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ABSTRACT
Background  Pharmacological autophagy enhancement 
constitutes a preclinically validated strategy for preventing 
or treating most major age-associated diseases. Driven 
by this consideration, we performed a high-content/high-
throughput screen on 65 000 distinct compounds on a 
robotized fluorescence microscopy platform to identify 
novel autophagy inducers.
Results  Here, we report the discovery of picropodophyllin 
(PPP) as a potent inducer of autophagic flux that acts 
on-target, as an inhibitor of the tyrosine kinase activity 
of the insulin-like growth factor-1 receptor (IGF1R). 
Thus, PPP lost its autophagy-stimulatory activity in cells 
engineered to lack IGF1R or to express a constitutively 
active AKT serine/threonine kinase 1 (AKT1) mutant. 
When administered to cancer-bearing mice, PPP improved 
the therapeutic efficacy of chemoimmunotherapy 
with a combination of immunogenic cytotoxicants and 
programmed cell death 1 (PDCD1, better known as PD-1) 
blockade. These PPP effects were lost when tumors were 
rendered PPP-insensitive or autophagy-incompetent. 
In combination with chemotherapy, PPP enhanced the 
infiltration of tumors by cytotoxic T lymphocytes, while 
reducing regulatory T cells. In human triple-negative 
breast cancer patients, the activating phosphorylation of 
IGF1R correlated with inhibited autophagy, an unfavorable 
local immune profile, and poor prognosis.
Conclusion  Altogether, these results suggest that 
IGF1R may constitute a novel and druggable therapeutic 
target for the treatment of cancer in conjunction with 
chemoimmunotherapies.

INTRODUCTION
Macroautophagy (which we refer to as ‘auto-
phagy’) is a complex intracellular phenom-
enon in which portions of the cytoplasm 
including entire organelles are engulfed in 
autophagosomes that subsequently fuse with 
lysosomes for the digestion of the luminal 
cargo. Genetic or acquired defects in this 
process are linked to a broad spectrum of 
human diseases ranging from neoplastic 
to cardiometabolic diseases, inflamma-
tory syndromes and degenerative processes 

affecting virtually every organ system and cell 
type.1 At the physiological level, autophagy 
is part of a general stress response that facil-
itates cellular and organismal adaptation to 
changing external conditions.2 Genetic or 
pharmacological stimulation of autophagy 
can extend the healthspan and lifespan 
of model organisms, thus postponing the 
stigmata of disease and frailty.3 4 For this 
reason, there is an ever-increasing interest 
in identifying pharmacological autophagy 
enhancers.5 6

In the context of cancer, autophagy plays 
an ambiguous role.7 8 On one hand, auto-
phagy is required for maintaining cellular 
homeostasis and genomic stability,9 as well 
as for facilitating anticancer immunosurveil-
lance,5 meaning that the inhibition of auto-
phagy spurs carcinogenesis10 11 and disabled 
autophagy actually constitutes a poor prog-
nostic marker in some cancers.12 On the 
other hand, autophagy enhances the fitness 
of cancer cells and allows them to avoid cell 
death induction in response to cytotoxicants 
or targeted therapies.13 Thus, the effects of 
autophagy modulation on tumor progression 
are highly context dependent. For example, 
in pancreatic cancer, the induction of auto-
phagy has been suggested as a therapeutic 
strategy, depending on the genetic makeup 
of the cancer cells and immune factors.14–16 
Notwithstanding the ambiguous role of 
autophagy in carcinogenesis, attempts have 
been launched to stimulate autophagy for 
enhancing the therapeutic activity of immu-
nogenic chemotherapies (for instance with 
anthracyclines and oxaliplatin (OXA)) and 
immunotherapies5 17–19 In this context, it 
appears that autophagy has two major effects. 
First, it can enhance the lysosomal secretion 
of adenosine triphosphate (ATP) from dying 
cancer cells, thus enhancing the extracellular 
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ATP-mediated recruitment of dendritic cell precursors 
into the tumor.5 20 Second, autophagy can contribute 
to the maintenance of specific T lymphocyte stem cell 
properties.18

Driven by the aforementioned considerations, we set out 
to identify novel autophagy inducers. Here, we report the 
identification of picropodophyllin (PPP), a cyclolignan 
alkaloid derived from the mayapple plant, as a potent 
inducer of autophagy that acts through the inhibition 
of insulin-like growth factor-1 receptor (IGF1R). When 
administered to tumor-bearing mice, PPP enhanced the 
efficacy of immunogenic chemotherapy combined with 
immunotherapy and these effects relied on the induction 
of autophagy in malignant cells.

MATERIAL AND METHODS
Cell culture and chemicals
Culture media and supplements for cell culture were 
obtained from Life Technologies (Carlsbad, California, 
USA) and plastic materials came) from Greiner BioOne 
(Kremsmünster, Austria) and Corning (Corning, New 
York, USA). Rat adrenal gland PC12 cells stably expressing 
doxycycline-inducible Q74-GFP were cultured in Roswell 
Park Memorial Institute (RPMI)−1640 containing 5% 
fetal bovine serum (FBS) and 10% horse serum.21 Human 
neuroglioma H4 cells, human osteosarcoma U2OS 
cells, MCA205 murine fibrosarcoma and all the other 
cells were maintained in Dulbecco’s modified Eagle’s 
medium, supplemented with 10% (v/v) FBS, 10 U/ mL 
penicillin sodium and 10 µg/mL streptomycin sulfate at 
37°C in a humidified atmosphere with 5% CO2. Tran-
scription factor EB (TFEB)-deficient (TFEB−/−), tran-
scription factor 3 (TFE3)-deficient (TFE3−/−), TFEB and 
TFE3-double deficient (TFE DKO), autophagy related 
5 (ATG5)-deficient (ATG5−/−), and eukaryotic transla-
tion initiation factor 2 alpha kinase 3 (EIF2AK3, better 
known as PERK)-deficient (PERK−/−) U2OS-green fluo-
rescent protein (GFP)-microtubule associated protein 1 
light chain 3 beta (MAP1LC3B, better known as LC3) cell 
lines and TFEB and TFE3-double deficient (TFE DKO) 
in H4-GFP-LC3 cells were generated by means of the 
CRISPR/Cas-mediated genome editing, as per manufac-
turer’s recommendations.17 U2OS cells stably expressing 
RFP-LC3 bearing a mutant non-phosphorylation of 
eukaryotic initiation factor 2α (EIF2A) (eIF2αS51A) were 
constructed using the CRISPR-Cas9 technology as previ-
ously detailed.22 In addition, U2OS cells stably expressing 
GFP-TFEB were generated by our group in the past.17 23 
MCA205 cells stably expressing shRNAs interfering with 
the expression of TFE3/TFEB or ATG5, and overex-
pressing CD39 and a mutant phosphorylation AKTT308D/

S473D were also constructed as the manufacturer.5 17 24 
The polyphenol library and PPP were purchased from 
TargetMol (Boston, MA, USA); Torin1 (TOR), bafilo-
mycin A1, mitoxantrone (MTX) and OXA were obtained 
from Sigma-Aldrich (St. Louis, MI, USA). Recombi-
nant IGF1 were obtained from PROSPECBIO (CYT-216, 

Rehovot, Israel). Linsitinib (HY-10191) were obtained 
from MedChemExpress (Shanghai, China).

