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COLOURING FINITE PRODUCTS

STEVO TODORCEVIC

Abstract. We consider finite colourings of finite products X1×X2×· · ·×Xn of infinite
sets and determine what is the minimal number of colours a subproduct Y1×Y2×· · ·×Yn

of infinite subsets could achieve.
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1. Introduction

It is well known that if X1, X2, ..., Xn is a finite sequence of countable infinite sets then
there is a colouring of their product

∏n
i=1Xi with n! colours each of which shows up in

any subproduct
∏n
i=1 Yi with Yi ⊆ Xi are infinite. For example, letting Xi = N for all i

and colouring a given one-to-one sequence (k1, k2, ..., kn) of integers by the permutation σ
of {1, 2, ..., n} such that σ(i) < σ(j) is equivalent to ki < kj for all i < j, it is clear that
all permutations show up in any n-product of infinite subsets of N. On the other hand, a
simple application of Ramsey’s theorem shows that for every finite colouring of

∏n
i=1Xi

there exist infinite Yi ⊆ Xi such that the subproduct
∏n
i=1 Yi uses no more than n! colours.

In this note we investigate this phenomenon in the case when some of the sets Xi are
uncountable. The following is an interpretation of a result of R. Laver (see page 31 of [1])
showing that in this case the critical number n! drops to (n− 1)!.

1.1 Theorem (Laver). Suppose X1, X2, ..., Xn is a finite sequence of infinite sets with
at least one of them uncountable. Then for every finite colouring of

∏n
i=1Xi there exist

infinite Yi ⊆ Xi (i = 1, 2, ..., n) such that the subproduct uses no more than (n−1)! colours.

Here, we supplement this result by proving the following.

1.2 Theorem. Let Ω denote the set of countable ordinals and let n be a positive integer.
Then there is a finite colouring of Ωn which has at least (n− 1)! colours on any subproduct∏n
i=1 Yi with Yi ⊆ Ω infinite.

The case n = 3 of Theorem 1.2 (see page 108 of [4]) is an unpublished result of K. Prikry
and C. Mills but, as we shall see from the analysis below, the higher dimensional case is a
bit more challenging.
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2. An operation on the set Ω of countable ordinals

We start this section by listing some properties of the mapping1

ρ̄ : Ω2 → ω

which can be found in Section 3.2 of [2]. In order to simplify the notation, we write αβ
instead of ρ̄(αβ) and ξ ∨ η instead of max{ξ, η}.

2.1 Lemma ([2]; Section 3.2). For all α < β < γ,

(1) αγ 6= βγ and αβ 6= βγ,
(2) αγ ≤ αβ ∨ βγ,
(3) αβ ≤ αγ ∨ βγ.

From now on we analyze the behaviour of this operation on infinite subsets A,B,C,D, ...
of Ω of order-type ω which we enumerate increasingly as (αi), (βi), (γi), (δi), ..., respectively.

2.2 Lemma. By refining A and B, we may assume that either for every i the sequence
(αiβk)k>i is constant, or for every i the sequence (αiβk)k>i is strictly increasing. Moreover,
if for every i the sequence (αiβk)k>i is constant then for i < j the constant value of
(αiβk)k>i is strictly smaller than the constant value of (αjβk)k>j .

Proof. Note that if sup(A) > sup(B) the conclusion follows easily from Lemma 2.1 (1)
(giving us refinement with the property that (αiβk)k>i is strictly increasing for all i), so we
may assume that sup(A) ≤ sup(B). Colouring a triple i < k < l by three colours according
whether αiβk is smaller, equal, or larger than αiβl and applying the Ramsey theorem to
refine A and B, we may assume that for all i < k < l exactly one of the following three
possibilities happen,

αiβk < αiβl, αiβk = αiβl, or αiβk > αiβl.

Since αiβk > αiβl cannot hold for all i < k < l, we are left with the first two possibilities
which is exactly the conclusion of the first sentence of the lemma. Towards the conclusion
of the second sentence, we assume that αiβk = αiβl holds for all i < k < l and apply the
Ramsey theorem again to refine further and get that for all i < j < k, exactly one of the
following three possibilities happen,

αiβk < αjβk, αiβk = αjβk, or αiβk > αjβk.

Since the conclusion of the second sentence is equivalent to the first possibility, we have
to eliminate the other two. Note that αiβk = αjβk contradicts the property (1) of Lemma
2.1, so towards a contradiction let us assume that we have αiβk > αjβk for all i < j < k.
Let n0 be the constant value of the sequence (α0βk)k>0. Fix a k > n0 + 2. Then αjβk
(0 < j < k) is a sequence of distinct integers below n0, a contradiction.

�

Note that the proof of the second sentence of Lemma 2.2 also shows the following

1symmetric and constantly equal to 0 on the diagonal
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2.3 Lemma. Assume that for some A,B,C with sup(A) ≤ sup(B) ≤ sup(C), we have that
for every i the sequences (αiγk)k>i and (βiγk)k>i are constant. Then by refining, we may
assume that for i < j the constant value of (αiγk)k>i is strictly smaller than the constant
value of (βjγk)k>j .

