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Combining multimodal biomarkers could help in the early diagnosis of Alzheimer's disease (AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort.

Amyloid and neurodegeneration were assessed on 18 F-florbetapir and 18 F-fluorodeoxyglucose PET, respectively. We used a nested cross-validation approach with non-invasive features (electroencephalography [EEG], APOE4 genotype, demographic, neuropsychological and MRI data) to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ decline to prodromal AD at 5year follow-up. Importantly, EEG was most strongly predictive of neurodegeneration, even when reducing the number of channels from 224 down to 4, as 4-channel EEG best predicted neurodegeneration (negative predictive value [NPV] = 82%, positive predictive value [PPV] = 38%, 77% specificity, 45% sensitivity). The combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most strongly predicted amyloid (80% NPV, 41% PPV, 70% specificity, 58% sensitivity) and most strongly predicted decline to prodromal AD at 5 years (97% NPV, 14% PPV, 83% specificity, 50% sensitivity). Thus, machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers.

INTRODUCTION

Alzheimer's disease (AD) brain lesions appear several years before cognitive impairment, during preclinical AD [START_REF] De Leon | Imaging and CSF studies in the preclinical diagnosis of Alzheimer's disease[END_REF]. Recent AD trials suggest that patients are more likely to benefit from disease-modifying treatments if treated early in the disease course (Dubois et al., 2016;[START_REF] Jack | NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[END_REF]. Thus, there is an urgent need for reliable, non-invasive and low-cost tools to identify individuals at the earliest stages of AD.

Previous studies have shown that electroencephalography (EEG) metrics could be predictive noninvasive biomarkers for AD [START_REF] Aghajani | Diagnosis of Early Alzheimer's Disease Based on EEG Source Localization and a Standardized Realistic Head Model[END_REF][START_REF] Al-Nuaimi | Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer's Disease[END_REF][START_REF] Babiloni | Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases[END_REF][START_REF] Babiloni | Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms[END_REF][START_REF] Babiloni | Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint[END_REF][START_REF] Jeong | EEG dynamics in patients with Alzheimer's disease[END_REF][START_REF] Lehmann | Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)[END_REF][START_REF] Poil | Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage[END_REF][START_REF] Yang | M/EEG-based Bio-markers to predict the Mild Cognitive Impairment and Alzheimer's disease: A Review from the Machine Learning Perspective[END_REF][START_REF] Yu | Functional brain connectivity in Alzheimer's disease: An EEG study based on permutation disalignment index[END_REF]. However, most studies have focused on EEG biomarkers at a clinical stage of AD, after the onset of cognitive decline, and not at a preclinical stage.

A recent study demonstrated significant EEG changes in cognitively normal individuals with AD topography-specific neurodegeneration [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF]. Thus, quantitative EEG seems to be a promising tool to identify preclinical AD subjects, but further studies are needed to assess the individual diagnostic accuracy.

Furthermore, combining multimodal biomarkers could help in the early diagnosis of AD [START_REF] Frölich | Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer's dementia[END_REF][START_REF] Gupta | Prediction and Classification of Alzheimer's Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers[END_REF][START_REF] Li | Multi-modal discriminative dictionary learning for Alzheimer's disease and mild cognitive impairment[END_REF][START_REF] Ritter | Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers[END_REF]. Previous studies have proposed multimodal models to predict brain amyloidosis in cognitively normal individuals [START_REF] Ansart | Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis[END_REF][START_REF] Insel | Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information[END_REF][START_REF] Mielke | Indicators of amyloid burden in a population-based study of cognitively normal elderly[END_REF][START_REF] Ten Kate | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study[END_REF]. Being able to accurately predict neurodegeneration would also be important, as biomarkers of neuronal injury appear to best predict future cognitive decline, rather than an abnormal amyloid biomarker alone [START_REF] Dickerson | Biomarkerbased prediction of progression in MCI: Comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau[END_REF][START_REF] Mormino | Synergistic Effect of β-Amyloid and Neurodegeneration on Cognitive Decline in Clinically Normal Individuals[END_REF][START_REF] Soldan | Hypothetical Preclinical Alzheimer Disease Groups and Longitudinal Cognitive Change[END_REF].

Our objective was to assess the performance of multimodal non-invasive biomarkers to screen individuals at high risk of preclinical AD, using a machine learning approach. In 304 subjective cognitive decline (SCD) individuals, we aimed to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ participants declining to prodromal AD at 5-year follow-up, using their baseline data, in an exploratory analysis.

MATERIAL AND METHODS

Participants

Participants were recruited in the French INSIGHT-preAD cohort, which includes baseline data of 318 cognitively normal individuals, between 70 and 85 years old, with subjective memory complaints but unimpaired cognition [START_REF] Dubois | Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study[END_REF]. Demographic, cognitive, biological, imaging including brain structural and functional MRI, 18 F-fluorodeoxyglucose (FDG) PET and 18 F-florbetapir PET, EEG and other assessments were performed at baseline and regularly during a 5-year follow-up. 304 subjects were included in this machine learning study, because 14 subjects had missing baseline data. The ethics committee of the Pitié-Salpêtrière Hospital approved the study protocol. Written informed consent according to the Declaration of Helsinki was provided by all participants.

