

oversampling method to rebalance the class distribution to 50_50%. To confirm that our results 

would generalize well in a different setting, further studies should replicate our method on an 

independent cohort of SCD subjects.  

A major strength is the prediction of neurodegeneration in addition to amyloid status, while most 

previous studies focus on predicting amyloid only (Ansart et al., 2020; Insel et al., 2016; Mielke 

et al., 2012; ten Kate et al., 2018), as the majority of AD trials require only positive amyloid 

status for enrolment. However, knowing the A and N status of an individual is noteworthy (Jack 

et al., 2018), because A+N+ individuals are at greater risk of progression to prodromal AD than 

A+N- individuals (Parnetti et al., 2019). Moreover, characterizing the A and N profile of patients 

could help to guide treatment, with an ATN biomarker-based participant selection in clinical 

trials, enabling more homogeneous trial populations (Cummings, 2019). In our study, EEG was 

the feature most strongly predictive of neurodegeneration on 18F-FDG PET, while one could have 

expected hippocampal volumetry to be a stronger predictor, as brain atrophy is an accepted 

neurodegeneration biomarker (Jack et al., 2018). One explanation is that EEG measures brain 

dysfunction, as does 18F-FDG PET, whereas hippocampal volume is a structural marker. A 

distinction can be made between “functional” and “structural” neurodegeneration, which are 
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correlated but not interchangeable. Our results suggest that EEG is a good marker of “functional” 

neurodegeneration.  

A limitation is that pathological Tau marker was not available so we could not develop models to 

predict T status. Given the good NPV of our models to predict neurodegeneration (NPV 82%), 

amyloid (NPV 80%) and progression to prodromal AD at 5-year follow-up (NPV 97%), an 

individual classified as negative (normal) on the 3 predictive models would be at low risk of 

preclinical AD and future cognitive decline. This individual risk assessment would only require a 

1-minute low-density EEG, a blood sample to assess APOE4 status and an MRI for hippocampal 

volumetry. On the opposite, given the modest PPVs, an individual classified as positive would 

require close cognitive follow-up and confirmatory exams (e.g. PET-scan), as our approach does 

not have sufficient diagnostic performance to confirm preclinical AD. Thus, our proposed 

methodology could be used as an interesting starting point for a screening tool to rule out 

preclinical AD. Other promising low-invasive biomarkers are currently in development, in 

particular blood markers, as ultrasensitive immunoassays enable assessment of plasma or serum 

amyloid-β (Aβ-42 and Aβ-40), t-Tau and p-Tau in a single blood sample (Li and Mielke, 2019). 

The plasma Aβ-42 level or the Aβ-42/Aβ-40 ratio may have clinical utility for screening elevated 

brain amyloid deposition (Palmqvist et al., 2019) and plasma p-Tau181 levels have been 

associated more strongly with both amyloid and tau PET, compared to plasma t-Tau (Mielke et 

al., 2018). However, it is still uncertain whether the current ultrasensitive technologies will be 

readily available in clinical laboratories for screening for AD pathology. The translation of blood-

based AD biomarkers into routine diagnostic biomarkers will involve many steps. 

5. CONCLUSION 

This work demonstrates how machine learning can help to screen patients at high risk of 

preclinical AD using non-invasive and affordable biomarkers, thus optimizing recruitment in 

clinical trials. Most importantly, it highlights EEG as a promising tool to predict 
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neurodegeneration with portable equipment featuring only a few electrodes, which paves the way 

for future application in clinical practice. Moderate classification performances reflect the 

difficulty of diagnosing AD in SCD patients, a few years before the occurrence of prodromal AD, 

even with multimodal data and using machine learning. Future studies should combine several 

preclinical cohorts (Epelbaum et al., 2017) according to a recently published methodology 

(Gagliardi et al., 2020) and use longitudinal multimodal measurements and polygenic risk scores 

(Leonenko et al., 2019) to improve predictive performance.  
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Table 1: Complete list of features. Abbreviations: FCSRT = Free and Cued Selective 

Reminding Test; MMSE = Mini Mental Status Examination; PSD = Power spectral density; 

wSMI = weighted Symbolic Mutual Information.  

