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Abstract 23 

 24 

Purpose of the review. Epidemiologic studies reveal that the link between obesity and 25 

osteoarthritis (OA) cannot be uniquely explained by overweight-associated mechanical overload. 26 

For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition 27 

to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the 28 

involvement of local adipose tissues in OA. 29 

Recent findings. Alteration in magnetic resonance imaging signal intensity of the 30 

infrapatellar fat pad may predict both accelerated knee OA and joint replacement. In this context, 31 

recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological 32 

remodeling of intra-articular adipose tissues in OA. In parallel, recent findings underline bone 33 

marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting 34 

its possible role in OA. 35 

Summary. The recent description of AT of various phenotypes within an osteoarthritic joint 36 

allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic 37 

process. We can expect in the near future the discovery of novel molecules targeting these 38 

tissues. 39 

 40 

Keywords: osteoarthritis, adipose tissue, adipokines, intra-articular adipose tissues, bone 41 

marrow adipose tissue 42 

  43 
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Introduction 44 

 45 

Osteoarthritis (OA) is the most common musculoskeletal disease and is one of the leading 46 

causes of disability worldwide. The disability-adjusted life years (DALYs) index for OA rose by 47 

34.8% between 2005 and 2015 [1]. The increase in the number of OA patients cannot be 48 

explained solely by the ageing of the world population, highlighting the importance of other risk 49 

factors. Obesity is the main modifiable risk factor for OA [2]. The World Health Organization 50 

estimates that the worldwide prevalence of obesity nearly tripled since 1975 with more than 1.9 51 

billion adults overweight in 2016, among them 650 million were obese. 52 

The role of overweight-associated mechanical overload has long been pointed out to explain 53 

the link between OA and obesity. Clinical studies indeed described positive correlations between 54 

body mass index (BMI) and both the incidence and the progression of knee OA [3, 4]. However, 55 

obesity also impacts non-weight bearing joints [5], suggesting that factors other than mechanical 56 

overload also contribute to joint damage in obese patients. 57 

In addition to their role in energetic metabolism, adipose tissues (AT) are endocrine organs 58 

releasing factors acting on distant organs. These factors, of which the prototype and the better 59 

known is leptin, are defined as adipokines [6]. Blood levels of leptin increase with BMI as they 60 

are in OA patients [7, 8]. Evidence argue for a role of leptin in OA [9]. Numerous other 61 

adipokines are produced by AT and their secretion pattern is also affected by obesity [10]. This 62 

altered secretion pattern of AT related to obesity reflects modifications in their tissue 63 

composition as well as modifications in the phenotype of cells present within AT. 64 

AT do not constitute a unique entity. White and brown AT have been described, differing by 65 

their developmental origin, the phenotype of their adipocytes and their function in energetic 66 
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metabolism and thermogenesis. Moreover, multiple white AT (WAT) exist, present in the whole 67 

body as separate fat pads with specific features. In this review, we will describe the known 68 

features of different AT, including subcutaneous, visceral, intra-articular and bone marrow AT, 69 

and will focus on their potential roles in OA. 70 

 71 

Methodology 72 

 73 

A search for original articles published between January 2017 and October 2020 was 74 

performed on PubMed. The search terms used were “Adipose tissue AND Osteoarthritis” for 75 

reviews, “Adipokines AND Osteoarthritis”, “Lipodistrophy AND joint health”, “Leptin”, 76 

“Adiponectin”, “Visfatin”, “Resistin”, “Chemerin-1”, “Progranulin”, “Omentin”, “Lipocalin-2”, 77 

“infapatellar fat pad”, “intra-articular fat pad” and “Bone marrow adipose tissue AND lipids”. 78 

All articles identified were English-language papers. In addition relevant references from 79 

selected publications and relevant references were identified.  80 

  81 
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Role of systemic adipose tissues 82 

Description and physiology 83 

AT can be related to OA progression by biomechanical and metabolic mechanisms (Figure 1). 84 

The biomechanical ones refer to an increase in body weight due to AT gain leading to abnormal 85 

loading on the joints. The metabolic ones include abnormal lipid profile and secretion of 86 

adipokines by adipocytes. Herein we summarize the implication of Subcutaneous (SCAT) and 87 

Visceral AT (VAT) on those mechanisms.  88 

SCAT is situated beneath the skin whereas VAT fills the peritoneal cavity and the space 89 

between internal organs. Augmentation on either of them implies an increase on body weight and 90 

on joint loading. Mechanical stress is an important factor on OA initiation and development [11-91 