PET acquisition and processing

PET scans were acquired 50 min after injection of 370 MBq (10 mCi) ¹⁸F-florbetapir or 30 min after injection of 2 MBq/kg ¹⁸F-FDG. Reconstructed images were analysed with a pipeline developed by the Centre d'Acquisition et Traitement des Images (http://cati-neuroimaging.com).

A 18 F-florbetapir PET standardised uptake value ratio (SUVR) threshold was set at 0.7918 for positive versus negative amyloid deposition [START_REF] Dubois | Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study[END_REF]. Neurodegeneration status was assessed on 18 F-FDG PET scans. Cortical metabolic indices were calculated in four bilateral regions of interest that are specifically affected by AD [START_REF] Jack | An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease[END_REF]: posterior cingulate cortex, inferior parietal lobule, precuneus, and inferior temporal gyrus, and the pons was used as the reference region. Individuals were considered neurodegeneration positive if the mean 18 F-FDG PET SUVR in the four AD-signature regions was below 2.27 [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF]. All PET scan data used in this study were acquired at baseline.

MRI acquisition and processing

MRI scans were obtained over a 1 h period on a 3T Magnetom VERIO system (Siemens Medical Solutions, Erlangen, Germany). Scanning sessions were as follows: three-dimensional T1weighted magnetisation-prepared rapid gradient echo; two-dimensional fluid-attenuated inversion recovery; two-dimensional T2* diffusion tensor imaging acquisition; T2*-weighted gradient-echo echo-planar series; and a pulsed arterial spin labelling scan for measurement of cerebral blood flow at rest. Hippocampal volume was measured on three-dimensional T1 sequences with our inhouse SACHA software, normalised to the mean total intracranial volume.

EEG acquisition and processing

EEG data were acquired with a high-density 256-channel EGI system (Electrical Geodesics Inc., USA) with a sampling rate of 250 Hz and a vertex reference. 60 seconds of eyes-closed restingstate recording were selected for the analysis. We used a pipeline [START_REF] Engemann | Automated measurement and prediction of consciousness in vegetative and minimally conscious patients[END_REF][START_REF] Engemann | Robust EEG-based cross-site and cross-protocol classification of states of consciousness[END_REF][START_REF] King | Information Sharing in the Brain Indexes Consciousness in Noncommunicative Patients[END_REF][START_REF] Sitt | Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state[END_REF] that automates processing of EEG recordings with artifact removal and extraction of metrics [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF]. A band-pass filtering (from 0.5 to 45 Hz) and a notch filter at 50 Hz and 100 Hz were applied. Data were cut into 1 second epochs. Channels that exceeded a 100 µv peak-to-peak amplitude in more than 50% of the epochs were rejected.

Channels that exceeded a z-score of four across all the channels mean variance were rejected. This step was repeated two times. Epochs that exceeded a 100 µv peak-to-peak amplitude in more than 10% of the channels were rejected. Channels that exceeded a z-score of four across all the channels mean variance (filtered with a high pass of 25 Hz) were rejected. This step was repeated two times. The remaining epochs were digitally transformed to an average reference.

Rejected channels were interpolated.

Calculation and analysis of EEG metrics

We analysed 304 high-density 256-channel EEG recordings from INSIGHT-preAD baseline data.

We calculated 10 EEG metrics that have been shown to be highly relevant for the study of preclinical AD in a previous work [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF]: power spectral density (PSD) in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-45 Hz), median spectral frequency (MSF), spectral entropy, algorithmic complexity and weighted symbolic mutual information (wSMI), a metric of functional connectivity, in theta and alpha band [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF][START_REF] King | Information Sharing in the Brain Indexes Consciousness in Noncommunicative Patients[END_REF][START_REF] Sitt | Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state[END_REF]. EEG metrics were averaged across all epochs. We calculated the mean value of each EEG metric across all scalp electrodes. For the 256-channel EEG setup, scalp (non-facial) electrodes were the first 224 electrodes. All markers were computed using NICE (https://github.com/nice-tools/nice), the NICE pipeline webimplementation (demo.doc-eeg.net) and MNE-Python [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF]. The collection of scripts used are publicly available at https://github.com/fraimondo/insight-pread.

Clinical progression to prodromal AD

Clinical progression to prodromal AD during the 5-year follow-up was defined using the IWG-2 criteria [START_REF] Dubois | Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[END_REF]. An amnestic syndrome of the hippocampal type or another typical clinical presentation (e.g. logopenic aphasia) [START_REF] Dubois | Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[END_REF], persistent on two consecutive visits, at least 6 months apart AND positive amyloid-β deposition on the last 18 F-florbetapir PET was categorised as prodromal AD. Medical files were reviewed by an independent committee of experts, who validated the participants' status.

Statistical analysis

Statistical and machine learning analyses were performed using R 3.6.1. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).

Analysis of baseline characteristics

We compared baseline characteristics between groups using Welch's t test for continuous variables and Fisher's exact test for qualitative variables.

Reduction of the number of electrodes

Reducing the number of electrodes is an essential step to use EEG as a diagnostic tool in clinical practice for preclinical AD detection. We evaluated agreement between mean EEG metrics on 224 electrodes, and using a reduced number of electrodes (128,64,32,16,8,4 and 2 electrodes).

We calculated intraclass correlation coefficients (ICC) with two-way mixed effects, absolute agreement, single measurement [START_REF] Mcgraw | Forming inferences about some intraclass correlation coefficients[END_REF]. Channels were selected so that their configuration was close to a realistic EEG configuration respecting the international 10-20 system, or its 10-10 or 10-5 variants (Supplementary Figure 1).

