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☯ These authors contributed equally to this work.

* davide.boido@cea.fr (DB);serge.charpak@inserm.fr (SC)

Abstract

Understanding the relationships between biological processes is paramount to unravel

pathophysiological mechanisms. These relationships can be modeled with Transfer Func-

tions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here

we present Iliski, a software dedicated to TFs computation between two signals. It includes

different pre-treatment routines and TF computation processes: deconvolution, determin-

istic and non-deterministic optimization algorithms that are adapted to disparate datasets.

We apply Iliski to data on neurovascular coupling, an ensemble of cellular mechanisms that

link neuronal activity to local changes of blood flow, highlighting the software benefits and

caveats in the computation and evaluation of TFs. We also propose a workflow that will help

users to choose the best computation according to the dataset. Iliski is available under the

open-source license CC BY 4.0 on GitHub (https://github.com/alike-aydin/Iliski) and can be

used on the most common operating systems, either within the MATLAB environment, or as

a standalone application.

Author summary

Iliski is a software helping the user to find the relationship between two sets of data,

namely transfer functions. Although transfer functions are widely used in many scientific

fields to link two signals, their computation can be tricky due to data features such as mul-

tisource noise, or to specific shape requirements imposed by the nature of the signals, e.g.

in biological data. Iliski offers a user-friendly graphical interface to ease the computation

of transfer functions for both experienced and users with no coding skills. It proposes sev-

eral signal pre-processing methods and allows rapid testing of different computing

approaches, either based on deconvolution or on optimization of multi-parametric func-

tions. This article, combined with a User Manual, provides a detailed description of Iliski
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functionalities and a thorough description of the advantages and drawbacks of each com-

puting method using experimental biological data. In the era of Big Data, scientists strive

to find new models for patho-physiological mechanisms, and Iliski fulfils the require-

ments of rigorous, flexible, and fast data driven hypothesis testing.

This is a PLOS Computational Biology Software paper.

Introduction

Modelling and understanding of the relationship between complex and intermingled biologi-

cal signals is often difficult, particularly when the drivers of the signals are unknown. The

problem of the relationship between two time series can be addressed using deconvolution,

which provides Transfer Functions (TFs) representative of the system processing on the input

signal to generate the output signal [1]. Extracting the transfer function linking neuronal activ-

ity and imaging data is widely used in functional brain imaging [2–9], but TFs can also solve

general problems in signal analysis, such as predicting the output of complex electrical circuits

[10] or other industrial systems, for which a proper model is overly complex due to multiple

processes working in parallel[11]. In brain imaging based on blood flow dynamics, transfer

functions are classically used to lump the multitude of cellular and molecular processes linking

neural activation to changes in blood flow. This coupling between neural activity and hemody-

namics is known as neurovascular coupling (NVC) [12]. While there are many successful

phenomenological models of NVC [3,13–17], most physiology-based models of neurovascular

coupling[18–21] focus on a single cellular mechanism. As NVC is mediated through multiple

processes (several molecular cascades, each mediated by different cell types), a more integrated

approach is necessary. NVC has often been assessed with deconvolution [8,22], either in the

frequency domain or with matrix-based approaches, like Toeplitz matrices[23]. While these

approaches allow the unbiased extraction of the TF, these deconvolution methods suffer from

sensitivity to noise, affecting the quality of the computed TFs. Reducing the noise (or band-

width) of the signals improves the estimate of the TF. Alternatively, one can opt for optimiza-

tion of known functions or a kernel of functions [7,9]. The first option may lead to

information loss, e.g., in cases where the noise is not well characterized. Sophisticated smooth-

ing methods partially prevent this loss, like Savitzky-Golay filter, or noise modelling as pro-

posed by Seghouane and colleagues [24]. The second option relies on parametric functions to

find the TF best linking the input to the output signals. The transfer function for neural activity

to hemodynamic signals has been canonically modeled using a gamma-distribution function

[3,14–16]. While making assumptions as to the shape of the TF has some drawbacks, it is

robust in the face of noise and generates parametric representations of intrinsically smooth

TFs. These approaches still can suffer from under/overfitting and the search for the minimum

of the cost function for ill-posed problems may represent a challenging exercise. A valuable

help comes from non-deterministic optimizations like simulated annealing or genetic algo-

rithms, which despite their computational expense have potential advantages in extracting TFs

from time series.