Group 

number 

Name of the group of features Features inside each group 

1 224-channel EEG PSD delta (224 channels) 
  

PSD theta (224 channels) 
  

PSD alpha (224 channels) 
  

PSD beta (224 channels) 
  

PSD gamma (224 channels) 
  

Median spectral frequency (224 channels) 
  

Spectral entropy (224 channels) 
  

Algorithmic complexity (224 channels) 
  

wSMI theta (224 channels) 
  

wSMI alpha (224 channels) 

2 16-channel EEG  PSD delta (16 channels) 
  

PSD theta (16 channels) 
  

PSD alpha (16 channels) 
  

PSD beta (16 channels) 
  

PSD gamma (16 channels) 
  

Median spectral frequency (16 channels) 
  

Spectral entropy (16 channels) 
  

Algorithmic complexity (16 channels) 

3 4-channel EEG  PSD delta (4 channels) 
  

PSD theta (4 channels) 
  

PSD alpha (4 channels) 
  

PSD beta (4 channels) 
  

PSD gamma (4 channels) 
  

Median spectral frequency (4 channels) 
  

Spectral entropy (4 channels) 
  

Algorithmic complexity (4 channels) 

4 Demographic data Age 
  

Sex 
  

Education level 

5 APOE4 status APOE4 status (positive if at least one ε4 allele) 

6 Neuropsychological data MMSE 
  

FCSRT Immediate Free Recall 
  

FCSRT Immediate Total Recall 
  

FCSRT Delayed Free Recall 
  

FCSRT Delayed Total Recall 
  

Frontal Assessment Battery 

7 Hippocampal Volumetry Hippocampal Volume on MRI 
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All 

participants 

A- A+ p-value
∫
 

Demographics 
    

Number of subjects 304 219 (72.04%) 85 (27.96%) .. 

Age (years) 76.06 ± 3.48 75.76 ± 3.45 76.81 ± 3.47 0.0180* 

Women 191 (62.83%) 137 (62.56%) 54 (63.53%) 0.8749 

High educational level§ 207 (68.09%) 156 (71.23%) 51 (60.00%) 0.0593 

APOE ε4 allele 59 (19.41%) 28 (12.79%) 31 (36.47%) <0.0001* 

Cognitive tests 
    

Mini-Mental State Examination 28.66 ± 0.96 28.73 ± 0.97 28.47 ± 0.89 0.0329* 

Free and Cued Selective Reminding 

Test 

    

Immediate Free Recall 29.95 ± 5.45 30.29 ± 5.40 29.06 ± 5.50 0.0764 

Immediate Total Recall 46.07 ± 1.98 46.08 ± 2.01 46.05 ± 1.91 0.8897 

Delayed Free Recall 11.85 ± 2.28 12.00 ± 2.20 11.47 ± 2.45 0.0718 

Delayed Total Recall 15.68 ± 0.63 15.68 ± 0.66 15.68 ± 0.56 0.9803 

Frontal Assessment Battery 16.39 ± 1.69 16.53 ± 1.67 16.05 ± 1.68 0.0250* 

18

F-fluorodeoxyglucose PET  

    

Mean FDG SUVR† 2.45 ± 0.25 2.47 ± 0.24 2.41 ± 0.25 0.0791 

18

F-florbetapir PET  

    

Mean florbetapir SUVR 0.78 ± 0.19 0.69 ± 0.05 1.03 ± 0.20 <0.0001* 

Volumetric MRI (cm³) 
    

Total hippocampal volume¶ 2.71 ± 0.31 2.74 ± 0.30 2.62 ± 0.32 0.0023* 

 

Table 2: Comparison of baseline characteristics between amyloid positive and amyloid 

negative groups. Data are mean ± SD or number (%). ∫ P-value for the comparison between the 

two groups. P-values were calculated using Welch's t test for continuous variables and Fisher’s 

exact test for qualitative variables. *P-value < 0.05. †18F-fluorodeoxyglucose PET indices 

partial-volume corrected. §On a scale of 1–8, where 1=primary education and 8=higher 

education, high was defined as scores >6. ¶Normalized to the mean total intracranial volume. 