Machine Learning analysis

We built three models, to predict: 1/ amyloid positive (A+) versus amyloid negative (A-) status; 2/ neurodegeneration positive (N+) versus neurodegeneration negative (N-) status; 3/ participants declining to prodromal AD at 5-year follow-up (AD-decliners) versus cognitively stable individuals (non-decliners), using their baseline data.

Input features

We defined seven groups of features: three EEG groups of features, socio-demographic data, APOE4 status, neuropsychological data and hippocampal volume measured on MRI. The complete list of features is reported in Table 1. The following eight combinations of groups of features were compared in the analysis: 1) Socio-demographic and neuropsychological data; 2) Socio-demographic, neuropsychological data, ApoE4 status, and hippocampal volume; 3) 4channel EEG; 4) 16-channel EEG; 5) 224-channel EEG; 6) 4-channel EEG + combination N°2; 7) 16-channel EEG + combination N°2; 8) 224-channel EEG + combination N°2. For each model (A+/A-, N+/N-, AD decliners/non-decliners), we first implemented a feature preselection step using student t-test for continuous data or chi-squared test for categorical data to select the five and the ten most significantly different features between each group. In the machine learning analysis, each of the eight combinations of groups of features was tested using: 1) the five best pre-selected features; 2) the ten best pre-selected features; 3) all features, which led to 8 × 3 = 24 combinations of features tested.

Machine learning pipeline

We compared three classification algorithms: Random Forest [START_REF] Breiman | Random Forests[END_REF]) (R package randomForest version 4.6-14), logistic regression, linear support vector machine (SVM) [START_REF] Müller | An introduction to kernelbased learning algorithms[END_REF]) (R package e1071 version 1.7-3). We tuned SVM classifier by optimizing gamma and C-constant parameters. For each model we used the oversampling method [START_REF] Chawla | SMOTE: Synthetic Minority Over-sampling Technique[END_REF] to handle the imbalanced datasets and rebalance the class distribution to 50_50%.

Predictive performance was evaluated using the following nested cross-validation procedure (Figure 1): data was repeatedly (50 times) separated into a training and a test set (85%/15%). The training set was used to find the best algorithm/group of features/pre-selected features combination, which was then applied on the test set on subjects independent of the classifier construction to evaluate the performances. We randomly created 100 bootstrap samples from the training set. A 5-fold cross validation was done for each bootstrap sample. We calculated a median training Youden index for each algorithm/group of features/pre-selected features combination, averaged over the 100 bootstrap samples. The combination with the highest median Youden index was selected in the training part and was then applied on the test set.

Performance measures

The best algorithm/group of features/pre-selected features combination was used on the test set to calculate the following performance measures: area under operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and balanced accuracy ([sensitivity + specificity]/2). This procedure was repeated 50 times. Fifty classifiers as well as performance measures were therefore obtained and were summarized with number and percentage or median and quantile 0.025 and 0.975. Finally, the classifier that was most often selected on 50 iterations was considered as the best classifier.

RESULTS

Reduction of the number of electrodes

Evaluation of agreement between mean EEG metrics on 224 electrodes and using a reduced number of electrodes showed excellent agreement for 8 of the 10 EEG metrics when reducing the number of electrodes from 224 down to 4 (ICC > 0.9), for the following EEG metrics: PSD delta, theta, alpha, beta, gamma, MSF, spectral entropy and algorithmic complexity. We found near perfect agreement for the same 8 EEG metrics when reducing the number of electrodes from 224 down to 16 (ICC > 0.98). For wSMI alpha, reliability was good for 128-channel EEG (ICC 0.87 [0.70;0.93]) and poor when reducing the number of channels to 64 and below. For wSMI theta, reliability was poor when reducing the number of channels to 128 and below. Based on these results we created three groups of EEG features for the upcoming machine learning analysis: "224-channel EEG", "16-channel EEG" and "4-channel EEG" (Table 1).

Prediction of amyloid status

Population characteristics according to amyloid status

At baseline, on 304 participants, 85 subjects were A+ and 219 subjects were A-(Table 2). The mean age of all participants was 76.1 years (SD 3.5) and 68.1% of the participants had a high educational level. There were no sex or education differences between A-and A+ groups.

Participants in A+ group were older versus A-(76.8 SD 3.5 versus 75.8 SD 3.5, p=0.018). The proportion of APOE4 carriers was higher in A+ versus A-group (36.5% versus 12.8%, p<0.0001). The two groups did not differ for cognitive scores except for Mini Mental State Examination (MMSE) and Frontal Assessment Battery (FAB) where A+ group had lower scores than A-group (p = 0.03). The mean 18 F-FDG PET SUVR did not differ between A+ and Agroups. The total hippocampal volume was lower in A+ versus A-subjects (p=0.002).

Prediction of amyloid status on the test set

Best classifier

The best classifier for the prediction of amyloid was random forest with the following combination of groups of features: demographic, neuropsychological data, APOE4 genotype and hippocampal volumetry (with 10 features pre-selected), enabling a median AUC of 0.62, a 62% balanced accuracy, a 58% sensitivity, 70% specificity, a 41% PPV and 80% NPV (Table 3).