Recently, our group has been extensively involved in TF computation of neurovascular cou-

pling in a study based on multi-modal recordings, namely two-photon microscopy and ultra-

fast functional ultrasound [25]. For the required task, we comprehensively tested many
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deconvolution and optimization algorithms to choose the best-suited approach. We noticed

that there is no standard software package providing all these different TF extraction tools, nor

a program where all these approaches are available in a comfortable signal pre-treatment and

I/O workflow. Here, we present Iliski ([ɪlɪʃkɪ], meaning “relationship” in Turkish), a software

which contains all the functionalities that we previously used (Aydin et al.) and which, being

open source, can be further improved by the users. Although Iliski was initially thought to help

data analysis in Biology, its features make it suitable for diverse applications [26,27].

Design and implementation

Iliski can compute TFs between an input and an output time series, regardless of their nature.

The originality of Iliski resides in its multiple options to process and analyze input signals.

Iliski provides users with efficient pre-treatment and several deconvolution or optimization

algorithms, through a clear graphic interface. It is meant to be easy-to-use for anyone, even

with basic digital signal processing skills. The experienced users, instead, will find both convo-

lution and function optimization approaches–two classes of problems usually comprised in

different toolboxes—in a single data analysis environment.

Iliski can be used either as a suite of functions or through a Graphical User Interface (Fig

1A). Functions are grouped according to the analysis workflow to keep the interface simple.

Fig 1B shows the general purpose of Iliski.

Data loading and pre-treatment

We propose two input files format: either plain text files or HDF5 data, the latter being an

open-source file format with advanced database features. As experimental acquisitions are

prone to multiple component noise, we provided, as an option to the analysis workflow,

smoothing (Savitzky-Golay method) and median filter functions, to exclude outliers. The

input and output signals are interpolated to a chosen time interval (Δt). Both signals can be cut

between two given time points to study continuous recordings while computing TFs on

chunks of signal (Fig 1C). As an option, boxcar function of variable duration can be used in

place of the input signal. Note that Iliski was not coded to handle complex-valued signals.

TF computation options

Two main types of TF computation are proposed: deconvolution or function optimization.

The former is straightforward, either Toeplitz or Fourier deconvolution, and does not require

any specific settings. The latter is the optimization of a parametric function, which requires

further settings depending on the chosen algorithm. Beside the proposed fitting functions, the

users can input their own function in the graphical interface or add it to the default ones by

modifying a text file (the procedure is described in the Iliski Manual). The TF dimension is

user-defined, with setting of the TF duration and ‘Sampling Time’ parameters that match the

original data or can be augmented by non-linear interpolation. Optimization of parameters

can be done with various Matlab algorithms, each coming with pros and cons (see Results sec-

tion) (Fig 1C, middle).

Evaluation of the TF accuracy

A TF is evaluated comparing its prediction–the convolution of the input signal and the TF—to

the expected output. Two metrics are used in Iliski: the Pearson coefficient (corrcoef function,

Matlab, Fig 1C, right) and the residual sum of squares. The former was chosen to have a met-

ric solely focusing on the dynamic, allowing for inter-subject comparisons, while the latter
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evaluates the overall fit, considering the amplitude of the prediction. The cost function of all

the optimization algorithms tested in this article is the residual sum of squares (hereinafter

referred to as "residuals").

Post-computation

The results structure is arranged to be as informative as possible while avoiding useless repeti-

tion of data. Iliski allows for loading previously computed results structures to check them

again. After TF computation, results structure can be saved either as XLS file, readable by any

Excel-like software, or as a MAT-file (MATLAB formatted binary file format), but it is also

available in Matlab workspace to be exported in various data formats by the user.