Abbreviations: A+ = Amyloid positive; A- = Amyloid negative; AD = Alzheimer’s disease; FDG 

= fluorodeoxyglucose; SUVR = standardised uptake value ratio.  
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Table 3: Best classifiers to predict amyloid and neurodegeneration status, displayed in 

ranked order. The following performance measures are indicated: area under operating 

characteristic (ROC) curve (AUC), balanced accuracy, sensitivity, specificity, positive predictive 

value (PPV) and negative predictive value (NPV). Performance measures are summarized with 

median and quantile 0.025 and 0.975. Only the first three best classifiers are indicated. The 

algorithm, number of features (in brackets) and groups of features used are specified for each 

classifier. Abbreviations: APOE = APOE4 status; Demo = Demographical data; EEG4 = 4-channel 

EEG; EEG16 = 16-channel EEG; HV = Hippocampal Volume; Nb = Number; NPSY = 

Neuropsychological data; RF = Random forest; regLOG = Logistic Regression.  

Best classifiers to 

predict amyloid 

RF (10 features) 

demo+NPSY+APOE+HV 

RF (all features) 

demo+NPSY 

RF (all features) 

demo+NPSY+APOE+HV 

Rank 1 2 3 

Nb (%) selected 

on 50 iterations 

14 (28.00%) 9 (18.00%) 7 (14.00%) 

AUC 0.62 [0.50;0.73] 0.51 [0.45;0.73] 0.65 [0.50;0.81] 

Balanced accuracy 0.62 [0.50;0.70] 0.53 [0.37;0.69] 0.61 [0.47;0.74] 

Sensitivity 0.58 [0.38;0.69] 0.46 [0.26;0.75] 0.46 [0.18;0.81] 

Specificity 0.70 [0.46;0.73] 0.58 [0.47;0.67] 0.67 [0.61;0.91] 

PPV 0.41 [0.28;0.49] 0.31 [0.17;0.45] 0.40 [0.25;0.50] 

NPV 0.80 [0.72;0.86] 0.73 [0.62;0.87] 0.78 [0.70;0.90] 

Best classifiers to 

predict 

neurodegeneration 

regLOG (5 features) 

EEG4 

regLOG (all 

features) 

EEG16 

regLOG (5 features) 

EEG16 

Rank 1 2 3 

Nb (%) selected 

on 50 iterations 

19 (38.00%) 18 (36.00%) 9 (18.00%) 

AUC 0.62 [0.53;0.77] 0.68 [0.49;0.84] 0.52 [0.47;0.61] 

Balanced accuracy 0.61 [0.45;0.75] 0.60 [0.47;0.76] 0.54 [0.39;0.58] 

Sensitivity 0.45 [0.18;0.69] 0.45 [0.17;0.78] 0.36 [0.18;0.53] 

Specificity 0.77 [0.59;0.93] 0.73 [0.48;0.87] 0.71 [0.49;0.79] 

PPV 0.38 [0.18;0.56] 0.34 [0.17;0.59] 0.29 [0.13;0.33] 

NPV 0.82 [0.73;0.89] 0.82 [0.75;0.90] 0.78 [0.70;0.81] 
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All 

participants 

N- N+ p-value
∫
 

Demographics 
    

Number of subjects 304 232 (76.32%) 72 (23.68%) .. 

Age (years) 76.06 ± 3.48 75.92 ± 3.38 76.50 ± 3.78 0.2156 

Women 191 (62.83%) 158 (68.10%) 33 (45.83%) 6e-04* 

High educational level§ 207 (68.09%) 156 (67.24%) 51 (70.83%) 0.5678 

APOE ε4 allele 59 (19.41%) 45 (19.40%) 14 (19.44%) 0.9928 

Cognitive tests 
    

Mini-Mental State Examination 28.66 ± 0.96 28.65 ± 0.97 28.69 ± 0.91 0.7108 

Free and Cued Selective 

Reminding Test 

    

Immediate Free Recall 29.95 ± 5.45 30.16 ± 5.41 29.28 ± 5.56 0.2332 

Immediate Total Recall 46.07 ± 1.98 46.17 ± 1.94 45.75 ± 2.07 0.1134 

Delayed Free Recall 11.85 ± 2.28 12.00 ± 2.18 11.35 ± 2.55 0.0325* 

Delayed Total Recall 15.68 ± 0.63 15.70 ± 0.60 15.62 ± 0.72 0.3891 

Frontal Assessment Battery 16.39 ± 1.69 16.38 ± 1.68 16.43 ± 1.71 0.8370 

18

F-fluorodeoxyglucose PET  

    

