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ABSTRACT 

Background : During the last decade, our understanding of cerebrospinal fluid (CSF) 

physiology has dramatically improved thanks to the discoveries of both the glymphatic 

system and of lymphatic vessels lining the dura mater in human brains. 

Evidence acquisition : We detail the recent basic science findings in the field of CSF 

physiology and connect them with our current understanding of the pathophysiology of 

idiopathic intracranial hypertension (IIH). 

Results : Transverse sinus stenoses appear to play a major causative role in the symptoms of 

IIH, as a result of a decrease in the pressure gradient between the venous system and the 

subarachnoid space. However, the intracranial pressure (ICP) can be highly variable amongst 

different patients, depending on the efficiency of the lymphatic system to resorb the CSF as 

well as on the severity of transverse sinus stenoses. It is likely that there is a sub-clinical form 

of IIH and that IIH without papilledema is probably under-diagnosed among patients with 

chronic migraines or isolated tinnitus. 

Conclusions : IIH can be summarized in the following pathological triad: Restriction of the 

venous CSF outflow pathway - Overflow of the lymphatic CSF outflow pathway - Congestion 

of the glymphatic system. In order to better encompass all the stages of IIH, it is likely that 

the Dandy’s criteria need to be updated, and that perhaps renaming IIH should be considered.   

 

 

 

 

 

 

 



BACKGROUND 

During the last decade, our understanding of cerebrospinal fluid (CSF) physiology has 

dramatically improved thanks to the discoveries of both the glymphatic system and of 

lymphatic vessels lining the dura mater in human brains. While the characterization of CSF 

physiology is probably one of the most challenging projects in neuroscience, it is likely that 

these recent (and future) findings will have major clinical implications. The CSF circulation 

and the cerebrovascular system (including arteries, veins and lymphatics) seem to be more 

intimately related than previously suspected. Given ongoing work in this area, it is likely that 

our understanding of the overall picture will probably evolve further in the near future. In 

particular, it is likely that we will gain a better understanding of the clinical and radiological 

features of idiopathic intracranial hypertension (IIH) in the broader context of these basic 

science findings [1,2].  This, in turn, will probably lead to significant clinical and therapeutic 

advances.  In this paper, we detail the recent basic science findings in the field of CSF 

physiology and connect them with our current understanding of the pathophysiology of IIH.  

 

EVIDENCE ACQUISITION  

- The Glymphatic System 

In 2012, Iliff et al. identified the glymphatic system as “a brain-wide pathway for fluid 

transport, which includes the para-arterial influx of subarachnoid CSF into the brain 

interstitium, followed by the clearance of interstitial fluid along large-caliber draining veins” 

[3] . This process  is preferentially activated during sleep[4], and is driven by a combination 

of arterial pulsatility, respiration, and  pressure gradients [5,6]. The exchange of water 

molecules between the three compartments of the brain (i.e. the blood, the CSF and the brain 

parenchyma) is mediated by water-channel transporters called Aquaporins (AQP).  



CSF is continuously produced by the choroid plexuses, which are expansions of the 

ependymal epithelium in the ventricles [7]. The total constant volume is 150-160 mL in 

humans, and this volume is renewed approximately four times per day [8]. CSF production is 

mediated by osmotic- and pressure-gradients that drive the movement of water and ions from 

the blood to the ventricular lumen [4].  The exchange of water molecules from the blood to 