Implementation

Iliski is accessible both as a GUI and as a set of functions to be used in scripts. It has been

developed using Matlab R2018a, with the following dependencies: Optimization Toolbox, Sig-

nal Processing Toolbox and Global Optimization Toolbox.

Common user errors are thoroughly prevented by various messages and fail safes. In paral-

lel, all errors are treated and saved in a log file, to allow for efficient bug-fixing by any devel-

oper. We purposely kept just a few parameters to modify through the GUI, with the goal of

providing an easy-to-use tool for people not used to these functions. In most cases, Matlab

default parameters of each deconvolution/optimization function worked well with our data,

and we believe that it can be extended to many biological datasets. However, a user skilled

with Matlab and optimization algorithms can easily modify the parameters of each function

used.

Animal research

This study uses already published data of animal experimentation (Aydin et al.). All animal

care and experimentations were performed in accordance with the INSERM Animal Care and

Use Committee guidelines (protocol numbers CEEA34.SC.122.12 and CEEA34.SC.123.12).

Results

Here we present the use of Iliski to find the best mathematical representation of neurovascular

coupling, an ensemble of cellular mechanisms that links brain activation to local increases of

blood flow. Neural activity is reported by GCaMP6f [28], a calcium-sensitive protein expressed

in specific neurons. Blood flow is quantified by measuring red blood cells velocity changes in

capillaries [29].

Several deconvolution and function optimization algorithms are provided. Choosing the

algorithm(s) and settings to compute a TF that gives faithful and robust predictions is not

always a straightforward task. It must be done according to the data features. Here we use

some data from our published study on neurovascular coupling [25] to point out how TFs

change with different algorithms and settings, and we show the critical points in the usage of

non-deterministic methods. Finally, we propose a step-by-step guide to optimize the best TF

on practical situations.

Fig 1. Overview of Iliski. (A) Iliski has a clear interface with tabs bringing through the analysis steps. (B) The usage of

Iliski are many; although it has been conceived for biological data, there is no limitation to load any discretized signal.

Iliski can easily be used as a tool for fast testing different approaches for TFs computation. (C) Iliski workflow is

modular so that signal pre-processing is optional and functions to compute TFs can be modified by the user preserving

the I/O modules.

https://doi.org/10.1371/journal.pcbi.1008614.g001
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Choosing the best TF computation approach

Fig 2 shows TF computation with different settings over the same couple of signals: neuronal

(Ca2+) activations and vascular (red blood cells velocity) flow increases recorded in a mouse

upon odor application. Our example data display unavoidable and complex noise coming

from many sources: the biological system, the optical setup, the electronics, etc. Deconvolution

with Fourier or Toeplitz approaches predicts the vascular responses very well for a given data

set. However, the high-frequency noise is amplified by deconvolution [24] and transmitted to

the TF, the predictions are not robust across data sets and the actual dynamics of neurovascu-

lar coupling is completely hidden in the TF noise (Fig 2). In this example, we show what we

regard as a typical case of overfitting. The TF is capturing the high frequency noise of the sys-

tem because it does not have any previous expectations for the shape of the relationship

between the input and the output signals. This contrasts to the optimization of a parametric

function approach which, although it imposes constraints on the shape of the TF, gives mean-

ingful neurovascular relationship and does not need noise clearing. In blood flow-based neu-

roimaging, the standard function used to represent neurovascular coupling is composed of

one or two Γ functions, depending on the nature of the signals, i.e. purely vascular or based on

oxygen level[30].

Below is the one Γ-driven function we used with our data.