13]. Exercise produces a loss of AT weight which alleviates pain symptoms in OA patients. 92 

Regarding the metabolic component, SCAT explants from OA patients stimulated with IL1β 93 

have been reported to increase pro- and anti-inflammatory signals [14]. Visceral adipocytes seem 94 

to be more active in terms of lipolysis and lipogenesis and a major source of adipokines and 95 

cytokines in comparison to other types of adipocytes. Adipocytes are also found in the middle of 96 

skeletal muscles and their accumulation on females is correlated with OA progression [11, 15]. 97 

Below we mention some of the most studied adipokines secreted by these different tissues and 98 

how they are related to OA.  99 

 100 

 101 

 102 

https://www-sciencedirect-com.proxy.insermbiblio.inist.fr/topics/medicine-and-dentistry/peritoneal-cavity
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Systemic adipokines and OA 103 

Adipokines may play a role in early diagnosis and management of OA symptoms due to their 104 

role on cartilage degradation, synovial inflammation and bone remodeling (Table). The 105 

evaluation of adipokine content in clinical and experimental models is obtained from serum, 106 

plasma or synovial fluid. Asides of AT, joint tissues participate in adipokines secretion. A great 107 

amount of adipokines have been correlated to OA onset, development and progression, being 108 

leptin the most studied one, followed by adiponectin, resistin and visfatin. Table summarizes 109 

recently published data on adipokines, whereas the text below focuses on the best described 110 

adipokines. These adipokines in OA drive pathways directly related to inflammation, cartilage 111 

degradation, infiltration of joint tissues by immune cells, mesenchymal stem cell (MSCs) 112 

differentiation, chondrocytes de-differentiation or osteoclast activation [16-18]. In addition, 113 

resistin and visfatin have been described as markers of knee function while leptin and 114 

adiponectin as pain markers in OA [19, 20], but further studies need to be performed.  115 

Omentin-1 and vaspin have been reported to be secreted exclusively by VAT but their role 116 

seems to be opposed to the rest of other adipokines. In vitro, they display chondro-protective 117 

activity and are negatively related to OA severity [17*]. Leptin, adiponectin and visfatin could 118 

also act under specific conditions as anti-inflammatory and anti-catabolic agents, avoiding tissue 119 

degradation. Chemerin for instance could be a marker for obesity-associated OA and with a 120 

possible role on innate immune system-associated inflammation on those patients, while 121 

lipocalin-2 has been suggested to be a mechano-responsive adipokine [17*, 18]. Interestingly, 122 

apelin is the only adipokine described so far to be directly involved with synovium angiogenesis, 123 

a known marker of severity in OA [21]. Many other adipokines have been shown to have a 124 
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possible role on OA [17*, 22]. Researchers keep testing if those interesting molecules could 125 

serve on the early diagnosis of OA as well as targets for future therapeutic strategies.  126 

 127 

Role of intra-articular adipose tissues 128 

Description and physiology 129 

Intra-articular adipose tissues (IAAT) are fat pads found between the synovium and the joint 130 

capsule. The best characterized and the largest IAAT is the infrapatellar fat pad (IFP). IAAT are 131 

white AT (WAT) as SCAT and VAT. Although their characteristics are close to those of VAT, 132 

IAAT share common features with SCAT that distinguish them from VAT [23*]. There is no 133 

clear consequence of high fat diet on adipocyte size or inflammation of IFP in mice, with 134 

contradictory published results [24-26]. Recent data on human OA patients reported an absence 135 

of link between obesity and IFP volume [27] or between BMI of OA patients and either 136 

adipocyte or inflammatory features of IFP [28], suggesting that IAAT may be different to SCAT 137 

and VAT and display specific functions. 138 

The physiological roles of IAAT are still not well characterized. IFP was initially supposed by 139 

Clopton Harvers at the end of 17th Century to secrete the synovial fluid and latter, by Jean 140 

Cruveilhier in the 19th Century, to fill gaps in the joint. By increasing the synovial surface, IFP 141 

facilitates the distribution of the synovial fluid. It may protect the patellar tendon and the anterior 142 

horns of the menisci and may supply nutriments to the patellar ligament [29]. IFP is also 143 

supposed to act as a shock absorber during joint movement. More recently, it was shown that IFP 144 

secrete factors [30, 31], especially prostaglandin F2α and prostaglandin E2, which induce a 145 
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fibrotic and inflammatory response in fibroblast-like synoviocytes [32, 33], suggesting that 146 