CSF is mediated by AQP-1, which is located in the apical membrane of the choroid plexus 

epithelial cells [9]. From the ventricles, the CSF then exits through the foramina of Magendie 

and Monro to reach the subarachnoid space [4]. Alternatively, CSF may exit the ventricles via 

trans-ependymal spread to reach the perivascular spaces of the brain. This trans-ependymal 

spread pathway is especially apparent during cases of obstructive hydrocephalous. From the 

subarachnoid spaces, CSF then enters the periarterial spaces, travelling from the cortex 

toward the deep white matter along the courses of the pial and perforator arteries [4]. Along 

with other metabolites, CSF is then filtered and driven from the periarterial space to the brain 

parenchyma[4]. The transport of water from CSF to the brain is mediated by another water-

transporter, AQP-4 [3]. This water channel is expressed in astrocytic endfeet that ensheathe 

the brain vasculature [3].  This continuous movement of CSF from the periarterial space into 

the brain parenchyma then drives convective bulk parenchymal fluid flow toward the 

perivenous spaces surrounding the large cortical veins [3]. Following this, the method of 

resorption of CSF from the perivenous spaces is still unclear. Two CSF outflow pathways 

have been described in humans: the venous outflow pathway and the lymphatic outflow 

pathway. 

 

- CSF outflow 

While the venous CSF outflow pathway has historically been considered as the only way of 

resorption of CSF, the recent discovery of the dural lymphatics in humans (as distinct from 



the brain parenchymal glymphatic system outlined above) has been another major paradigm 

shift[10]. In order to better describe the CSF outflow pathways, we first need to clearly 

distinguish two physiological roles of CSF: a mechanical role (which plays a role in the 

regulation of ICP), and a metabolic one (which plays a role in clearance of brain metabolites).  

o The venous CSF outflow pathway 

It was historically believed that the venous resorption of the CSF occurs across the arachnoid 

villi and granulations. These anatomical structures are traditionally described as focal areas of 

protrusion of the subarachnoid space across the dura matter into the lumen of the dural 

sinuses. These “avascular granulations” also play a mechanical role of regulation of the ICP, 

as the flow of CSF across the granulation is dependent on the pressure gradient between the 

subarachnoid space and the venous blood of the dural sinus. In the light of the recent 

scientific findings concerning the glymphatic system, it seems that another type of 

granulations – the so-called “vascular granulation” - has probably been wrongly neglected 

over time. Previous pathological [11,12] and radiological studies [12,13], support that some 

arachnoid granulations may enter the dura mater to reach the lumen of the venous sinuses in 

close association with a major cortical vein. These “vascular granulations” could represent an 

anatomical and physiological connection between the perivenous space (draining the ISF 

from the glymphatic system) and the venous blood of the dural sinus [12]. Vascular 

granulations may therefore be involved in the excretion of the brain metabolites as one final 

exit pathway of the glymphatic system. The intrinsic molecular mechanisms of this filtration 

are however still unknown.  

 

o The lymphatic CSF outflow pathway  

It was long believed that the CNS did not have a lymphatic drainage system. Ironically, an 

Italian anatomist called Paola Mascagni described meningeal-related lymphatic vessels in a 



landmark anatomical text in 1787, but her findings were discounted by the scientific 

community for more than 200 years[14].  In 2015, the presence of functional lymphatic 

vessels lining the dural sinuses was eventually demonstrated in murine brains [15,16] . Two 

years later, Absinta et al went on to image these dural/meningeal lymphatics in both primates 

and humans [17]. They also seem to be involved in the clearance of the CSF (or ISF) from the 

glymphatic system[15,18], and also in the regulation of the ICP (through a direct reabsorption 

of the CSF from the subarachnoid space) [16]. Other work by Hoon Ahn et al, showed that 

CSF drains preferentially through a basal outflow pathway, with CSF tracers draining via 

skull base meningeal lymphatics to the deep cervical lymph node system. Anatomically, the 

lymphatic system of the brain could therefore be described as a drainage network extending 

from the dural sinuses to both eyes, tracking above the olfactory bulb, following the dural 

arteries and veins into the dura matter [15,16]. The dural lymphatics finally join the skull 

base, discharging the CSF into the sheaths of the cranial nerves. The CSF is eventually 

excreted into the deep cervical lymph nodes and the systemic lymphatic circulation [19].  

