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Abstract. Vegetated roofs provide many ecosystem services and support urban biodiversity.
While it would be interesting to study the contribution of vegetated roofs to ecological corridors,
vegetated roofs are listed in no French databases. Because of their intrinsic nature as roofs, their
small number, their small size, and the type of vegetation planted on them, vegetated roofs
seem to be very difficult to identify. We propose a method to automatically identify vegetated
roofs. Using infrared aerial photographs and building shape data, we were able to build a model
detecting vegetated roofs using remote sensing and supervised classification techniques. The
major difficulty lies in distinguishing between real vegetated roofs and roofs partially covered
by tree foliage growing on the ground. In this operation, our classification model obtains an error
rate of ∼18%. We improve the knowledge of vegetation detection in cities. Moreover, it opens
interesting perspectives on the analysis of ecological networks in cities as a function of building
height. In addition, it could be an interesting tool for municipalities to monitor urban vegetation
development and to prioritize vegetated roofs planning. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.15.014501]
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1 Introduction

Vegetated roofs are known to provide many ecosystem services in cities.1–3 Indeed, they permit
better rainwater retention, decrease heat islands, enhance thermal insulation,4–6 can improve
buildings aesthetics, offer support for biodiversity,3,7 sometimes enable food production,8 and
offer psychological benefits.9 Moreover, in an urban densification context, vegetated roofs are
opportunities to set up green urban spaces.10 These are the reasons why more and more buildings
are equipped with such roofs. In 2014, in Paris, for example, the city council decided to create
20 ha of vegetation on roofs and walls.11 As of 2016, in France, greening or installing solar
panels of roofs became a legal requirement for new commercial surfaces of over 1000 m2.12

To study the ecological role and ecosystem services of roof greening on a large scale, it would
be essential to list the number of large-scale vegetated roofs, the area covered, and their local-
izations. However, in France, these data are not gathered in an accessible geodatabase. Moreover,
the scientific literature does not mention a method to easily identify vegetated roofs. The reason
for this lack of method is that, to this day, automatic detection of vegetated roofs has been a
difficult task. In 2011, Massy et al.13 published a semiautomated method for identifying the
vegetated roofs in Geneva, Switzerland. This method identified 1747 vegetated roofs, of which
only 365 are actually vegetated.

The automated identification of vegetation on roofs in urban environments is difficult
because (1) vegetated roofs are very sparse among other diverse types of objects and (2) the
very high variability of heights generates errors related to shadows and distortion of aerial photos
(photo angle).14
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Therefore, automated identification of vegetation needs very precise geographic data.
According to Yan et al., most of the studies on the classification of roofs or vegetation in urban
context use LiDAR (Light Detection And Ranging) data,15 for example, to estimate the potential
for roof greening.16–18 The LiDAR can also be used for mapping, for instance to distinguish
vegetated areas.19 It is sometimes mixed with aerial images, as do Bandyopadhyay et al.,20

to distinguish trees from buildings.21 According to the literature, LiDAR has a better accuracy
to differentiate buildings, roofs, and vegetation. Yet, considering LiDAR data price and avail-
ability, they can only be used for one-off projects. For example, LiDAR does not cover the city of
Paris for free. In cities, aerial photographs should be the base data to easily map vegetated roofs.

The aim of this paper is to present a reproductive method we developed for automatic iden-
tification of vegetated roofs, i.e., roofs totally or partially covered with a layer of planted veg-
etation on a substrate. The uniqueness of the method is based on wisely using basic methods to
highlight an object that is hardly detectable, as are vegetated roofs when resorting to the custom-
ary use of common tools. It is based on aerial imagery data and buildings polygons. First, we will
describe how the method operates, second, how we validated it, and finally, how we applied it
to the city of Paris, France, and its inner suburbs.

2 Description of the Method Development

2.1 Reference Site Used for Developing the Method

The area is located in the Parisian region. The site we have selected to develop our method is a
25-km2 image located in the west of Paris. The image (red square on Fig. 1) straddles several
districts of Paris: the 7th, 8th, 15th, and 16th. According to the APUR (Parisian urbanism work-
shop) data set,22 it includes about 25,000 plots of buildings. This reference site was randomly
chosen among the squares, which overlap central and periphery zones of the city. We hypoth-
esized that given its situation and size, it contained all types of roofs that can be found in Paris.