IAAT and synovium are partners of a same functional unit [23*, 34].  147 

 148 

IAAT and OA 149 

A debate exists for several years on the protective or detrimental effect of IAAT on OA. The 150 

role of IFP as a shock absorber has been pointed out to explain its possible protective effect, as 151 

recently reviewed [11, 35]. A protective effect of IFP-secreted factors and IFP-derived MSCs 152 

have been also proposed [11, 35]. Nevertheless, meta-analyses showed little if any detrimental 153 

effect of IFP resection on clinical outcomes after total knee arthroplasty [36-38]. On the other 154 

side, alteration in magnetic resonance imaging signal intensity of IFP has been linked to OA 155 

progression [39] and may predict both accelerated knee OA [40, 41] and knee replacement [42*]. 156 

Interestingly, with the aim of an early detection of OA progressors, Bonakdari et al. developed a 157 

method to predict the volume of IFP [43]. Although the relationship between IFP volume and 158 

OA remains unclear, IFP volume is related to patello-femoral joint OA pain [44]. IFP contains 159 

numerous sensitive fibers [45] and is considered as a major source of knee pain [46, 47]. OA 160 

IAAT are characterized by inflammatory cell infiltration, fibrosis and increased vascularization 161 

[23*, 48, 49]. Fibrosis and inflammation of IFP are known features of anterior knee pain. They 162 

are associated with an increased vascularization and calcitonin-positive nerve fibers in the 163 

fibrotic areas of IFP [50]. Similar observations were obtained with the monoiodoacetic acid 164 

(MIA) model of OA, in which IFP changes occurred before cartilage degradation [51, 52]. 165 

IAAT secrete factors with proinflammatory and tissue remodeling activities [23*, 30, 31, 33, 166 

49] (Figure 1). Interestingly, IFP from patients with OA and rheumatoid arthritis display distinct 167 

fatty acid signatures [53], suggesting disease-specific phenotypes for IFP. The OA-specific 168 
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secretory phenotype of IAAT may be directly involved in synovial inflammation and fibrosis 169 

[23, 32, 33] since IFP remodeling precedes synovitis [52]. 170 

IAAT cellular composition comprises adipocytes, leukocytes, endothelial and mesenchymal 171 

cells, all participating in the OA-specific secretory phenotype of IAAT [49, 54, 55]. Although the 172 

specific roles of IAAT macrophages remains unknown [56, 57], those of MSCs are more 173 

understood. Initially, an anti-inflammatory activity of IFP-derived MSCs from OA patients has 174 

been reported [58]. It has been recently proposed that IFP-derived MSCs may be deleterious in 175 

OA via their secretion of inflammatory factors, their ability to recruit monocytes and their 176 

exacerbated response to an inflammatory stimulus [54, 55]. In addition, cell lineage tracing 177 

experiments identified IFP perivascular MSCs as able to transdifferentiate into myofibroblasts 178 

and induce IFP fibrosis in posttraumatic OA model [59, 60*]. Moreover, fibroblasts isolated 179 

from fibrotic IFP have been involved in inflammatory cell recruitment and pain [61*].  180 

 181 

Role of bone marrow adipose tissue 182 

Description and physiology 183 

Bone marrow adipose tissue (BMAT) constitutes over 10% of total adipose mass and 70% of 184 

the bone marrow (BM) volume in young lean healthy human adults. The initial concept of 185 

BMAT as a passive fat storage depot has been challenged in the recent years although little is 186 

known about its physiological roles. It is now well accepted that BMAT has a unique 187 

development, molecular profile, regulation and modulation of the anatomical context that make it 188 

different from the other types of AT. 189 
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BMAT volume changes upon the pathophysiological conditions; it increases with ageing, 190 

obesity, type 2 diabetes, osteoporosis or skeletal unloading [62], whereas it decreases with 191 

exercise [63], mechanical loading and hormonal changes (Figure 2). BMAT can be classified 192 

into constitutive (cBMAT) and regulated BMAT (rBMAT). Both of them differ by the time of 193 

their development, their localization in the skeleton, their gene expression pattern and their 194 

content in saturated/unsatured lipids [64**]. These differences could indicate different functions 195 

and even different progenitors. Nevertheless, rBMAT could also change to a cBMAT phenotype 196 

under specific conditions [62]. 197 

BM adipocytes (BMAds) have one unilocular lipid droplet with abundant mitochondria [65] 198 

and their gene expression pattern is similar to white adipocytes [62]. It is believed that BMAds 199 

arise from BM MSCs, probably the same progenitors as osteoblasts. A recent study has proved 200 

the progenitors to be more white-like [66] even though it is possible multiple populations within 201 

the BMAds could exist [67]. BMAds secrete extracellular vesicles and numerous soluble factors, 202 

which may control bone microenvironment [62, 68**]. Zou et al. indeed recently showed that 203 