High-content microscopy
Human osteosarcoma U2OS and neuroglioma H4 
cells stably expressing GFP-LC3, GFP-TFEB, GFP-AKT, 
GFP-AKT R25C, RFP-GFP-LC3-tandem or RFP-GFP-
p62-tandem reporter and rat adrenal gland PC12 cells 
stably expressing doxycycline-inducible Q74-GFP were 
seeded in 384-well black imaging plates at a density of 
2000 cells per well and allowed to adapt for overnight. 
Cells were treated with the indicated agents, then fixed 
with 3.7% paraformaldehyde (PFA, w/v in PBS) (F8775, 
Sigma-Aldrich) at 4℃ overnight and stained with 1 µg/
mL Hoechst 33 342 in PBS. Subsequently, the fixative 
was exchanged to PBS and the plates were analyzed by 
automated microscopy. Image acquisition was performed 
using an ImageXpress Micro XL automated micro-
scope (Molecular Devices, Sunnyvale, California, USA) 
equipped with a 20 X PlanApo objective (Nikon, Tokyo, 
Japan), followed by automated image processing with 
the custom module editor within the MetaXpress soft-
ware (Molecular Devices). At least four view fields were 
acquired per well, and experiments involved at least trip-
licate assessment. Cellular regions of interest, cytoplasm 
and nucleus, were defined and segmented by using the 
MetaXpress software (Molecular Devices). After exclu-
sion of cellular debris and dead cells from the dataset, 
parameters of interest were normalized, statistically eval-
uated, and graphically depicted with R software. Using R, 
images were extracted and pixel intensities scaled to be 
visible (in the same extent for all images of a given exper-
iment). Cell viability was assessed as described before.25

Immunofluorescence
Human osteosarcoma U2OS cells were treated for 
6 hour to detect TFE3, then were fixed with 3.7% PFA 
at 4°C overnight. For staining, fixed cells were permea-
bilized with 0.1% Triton X100 on ice, and blocked with 
5% bovine serum albumin (BSA, w/v in PBS) for 1 hour. 
Next, cells were incubated with antibodies specific to 
TFE3 (#ab93808, 1:400, Abcam) at 4°C overnight. After 
washing with PBS twice, the cells were incubated with 
AlexaFluor conjugates (Thermo Fisher Scientific) against 
the primary antibody for 2 hour at ambient temperature. 
Then cells were washed and imaged by automated fluo-
rescence microscopy as described above. The nuclear 
intensity of TFE3 was measured and normalized to Ctrl.

Immunohistochemistry
A total of 49 formalin-fixed paraffin-embedded; tissue 
samples of triple-negative breast cancer were obtained 
from Renmin Hospital of Wuhan University, People’s 
Republic of China (online supplemental table S1). 
Patients did not receive financial compensation. Patients 
with at least 5-year follow-up were included in this retro-
spective study. All methods were performed in accor-
dance with the relevant guidelines and local regulations. 
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Immunohistochemical staining was performed by an 
automatic staining machine (Leica Bond3) or manu-
ally processed. Sections were dehydrated and antigenic 
epitopes were retrieved using a 10 mM citrate buffer 
and microwaving for 10 min. Specimen were then incu-
bated with for LC3B (#3868, 1:2000, Cell Signaling Tech-
nology), phospho-IGF1R (#orb503127, 1:100, Biorbyt, 
UK), CD163 (#93498, 1:500, Cell Signaling Technology), 
Foxp3 ((#98377, 1:100, Cell Signaling Technology), CD8 
(#70306, 1:200, Cell Signaling Technology). Primary anti-
body staining was detected by peroxidase-conjugated IgG 
(1:500 diluted P0448, Dako, Glostrup, Denmark). Posi-
tive cells were counted on nine randomly chosen tumor 
areas at 200 magnifications in a double blinded fashion. 
Quantitative analysis was performed using ImageJ soft-
ware as described.26 The receiver operating characteristic 
analysis was used to determine the optimal cut-off values 
of all proteins expression levels for survival rate.

Immunoblotting
Tissues (~30 mg) were dissociated in Precellys lysing 
tubes (#CK28_2 mL, Bertin Technologies SAS, France) 
containing 1 mL of radio immunoprecipitation assay 
buffer (RIPA) lysis buffer (#89901, Invitrogen, Carlsbad, 
California, USA) by using the Precellys 24 homogenizer 
(Bertin Technologies SAS) at 6500 rpm for 5 min, followed 
by spinning at 14 000 g for 15 min to collect the superna-
tant that contains soluble proteins. For cells, the protein 
extracts were dissolved in RIPA buffer and obtained by 
ultrasonicating for 3×10 s and centrifuging at 12 000 g for 
15 min to collect the supernatant that contains soluble 
proteins. Protein concentration was measured by means 
of by the BCA Assay (Bio-Rad, Hercules, California, 
USA). The protein solution was mixed with 4X loading 
buffer (# NP0008, Invitrogen), and denatured at 100°C 
for 15 min before subjected to western blotting. The total 
protein (~30 µg) were resolved on 4%–12% NuPAGE Bis-
Tris protein gels (#NP0322, Thermo Fisher Scientific) 
and electrotransferred to 0.2 µM polyvinylidene fluoride 
membranes (#1620177, Bio-Rad). The membranes were 
blocked with 0.05% Tween 20 (#P9416, Sigma Aldrich) 
v:v in Tris-buffered saline (TBS) (TBST) (#ET220, Euro-
medex) supplemented with 5% non-fat powdered milk 
(w:v in TBS), followed by an overnight incubation at 4°C 
with primary antibodies specific for LC3B (#2775, 1:1000, 
Cell Signaling Technology), HA (#ROAHAHA, 1:1000, 
Sigma-Aldrich), phospho-P70 (Thr389) (#9234, 1:1000, 
Cell Signaling Technology), P70 (#9202, 1:1000, Cell 
Signaling Technology), phospho-IGF1R (Tyr1135/1136) 
(#3024, 1:1000, Cell Signaling Technology), IGF1R 
(#9750, 1:1000, Cell Signaling Technology), pTFEB 
(Ser211) (#37681, 1:1000, Cell Signaling Technolo-
gy),TFEB (#4240, 1:1000, Cell Signaling Technology), 
TFE3 (#ab93808, 1:1000, Abcam), phospho-AKT (Ser473) 
(#4060, Cell Signaling Technology), AKT (#4691, Cell 
Signaling Technology), phospho-mechanistic target of 
rapamycin (mTOR) (Ser2448) (#2971, Cell Signaling 
Technology), mTOR (#2983, Cell Signaling Technology), 