Mean FDG SUVR† 2.45 ± 0.25 2.55 ± 0.20 2.16 ± 0.10 <0.0001* 

18

F-florbetapir PET  

    

Mean florbetapir SUVR 0.78 ± 0.19 0.77 ± 0.17 0.84 ± 0.24 0.0060* 

Volumetric MRI (cm³) 
    

Total hippocampal volume¶ 2.71 ± 0.31 2.73 ± 0.32 2.64 ± 0.29 0.0372* 

 

Table 4: Comparison of baseline characteristics between neurodegeneration positive and 

neurodegeneration negative groups. Data are mean ± SD or number (%). ∫ P-value for the 

comparison between the two groups. P-values were calculated using Welch's t test for 

continuous variables and Fisher’s exact test for qualitative variables. *P-value < 0.05. †18F-

fluorodeoxyglucose PET indices partial-volume corrected. §On a scale of 1–8, where 

1=primary education and 8=higher education, high was defined as scores >6. ¶Normalized to 

the mean total intracranial volume. Abbreviations: AD = Alzheimer’s disease; FDG = 

fluorodeoxyglucose; N+ = neurodegeneration positive; N- = neurodegeneration negative; 

SUVR = standardised uptake value ratio. 
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Table 5: Comparison of baseline characteristics between participants declining to 

prodromal AD versus non-decliners during five-year follow-up. Data are mean ± SD or 

number (%). ∫ P-value for the comparison between the two groups. P-values were calculated 

using Welch's t test for continuous variables and Fisher’s exact test for qualitative variables. 

*P-value < 0.05. †18F-fluorodeoxyglucose PET indices partial-volume corrected. §On a scale 

of 1–8, where 1=primary education and 8=higher education, high was defined as scores >6. 

¶Normalized to the mean total intracranial volume. Abbreviations: AD = Alzheimer’s disease; 

FCSRT = Free and Cued Selective Reminding Test; FDG = fluorodeoxyglucose; N+ = 

neurodegeneration positive; SUVR = standardised uptake value ratio.   

 
All 

participants 

AD-decliners Non-decliners p-value
∫
 

Demographics 
    

Number of subjects 248 14 (5.65%) 234 (94.35%) .. 

Age (years) 75.73 ± 3.43 77.43 ± 3.67 75.63 ± 3.40 0.0601 

Women 148 (59.68%) 7 (50.00%) 141 (60.26%) 0.5765 

High educational level§ 174 (70.16%) 10 (71.43%) 164 (70.09%) 1.0000 

APOE ε4 allele 50 (20.16%) 8 (57.14%) 42 (17.95%) 0.0018* 

Cognitive tests 
    

Mini-Mental State Examination 28.68 ± 0.94 28.21 ± 0.70 28.71 ± 0.95 0.0533 

Free and Cued Selective 

Reminding Test 

   

 

Immediate Free Recall 30.12 ± 5.54 24.00 ± 6.29 30.49 ± 5.28 0.0003* 

Immediate Total Recall 46.03 ± 2.01 44.64 ± 2.24 46.12 ± 1.97 0.0090* 

Delayed Free Recall 15.67 ± 0.65 15.36 ± 0.74 15.69 ± 0.64 0.0238* 

Delayed Total Recall 11.83 ± 2.30 9.93 ± 2.89 11.95 ± 2.22 0.0058* 

Frontal Assessment Battery 16.47 ± 1.67 16.00 ± 2.11 16.50 ± 1.64 0.4692 

Letter verbal fluency in P 22.50 ± 6.07 23.00 ± 6.04 22.47 ± 6.08 0.8885 

Category verbal fluency 31.51 ± 7.27 28.71 ± 5.21 31.68 ± 7.35 0.1237 

Mean 
18

F-FDG PET SUVR† 2.46 ± 0.25 2.32 ± 0.23 2.47 ± 0.25 0.0232* 

N+ subjects 59 (23.79%) 7 (50.00%) 52 (22.22%) 0.0456* 

Mean 
18

F-florbetapir PET 

SUVR 0.78 ± 0.19 1.23 ± 0.20 0.75 ± 0.15 <0.0001* 

Total hippocampal volume on 

volumetric MRI (cm³)¶ 2.73 ± 0.30 2.47 ± 0.27 2.74 ± 0.30 0.0005* 
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Figure 1: Description of the machine learning pipeline implemented to predict preclinical 