Best features

The best features for the prediction of amyloid were the following (according to the frequency of selection of each feature on 50 iterations): APOE4 genotype (60%), MMSE (60%), hippocampal volumetry (58%), age (52%), FAB (50%), FCSRT Delayed Free Recall (38%), education level (36%), FCSRT Immediate Total Recall (34%), FCSRT Immediate Free Recall (34%), FCSRT Delayed Total Recall (34%) and sex (34%). The other features were selected in a proportion lower than 2%.

Prediction of neurodegeneration status

Population characteristics according to neurodegeneration status

At baseline, on 304 participants, 72 subjects were N+ and 232 subjects were N-(Table 4). There were no age or education differences between groups. There were more women in the N-group (68.1%) compared to the N+ group (45.8%, p<0.0001). The proportion of ApoE4 carriers did not differ between the N+ and N-groups. The two groups did not differ for cognitive scores except for the Free and Cued Selective Reminding Test (FCSRT) delayed free recall where the N+ group had lower scores (p=0.03). The mean amyloid SUVR was higher in the N+ group (p=0.006). The total hippocampal volume was lower in N+ versus N-subjects (p=0.04).

Prediction of neurodegeneration status on the test set

Best classifier

The best classifier for the prediction of neurodegeneration was logistic regression with 4-channel EEG (with five features pre-selected), as this classifier was selected in 38% of 50 iterations, enabling a median AUC of 0.62, a 61% balanced accuracy, a 45% sensitivity, 77% specificity, 38% PPV and 82% NPV (Table 3). The second-best classifier was logistic regression with 16channel EEG (with all variables pre-selected), as this classifier was selected in 36% of 50 iterations, enabling a median AUC of 0.68, a 60% balanced accuracy, a 45% sensitivity, 73% specificity, 34% PPV and 82% NPV.

Best features

EEG was the most strongly predictive of neurodegeneration (selected in 100% of 50 iterations).

The best EEG features for the prediction of neurodegeneration were the following (according to the frequency of selection of each feature on 50 iterations): 16-channel MSF (54%), 16-channel PSD gamma (54%), 4-channel MSF (38%), 4-channel PSD gamma (38%), 16-channel algorithmic complexity (36%), 16-channel PSD alpha (36%), beta (36%), delta (36%) and theta (36%), and 16-channel spectral entropy (36%). The other features were selected in a proportion lower than 8%.

Decline to prodromal AD at five-year follow-up

Baseline characteristics of AD-decliners

During the five-year follow-up, 14 individuals declined to prodromal AD and 70 were lost to follow-up (Table 5). There were no age, sex or education differences between groups. ADdecliners were more often ApoE4 carriers than non-decliners (57.14% versus 17.95%, p=0.0018).

The 14 AD-decliners had lower baseline FCSRT scores compared to non-decliners. There were no differences between groups regarding the other cognitive scores. All participants declining to prodromal AD were A+ by definition and had higher baseline mean amyloid SUVR compared to non-decliners (p<0.0001). Baseline mean 18 F-FDG PET SUVR was lower in AD-decliners (p = 0.023), with more N+ subjects in the AD-decliner group versus the non-decliner group (50% versus 22.22%, p = 0.0456). The baseline total hippocampal volume was lower in AD-decliners versus non-decliners (p = 0.0005).

Prediction of decline to prodromal AD: an exploratory analysis

Given the small number of AD-decliners (n=14) at five-year follow-up, the results of this exploratory analysis are described in the supplementary results section.

DISCUSSION

To our knowledge, this is the first study combining EEG, APOE4, neuropsychological and MRI data to predict brain amyloidosis and AD topography-specific neurodegeneration in cognitively normal individuals. Moreover, in an exploratory analysis, we set up an algorithm for a 5-year prediction of decline to prodromal AD in cognitively normal elderly memory complainers.

Remarkably, EEG was the feature most strongly predictive of neurodegeneration. The combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most strongly predicted brain amyloidosis and decline to prodromal AD at 5 years follow-up. This work demonstrates how machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers.

Several studies have focused on EEG biomarkers to classify subjects with prodromal AD or AD dementia versus controls [START_REF] Aghajani | Diagnosis of Early Alzheimer's Disease Based on EEG Source Localization and a Standardized Realistic Head Model[END_REF][START_REF] Al-Nuaimi | Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer's Disease[END_REF][START_REF] Babiloni | Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases[END_REF][START_REF] Poil | Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage[END_REF][START_REF] Yang | M/EEG-based Bio-markers to predict the Mild Cognitive Impairment and Alzheimer's disease: A Review from the Machine Learning Perspective[END_REF][START_REF] Yu | Functional brain connectivity in Alzheimer's disease: An EEG study based on permutation disalignment index[END_REF]. However, given the importance of a timely diagnosis to treat patients as early as possible and the shift of clinical trials towards preclinical individuals, it is essential to develop biomarkers to identify patients at an earlier stage of the disease, before onset of cognitive decline. In this study we analysed a large sample of cognitively normal elderly memory complainers, with a defined amyloid and neurodegeneration status, enabling us to assess the potential of EEG as a screening tool for preclinical AD. In addition to EEG, we assessed other non-invasive features using a multimodal analysis. Importantly, we demonstrated that EEG was the best feature for the prediction of AD topography-specific neurodegeneration. Also, reducing the number of channels from a high-density EEG (224 channels) to a low-density EEG (16-channel and 4-channel EEG) did not alter predictive performance. In fact, the best groups of features to predict neurodegeneration were 4-channel EEG with two frontal and two parietal channels (AUC 0.62, 61% balanced accuracy, 82% NPV, 38% PPV) and 16-channel EEG (AUC 0.68, 60% balanced accuracy, 82% NPV, 34% PPV). Therefore, our approach might be successfully implemented with portable equipment featuring only a few electrodes. Furthermore, 16-channel and 4-channel EEG features only included 8 easy-to-obtain EEG metrics (spectral biomarkers and algorithmic complexity) and for which the collection of scripts is publicly available, thus facilitating future implementation in clinical practice. MSF and PSD gamma were the best EEG features to predict neurodegeneration, which is in line with our previous work showing that neurodegeneration in AD-signature regions translates into a widespread increase of MSF and an increase in high-frequency oscillations in fronto-central regions, these changes having been linked to compensatory mechanisms at the preclinical stage of AD [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF].