TF t; p1; p2; p3; p4ð Þ ¼ H t � p3ð Þ � p4 �
ðt � p3Þ

p1 � 1
� pp1

2 � e� p2 �ðt� p3Þ

Gðp1Þ

Where p1,.., p4 are the parameters to optimize, and H is the Heaviside function that includes

a time-shift parameter (p3), In some cases, the time shift significantly improved the prediction

and is a known biological phenomenon to consider[31]. Its four parameters are not all inde-

pendent from one another, e.g., p1, p2 and p4 all impact the TF amplitude. This inter-depen-

dency between the parameters brings an ill-posed optimization problem with multiple local

minima of the cost function, the sum of the residual squares, in the 4D space of the parameters.

To tackle the function optimization problem, we chose standard algorithms (all implemented

in the Optimization Toolbox of Matlab) to encompass the main available options.

A derivative-free optimization method [6] is provided by the fminsearch function in Matlab,

which uses the Nelder-Mead simplex algorithm. This approach on our data produced a TF

with more than one underivable point that is not representative of the smooth dynamic of neu-

rovascular coupling.

Another common option is provided by Quasi-Newton optimization algorithms, which

uses an approximation of the Jacobian: for this approach too, we tested an unconstrained

built-in method (fminunc function, Matlab). This prediction is, overall, as good as with fmin-
search (Fig 2, Pearson coefficients, fminunc vs. fminsearch: 0.95 vs. 0.96), but the onset phase is

not properly fit. Moreover, although not evident from the plot, the optimized time shift was

negative (-120 ms), implying that the onset of the vascular response precedes the neuronal

activation.

All the optimization methods tested above are deterministic, meaning that repeating them

with the same initial parameters will bring the same result. The pitfall of these methods when

applied to ill-posed problem is that optimization process will get attracted to the nearest local

minimum, regardless of the many other deeper minima, which may be far away in the parame-

ters space. In other words, deterministic algorithms are sensitive to the initial parameters set

before starting the optimization.

Non-deterministic algorithms exist to overcome the local minimum issue, adding some

level of randomness in the optimization process, and for this purpose Iliski uses the Simulated
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Annealing algorithm. Each optimization run can yield a different result, reaching possibly a

different cost function’s minimum each time. We define as ‘run’ a single application of the

optimization with a given set of initial values, and ‘iteration’ the ensemble of runs sharing the

same initial values. By running the algorithm multiple times, one can choose the result with

the lowest residual, while avoiding TFs which shape are biologically not acceptable. In fact, to

represent the NVC, a TF cannot start at 0 sec, because of the delay due to the cellular cascades

triggering the vascular response, and it must be smooth to comply with the progression of bio-

logical processes. In Aydin et al. (2020), we described a workflow of runs and iterations to get

to biologically consistent TFs (see Supplementary Fig 1 in Aydin et al. [25]). To speed up com-

putation, we imposed bounds over the parameters. Note that such bounds can be set through

the Iliski GUI for any constrainable algorithm.

Using our data, Simulated Annealing gave a smooth TF and a prediction as good as fmin-
search for the onset phase of the vascular response. The data shown in Fig 2 is representative

of the rest of the data. In fact, optimization of TFs using neural and vascular recordings from

other mice, tested with the same odor stimulation, produced similar residual values of the cost

function across the 3 optimization algorithms presented above (1-way ANOVA, F(2, 17) =

0.035, p = 0.97, Fig 3A). However, as in the example of Fig 2, deterministic algorithms are

prone to biologically inconsistent TFs (Fig 3B). The non-deterministic, Simulated Annealing

algorithm with subsequent iterations method allows to efficiently exclude these TFs and obtain

the best trade-off between prediction performance and biological consistency at the cost of a

longer computation time. Direct deconvolution is a good option when the goal is the predic-

tion quality within the training database. Deterministic optimization algorithms are fast but

yield to TFs that may have biologically inconsistent dynamics. Note that for all the computa-

tions we used a short Δt (50 ms) for interpolation to preserve most of the information.