BMAds ablation provokes massive bone formation due to the activation of bone morphogenetic 204 

protein receptor signaling pathway in MSCs [69**]. In addition, lack of adipo-progenitors on 205 

mice produces bone loss and abnormal vasculature [70**]. 206 

Aside of its paracrine role, BMAT could regulate systemic metabolism. Moreover, patients 207 

with BMAT alteration frequently develop ectopic storage of fat resulting on insulin resistance 208 

[71]. BMAT lipogenesis is triggered by short-term cold exposure and is less dependent on 209 

insulin than WAT [66]. Little is known about the lipolysis mechanisms on BMAT, but it could 210 

be either cytoplasmic lipase-mediated or by lipophagy [68**, 72*]. Specifically, the uptake and 211 

esterification of fatty acids is greater in BMAT than in WAT and those fatty acids fuel 212 
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hematopoietic tumors and their oxidation is crucial for hematopoietic stem cell maintenance [73, 213 

74]. Suchacki et al. have shown that BMAds have high basal glucose uptake that is greater in the 214 

axial skeleton than in long bones [66], suggesting that BMAT may influence systemic glucose 215 

homeostasis and that this characteristic is needed to support normal metabolic function and de 216 

novo lipogenesis. 217 

 218 

BMAT and OA 219 

Pathophysiological conditions where bone homeostasis is lost have been directly related to an 220 

increase in BMAT. Surprisingly, they all constitute OA risk factors. In addition, OA entails sub-221 

chondral bone remodeling and BM is the only tissue where adipocytes and bone cells are in close 222 

association. All of these argue for a possible role of BMAT on OA (Figure 1). Moreover, the 223 

femoral heads from OA patients contained high amounts of fat and of n-6 fatty acids, especially 224 

arachidonic acid [75] (Figure 3). Early this year, Collins et al. proposed that knee joints of 225 

lipodystrophic mice were protected from spontaneous or post-traumatic OA, independently from 226 

diet [76]. Susceptibility to post-traumatic OA was reintroduced using implantation of AT derived 227 

from wild type animals, probably due to the paracrine signalling from fat [76]. Nevertheless, 228 

lipodystrophic patients have multiple bone abnormalities such as subchondral bone sclerosis, 229 

similar to OA patients [77]. Interestingly, osteoblasts and osteocytes can also accumulate lipids 230 

[68]. The cross-talk between BMAT and joint tissues is far from being unveiled and more studies 231 

are needed to describe the mechanisms involved on OA pathogenesis.  232 

Since all joint tissues are of mesenchymal origin and OA is a whole joint disease, it is 233 

possible that OA affects MSC features. Both the synthesis of a poorly mineralised matrix and 234 
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high content of fat characterize OA bone. This may result from a defect on the differentiation 235 

capacity of MSCs favouring preferentially adipogenic over osteogenic lineage. Moreover, a 236 

direct role of sclerostin in inducing BM adipogenesis through inhibiting Wnt signaling has 237 

recently been reported [78]. The inhibition of Wnt signaling increased expression of adipogenic 238 

transcription factors Pparγ and Cebpα and stimulated adipogenesis [79]. However, lack of 239 

adiponectin-positive progenitors in mice leads to both bone and angiogenic defects [70]. 240 

The role of BMAT in OA still remains speculative but numerous arguments indicate that it 241 

could be involved in the dysregulation of joint tissues in OA. Future studies are needed to 242 

explore in detail the role of BMAT in OA.  243 

 244 

Conclusion 245 

The discovery of the role of low-grade inflammation in certain phenotypes of OA has opened 246 

up new physiopathological hypotheses involving AT. The recent description of AT of various 247 

phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the 248 

initiation and progression of the osteoarthritic process (Figure 1). We can expect in the near 249 

future the discovery of novel molecules targeting these tissues. 250 

  251 
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Key points 252 

• Visceral and subcutaneous adipose tissues secrete adipokines, which differentially affect joint 253 

tissue homeostasis. 254 

• Intra-articular adipose tissue fibrosis and inflammation are early events in osteoarthritis and 255 

alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad may predict 256 

both accelerated knee osteoarthritis and replacement. 257 

• Inflammatory and remodeling factors secreted by intra-articular adipose tissue may be 258 

responsible for cell and tissue damages of both intra-articular adipose tissue and synovium, as 259 

components of a same functional unit.  260 

• Bone marrow adipose tissue is a newly studied adipose tissue and a known regulator of bone 261 

microenvironment. Its volume changes in pathophysiological conditions associated with 262 

osteoarthritis and its composition is enriched in n-6 fatty acids, especially arachidonic acid, in 263 

osteoarthritic patients, suggesting that it may be a new adipose tissue playing role in 264 

osteoarthritis. 265 
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Table. Adipokine in osteoarthritis 