Alzheimer’s disease (AD). Abbreviations: b.Acc = Balanced Accuracy; NPV = Negative 

Predictive Value; PPV = Positive Predictive Value; Se = Sensitivity; Spe = Specificity.  
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Supplementary results 

 

3.4.2. Prediction of decline to prodromal AD: an exploratory analysis 

3.4.2.1 Best classifier 

The best classifier for the prediction of decline to prodromal AD was logistic regression with 

the following combination of groups of features: demographical, neuropsychological data, 

APOE4 genotype and hippocampal volumetry (with 5 features pre-selected), enabling a median 

AUC of 0.70, a 67% balanced accuracy, 50% sensitivity, 83% specificity, 14% PPV and 97% 

NPV (Supplementary Table 1).  

3.4.2.2 Best features 

The best features for the prediction of decline to prodromal AD were the following (according 

to the frequency of selection of each feature on 50 iterations): FCSRT Immediate Free Recall 

(80%), hippocampal volumetry (70%), APOE4 (66%), MMSE (24%), FCSRT Delayed Free 

Recall (22%), age (20%), education level (20%), sex (20%), FCSRT Delayed Total Recall 

(20%), FCSRT Immediate Total Recall (20%) and FAB (20%). The other features were selected 

in a proportion lower than 5%.   
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Best classifier regLOG (5 features) 

demo+NPSY+APOE+

HV 

RF (5 features) 

demo+NPSY+APOE+

HV 

RF (all features) 

Demo+NPSY+APOE+ 

HV 

Rank 1 2 3 

Nb (%) 

selected on 50 

iterations 

12 (24.00%) 9 (18.00%) 9 (18.00%) 

AUC 0.70 [0.58;0.99] 0.67 [0.41;0.97] 0.88 [0.65;0.99] 

Balanced 

accuracy 0.67 [0.45;0.91] 0.65 [0.39;0.94] 0.72 [0.49;0.95] 

Sensitivity 0.50 [0.00;1.00] 0.50 [0.00;1.00] 0.50 [0.10;1.00] 

Specificity 0.83 [0.58;0.94] 0.86 [0.78;0.91] 0.86 [0.72;0.94] 

PPV 0.14 [0.00;0.31] 0.12 [0.00;0.32] 0.20 [0.02;0.39] 

NPV 0.97 [0.94;1.00] 0.97 [0.93;1.00] 0.97 [0.95;1.00] 

 

Supplementary Table 1: Best classifiers to predict decline to prodromal AD at 5-year 

follow-up, displayed in ranked order. The following performance measures are indicated: 

area under operating characteristic (ROC) curve (AUC), balanced accuracy, sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV). Performance 

measures are summarized with median and quantile 0.025 and 0.975. Only the first three best 

classifiers are indicated. The algorithm, number of features (in brackets) and groups of 

features used are specified for each classifier.  

Abbreviations: APOE = APOE4 status; Demo = Demographical data; EEG4 = 4-channel 

EEG; EEG16 = 16-channel EEG; HV = Hippocampal Volume; Nb = Number; NPSY = 

Neuropsychological data; RF = Random forest; regLOG = Logistic Regression. 
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Supplementary Figure 1: Different EEG configurations with progressive reduction of the 

number of channels (256, 128, 64, 32, 16, 8, 4, 2) 
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HIGHLIGHTS 

• Quantitative EEG best predicts neurodegeneration in preclinical Alzheimer’s disease 

• Portable low-density EEG is a promising tool to predict neurodegeneration 

• Demographic, cognitive data, APOE4 and hippocampal volumetry best predict amyloid 

• Verbal memory, hippocampal volume and APOE4 predict cognitive decline at 5 years  

• Machine learning can help to screen for preclinical Alzheimer’s disease 

 

 

 

 

 