Evaluating the number of runs in a non-deterministic case

As already mentioned, the Simulated Annealing algorithm requires several runs and iterations

to obtain a good TF, where ‘run’ means a single optimization and ‘iteration’ an ensemble of

runs sharing the same initial values of the fitting function. In our experience, starting the opti-

mization with a ‘bad’ TF—whose shape is different from what is expected for the processed

dataset—helps to collect more local minima in a pool of optimization runs. For example, in

our previous study [25], we proposed iterations of 50 runs and started with the initial values of

the standard TF (one ΓHRF) which, peaking at 5 seconds, turned to be much slower than any

of the optimized TFs. The sequence of 50-runs iterations stopped when, within an iteration,

no clear improvement was found in the optimized TF [25]. On average, 2 iterations were suffi-

cient to get a stable TF with Pearson coefficient above 0.9. Here, we investigated if a higher

number of runs is beneficial to the detection of the minimum of the cost function and if it pre-

vents the need for further iterations. We compared 50 and 200 runs with single and double

iterations, in cascade (Fig 4A). In a mouse dataset, we observed a non-significant trend

towards more scattered TFs shapes for computation using 50 runs versus 200 runs (1-way

ANOVA, F(3, 16) = 2.086, p = 0.14, Fig 4B). Similarly, the quality of the TFs did not

Fig 2. Comparison of deconvolution and optimization algorithms on a batch of data. Odor stimulation elicited a neuronal response in the Olfactory Bulb of a

mouse, reported by a calcium-dependent fluorescent signal (in blue, left panel), providing the input of TF computation. Output is given by the vascular response,

measured as the change in speed of red blood cells flowing inside a capillary proximal to the recorded neuronal activation (in yellow, right panel). Both experimental

data have been resampled at 50ms and used to compute a set of TFs (in orange) either with direct deconvolution approaches (Fourier or Toeplitz methods, middle-

upper panel TFs) or with 1-Γ function optimization performed by 3 different algorithms (middle-lower panel TFs). Complex TFs bring accurate prediction but

amplify the noise of the data used to deconvolve them, with a consequent loss of robustness on other datasets. Smoother TFs are less accurate on the training dataset,

but much robust when applied to test datasets.

https://doi.org/10.1371/journal.pcbi.1008614.g002
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significantly improve with increasing runs (1-way ANOVA, F (3, 16) = 2.299, p = 0.12). As a

result, TFs with fast dynamics (peaking within 1 and 2 sec), was a common feature indepen-

dently of the adopted protocol (Fig 4C). In a dataset from another mouse (Fig 4D and 4E),

TFs with sparse time to peak values after 200 runs improved after a second iteration, with the

same number of runs (2.3 ± 0.3 s VS 1.5 ± 0.1 s (mean ± SEM), two-tailed T-test, unpaired,

p = 0.02< 0.05). Note that this compression of TF dynamics was not accompanied by a signifi-

cant improvement of the TF quality (residuals: 10.1 ± 2.1 vs. 6.9 ± 0.8 (mean ± SEM) for 200

and 200 + 200 runs respectively, two-tailed T-test, unpaired, p = 0.19). To conclude, depending

on the input/output signals, non-deterministic algorithms can produce TFs with different

dynamics but close performances in the prediction. The choice of a specific optimization pro-

cess, with more or less iterations and runs, becomes crucial when the interest is not limited to

the prediction quality, but extends to the temporal dynamics of the TF. Because of the noise,

TFs with distinct shapes can yield very close residual values.

Fig 3. Prediction performance of different optimization algorithms. (A) 3 algorithms were compared in terms of

the residuals of the cost function of the optimized TF on 7 mice datasets (Derivative free algorithm failed in optimizing

a TF in a mouse). No significant difference was found across the 3 methods. (B) However, simulated annealing was the

only approach to provide TFs consistent with the nature of biological data (TF with no more than 1 non-derivable

point), while both the other deterministic methods run into inconsistent TFs in roughly 60% of the cases.

https://doi.org/10.1371/journal.pcbi.1008614.g003
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Guide to choose the algorithm best fitting your needs

We provide a decision diagram to choose the best approach to compute a TF based on the fea-

tures of the user’s dataset (Fig 5). Nonetheless, we believe it is always a good choice to test dif-

ferent approaches before making the final choice.