2.4 Lemma. Suppose that sup(A) ≤ sup(B) ≤ sup(C). Then by refining the sets, we may
assume that αiγk < βjγk for all i < j < k.

Proof. By refining the three sets we assume that they satisfy the conclusion of Lemma 2.3,
and moreover, that each of the pairs (A,B), (A,C) and (B,C) satisfies the conclusion of
Lemma 2.2. Suppose towards contradiction that the refinement of the Lemma does not
exist. Then applying Ramsey’s theorem, we can find a refinement such that αiγk > βjγk
for all i < j < k. Our assumption sup(A) ≤ sup(B) ≤ sup(C) and a further refinement
of these three sets allow us to assume that the enumerations (αi), (βi), (γi) of these sets
have the property that αi ≤ βi ≤ γi for all i. So, in particular i < j implies αi < βj , so the
properties (2) and (3) of Lemma 2.1, give us

αiβj ≤ αiγk ∨ βjγk = αiγk,

and

αiγk ≤ αiβj ∨ βjγk
Note that since αiγk > βjγk, from the last inequality, we conclude that

αiβj ∨ βjγk = αiβj .

Combining the two inequalities, we conclude that

αiβj = αiγk for all i < j < k.

It follows, in particular, that for every i, the sequences (αiγk)k>i and (αiβk)k>i are
constant with the same constant values. Note that by our assumption βjγk < αiγk for all
i < j < k, we conclude that for every j the sequence (βjγk)k>j is also constant and its
constant value is bounded by the constant value of the sequence (αiγk)k for any i < j. This
contradicts Lemma 2.3

�

2.5 Lemma. Suppose that for some A,B,C with sup(A) ≤ sup(B) ≤ sup(C), we have that
αjγk < βiγk for all i < j < k. Suppose that A′ is an infinite set with sup(A′) ≤ sup(A).
Then these sets can be refined in such a way such that α′jγk < βiγk for all i < j < k.

Proof. Suppose that such refinements cannot be found. Applying Ramsey’s theorem, we
may assume that α′jγk > βiγk for all i < j < k. Applying Lemma 2.4 to A′, A and C and

going to refinements, we may assume that α′iγk < αjγk for all i < j < k. So, for every
i < j − 1 < j < k, we have

α′j−1γk < αjγk < βiγk.

It follows that α′j−1γk < βiγk, contradicting our assumption that α′j′γk′ > βi′γk′ for all

i′ < j′ < k′. �
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2.6 Lemma. Suppose that for some A,B,C with sup(A) ≤ sup(B) ≤ sup(C), we have
that αjγk < βiγk for all i < j < k. Let B′ be an infinite set such that sup(B) ≤ sup(B′) ≤
sup(C). Then these sets can be refined in such a way that αjγk < β′iγk for all i < j < k.

Proof. Applying Lemma 2.4 to B, B′ and C, by refining the sets, we may assume that
βiγk < β′jγk for all i < j < k. Combining this with the assumption of the Lemma we get
that

αjγk < βiγk < β′i+1γk
for all i < i+ 1 < j < k. It follows that the triple i+ 1 < j < k satisfies the conclusion of
the Lemma. Since such triple can be found in any refinement of these sets, an application
of Ramsey’s theorem will give us refinements satisfying the conclusion of the Lemma.

�

2.7 Lemma. Suppose that for some A,B,C with sup(A) ≤ sup(B) ≤ sup(C), we have
that αjγk < βiγk for all i < j < k. Then the sets can be refined in such way that for every
i the sequence (βiγk)k>i is strictly increasing.

Proof. We assume that the sets have already been refined in such way that for every i, the
sequence (βiγk)k>i is either constant or strictly increasing. So suppose that for all i the
sequence (βiγk)k>i is constant. Fix i. Let l be the constant value of the sequence (βiγk)k>i.
Choose k > l+ i+ 1. Then by the assumption of the Lemma αjγk < l for all i < j < k. So
there must be i < j′ < j < k such that αjγk = αj′γk, contradicting the property (1) of the
operation ξη of Ω.

�

Conclusion. A given finite sequence X1, X2, ..., Xn of infinite subsets of Ω can be refined
in such a way that for every three sets A, B and C in the refinement with property that
sup(A) ≤ sup(B) ≤ sup(C) we have that αiγk < βjγk for all i < j < k. If for some A,
B and C in the refinement with sup(A) ≤ sup(B) ≤ sup(C) we have that βiγk > αjγk
for some i < j < k then this holds for all i < j < k. Moreover, if for some A, B and
C in the refinement with sup(A) ≤ sup(B) ≤ sup(C) we have that βiγk > αjγk holds
for all i < j < k, then this is true for A′, B′ and C in place of A, B and C provided
that sup(A′) ≤ sup(A) and sup(B) ≤ sup(B′). Moreover, when this happens, the sequence
(βiγk)k>i is strictly increasing for every i.