H3 (#9715, 1:1000, Cell Signaling Technology). 
Membranes were washed three times for 10 min with TBST 
before incubation with HRP-conjugated goat-anti-rabbit 
secondary antibody (CliniScience) for 2 hours at room 
temperature. Then the membranes were washed again 
and subjected to chemiluminescence detection with the 
Amersham ECL Prime detection reagent kit (GE Health-
care, Piscataway, New Jersey, USA) on an ImageQuant 
LAS 4000 software-assisted imager. The membranes were 
stripped and reprobed for loading control with anti-
actin (# ab 20727, 1:10000, Abcam), anit-glyceraldeyde-
3-phosphate dehydrogenase (GAPDH)-specific antibody 
(#2118, 1:5000, Cell Signaling Technology) or anti-
vinculin antibody (#13901, 1:1000, Cell Signaling Tech-
nology). Quantification was performed by densitometry 
using the Image J software.

Plasmid transfection
Cells were seeded, let adhere for 24 hours, and following 
transfected with the CRISPR-Cas9 plasmid U6gRNA-Cas9-
2A-RFP targeting IGF1R (50-ATGATGCGATT CTTC-
GACG-30) or a plasmid coding for AKT carrying the 
T308D/S473D mutation (#14751, Addgene, Watertown, 
Massachusetts, USA), according to the manufacturer’s 
advice.

Nuclear extraction experiment
U2OS-GFP-LC3 cells were collected and processed 
with the Nuclear Extraction Kit (#ab113474, Abcam) 
following the manufacturer’s methods. The GAPDH 
antibody (#2118, 1:1000, Cell Signaling Technology) was 
used as cytoplasmic control, and H3 (#9715, 1:1000, Cell 
Signaling Technology) was selected as nuclear loading 
and quality control.

Detection of protein deacetylation
U2OS-GFP-LC3 stable expressing cells (~2000 cells/well) 
were seeded in 384-well microplates overnight. After 
experimental treatments, cells were fixed with 3.7% PFA 
containing 1 µg/mL Hoechst 33 342 overnight at 4°C. 
Thereafter, cells were incubated with an antibody specific 
for acetyl-alpha-tubulin (#5335, 1:500, Cell Signaling 
Technology) in 5% bovine serum albumin (BSA, w/v in 
PBS) for 1 hour to block non-specific binding sites and 
acetylated tubulins, followed by overnight incubation at 
4°C with specific antibody to detect acetylated proteins 
at lysines (#623402, 1:400, BioLegend, San Diego, Cali-
fornia, USA). After washing three times with PBS, cells 
were incubated in AlexaFluor-568 conjugates (Life Tech-
nologies) against the primary antibody for 2 hours at 
room temperature. Fluorescent images were acquired 
and analyzed as described before.

ATP release assays
Intracellular ATP levels were detected by quinacrine 
staining (Calbiochem), subsequently the images of quin-
acrine were observed by means of high-content micros-
copy and the cytoplasmic intensity of quinacrine was 
quantitated as described above. Extracellular ATP levels 
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were measured by the ENLITEN ATP Assay System Biolu-
minescence Detection Kit (Promega, Madison, Michigan, 
USA; #FF2000) following the manufacturer’s instructions. 
Luminescence was measured by means of a Paradigm I3 
multimode plate reader (Molecular Devices).

Animal model
The animal experiments were approved by the Gustave 
Roussy ethics committee with the project number: 
24 771–2020032413235413, and all procedures were 
performed under the governmental and institutional 
guidelines and regulations. All mice were maintained in a 
temperature-controlled and pathogen-free environment 
with 12 hours light/dark cycles, with food and water ad 
libitum.

For tumor growth experiments, 7 week-old female 
wild-type C57BL/6 mice or athymic female nude mice 
(nu/nu) were obtained from Envigo, France (Envigo, 
Huntingdon, UK). AT3 wild-type, TC1 wild-type, MCA205 
wild-type (WT), overexpressing a CD39 transgene 
(CD39+) or a constitutive active variant of AKT T308D/
S473D (4×105), MCA205 with ATG5 knockout (WT, 
6×105) cells were subcutaneously injected into C57BL/6 
hosts. When tumors became palpable, mice were treated 
with 20 mg/kg PPP dissolved in corn oil (Sigma-Aldrich), 
25 mg/kg linsitinib (dissolved in 5% DMSO, 10% PEG300, 
5% Tween 80, 80% PBS) or an equivalent volume of 
vehicle alone or in combination with 10 mg/kg (OXA, 
Sigma-Aldrich) or 200 µg anti-PD-1 antibody (Clone 29 
F.1A12, BioXcell, West Lebanon, New Hampshire, USA), 
by intraperitoneal (i.p.) injection. On the following days, 
mice well-being and tumor growth were monitored and 
documented. Animals were sacrificed when tumor size 
reached endpoint or signs of obvious discomfort were 
observed following the EU Directive 63/2010 and our 
Ethical Committee advice.

Ex vivo–phenotyping of the tumor immune infiltrate
Tumors were harvested, weighed and transferred on 
ice into gentleMACS C tubes (Miltenyi Biotec, Bergisch 
Gladbach, Germany) containing 1 mL of RPMI medium. 
Tumors were dissociated first mechanically with scissors, 
then enzymatically using the mouse tumor dissociation 
kit (Miltenyi Biotec) and a GentleMACS Octo Dissoci-
ator according to the manufacturer’s instructions. The 
dissociated bulk tumor cell suspension was resuspended 
in RPMI1640, sequentially passed through 70 µm MACS 
Smart-Strainer (Miltenyi Biotec) and washed twice with 
PBS. Finally, bulk tumor cells were homogenized in 
PBS at a concentration corresponding to 250 mg of the 
initial tumor weight per mL. Prior to staining of tumor-
infiltrating lymphocytes (TILs) for flow cytometry anal-
ysis, samples (~50 mg) were incubated with LIVE/DEAD 
Fixable Yellow Dead Cell dye (Thermo Fisher Scientific) to 
discriminate viable cells from damaged cells. Fc receptors 
were blocked with anti-mouse CD16/CD32 (clone 2.4G2, 
Mouse BD Fc Block, BD Pharmingen) before staining 
with fluorescent-labeled antibodies targeting T-cell 