 

 

RESULTS  

In the light of these scientific findings, the radiological signs of IIH can be summarized in the 

following pathological triad (Fig. 1) [1]: 

1/ Congestion of the glymphatic system 

2/ Overflow of the lymphatic CSF outflow pathway 

3/ Restriction of the venous CSF outflow pathway 

  

- IIH: congestion of the glymphatic system 



Several radiological studies indicate that IIH is associated with an increase in CSF in the 

perivascular spaces of the brain and in the subarachnoid space, suggesting a congestion of the 

glymphatic system. Since the skull represents a fixed volume, the excess of CSF in the 

glymphatic system results in increased intracranial pressure. The first radiological 

observations of IIH were based on CT-scans and showed a reduction of ventricular size, 

suggesting that IIH was due to cerebral swelling [20]. This interstitial edema was confirmed 

later with MRI diffusion techniques and with 3D-volumetric MRI sequences [21]. Alperin et 

al. showed a significant increase in extra-ventricular CSF and interstitial fluid volumes in 

patients with IIH, when compared to a matched cohort of patients without IIH.   

 

- IIH: overflow of the lymphatic CSF outflow pathway 

Imaging evidence of excess CSF along the sheaths of cranial nerves is one of the cardinal 

signs of IIH. Most typically this is found along the optic nerve sheaths, however the sheaths 

of other cranial nerves can also be enlarged. This may be a consequence of the accumulation 

of CSF along the sheaths of the cranial nerves. This excess of CSF appears to be related to the 

engorgement of the lymphatic CSF outflow pathway[22,23]. For example, erosion of the 

cribriform plate (which may result in idiopathic CSF leak) may be the consequence of the 

chronic overflow of CSF around the olfactory bulbs [24]. Other cardinal imaging signs of IIH 

are also likely related to an excess of CSF along the relevant nerve sheaths. These imaging 

signs include widening of the foramen ovale and Meckel’s cave dilatation (CSF excess in the 

trigeminal nerve sheaths), enlargement of the third cranial nerve sheaths in the cavernous 

sinus [25], [26] and enlargement of Dorello’s canal (indicating excess CSF in along the 

sheaths of CN VI). Finally, meningoceles of the temporal bone, mostly located at the petrous 

apex or Meckel’s cave near the continuation of the nerve sheaths of the acoustic and facial 



nerves also point to an excess of CSF along these nerves. These can also lead to CSF leaks 

[27].  

 

- Restriction of the venous CSF outflow pathway 

More than 90% of patients with IIH have transverse sinus (TS) stenoses, which are usually 

located bilaterally at the junction between the vein of Labbé and the transverse sinus [28]. 

Those stenoses can result in increased cerebral venous pressure (CVP), leading in turn to a 

less efficient venous CSF outflow pathway as a result of equalization of the pressure gradient 

between the subarachnoid space and the venous blood of the dural sinuses. Although TS 

stenoses are probably the main precipitating factor in the occurrence of clinical symptoms in 

IIH - and the resolution of symptoms after venous stenting gives support to this hypothesis - 

the cause of these stenoses remains unclear. However, it is likely that a molecular impairment 

of CSF filtration at the venodural junction may be responsible for the formation of TS 

stenoses. We presume that the metabolic and hormonal factors associated with IIH (obesity, 

hormons, drugs…) may be involved in this molecular trigger.  

Two types of venous sinus stenoses have been described in IIH: intrinsic and extrinsic [29]. 

An intrinsic stenosis can be defined radiologically as a short-segment stenosis secondary to 

the presence of a sub-arachnoid granulation inside the sinus[30]. Conversely, an extrinsic 

stenosis can be defined as a long-segment sinus stenosis without an endoluminal abnormality. 

Patients with intrinsic stenoses are often older than patients with extrinsic stenoses [29]. 