This is how our method works: (1) first, the vegetation is identified using indicators. (2) We
isolate the roofs covered by vegetation from those potentially vegetated ones. (3) We build a
classifier to determine whether these roofs are really vegetated (Fig. 2).

2.2 Raw Data

To implement our method, we needed to intersect two generic data. First, accurate and recent
infrared aerial photographs to identify vegetation plots location and geometry and second maps

Fig. 1 Site used for developing the method.
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to identify the buildings’ precise locations and geometry. The method is based on two main
datasets:

– (1) BD ORTHO IRC, infrared aerial images produced by the IGN (French National
Geographic Institute) in 2017, which has three bands: infrared, red, and green and a
50-cm resolution. Among the 13 images available in 2017 for Paris and its suburbs, we
used one image of Paris covering 25 km2. This image was chosen because it contains a
wide variety of roofs. This image included about 25,000 building shapes.

– (2) The building shapefile produced by the APUR,22 which represents the building ground
footprint and is based on the cadastral topographic backgrounds. In addition to the build-
ings’ geometry, it contains an average, median, minimum, and maximum height for each
building polygon. The shapes are available for free download on the APUR website.

All data processing was performed with Qgis 3.4 and on R core team 3.6.1.23

2.3 Modeling

2.3.1 Identification of potential vegetation on roofs

Identifying vegetation plots. We calculated the normalized difference vegetation index24

(NDVI) by assigning a value ranging from −1 to 1 to each pixel from the French National
Institute of Geographic and Forest Information (IGN) infrared image as follows:

EQ-TARGET;temp:intralink-;sec2.3.1.1;116;207NDVI ¼ NIR − R
NIRþ R

;

where NIR is the reflectance in the near-infrared and R is reflectance in the visible red.
The NDVI is based on the differential between the infrared radiation of vegetation leaf cells

and the absorption of chlorophyll pigments in the red channel.25 This index is proportional to the
plant biomass,26 and therefore, permits differentiation between tree foliage and herbaceous
vegetation.24,26

Exclusion of too pale roofs. Some studies estimate the threshold for vegetation NDVI
to be 0.2 and values between 0 and 0.2 are described as bare soil.27,28 However, vegetated
roofs often have short, sparse, and low biomass vegetation, often consisting of stonecrops, with

Fig. 2 The functioning of our method; stages and references used.
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an NDVI potentially under 0.2. Thus, following the Massy et al.13 and Santos et al.17 approaches,
we decided to make a threshold detection of vegetation as NDVI just below 0 (i.e., NDVI ≥
−0.08) to limit the number of false negatives. To assess the sensitivity of our analysis, we also
tested two other thresholds: NDVI ≥ −0.1 and≥ −0.05.

Exclusion of too bright roofs. The issue is that some urban objects (e.g., Fig. 3) may also
have an NDVI level ≥ −0.08, even though they are not vegetated. A visual check of these cases
revealed they displayed metal or partially glazed roofs characterized by very high reflectance.
In order not to select these types of roofs, we also calculated for each of them a luminosity index
(LI) corresponding to the addition of the three spectral bands from 0 to 765. We have retained an
LI threshold at 600 and tested two others threshold: LI ≤ 650 and LI ≤ 550.

Intersection of bases. The set of pixels (2) meeting NDVI ≥ −0.08 and LI ≤ 600 were
isolated and vectorized in the form of a Shapefile layer. We also applied the process with two
other thresholds, i.e., (1) for pixels meeting NDVI ≥ −0.1 and LI ≤ 650; and (3) for pixels meet-
ing NDVI ≥ −0.05 and LI ≤ 555. Using Qgis 3.4, the area (in m2) of vegetation intersecting
each building was assigned to the building polygon as a variable (Area_vege). We decided that
5 m2 was the minimum size and 3 m2 the minimum height for polygons to be considered as
vegetated roofs.