surface markers. Surface staining of murine immune cell 
populations infiltrating the tumor was performed with 
the following fluorochrome-conjugated antibodies: anti-
CD45-AF700, anti-CD3-BV421, anti-CD8-PE, anti-CD4-
Percp.Cy5.5, anti-CD25-PE/Cy7, and anti-PD-1-APC/Cy7 
(BioLegend). Then, cells were fixed and permeabilized 
in eBioscience Foxp3/Transcription Factor Staining 
Buffer (Thermo Fisher Scientific) and stained for intra-
cellular Foxp3. Finally, stained samples were run through 
a BD LSR II flow cytometer. Data were acquired using BD 
FACSDiva software (BD Biosciences) and analyzed using 
FlowJo software (TreeStar). Absolute counts of leuko-
cytes and tumor cells were normalized considering the 
following parameters: weight of the harvested tumor and 
total volume of the dissociated tumor cell suspension 
(cell concentration typically set to 250 mg/mL in PBS), 
proportion of the whole cell suspension and proportion 
of the cell suspension used for cytometry.

Statistical analysis
Unless otherwise mentioned, data are reported as 
means±SD of triplicate determinations and experiments 
were repeated at least three yielding similar results. 
Statistical significance was assessed by Student’s t-test. 
TumGrowth and GraphPad were used to analyze in vivo 
data arising from murine models.27 The Kaplan-Meier 
method was used to calculate patient survival and the log-
rank test was used to assess the heterogeneity for each 
prognostic factor. Univariate Cox proportional hazard 
regressions were used to obtain HRs and their respec-
tive 95% CIs to show the strength of the estimated rela-
tive risks. Pearson’s correlation was used to evaluate the 
correlation. P values of 0.05 or less were considered to 
denote significance (*p<0.05; **p<0.01; ***p<0.001; ns, 
not significant).

RESULTS
Identification of PPP as a potent inducer of autophagic flux
Human osteosarcoma U2OS cells, which are often used 
as biosensor cell lines,28 were stably transduced with 
a GFP-LC3 fusion protein and subjected to rounds of 
selection (to ensure homogeneous GFP-LC3 expression 
in most cells) and quality control (to ensure adequate 
formation of GFP-LC3 puncta in response to autophagy 
induction by the positive control torin1). In a robotized 
high-content/high throughput screening platform,28 
such cells were exposed to ~65 000 compounds (all 
tested at 10 µM) to identify agents that induce GFP-LC3 
puncta at least as efficiently as the positive control (the 
MTOR inhibitor torin1 used at 300 nM) without cell 
loss (figure  1A,B). About 200 compounds fulfilled this 
criterion. We chose to follow-up (PPP, also known as 
AXL1717) for two reasons. First, in a validation experi-
ment re-evaluating the top 400 compounds from the 
primary screen, in another smaller screen focusing on a 
library of polyphenols involving ~1000 compounds and 
in further low throughout experiments PPP was found 
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Figure 1  Identification of picropodophyllin (PPP) as autophagy inducer. (A) Human osteosarcoma U2OS stably expressing 
GFP-LC3 cells and were treated with a chemical library of 65 000 diverse compounds (10 μM) for 6 hours. Torin 1 at 300 nM 
was used as positive control for autophagy induction. The number of GFP-LC3 positive puncta was measured as a proxy 
for autophagy and the number of cells that confer a regular nuclear phenotype was assessed as an indicator for viability. We 
selected the agents that dramatically increase the expression of GFP-LC3 and whose viability is >0.5 times of its expression in 
control group, are potential autophagy activators. Data were normalized to controls, depicted as means of each campaign. (B, 
C) U2OS cells stably expressing GFP-LC3 were treated with PPP (1, 2.5, 5, 10 μM) and torin1 (300 nm) was used as control. 
the surface of GFP-LC3 positive puncta was measured as a proxy for autophagy (C) and representative images are depicted in 
B. scale bar equals 10 µm. (D, E) Rat adrenal gland PC12 cells expressing an inducible variant of Q74-GFP were treated with 
doxycycline (1 μg/mL) for 8 hours for the induction of Q74 expression. Then the medium was changed and PPP was added at 
1, 2.5, 5 and 10 μM. Torin1 (300 nm) was used as positive control. data is depicted as barchart in E and representative images 
are shown in D. Scale bar equals 10 µm. (F, G) U2OS cells were treated with PPP and the positive control torin1 (300 nm) for 
6 hours, followed by the incubation with specific antibodies to block acetylated tubulin. Thereafter, immunofluorescence was 
conducted with antibodies against acetylated lysine residues and appropriate AlexaFluor-conjugated secondary antibodies. 
representative images of acetylation are shown in F, and acetylation intensity in the cytoplasm was measured in G. Scale bar 
equals 10 µm. Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test).
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to induce autophagic flux in cells expressing distinct 
flux biosensors, namely a RFP-GFP-LC3 (online supple-
mental figure S1A), a Q74-GFP construct (online supple-
mental figure S1B), a RFP-ATG4-GFP-LC3ΔG (online 
supplemental figure S2A,B), mCherry-GFP-p62 (online 
supplemental figure S2C,D) and HA-tagged p62 (online 
supplemental figure S2E-G), confirming that PPP indeed 
induces autophagic flux. Second, PPP has been described 
as an inhibitor of IGF1R29 30 with potent antitumor effects 
in preclinical models31–33 and acceptable toxicity in clin-
ical phase I and II trials.34

Further experiments confirmed that PPP induced GFP-
LC3 puncta (figure  1B,C) and reduced the abundance 
of the autophagic substrate Q74-GFP (figure 1D,E) in a 
dose-dependent fashion. In addition, PPP reduced cyto-
plasmic protein acetylation, as determined by quantita-
tive immunofluorescence staining (figure  1F,G). These 
effects were detectable at PPP concentrations of 2.5 
to 10 µM, which did not affect cellular viability (online 
supplemental figure S2H). Of note, induction of GFP-
LC3 puncta or LC3-II by PPP was lost in ATG5-/- U2OS 
cells (figure  2A–C), was accompanied by the transloca-
tion of TFEB and TFE3 into nuclei (figure 2D–H, (online 
supplemental figure S3A,B), was partially reduced in 
TFEB-/- or TFE3-/- cells, and strongly inhibited in TFEB-

/- TFE3-/- double-knockout cells (figure  2I–Q, (online 
supplemental figure S3C–E). Hence, PPP stimulates auto-
phagic flux through a canonical, ATG5 and TFEB/TFE3-
dependent pathway.