3. Proof of Theorem 1.1

We shall show that for every positive integer n and for every finite colouring c of the
product Ω × Nn there exist infinite X ⊆ Ω and M ⊆ N such that the range of c on the
product X ×Mn has cardinality at most ((n+ 1)− 1)! = n!. To prove this, fix a selective
ultrafilter U on N. Note that for every ξ ∈ Ω the section cξ(ξ1, ξ2, ..., ξn) = c(ξ, ξ1, ξ2, ..., ξn)
is a finite colouring of Nn, so an application of the selective version of Ramsey’s theorem
(see Chapter 7 of [3]), we can fix Mξ ∈ U such that the colouring cξ on the power Mn

ξ

has range Fξ of cardinality at most n!. Find an uncountable set Γ of Ω and a subset F of
the range of c such that Fξ = F for all ξ ∈ Γ. Since the directed set [Ω]<ω is not Tukey
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reducible to U , there is an infinite subset X of Γ such that the set M =
⋂
ξ∈XMξ belongs

to U . Then the colouring c on the product X ×Mn has range F whose cardinality is at
most n!.

4. Proof of Theorem 1.2

Fix a positive integer n. We may assume n ≥ 3. Let Sn−1 be the permutation group
of a set with n − 1 elements. Given a sequence (ξ1, ξ2, ..., ξn) of elements of Ω, we let
c(ξ1, ξ2, ..., ξn) be the sequence (i, σi) (1 ≤ i ≤ n) of elements of

⋃n
i=1{i} × Sn−1, where

for each i, the permutation σi codes in the natural way the mapping j 7→ ξiξj from the
ordered set {1, ..., i−1, i+1, ..., n} into the ordered set ω. Let X1, X2, ..., Xn be a sequence
of infinite subsets of Ω. We have to show that the range of c on

∏n
i=1Xi has cardinality

at least (n − 1)! Note that we may assume that sup(Xi) ≤ sup(Xj) whenever i < j. We
also assume that the sets Xi are refined in order to satisfy the Conclusion of the previous
section. Let m ≤ n be minimal such that sup(Xm) = sup(Xn).

Case 1. For all A,B,C ∈ {X1, ..., Xn} with sup(A) ≤ sup(B) ≤ sup(C) and C = Xn,
we have that αjγk > βiγk for all i < j < k. Let ξn be the nth element of Xn according to
the increasing enumeration. Let σ be a given permutation of the set {1, 2, ..., n−1} viewed
as bijection from this set into itself. For 1 ≤ i < n, let ξi be the σ(i)th element of the set
Xi according to the increasing enumeration of this set. Then the nth term of the sequence
c(ξ1, ξ2, ...., ξn) is equal to (n, σ). Since there are (n− 1)! such σ’s, we are done.

Case 2. There exist A,B,C ∈ {X1, ..., Xn} with sup(A) ≤ sup(B) ≤ sup(C) and C = Xn

such that αjγk < βiγk for all i < j < k.2 Note that by Lemma 2.4 the set A cannot be
in {Xm, ..., Xn}, so if we let ξn be the first element of Xn, then from the Conclusion of
previous section, we know that for every m ≤ i ≤ n the map ξ 7→ ξξn is strictly increasing
on Xi \ {min(Xi)}. Moreover, note that by the property (1) of the operation and the
Conclusion, this map is strictly increasing on Xi \ {min(Xi)} also for 1 ≤ i < m. So it is
clear that for every permutation σ of {1, 2, ..., n− 1} we can find ξi ∈ Xi (1 ≤ i < n) such
that σ(i) < σ(j) is equivalent to ξiξn < ξjξn for all 1 ≤ i < j < n. It follows that the nth
term of the sequence c(ξ1, ξ2, ...., ξn) is equal to (n, σ). So, as before, this shows that the
range of c on

∏n
i=1Xi has cardinality at least (n− 1)! and we are done also in this case.

4.1 Remark. As we have indicated in the Introduction there is indeed difference between
the case n = 3 and the case when n is large. In this case a given triple (ξ1, ξ2, ξ3) is coloured
by the permutation σ of the two-element set I = {1, 2, 3} \ {k} where k ∈ {1, 2, 3} is such
that ξk is the maximal ordinal in the sequence (ξ1, ξ2, ξ3) , or more precisely, σ(i) < σ(j)
is equivalent to ξiξk < ξjξk for i < j in I. Then it is clear from the argument above that
every permutation of a two-element set shows up in any product of three infinite subsets
of Ω.

2It is worth mentioning that such a triple A,B,C can be guaranteed not just with C = Xn but also
for any C ∈ {Xm, ..., Xn−1} since otherwise we end up with Case 1 after reindexing the sets. Then
the second to last sentence of the Conclusion ensures that the choice B = Xn is compatible with every
C ∈ {Xm, ..., Xn−1}.
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