Exclusion of roofs partially covered with tree foliage. Some of the roofs are, at least
partly, covered with foliage of trees growing at ground level. To discard them, we assumed two
hypotheses (Fig. 4): (1) vegetated roofs do not have vegetation around their edges but have a
wide area of vegetation over the surface, (2) the foliage of trees has a higher NDVI than other
types of roof vegetation. Thus, the 50-cm inner edge of a real vegetated roof must have a max
NDVI lower than the part covered by tree foliage.

Thus, we cropped the NDVI maximum value within each roof to a 50-cm internal band. We
tested different border sizes (10, 25, 50, and 75 cm) and selected the one enabling us to get the
least possible false negatives or false positives. Indeed, to assess our method, we chose a 25-km²

Fig. 3 Example of a nonvegetated building meeting the NDVI criteria (≥ − 0.08). (a) Aerial infrared
image, (b) NDVI mapping, and (c) brightness mapping.
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area on which we compared potential vegetated roofs (detected by the method presented above)
with the same roofs using the Geoportal.29 This operation allowed us to assign a binary variable
called Vrv (vegetated roof validation): 0 if the roof is not vegetated and 1 if the roof is really
vegetated. From these different data, we constructed a generalized linear model logistic regres-
sion on the software R23 version 3.6.1.

2.3.2 Designing a classification model

We defined our logistic regression as did Hosmer et al.30

EQ-TARGET;temp:intralink-;sec2.3.2;116;428PðVrvi ¼ 1Þ ¼ log

�
PðVrviÞ

1 − PðVrviÞ
�

¼ aþ β1NDVImaxi þ β2Area_vegei þ β3NDVImax∶area_vegei;

where PðVrvi ¼ 1Þ is the probability of an “i” roof being vegetated, “Vrv” is the binary
variable 0/1 that visually truly identifies the roof as vegetated or not, obtained through the
French Geoportal, a is the intercept of the slope (i.e., the constant term of the slope function),
“NDVImax” is the maximum NDVI value of the 50-cm inner edge of each roof, and
“Area_vege” represents the area in m² of vegetation previously identified from NDVI and
brightness.

In this model, variables “NDVImax” and “Area_vege” are considered to interact. The model
was built with 90% of roofs (n ¼ 375, learning data). The remaining 10% (n ¼ 42) were used
for model validation.

According to our model summary (see Appendix Table 1), we model the relationships
between NDVImax, Area_vege, and our probability to detect vegetative roofs with the following
equation:

EQ-TARGET;temp:intralink-;sec2.3.2;116;221PðVrvi ¼ 1Þ

¼ expð−1.02644 − 16.83121 ðNDVImaxiÞþ 0.06277ðArea_vegeiÞ − 0.15456ðNDVImaxi X Areavegei Þ
1þ expð−1.02644 − 16.83121 ðNDVImaxiÞþ 0.06277ðAreavegei Þ − 0.15456ðNDVImaxi X AreavegeiÞ

:

This equation is the result of the model obtaining the best accuracy and the best completeness
at different thresholds (see Table 2).

Deployment rules are defined classically as31

EQ-TARGET;temp:intralink-;sec2.3.2;116;122Vrvi ¼ 1 if PðVrvi ¼ 1Þ > 0.5 and Vrvi ¼ 0 if PðVrvi ¼ 1Þ < 0.5:

In the rest of this article, we will expose the results derived from the model with the threshold
level (2) (i.e. NDVI ≥ −0.08 and LI ≤ 600, See Appendix Table 2).

Fig. 4 Hypothesis to distinguish between real vegetated roofs and roofs partially covered with tree
foliage. (a) View from above of vegetated and nonvegetated roofs (the darker the green, the higher
the NDVI); and (b) front view.
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2.4 Validating the Classification Model with the 10% Remaining Roofs

In order to validate our model, we used confusion matrices. Confusion matrices are often used in
supervised learning to measure the quality of a classifier. These matrices compare actual values
to predicted ones. In this way, each predicted value is classified as: true positive (TP), false
positive (FP), false negative (FN), true negative (TN). These confusion matrices were used
to calculate the error rate, which is the sum of false positives and false negatives relative to the
total n of potentially vegetated roofs. The cross-validation (k-fold = 5000) gives the average
accuracy of our model. Several indicators were calculated from these confusion matrices (see
Appendix Table 3).