PPP induces autophagy through IGF1R inhibition
PPP is known to block the tyrosine kinase activity of 
IGF1R.29 30 Accordingly, PPP-induced GFP-LC3 puncta 
were not prevented by addition of IGF1 (figure  3A,B), 
the agonist ligand of IGF1R. PPP efficiently blocked 
IGF1-induced IGF1R autophosphorylation, the acti-
vating phosphorylation of protein kinase B (best known 
as AKT), the phosphorylation of MTOR, and the activity 
of MTOR complex 1 (MTORC1), evaluated by assessing 
the phosphorylation of the MTORC1 substrates p70S6K 
and TFEB (figure  3C). Knock-out of IGF1R rendered 
U2OS cells resistant to the autophagy-inducing effects 
of PPP (figure  3D–F, online supplemental figure S3F). 
Conversely, transgenic expression of a constitutively active 
AKT mutant (T308D/S473D)35 abolished the proauto-
phagic activity of PPP (figure 3G–I, online supplemental 
figure S4A,B). IGF1 stimulated the membrane transloca-
tion of a GFP-AKT fusion protein (but not that of a GFP-
AKTR25C mutant that fails to translocate to phosphatidyl 
inositol-rich membranes),36 and this effect was blocked 
by PPP (figure 3J,K). Of note, on i.p. injection into mice, 
PPP inhibited phosphorylation of IGF1, AKT and mTOR, 
P70S6K and enhanced the abundancy of LC3-II in the liver 
and in the heart (online supplemental figure S5A-K). 
LC3-II was also enhanced in the brain (online supple-
mental figure S5L,M). Altogether, these results indicate 
that PPP induces autophagy through the inhibition of 
IGF1R and its downstream signals AKT and MTORC1.

IGF1R activation as a negative prognostic factor in breast 
cancer
A paucity in LC3B puncta, reflecting disabled autophagy 
in malignant cells, is associated with dismal prognosis of 
breast cancer, as well as an unfavorable ratio of tumor 
infiltrating CD8+ cytotoxic T lymphocytes (CTLs) over 
FOXP3+ regulatory T cells (Tregs) or CD163+ tumor-
associated macrophages (TAMs).12 37 In a series of 49 
stage negative breast cancer patients treated by surgical 
resection (online supplemental table S1), the activating 
phosphorylation of IGF1R detectable by immunohisto-
chemistry correlated negatively with the density of LC3 
puncta and CD8+ CTLs but positively with FOXP3+ Tregs 
and CD163+ TAMs (figure  4A–E). Phosphorylation of 
IGF1R above the median level was associated with poor 
overall survival compared with low IGF1R phosphoryla-
tion (figure 4F). The risk stratification of breast cancer 
patients could be further improved by including the char-
acteristics of the immune infiltrate. Thus, patients with 
phospho-IGF1Rhigh CD8low, phospho-IGF1Rhigh FOXP3high 
and phospho-IGF1Rhigh CD163high breast cancer exhib-
ited the worst overall survival (figure 4G–I). Altogether, 
these results indicate that activation of IGF1R signaling 
might affect autophagy as well as breast cancer immu-
nosurveillance in a clinically relevant fashion. We, there-
fore, decided to evaluate the effects of IGF1 inhibitors on 
cancer immunosurveillance.

Immune response-amplifying effects of IGF1R inhibition
Autophagy induction can increase the immunoge-
nicity of anthracycline or OXA-induced cell death by 
favoring the release of ATP.5 38 Accordingly, addition 
of PPP to U2OS cells enhanced the release of ATP 
from cells, causing a diminution of ATP-sensitive quin-
acrine fluorescence (figure 5A,B) and an increase in 
ATP concentrations in culture media in response to 
low-dose MTX. PPP similarly stimulated the release 
of ATP in response to low-dose OXA (online supple-
mental figure S6A,B). The low-dose chemotherapy-
induced ATP release was inhibited by knockout of 
ATG5, knockout of eIF2α kinase 3 EIF2AK3 (best 
known as PERK, which is required for autophagy 
induction by MTX),22 the S51A knockin mutation in 
eIF2α that renders it unphosphorylable (and blocks 
autophagy induction),22 39 as well as the expression 
of a constitutively active AKT mutant, AKTT308D/S473D 
(figure 5C–F).

Considering the fact that PPP induced autophagy in 
mouse cancer cell lines (online supplemental figure 
S6C,D), we evaluated the capacity of PPP to improve 
the efficacy of chemoimmunotherapy against cuta-
neous MCA205 fibrosarcomas that were orthotopi-
cally implanted in histocompatible C57BL/6 mice. 
PPP alone did not reduce tumor growth. PPP failed 
to improve the efficacy of immunotherapy with PD-1 
blockade, but improved that of chemotherapy with 
OXA. Moreover, the triple combination of OXA, 
PD-1 blockade and PPP was more efficient than 
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chemoimmunotherapy with OXA and PD-1 blockade 
alone (figure  5H–I, online supplemental figure 
S7A). These effects depend on the immune system 
because no therapeutic efficacy could be measured 
in athymic nu/nu mice (that lack mature T lympho-
cytes) (figure  5J, online supplemental figure S7B). 

Immunocompetent mice that had been cured from 
MCA205 fibrosarcoma by the triple combination 
(OXA, PD-1 blockade and PPP) were resistant against 
rechallenge with MCA205 cells but readily developed 
antigenically unrelated TC1 lung cancer, meaning 
that they developed immune memory (figure 5K,L).