Previous studies using resting-state EEG showed accuracies ranging from 77.3% to 98.9% to classify between AD dementia and healthy controls [START_REF] Aghajani | Diagnosis of Early Alzheimer's Disease Based on EEG Source Localization and a Standardized Realistic Head Model[END_REF][START_REF] Al-Nuaimi | Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer's Disease[END_REF][START_REF] Poza | Spatio-Temporal Fluctuations of Neural Dynamics in Mild Cognitive Impairment and Alzheimer's Disease[END_REF][START_REF] Yang | M/EEG-based Bio-markers to predict the Mild Cognitive Impairment and Alzheimer's disease: A Review from the Machine Learning Perspective[END_REF][START_REF] Yu | Functional brain connectivity in Alzheimer's disease: An EEG study based on permutation disalignment index[END_REF] and accuracies ranging from 68.5% to 85% to classify between MCI and healthy controls [START_REF] Babiloni | Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases[END_REF][START_REF] Poil | Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage[END_REF]. Even if some studies show high classification accuracies, results should be interpreted with caution due to small datasets, which can lead to overfitting. Classification between AD dementia and controls generally demonstrates better performance than classification between MCI and controls, which can be explained by greater contrast between groups in the first case, as AD dementia patients are further advanced in the disease course. Regarding our study, we analysed subjects that were at an earlier stage, as all participants were cognitively normal at baseline. Thus, the obtention of a 61% balanced accuracy, an 82% NPV and a 38% PPV to screen for AD-topography specific neurodegeneration in cognitively normal subjects using solely a low-density 4-channel EEG is promising.

The best combination of groups of features to predict amyloid were demographic (age, education level, sex), neuropsychological data (MMSE, FAB, FCSRT), APOE4 genotype and hippocampal volumetry, enabling a 62% balanced accuracy, an 80% NPV and a 41% PPV. The impact of APOE4 genotype is not surprising, considering that it is the major genetic risk factor for AD [START_REF] Farrer | Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A metaanalysis. APOE and Alzheimer Disease Meta Analysis Consortium[END_REF] and it is related to higher brain amyloid deposition [START_REF] Reiman | Fibrillar amyloid-burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease[END_REF]. Our findings regarding hippocampal volumetry are consistent with previous studies showing that hippocampal volume reduction is related to higher amyloid burden in cognitively normal elderly subjects [START_REF] Hsu | Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss[END_REF][START_REF] Mormino | Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects[END_REF]. Regarding the role of neuropsychological data to predict brain amyloidosis, cued memory decline on the FCSRT has previously been linked to elevated amyloid burden in cognitively normal adults [START_REF] Papp | Cued memory decline in biomarker-defined preclinical Alzheimer disease[END_REF]. Concerning MMSE and FAB, our results are in line with a previous meta-analysis showing that increased amyloid burden is associated with lower global cognition scores and executive function in cognitively normal subjects [START_REF] Hedden | Meta-analysis of amyloid-cognition relations in cognitively normal older adults[END_REF], but contrasts with another meta-analysis that found no association of amyloid pathology with MMSE in participants with normal cognition (Jansen et al., 2018).

Our results suggest that non-invasive and affordable biomarkers could significantly reduce recruitment costs of A+ subjects in clinical trials. Notably, on 50 iterations, EEG was hardly ever selected for the prediction of amyloid (proportion lower than 2%). An explanation could be that we used averaged EEG metrics across all channels, and chose not to compute several regional EEG metrics, in order to limit the number of features, prevent overfitting and excessive computational time. However, as previous work has shown that amyloid burden could have a regional effect on EEG signals in cognitively normal individuals [START_REF] Gaubert | EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease[END_REF][START_REF] Nakamura | Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease[END_REF], future studies could assess the performance of regional EEG features to predict amyloid. Nevertheless, our work suggests that EEG is a much stronger predictor of neurodegeneration than amyloidosis.