The results obtained for the three sets of threshold are given in Appendix Table 2. For thresh-
old (2), according to the cross-validation results, the mean error rate was 18 % and the median
was 16.7% (Fig. 5). Our model achieves a 71 % completeness (Completeness is understood here
as true positive divided by true positive plus false negative) and an 86 % correctness (Correctness
is understood here as true positive divided by true positive plus false positive) (n ¼ 417). When
we lowered the NVDI and brightness thresholds (threshold (1)), we identified more vegetated
roofs (197 vegetated roofs for threshold 1, see Appendix Table 2), but the model accuracy and
completeness were weaker. When we increased its threshold (3), we identified much fewer veg-
etated roofs. The best compromise was obtained for threshold (2). In the continuation of the
article, we, therefore, used threshold (2).

The model had a better accuracy for more than 1000-m2 roofs. Indeed, good rankings were
obtained in 90% of cases with the learning data and 88 % with validation data. On the contrary,
regarding roofs between 200 and 500 m2, the model obtained the lowest accuracy (Fig. 6):
0.84% and 71% respectively.

In the following part, we will apply our model to Paris and its inner suburbs in order to map
vegetated roofs there.

3 Results

3.1 Application to Paris and Its Suburbs

The area covers approximately 325 km² and includes about 75 municipalities, including Paris
entirely. The area extends from Cachan (48° 47′ 31″N, 2° 19′ 55″ E) in the south to Gennevilliers
(48° 56′ 00″ N, 2° 18′ 00″ E) in the north; and from Rueil-Malmaison (48° 52′ 40″ N, 2° 10′ 53″
E) in the west to Neuilly-sur-Marne (48° 51′ 00″ N, 2° 32′ 00″ E) in the east (Fig. 7). It includes

Fig. 5 Model accuracy using 5000 iterations cross validation. Accuracy is understood here as
the sum of the right rankings on the population (n ¼ 417) of potentially vegetated roofs.
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520,330 buildings or parts of buildings according to the APUR data set. For the year 2017, 13
aerial photographs of the IGN were available.

In the city of Paris, our modeling identified 815 vegetated roofs. In inner suburban cities,
1497 vegetated roofs were recognized. We obtained a cartography of 2312 vegetated roofs in this
area (Fig. 7). The number of vegetated roofs represented about 0.5% of roofs in the study area.
The largest vegetated roofs were located on the peripheral Paris arrondissements (districts) or
in the inner suburbs. Indeed, Montreuil is the city with the second highest number of green roofs,
after Paris (123, Fig. 7). The average vegetated roof surface area is 1069 m2 and the median
421 m2. 27% of green roofs have a more than 1;000 m2 surface area [Fig. 8(a)]. The distribution
of vegetated roofs is very uneven. Central districts (1, 2, 3, 4) have very few vegetated roofs
(between 0 and 4, Fig. 7). The vegetated roofs are concentrated on the edge of Paris and in the
cities of the inner suburbs [Fig. 8(b)]. Indeed, one can observe an increase in vegetated roofs’
density with distance to the center of Paris (up to 5 km); then it decreases until it reaches 0 at
around 15 km from the center of Paris [Fig. 8(b)].

Fig. 7 Vegetated roofs resulting from our modeling, depending on building shape area, centered
on Paris.

Fig. 6 Model accuracy according to roof area.
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4 Discussion

The study objective was to provide an easily reproducible automated method for identifying
vegetated roofs in cities. These data are essential for the scientific study of urban ecological
networks and also for planners trying to improve urban development management.

4.1 Threshold Setting

The model we have developed performed well, and therefore, allows automatic identification of
vegetated roofs according to several criteria: NDVI, luminosity, and buildings’ average height.
This model requires only infrared aerial images and a buildings geometry file. The method is
probably easily reproducible in other cities in France and abroad. Despite its positive results, our
modeling is based on thresholds such as NDVI level and brightness. These choices were based
on the technical gray literature,13 scientific literature,17,27 and the empirical experience of our
data. We selected a slightly negative NDVI threshold so as not to overlook very scattered veg-
etated roofs. To eliminate some errors, the NDVI has been coupled with a brightness index.