Figure 2  TFEB and TFE3 mediate PPP-induced autophagy. (A–C) U2OS-GFP-LC3 wild-type (WT) or ATG5 knockout cells 
were treated with PPP (10 μM) or torin1 (300 nM) for 6 hours. Then the cells were fixed and GFP-LC3 dots were quantified. 
Scale bar equals 10 μm. Data are means ± SD of four replicates ***p<0.001 vs untreated control; ###P<0.001 vs WT; Tukey’s 
multiple comparisons test). (D, E) U2OS cells stably expressing GFP-TFEB fusion protein were treated with PPP (10 μM) for 16 
hours and torin1 was used as positive control. nuclear GFP intensities were measured (E) and representative images are shown 
in D. Scale bar equals 10 µm. Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test). (F, 
G) U2OS cells were treated with PPP (10 μM) for 16 hours and torin1 was used as positive control and then endogenous TFE3 
translocation was assessed by immunostaining (F) and TFE3 nuclear intensities are depicted (G). Scale bar equals 10 µm. 
Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test). (H) U2OS cells were treated with 
PPP (10 μM) for 16 hours or were left untreated. Cytoplasmic and nuclear fractions were separated and assessed for nuclear 
translocation of TFEB and TFE3 by SDS-PAGE. band intensities of TFEB, TFE3, GAPDH and H3 were assessed and their ratio 
(TFEB or TFE3/GAPDH, and TFEB or TFE3/H3) was calculated (online supplemental figure S3). (I–Q) U2OS-GFP-LC3 cells WT 
or single as well as double knockout for TFEB and TFE3 were treated with PPP (10 μM) or torin1 for 16 H. LC3 II expression and 
TFEB/TFE3 deficiency by knockout were checked by SDS-PAGE and parallel immunoblot (K, N, Q). Band intensities of LC3-II 
and β-actin (ACTB) were assessed, and their ratio (LC3-II/actin) was calculated (online supplemental figure S3). representative 
images are shown in (I, L, O), and GFP-LC3 dots were quantified as indicator of autophagy (J, M, P). Scale bar equals 10 μm. 
Data are means±SD of four replicates (***p<0.001 vs untreated control; #P<0.05, ##P<0.01, ###P<0.001 vs WT; Tukey’s multiple 
comparisons test). PPP, picropodophyllin SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis.
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Figure 3  PPP induces autophagy via IGF1R/AKT signaling. (A, B) U2OS-GFP-LC3 cells were incubated in the absence of FBS 
overnight and were further treated with PPP (10 μM) or torin1 (300 nm) in the presence or absence of IGF1 (10 nm) for 6 hours. 
After fixation, GFP-LC3 dots were quantified in B. Scale bar equals 10 μm. Data are means±SD of three replicates (**P<0.01, 
vs DMSO/Ctr, Student’s t-test). (C) Immunoblot exploration of the IGF1R signal pathway. After U2OS cells were incubated 
in the absence of FBS overnight, then the cells were treated with PPP (10 μM) together with or without IGF1 (10 nm) for 6 
hours. Proteins were separated by SDS-PAGE and parallel immunoblots of pIGF1R (Tyr1135/1136), IGF1R, pAkt (Ser473), Akt, 
pmTOR (Ser2448), mTOR, pp70 (THR389), p70, pTFEB (Ser211), TFEB, LC3-II and were performed in parallel instances and 
β-actin (ACTB) was used as loading control (C). (D, E) U2OS wild-type (WT) or IGF1R knockout cells were treated with PPP (10 
μM) for 6 H. SDS-PAGE and immunoblots of IGF1R, LC3 and ACTB were performed (D), band intensities of LC3-II and ACTB 
were assessed, and their ratio (LC3-II/ACTB) was calculated (online supplemental figure S4). In parallel U2OS-GFP-LC3 WT or 
IGF1R knockout cells were treated with PPP (10 μM) for 6 hours then the cells were fixed and GFP-LC3 dots were quantified 
by microscopy (F). Representative images are shown in E and scale bar equals 10 μm. Data are means±SD of three replicates 
(***P<0.001 vs untreated control; ##P<0.01 vs WT; Tukey’s multiple comparisons test). (G–I) U2OS cells were transfected with 
constitutive active AKTT308D/S473D and were treated with PPP (10 μM) for 6 hours. SDS-PAGE and immunoblots of pAKT, AKT, 
LC3 and ACTB were performed (G), band intensities of LC3-II and ACTB were assessed, and their ratio (LC3-II/ACTB) was 
calculated (online supplemental figure S4). In parallel U2OS-GFP-LC3 WT or AKTT308D/S473D-expressing cells were treated with 
PPP (10 μM) for 6 H then the cells were fixed and GFP-LC3 dots were quantified by microscopy (I). Representative images are 
shown in H and scale bar equals 10 μm. Data are means±SD of three replicates (**P<0.01 vs untreated control; ##P<0.01 vs WT; 
Tukey’s multiple comparisons test). (J–K) U2OS cells stably expressing GFP-AKT or GFP-AKTR25C were incubated in absence 
of FBS overnight, then the cells were treated with IGF1 (10 nm) or PPP (10 μM) combined with IGF1 (10 nm). After 5 min, the 
membrane translocation of GFP-AKT was detected by microscopy (J) and the membrane intensity of AKT was measured (K). 
Scale bar equals 10 μm. Data are means±SD of three replicates (***P<0.001 vs DMSO/Ctr, Student’s t-test). IGF1, FBS, fetal 
bovine serum; IGF1, insulin-like growth factor-1; PPP, picropodophyllin; SDS_PAGE, sodium dodecyl sulfate polyacrylamide gel 
electrophoresis.
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Inhibition of PPP-induced autophagy by AKTT308D/

S473D or knockout of Atg5, as well as the expression of 
the ecto-ATPase CD39 abolished the anticancer effects 
of PPP (figure  5M–O, online supplemental figure 
S7C-E), supporting the involvement of autophagy-
dependent ATP release in PPP effects. PPP did not 
affect the MCA205 tumor immune infiltrate on its 
own, but did reduce PD-1 induction by OXA on CD8+ 
T cells (figure 5P–R). Moreover, the combination of 
PP OXA depleted Tregs from the tumor environment 
(online supplemental figure 5S) and improved the 
CD8/Treg ratio (figure 5T).

These immune response-associated effects of IGF1R 
inhibition were also observed for TC1 non-small cell 
lung cancer, in which PPP similarly improved the 
effects of OXA or those of an OXA+ anti-PD-1 combi-
nation (figure  6A–C, online supplemental figure 
S7F). Of note, survival of mice with TC1 cancers was 
similarly extended by PPP +OXA and PPP +OXA+an-
ti-PD-1 (online supplemental figure S7F). Mice that 
had been ridden from their TC1 tumors became resis-
tant against rechallenge with the same tumor but not 
MCA205 fibrosarcomas (figure 6D,E). In mice-bearing 
AT3 breast cancers, PPP also improve the effects of 

OXA +PD-1 blockade (online supplemental figure 
S6E-G, S7G). Moreover, PPP could be replaced by 
another IGF1R antagonist, linsitinib, to ameliorate the 
outcome of chemotherapy with OXA or a combined 
OXA +anti-PD-1 regimen (figure 6F–H, online supple-
mental figure S7H). The triple combination (OXA 
+anti-PD-1+linsitinib) induced several complete 
remissions as well as immune memory against the 
tumors that had been eliminated (figure 6I,J). These 
results underscore the capacity of IGF1R antagonist 
to enhance the efficacy of chemoimmunotherapy in 
preclinical models.