A highlight of this work is the 5-year longitudinal follow-up of SCD patients, enabling us to identify biomarkers associated with progression to prodromal AD. On the 248 individuals of the INSIGHT-preAD cohort that were followed up to 5 years, 14 (5.65%) individuals declined to prodromal AD. The number of AD-decliners was lower than expected, compared to progression rates described in different cohorts following cognitively normal individuals [START_REF] Parnetti | Prevalence and risk of progression of preclinical Alzheimer's disease stages: a systematic review and metaanalysis[END_REF]. One hypothesis to explain this low progression rate could be that the majority of participants of the INSIGHT-preAD cohort had a high education level (70%), possibly in relation to the recruitment strategy (volunteer subjects preoccupied by their memory complaints, highly motivated to participate in clinical research protocols), with therefore a supposedly high cognitive reserve providing protective effect on cognitive decline [START_REF] Pettigrew | Defining Cognitive Reserve and Implications for Cognitive Aging[END_REF]. A recent study has developed a disease progression model of AD according to education level and demonstrated that higher-educated individuals presented slower progression from SCD to amnestic MCI than lower-educated individuals, while this trend disappeared from amnestic MCI to AD dementia, possibly because of insufficient compensation by cognitive reserve when the pathophysiological burden reaches a severe level [START_REF] Kim | Disease progression modeling of Alzheimer's disease according to education level[END_REF]. In an exploratory analysis, we showed that the best classifier for the prediction of decline to prodromal AD was logistic regression with the following combination of groups of features: demographical, neuropsychological data, APOE4 genotype and hippocampal volumetry, enabling a 0.70 AUC, 83% specificity, 50% sensitivity, 97% NPV and 14% PPV. The three most efficient features were FCSRT Immediate Free Recall, closely followed by hippocampal volumetry and APOE4. These results are in line with a previous study showing that FCSRT may be particularly effective in identifying cognitively normal individuals on the AD trajectory at greater risk of clinical progression [START_REF] Papp | Cued memory decline in biomarker-defined preclinical Alzheimer disease[END_REF]. Our findings regarding the role of hippocampal volumetry are of interest as hippocampal volume calculation is now facilitated by software enabling automatic hippocampal volumetry. Our results argue in favour of hippocampal volumetry as part of routine neuroimaging in memory complainers. Given the small number of AD-decliners in this exploratory analysis, these preliminary results should be interpreted with caution and need to be confirmed in future studies. A number of longitudinal studies have developed multimodal biomarker models to predict future decline to AD dementia in individuals at the MCI stage [START_REF] Caminiti | FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort[END_REF][START_REF] Cheng | Domain Transfer Learning for MCI Conversion Prediction[END_REF][START_REF] Gupta | Prediction and Classification of Alzheimer's Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers[END_REF][START_REF] Lin | Predicting Alzheimer's Disease Conversion From Mild Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method With Multimodal Data[END_REF][START_REF] Moradi | Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects[END_REF][START_REF] Ritter | Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers[END_REF][START_REF] Young | Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[END_REF], but the majority of studies investigating biomarker performances in SCD employ a cross-sectional design in which biomarkers are compared between SCD individuals and healthy controls [START_REF] Brueggen | Structural integrity in subjective cognitive decline, mild cognitive impairment and Alzheimer's disease based on multicenter diffusion tensor imaging[END_REF][START_REF] López-Sanz | Electrophysiological brain signatures for the classification of subjective cognitive decline: towards an individual detection in the preclinical stages of dementia[END_REF][START_REF] Yan | Early-Stage Identification and Pathological Development of Alzheimer's Disease Using Multimodal MRI[END_REF][START_REF] Zhao | Automated Brain MRI Volumetry Differentiates Early Stages of Alzheimer's Disease From Normal Aging[END_REF], and longitudinal research in this field is still limited. A few studies focused on predicting cognitive decline in individuals with normal cognition or SCD [START_REF] Bauer | Multimodal Discrimination between Normal Aging, Mild Cognitive Impairment and Alzheimer's Disease and Prediction of Cognitive Decline[END_REF][START_REF] Hays | Interaction of APOE, cerebral blood flow, and cortical thickness in the entorhinal cortex predicts memory decline[END_REF][START_REF] Scheef | Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment[END_REF][START_REF] Vogel | Brain properties predict proximity to symptom onset in sporadic Alzheimer's disease[END_REF][START_REF] Young | A data-driven model of biomarker changes in sporadic Alzheimer's disease[END_REF], but most of them predict non-specific decline in cognitive performance over time (or decline to MCI), but do not predict decline to prodromal AD as defined by the IWG-2 criteria [START_REF] Dubois | Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[END_REF] in association with positive amyloid-beta deposition, unlike our study where prodromal AD patients are well-phenotyped, based on clinical and amyloid biomarker criteria. One study by [START_REF] Dumurgier | Alzheimer's Disease Biomarkers and Future Decline in Cognitive Normal Older Adults[END_REF] investigated the relationship between AD biomarkers and subsequent change in cognition in a cohort of cognitively intact older adults during 3-year follow-up and showed that baseline CSF total Tau (t-Tau) and phosphorylated Tau 181 (p-Tau181), in vivo amyloid load, and hippocampal volume were all independently associated with future decline in cognition, with modest predictive performance (AUC = 0.7). Other studies have assessed the diagnostic accuracy of CSF biomarkers and/or amyloid PET to predict cognitive decline in cognitively normal individuals [START_REF] Donohue | Association Between Elevated Brain Amyloid and Subsequent Cognitive Decline Among Cognitively Normal Persons[END_REF][START_REF] Roe | Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later[END_REF][START_REF] Soldan | Hypothetical Preclinical Alzheimer Disease Groups and Longitudinal Cognitive Change[END_REF], but sampling CSF is an invasive technique and amyloid PET is expensive, which limits their applicability as routine screening tools in cognitively normal adults. Compared to previous studies, our work, even if exploratory, presents some strengths and degree of novelty, for instance regarding the selected non-invasive biomarkers (e.g. EEG), the targeted population and the long follow-up.