We tested different thresholds and selected the one that allowed us to maximize accuracy and
completeness (See Table 2). Better data accuracy as well as photographs taken at different dates
can account for our improved results.

4.2 Classification Model Performance

The construction of a classifier enabled us to relate the greening of a roof to the data obtained by
remote sensing. Our model showed a significant relationship between the vegetation level at the
edge of the roof and the fact that it is really vegetated. Furthermore, the more pixels we found
responding favorably to our filter, the higher the probability that the roof was truly vegetated.
Moreover, the relationship between our two explanatory variables allowed us to avoid eliminat-
ing roofs both vegetated and covered by trees. In fact, the wider a roof vegetation area, the higher
the level of NDVI at the edge accepted by the model.

Contrary to what Yan et al.15 mentioned, it is possible with two-dimensional (2D) data to
distinguish ground features from elevated features. Indeed, after isolating the potentially veg-
etated roofs due to our thresholds, our classification model allowed us, with an overall accuracy
of about 82%, to differentiate roofs covered by ground level vegetation from vegetated roofs.

Our model tended to show better accuracy on large, over 1000-m² roofs (88% to 90%).
It reached an 86% correctness rate, a better score than Zarea and Mohammadzadeh’s,21 who
obtained a 63% correctness for tree detection with LiDAR and aerial images. The shortcoming
of our model is its completeness score (71%). Indeed, ∼29% of vegetated roofs were not iden-
tified by the classification model, and forgotten vegetated roofs should also be added. More
accurate data could improve the completeness score.

Fig. 8 Distribution of (a) vegetated roofs sizes and (b) densities in relation to distance from the
center of Paris.

Louis-Lucas et al.: Remote sensing for assessing vegetated roofs with a new replicable method. . .

Journal of Applied Remote Sensing 014501-8 Jan–Mar 2021 • Vol. 15(1)



The accuracy level we reached with our method is lower overall than with LiDAR. In fact,
Bandyopadhyay et al.20 obtained an about 92% accuracy in urban vegetation and buildings
detection rates. However, the data used for our modeling are much more available than the
LiDAR data.

5 Conclusion

The method we developed here is fully automated and provides good results. Further research
would be useful to develop new vegetation indicators in urban contexts.

The setting up of a database of vegetated roofs opens interesting perspectives in the study of
the ecological relationships among vegetated roofs. For example, it allows an in-depth analysis
of the movement of species from roofs according to the roof characteristics (see roof height). It
could fill a knowledge gap as regards the metapopulation dynamics of plant species among
roofs.32 Tools such as the Graphab software,33 originally designed for analyzing ecological net-
works in rural areas, now induces us to analyze the potential ecological relationships that exist
among vegetated roofs. APUR has carried out work to identify roofs with a high potential for
vegetalization in Paris; other studies did the same, such as Santos et al.,17 in Lisbon, and Wong
and Lau18 in Hong-Kong. Given these different studies, it would be particularly important to
analyze which roofs to prioritize when vegetating to strengthen and improve the Paris urban
ecological networks.

6 Appendix

The following appendices details the results of the model we used (Table 1), the performance of
the model at different thresholds (Table 2), and the detailed performance after selecting a thresh-
old level (Table 3).

Table 1 Model summary table based on threshold 2.

Estimate Std. error Z value Prð> jzjÞ
(Intercept) −1.02644 0.22481 −4.566 4.97e-06 ***

NDVImax −16.83121 2.68288 −6.274 3.53e-10 ***

Area_vege 0.06277 0.01262 4.973 6.58e-07 ***

NDVImax: AREA_VEGE −0.15456 0.07896 −1.958 0.0503 .

. = p-value ≤ 0.1
* = p-value ≤ 0.05
** = p-value ≤ 0.001
*** = p-value ≤ 0.0001

Table 2 Model performance according to different thresholds.

Threshold 1 Threshold 2 Threshold 3

NDVI ≥ −0.1 −0.08 −0.05

Brightness ≤ 650 600 550

Potentially vegetated roofs 536 417 276

Vegetated roofs using manual validation 197 182 121

Prediction accuracy 0.81 0.82 0.82

True positive 113 129 84

True negative 321 215 143
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