DISCUSSION
Together with the insulin receptor, IGF1R is one of the 
most important trophic receptor tyrosine kinases, stimu-
lating the uptake of nutrients into cells as well as a variety 
of anabolic reactions.40 Inhibition of IGF1R itself or that 
of the signal transduction cascade acting downstream 
of IGF1R (the PI3K/AKT/MTOR pathway) potently 
stimulates autophagy as well as other stress-adaptive 
mechanisms.41–43 Indeed, a vast literature suggests that 
chronic inhibition of this pathway by caloric restriction, 

Figure 4  IGF1R signaling correlates with immunosuppressive markers and decreased survival in breast cancer. (A–I) The 
expression of CD163, FOXP3 and CD8 as well as the phosphorylation of IGF1R and the dot formation of LC3 were quantified 
in paraffin-embedded biopsies obtained from 49 triple-negative breast cancer patients by ImageJ after staining with specific 
antibodies. Representative images of phosphorylated-IGF1R, dotted LC3B, and CD163, FOXP3 and CD8 expression are shown 
in A. The scale bar indicates 100 μm. Correlation analyses (determined by the Spearman method) of the analyzed parameters 
for each patient are depicted in B–E. (F–I) Kaplan-Meier survival analysis of patients with biomarker-positive and biomarker-
negative immunohistochemistry staining. IGF1R, insulin-like growth factor-1 receptor.
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Figure 5  PPP improves autophagy-dependent anticancer chemotherapy in a T lymphocyte-dependent manner. (A, B) Human 
osteosarcoma cells were treated with PPP (10 μM) in the presence of a low dose of the ICD inducers mitoxantrone (MTX, 1 
μM) for 6 hours. High-dose MTX (5 μM) was used as positive controls. Quinacrine staining was used to monitor intracellular 
ATP content. Representative images are shown in A and quinacrine dots were quantified in B. Scale bar equals 10 μm. Data 
are means±SD of three replicates (***p<0.001 vs untreated control; ###P<0.001 vs PPP; Tukey’s multiple comparisons test). 
(C–F) Human neuroglioma H4 cells wild-type or Atg5 knockout, human osteosarcoma U2OS wild type, PERK knockout or 
PEIF2α S51A knockin cells, murine fibrosarcoma MCA205 wild-type or AKTT308D/S473D knockin cells were treated with PPP (10 
μM) alone or in combination with low doses of the ICD inducers MTX (1 μM) for 6 H as described above. High-dose MTX (5 
μM) was used as positive controls. the extracellular ATP levels were measured in C–F. Data are means ± SD of three replicates 
(**P<0.01, ***P<0.001 vs untreated control; #P<0.05, ##P<0.01, ###P<0.001 vs WT; Tukey’s multiple comparisons test). (G–O) 
In vivo treatment of implanted murine MCA205 fibrosarcoma with oxaliplatin (OXA), anti-PD-1 antibody and PPP, alone or in 
combination (schematic view in G). (H, I) Growth kinetic of murine fibrosarcoma MCA205 cells evolving in immunocompetent 
C57BL/6 mice or athymic nu/nu mice (J) or MCA205 fibrosarcoma expressing constitutive active AKTT308D/S473D (M), Atg5 
deficient MCA205 ATG5-/- (N) or MCA205 expressing the ectoATPase CD39 (O) evolving in immunocompetent C57BL/6 mice 
were treated as indicated in (G). When tumors became palpable, mice received systemic intraperitoneal (i.p.) injections of 
ppp alone or together with OXA or PD-1 blocker. Data are depicted as growth curves (mean±SD) (H, L–O) and tumor size 
distributions at day 24 (I). Individual tumor growth curves of mice treated with OXA and PPP, combined or not with PD-1 
blockade are shown (K). The generation of immunological memory was assessed in cured animals by rechallenge with MCA205 
and TC-1. Individual tumor growth curves are depicted (L). Data were analyzed with TumGrowth. n≥6 for mice in each group. 
(*P< 0.05 or ns, not statistically significant vs OXA; #P<0.05 or ns, not statistically significant vs OXA+PD-1 blockade, Student’s 
t-test, survival plots in online supplemental figure S7). (P) Schematic overview of the treatment of implanted murine MCA205 
fibrosarcoma with OXA and PPP, alone or in combination. (P–T) Cytofluorometric analysis of tumor-infiltrating lymphocytes (TIL): 
CD3+CD8+ cytotoxic T lymphocytes (Q), CD8+PD-1+ T lymphocytes (R), CD4+FOXP3+CD25+ regulatory T cells (Treg) (S), and the 
ratio of CD3+CD8+ T cells over Treg (T). Data are means±SD (n≥5) (*p<0.05 or ns, not statistically significant vs control; #P<0.05 
or ns, not statistically significant vs OXA, Student’s t-test). PPP, picropodophyllin.
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pharmacological inhibitors or loss-of-function mutations 
has the capacity to extend the healthspan and lifespan in 
model organisms3 44–46 and perhaps in humans as well.47

Here, we identified a pharmacological IGF1R inhib-
itor, PPP, as a potent inducer of autophagic flux that acts 
on-target, as suggested by several observations. First, PPP 
inhibited all elements of the signaling cascading, hence 
reducing the activating phosphorylation of IGF1R, AKT 
and the MTOR substrate S6K, both in vitro, in cultured 
human cell lines and in vivo, in the liver and heart from 
mice, commensurate with the induction of autophagy. 
Second, PPP lost its capacity to induce autophagy after 
knockout of IGF1R, which obliges the cells to rewire their 
metabolism to support by other trophic receptors.48 49 
Third, most convincingly, artificial activation of the inhib-
ited cascade by expressing a transgene-encoded constitu-
tively active AKT mutant, abolished autophagy induction 
by PPP. These results unequivocally demonstrate that 
PPP is activating autophagy through a specific mode of 
action, without major off-target effects. Of note, as for 
other autophagy inducers,22 50–52 this pathway involved 
the obligatory phosphorylation of eIF2α as part of the 

integrated stress response. Thus, cells bearing a non-
phosphorylable eIF2α mutant or lacking the eIF2αkinase 
EIF2AK3/PERK were unable to activate the autophagic 
pathway in response to PPP.