Discussion

Iliski provides a user friendly, interactive, and rich in options software for quickly testing

different methods and settings to compute TFs between biological processes. In addition

to its standard integrated functions, it also allows for user-defined functions of any num-

ber of parameters and the possibility of replacing an input signal with a boxcar function,

enlarges its usage. Using data from the NVC field, we demonstrate how critical is the

choice of the method for computing TFs and the caveats of parameters such as the number

Fig 4. Influence of the number of runs and iterations on the TF shape and quality. (A) Using the Simulated Annealing algorithm, we

tested 4 protocols of 50 or 200 optimization runs, either done a single time or repeated (5 TFs computed for each protocol). (B) Residuals of

the cost function do not significantly differ across the protocols, although the protocols with the highest number or runs show a trend of

smaller residuals. (C) Similarly, there was no significant difference for TFs time-to-peak values. (D, left) Same protocols comparison on a

dataset from a different mouse revealed a sparse dynamic of optimized TFs, even if the best TFs were selected on a pool of many TFs (200

runs). (D, right) A second iteration of 200 runs gave more homogeneous TFs dynamics. (E) Quantification of the dynamic heterogeneity was

made by measuring the time-to-peak which resulted in a scattered distribution for the 200 runs protocol, packed up repeating the same

iteration a second time. Residual values, not reported in this figure, were not significantly different for mouse 1 and 2.

https://doi.org/10.1371/journal.pcbi.1008614.g004

PLOS COMPUTATIONAL BIOLOGY Iliski, a software for robust calculation of transfer functions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008614 June 14, 2021 10 / 14

https://doi.org/10.1371/journal.pcbi.1008614.g004
https://doi.org/10.1371/journal.pcbi.1008614


of iterations necessary to non-deterministic algorithms. Note that we did not report the

influence of smoothing, interpolation, fitting and cost functions choice that are also

known to affect the result. The use of multimodal datasets, i.e., neuronal calcium signal,

measurements of vascular responses at both the microscopic and mesoscopic scales

enabled us to demonstrate that NVC is represented by a similar TF which is much faster

than the classical HRF, a finding which is getting accepted in the field of brain imaging

based on blood flow [5,25,32,33].

Availability and future directions

Iliski is open-source and freely available under the Creative Commons Attribution 4.0 Interna-

tional (CC BY 4.0) license. Iliski is maintained on GitLab, enabling user-friendly bug report

and community work to make the tool fit the users’ need. It can be found here: https://github.

com/alike-aydin/Iliski.

In the neurovascular imaging field, computing the hemodynamic response function is para-

mount to interpreting vascular activation in terms of neural activation. In any other field, com-

puting TFs may be of help to go deeper in the interpretation of the results. For these reasons,

we think it is extremely helpful to have a data analysis tool which lets fast testing of different

algorithms with a user-friendly interface.

Fig 5. Decision tree to help choosing the most efficient method to compute a TF with Iliski, based on the data

features.

https://doi.org/10.1371/journal.pcbi.1008614.g005
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Supporting information

S1 Data. Raw Data: This HDF5 files contains both the raw numerical data shown in the fig-

ures and the experimental biological data used to compute them with Iliski.

(H5)

S2 Data. GitHub Repository Clone: This ZIP file contains a clone of the GitHub repository

at the time of the publication (also available at https://doi.org/10.5281/zenodo.4765555).

Current version is available at https://github.com/alike-aydin/Iliski.

(ZIP)

S3 Data. Example Data: This ZIP file contains example data for testing purposes. A

detailed description of the data is available on Zenodo at http://doi.org/10.5281/zenodo.

3773863.

(ZIP)

S1 Text. User Manual: This is Iliski’s User Manual at the time of the publication. Current

version is available in the GitHub repository at https://github.com/alike-aydin/Iliski.

(PDF)
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