A highpoint of this work is the rigorous machine learning methodology. Repeating the training/testing procedure 50 times enabled us to robustly identify the best classifier and to reliably estimate final performance measures, avoiding obtention of good performance only "by chance" on one iteration. Moreover, we resolved the problem of class imbalance by using the oversampling method to rebalance the class distribution to 50_50%. To confirm that our results would generalize well in a different setting, further studies should replicate our method on an independent cohort of SCD subjects.

A major strength is the prediction of neurodegeneration in addition to amyloid status, while most previous studies focus on predicting amyloid only [START_REF] Ansart | Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis[END_REF][START_REF] Insel | Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information[END_REF][START_REF] Mielke | Indicators of amyloid burden in a population-based study of cognitively normal elderly[END_REF][START_REF] Ten Kate | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study[END_REF], as the majority of AD trials require only positive amyloid status for enrolment. However, knowing the A and N status of an individual is noteworthy [START_REF] Jack | NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[END_REF], because A+N+ individuals are at greater risk of progression to prodromal AD than A+N-individuals [START_REF] Parnetti | Prevalence and risk of progression of preclinical Alzheimer's disease stages: a systematic review and metaanalysis[END_REF]. Moreover, characterizing the A and N profile of patients could help to guide treatment, with an ATN biomarker-based participant selection in clinical trials, enabling more homogeneous trial populations [START_REF] Cummings | The National Institute on Aging-Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials[END_REF]. In our study, EEG was the feature most strongly predictive of neurodegeneration on 18 F-FDG PET, while one could have expected hippocampal volumetry to be a stronger predictor, as brain atrophy is an accepted neurodegeneration biomarker [START_REF] Jack | NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[END_REF]. One explanation is that EEG measures brain dysfunction, as does 18 F-FDG PET, whereas hippocampal volume is a structural marker. A distinction can be made between "functional" and "structural" neurodegeneration, which are correlated but not interchangeable. Our results suggest that EEG is a good marker of "functional" neurodegeneration.

A limitation is that pathological Tau marker was not available so we could not develop models to predict T status. Given the good NPV of our models to predict neurodegeneration (NPV 82%), amyloid (NPV 80%) and progression to prodromal AD at 5-year follow-up (NPV 97%), an individual classified as negative (normal) on the 3 predictive models would be at low risk of preclinical AD and future cognitive decline. This individual risk assessment would only require a 1-minute low-density EEG, a blood sample to assess APOE4 status and an MRI for hippocampal volumetry. On the opposite, given the modest PPVs, an individual classified as positive would require close cognitive follow-up and confirmatory exams (e.g. PET-scan), as our approach does not have sufficient diagnostic performance to confirm preclinical AD. Thus, our proposed methodology could be used as an interesting starting point for a screening tool to rule out preclinical AD. Other promising low-invasive biomarkers are currently in development, in particular blood markers, as ultrasensitive immunoassays enable assessment of plasma or serum amyloid-β (Aβ-42 and Aβ-40), t-Tau and p-Tau in a single blood sample [START_REF] Li | An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform[END_REF].

The plasma Aβ-42 level or the Aβ-42/Aβ-40 ratio may have clinical utility for screening elevated brain amyloid deposition [START_REF] Palmqvist | Accurate risk estimation of β-amyloid positivity to identify prodromal Alzheimer's disease: Cross-validation study of practical algorithms[END_REF] and plasma p-Tau181 levels have been associated more strongly with both amyloid and tau PET, compared to plasma t-Tau [START_REF] Mielke | Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau-and amyloid-positron emission tomography[END_REF]. However, it is still uncertain whether the current ultrasensitive technologies will be readily available in clinical laboratories for screening for AD pathology. The translation of bloodbased AD biomarkers into routine diagnostic biomarkers will involve many steps.

CONCLUSION

This work demonstrates how machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers, thus optimizing recruitment in clinical trials. Most importantly, it highlights EEG as a promising tool to predict neurodegeneration with portable equipment featuring only a few electrodes, which paves the way for future application in clinical practice. Moderate classification performances reflect the difficulty of diagnosing AD in SCD patients, a few years before the occurrence of prodromal AD, even with multimodal data and using machine learning. Future studies should combine several preclinical cohorts [START_REF] Epelbaum | Preclinical Alzheimer's disease: A systematic review of the cohorts underlying the concept[END_REF] according to a recently published methodology [START_REF] Gagliardi | The Meta-Memory Ratio: A new cohort-independent way to measure cognitive awareness in asymptomatic individuals at risk for Alzheimer's disease[END_REF] and use longitudinal multimodal measurements and polygenic risk scores [START_REF] Leonenko | Genetic risk for alzheimer disease is distinct from genetic risk for amyloid deposition[END_REF] to improve predictive performance. education, high was defined as scores >6. ¶Normalized to the mean total intracranial volume.
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  Fisher's exact test for qualitative variables. *P-value < 0.05. † 18 Ffluorodeoxyglucose PET indices partial-volume corrected. §On a scale of 1-8, where 1=primary education and 8=higher education, high was defined as scores >6. ¶Normalized to the mean total intracranial volume. Abbreviations: AD = Alzheimer's disease; FDG = fluorodeoxyglucose; N+ = neurodegeneration positive; N-= neurodegeneration negative; SUVR = standardised uptake value ratio.Table 5: Comparison of baseline characteristics between participants declining to prodromal AD versus non-decliners during five-year follow-up. Data are mean ± SD or number (%). ∫ P-value for the comparison between the two groups. P-values were calculated using Welch's t test for continuous variables and Fisher's exact test for qualitative variables. *P-value < 0.05. † 18 F-fluorodeoxyglucose PET indices partial-volume corrected. §On a scale of 1-8, where 1=primary education and 8=higher education, high was defined as scores >6. ¶Normalized to the mean total intracranial volume. Abbreviations: AD = Alzheimer's disease; FCSRT = Free and Cued Selective Reminding Test; FDG = fluorodeoxyglucose; N+ = neurodegeneration positive; SUVR = standardised uptake value ratio.