In patients with intrinsic stenoses, the efficiency of the venous blood-CSF barrier can be 

impaired as outlined above. Paradoxically, the initial development of an arachnoid 

granulation may initially slightly delay the manifestation of IIH by increasing the exchange 

area between the CSF and the venous system. The lymphatic outflow pathway may also 

initially compensate for the decreased efficiency of the venous CSF pathway.  However, as it 



enlarges the arachnoid granulation can eventually cause a mechanical obstruction in the 

venous sinus which will then lead to increased pressure in the dural sinuses, and thus to IIH 

symptoms as a result in impairment of the CSF venous outflow pathway.  

Extrinsic stenoses on the other hand affect younger patients than intrinsic stenoses. Two 

mechanisms may be involved in their formation. The first one is a direct compression of the 

transverse sinus by the congested brain and CSF, suggesting that intracranial hypertension is 

the cause of LS stenoses. This theory is supported by the disappearance of such extrinsic 

stenoses after removal of CSF [31], and by their propensity to reform adjacent to the stented 

zone after stenting [32]. De Simone et al. have hypothesized that the dural sinuses in IIH are 

hyper-collapsible, to try to explain the mechanism of formation of extrinsic stenoses [33].  

 

CONCLUSIONS 

Transverse sinus stenoses appear to play a major causative role in the symptoms of IIH. The 

suppression of the pressure gradient between the venous system and the subarachnoid space 

can in turn lead to further inefficiency of the already impaired venous outflow pathway. Thus, 

the lymphatic outflow pathway becomes the only CSF outflow pathway of the brain, and the 

overflow of the CSF along the sheaths of the cranial nerves results in the classical clinical and 

radiological signs of IIH. The ICP may be highly variable amongst different patients, 

depending on the efficiency of the lymphatic system to resorb the CSF as well as on the 

severity of TS stenoses. This may explain why the radiological signs of IIH are frequently 

found in patients with chronic headache or isolated pulsatile tinnitus without papilledema or 

raised intracranial pressure. It is likely that there is a sub-clinical form of IIH in these patients, 

i.e. in patients with a degree of CSF outflow impairment but in whom the signs and symptoms 

do not yet meet the criteria for IIH. It is therefore likely that IIH without papilledema 

(IIWOP), (i.e. with normal or near-normal ICP) is probably under-diagnosed among patients 



with chronic migraines or isolated tinnitus [34]. We suggest including the radiological signs 

in the next revision of the diagnostic criteria of IIH while putting less value on the ICP value. 

This may be helpful to try and better capture the benign stages of this radio-clinical syndrome. 

Papilledema and raised intracranial pressure could probably therefore be considered as the 

most severe stage of the disease, while headache and pulsatile tinnitus with normal ICP (and 

without papilledema) could be considered as benign stages of IIH.  In order to avoid semantic 

misunderstandings and to better encompass all the stages of IIH, it is likely that the Dandy’s 

criteria need to be updated, and that a rename of IIH has to be considered.   
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FIGURE LEGENDS 
 
Figure 1 : The cascade of Idiopathic Intracranial Hypertension (IIHWOP: idiopathic 

intracranial hypertension without papilledema, IIH: idiopathic intracranial hypertension, ICP: 

intracranial pressure) 

Figure 2: Radiological signs of Idiopathic Intracranial Hypertension. Figure 1A and 1B: T2-

weighted MRI in coronal view showing the excess CSF along the sheaths of the optic nerves 

(Fig. 1A, blue arrows) and of the IIIrd cranial nerves (Fig. 2B, blue arrows), a petrous apex 

meningocele (Fig. 2B, green arrow)  and the CSF leak across the cribriform plate (Fig. 2A, 

yellow arrows). Figure 2C: CT scan in bone window showing the erosion of the cribriform 

plate (green arrow). Figure 2D: MR venography showing the bilateral transverse sinus 

stenoses (red arrows).  

 






	IIH- the brain glymphoedema final
	- The Glymphatic System

	Figure 1
	Figure 2