Stimulation of autophagy by fasting or by the 
administration of CRMs enhances the efficacy of 
immunogenic chemotherapies (for instance with anth-
racyclines and OXA) as well as combination regimens 
of chemotherapies with immune checkpoint inhibi-
tors targeting PD-15 19 53 54 Accordingly, we found that 
PPP enhanced the efficacy of anticancer chemothera-
pies with MTX and OXA, alone or in combination with 
PD-1 blocking antibodies. PPP on its own had little or 
no tumor growth inhibitory effects against MCA205 
fibrosarcomas, TC1 non-small cell lung cancers and 
AT3 triple-negative breast cancer. The anticancer 
effects of PPP were only detectable in combination 
with chemoimmunotherapy and were lost in tumors 
that lacked essential genes/proteins involved in 
the autophagic process (due to knockout of ATG5 
or knock-in mutation of eIF2α) or were rendered 

Figure 6  IGF1R inhibition improves the anticancer efficacy of immunotherapy. (A) Schematic overview of the in vivo treatment 
of murine lung cancer Tc1 cells with oxaliplatin (OXA), anti-PD-1 antibody and PPP, alone or in combination. (B–E) Growth 
kinetic of Tc1 cells evolving in immunocompetent C57BL/6 mice, treated as indicated in (A). When tumors became palpable, 
mice received systemic intraperitoneal injection of PPP alone or together with OXA or PD-1 blocker. Data ae depicted as (B) 
growth curves (mean±SD); (C) tumor size distributions at day 24; (D) individual tumor growth curves of mice treated with OXA 
and PPP, combined or not with PD-1 blockade. The generation of immunological memory was assessed in cured animals by 
rechallenge with MCA205 and Tc1. Individual tumor growth curves are depicted (E). Data were analyzed with TumGrowth. 
n≥ 6 for mice in each group. (*P<0.05 or ns, not statistically significant vs OXA; #P<0.05 or ns, not statistically significant vs 
OXA+PD-1 blocker, Student’s t-test, survival plots in online supplemental figure S7). (F) Schematic overview of the in vivo 
treatment of murine fibrosarcoma MCA205 cells with OXA, anti-PD-1 antibody and the selective of IGF1R inhibitor linsitinib 
(Lins), alone or in combination. IGF1R, insulin-like growth factor-1 receptor; PPP, picropodophyllin.
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resistant to PPP (by transfection with constitutively 
active AKT). Moreover, these anticancer effects were 
accompanied by an increased infiltration of tumors by 
CTLs together with improvement in the local CTL/
Treg ratio, and were lost in immunodeficient mice 
lacking mature T lymphocytes. Of note, it appears 
that the autophagy-dependent increase in extracel-
lular ATP from tumor cells38 plays a rate-limiting role 
in the therapeutic efficacy of PPP, which indeed was 
lost when cancer cells were genetically manipulated 
to express the ATP-degrading enzyme CD39 on their 
surface. Importantly, in one tumor model (TC1), PPP 
improved the outcome of OXA-based chemotherapy, 
and this effect was not further improved by PD-1 
blockade. This might prove therapeutically relevant 
in situations where anti-PD-1 cannot be administered.

PPP could be replaced by another IGF1R inhib-
itor, linsitinib, which has undergone evaluation in 
clinical trials.55–57 Linsitinib increased the efficacy 
of immunochemotherapy in mice, suggesting that 
this type of clinical grade IGF1R inhibitor should be 
evaluated in patients for similar combination effects. 
Indeed, linsitinib has been administered to patients 
with cancer either alone55–57 or in combination with 
other anticancer agents thought to mediate direct 
effects on cancer cells such as the MTORC1 inhib-
itor everolimus,58 the EGFR inhibitor erlotinib59 or 
the chemotherapeutics paclitaxel60 and irinothecan,61 
with variable results. However, linsitinib has not been 
investigated for its potential immune effects and has 
not been combined with any kind of immunotherapy 
including PD-1 blockade.

At the clinical level, we observed that the activating 
phosphorylation of IGF1R detectable by immuno-
histochemistry correlated with a reduction of LC3B-
positive puncta in triple-negative breast cancer 
patients. This IGF1R phosphorylation also correlated 
with poor local immunosurveillance as indicated by 
scarce infiltration by CD8+ CTLs but high abundance 
of FOXP3+ regulatory T cells and immunosuppressive 
CD163+ macrophages infiltrating the tumors, as well 
as dismal prognosis. These results confirm the nega-
tive effects of IGF1R signaling on immunosurveillance 
and disease control in breast cancer patients. A recent 
report on patients with colorectal cancer treated with 
chemotherapy together with EGFR or VEGF inhibitor 
revealed that overactivation of the IGF1R also consti-
tutes a poor prognostic factor, particularly in patients 
bearing RAS wild-type tumors.62 These findings echo 
prior observations that high expression of IGF1R 
(though without proof of its activation) is a poor 
prognostic biomarker in gastric63 and breast cancer.1

In conclusion, excessive antiautophagic signaling 
via IGF1R has a major negative effect on anticancer 
immunosurveillance, thus reducing patient prog-
nosis. However, IGF1R and its downstream signals are 
amenable to pharmacological inhibition and subse-
quent improvement of cancer control by the immune 

system. These considerations should be incorporated 
into the future design of clinical trials in which inhi-
bition of the IGF1R/PI3K/AKT/MTOR pathway will 
be combined with adequate immunostimulation with 
ICD inducers and/or immune checkpoint inhibitors.
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Figure S2
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Table S1. Clinicopathological associations of pIGF1R expression in triple-negative breast 

cancer 

 

Clinicopathological 

parameters 

pIGF1R 

Negative 

N=19 (%) 

pIGF1R 

Positive 

N=30 (%)
 

P value* 

Age at diagnosis, years 
52.3±7.1 55.7±12.9  

  ≤50 
8(42.1) 4(13.3) 0.0392 

  ≥51 11(57.9) 26(86.7)  

Grade    

  High 16(84.2) 16(53.3) 0.0718 

Moderate 3(15.8) 8(26.7)  

Low 0(0) 6(20.0)  

T stage    

T1 6(31.6) 8(26.7) 0.8114 

T2 12(63.1) 19(63.3)  

T3 1(5.3) 3(10.0)  

N stage    

N0 13(68.4) 21(70.0) >0.05 

N1 6(31.6) 9(30.0)  

M stage    

M0  19(100) 29(96.7) >0.05 

M1 0(0) 1(3.3)  

Ki67   0.0338 

<14% 0(0) 7(23.3)  

≥14% 19(100) 23(76.7)  

Recurrence    

No 15(78.9) 21(70.0) 0.7408 

Yes 4(21.1) 9(30.0)  

Median survival-up, months 43 28   

 

All cases were diagnosed as invasive ductal carcinoma and classified according to the American 

Joint Committee on Cancer (AJCC) staging system. T: tumor; N: lymph node; M: metastasis. 

 

*P values calculated by Chi-square testing; bold if statistically significant (P < 0.05) 
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