Figure 1 :

 1 Figure 1: Description of the machine learning pipeline implemented to predict preclinical Alzheimer's disease (AD). Abbreviations: b.Acc = Balanced Accuracy; NPV = Negative Predictive Value; PPV = Positive Predictive Value; Se = Sensitivity; Spe = Specificity.

  

Table 1 :

 1 Complete list of features. Abbreviations: FCSRT = Free and Cued Selective Reminding Test; MMSE = Mini Mental Status Examination; PSD = Power spectral density; wSMI = weighted Symbolic Mutual Information.

	Group	Name of the group of features	Features inside each group
	number		
	1	224-channel EEG	PSD delta (224 channels)
			PSD theta (224 channels)
			PSD alpha (224 channels)
			PSD beta (224 channels)
			PSD gamma (224 channels)
			Median spectral frequency (224 channels)
			Spectral entropy (224 channels)
			Algorithmic complexity (224 channels)
			wSMI theta (224 channels)
			wSMI alpha (224 channels)
	2	16-channel EEG	PSD delta (16 channels)
			PSD theta (16 channels)
			PSD alpha (16 channels)
			PSD beta (16 channels)
			PSD gamma (16 channels)
			Median spectral frequency (16 channels)
			Spectral entropy (16 channels)
			Algorithmic complexity (16 channels)
	3	4-channel EEG	PSD delta (4 channels)
			PSD theta (4 channels)
			PSD alpha (4 channels)
			PSD beta (4 channels)
			PSD gamma (4 channels)
			Median spectral frequency (4 channels)
			Spectral entropy (4 channels)
			Algorithmic complexity (4 channels)
	4	Demographic data	Age
			Sex
			Education level
	5	APOE4 status	APOE4 status (positive if at least one ε4 allele)
	6	Neuropsychological data	MMSE
			FCSRT Immediate Free Recall
			FCSRT Immediate Total Recall
			FCSRT Delayed Free Recall
			FCSRT Delayed Total Recall
			Frontal Assessment Battery
	7	Hippocampal Volumetry	Hippocampal Volume on MRI

Table 2 : Comparison of baseline characteristics between amyloid positive and amyloid negative groups.

 2 Data are mean ± SD or number (%). ∫ P-value for the comparison between the two groups. P-values were calculated using Welch's t test for continuous variables and Fisher's

	exact test for qualitative variables. *P-value < 0.05. †18F-fluorodeoxyglucose PET indices
	partial-volume corrected. §On a scale of 1-8, where 1=primary education and 8=higher

Table 3 : Best classifiers to predict amyloid and neurodegeneration status, displayed in ranked order. The

 3 

	following performance measures are indicated: area under operating
	characteristic (ROC) curve (AUC), balanced accuracy, sensitivity, specificity, positive predictive
	value (PPV) and negative predictive value (NPV). Performance measures are summarized with
	median and quantile 0.025 and 0.975. Only the first three best classifiers are indicated. The
	algorithm, number of features (in brackets) and groups of features used are specified for each
	classifier. Abbreviations: APOE = APOE4 status; Demo = Demographical data; EEG4 = 4-channel
	EEG; EEG16 = 16-channel EEG; HV = Hippocampal Volume; Nb = Number; NPSY =
	Neuropsychological data; RF = Random forest; regLOG = Logistic Regression.

Table 4 : Comparison of baseline characteristics between neurodegeneration positive and neurodegeneration negative groups.

 4 Data are mean ± SD or number (%). ∫ P-value for the comparison between the two groups. P-values were calculated using Welch's t test for continuous variables and
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Supplementary results

Prediction of decline to prodromal AD: an exploratory analysis

Best classifier

The best classifier for the prediction of decline to prodromal AD was logistic regression with the following combination of groups of features: demographical, neuropsychological data, APOE4 genotype and hippocampal volumetry (with 5 features pre-selected), enabling a median AUC of 0.70, a 67% balanced accuracy, 50% sensitivity, 83% specificity, 14% PPV and 97% NPV (Supplementary Table 1).

Best features

The best features for the prediction of decline to prodromal AD were the following (according to the frequency of selection of each feature on 50 iterations): FCSRT Immediate Free Recall (80%), hippocampal volumetry (70%), APOE4 (66%), MMSE (24%), FCSRT Delayed Free Recall (22%), age (20%), education level (20%), sex (20%), FCSRT Delayed Total Recall (20%), FCSRT Immediate Total Recall (20%) and FAB (20%). The other features were selected in a proportion lower than 5%.