Adipokine Source of detection Described action References 2018-2020 

Leptin 

Plasma  
Synovial fluid human knee OA  biomarker 

[80, 81] 

Serum Remarkable diagnostic value in the incidence of human 
knee OA 

[82] 

Synovial Fluid Leptin and its receptor may be an emerging target for 
intervention in human metabolic-associated OA. 

[9, 83] 

Adiponectin 

Serum 
Promising biomarker on human OA pathogenesis 

[84] 

Synovial Fluid Low levels observed in synovial fluids patients of lower OA 
grades. 

[81] 

  
Gene polymorphism intensifies the risk of human knee OA 

[85] 

Visfatin Synovial fluid 

Oxidative stress induction human in OA Synoviocytes 
[86, 87] 

Human cartilage catabolic effects (Apoptosis, matrix 
degradation, oxidative stress) 

[88] 

Bone remodeling on pig OA model [89] 

Resistin 

Plasma  Modulates OA miRs with Visfatin [86] 

Serum 
Progression and  pathogenesis of human knee OA 

[90] 

Synovial Fluid 
 Novel and reliable biomarker for human OA severity 

  
Pro-inflammatory effects in human OA 

[91] 
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Adipokine Source of detection Described action References 2018-2020 

Chemerin Serum 

Cartilage degradation 

[92] 
Inflammation 

Found on serums of patients with primary OA of the hand, 
knee or hip 

Omentin-1 
Synovial Fluid 
Serum Possible chondroprotective role in human cells 

[16] 

Vaspin In vitro 
Possible anti-catabolic effect in human cartilage 

[16] 

Possible anti-inflammatory effect 

Lipocalin-2 Synovial Fluid 

Pro-inflammatory effects in human OA 

[93] 
Its downregulation reduces chondrocyte inflammation 
and cartilage degradation 

Apelin In vitro human cells 
Angiogenesis synovium  

[21] 
Catabolic effects 

Progranulin In vitro human cells 

Triggers anabolic markers  

[94, 95] 
Anti-inflammatory and anti-catabolic effects 

Nesfatin-1 
In vitro human cells Possible protective role in the development of OA [96] 

Animal model Upregulated in OA chondrocytes [97] 
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Adipokine Source of detection Described action References 2018-2020 

RBP4 

Synovial Fluid 
Matrix degradation in human cartilage 

[22] 

Blood samples 
Positive correlation with other OA adipokines 

New Adipokines 
(SERPINE2, 
WISP2, GPBMB, 
ITIH5) 

In vitro 
Secreted by human OA chondrocytes, human OA sclerotic 
subchondral bone, human OA synovial tissues and human 
OA IAAT 

[98-101] 
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Figure legend 

 

Figure 1. Roles of the different adipose tissues on OA progression by biomechanical and 

metabolic mechanisms. 

Increases on systemic AT like SCAT (Subcutaneous adipose tissue), VAT (Visceral adipose 

tissue) and intra-muscular adipose tissue contribute to abnormal loading of the joint, this 

mechanical stress have been shown to be part of OA onset and progression. Lipocalin adipokine 

family has emerged as sensors of mechanical load, inflammatory status and catabolic stimuli of 

the joint, suggesting its involvement in OA pathophysiology. On the other hand, the paracrine 

role of SCAT, VAT, intra-muscular AT and local AT BMAT (Bone marrow adipose tissue) and 

IAAT (intra-articular adipose tissue) affect joint health. The adipokines secreted by all those 

tissues have proven to promote directly: 1. Secretion of inflammatory cytokines like Interleukin-

1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) which are well-documented for their 

active involvement in the pathophysiology of OA, 2. Cartilage catabolism, including inhibition 

of proliferation in chondrocytes and degradation of the matrix components, collagen type 2 and 

agrecan, 3. Immune response by the infiltration of joint tissues by monocytes and leucocytes 

which increases even more the inflmmatory signals present on the joint affected, 4. Loss of 

balance between osteoclast and osteoblast affecting directly bone remodeling, changes on bone 

constitution are part of OA pathology and 5. Changes on stem cell principal characteristics like 

prolifereation and differentiation capacity. 
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Figure 2. General characteristics of bone marrow adipose tissue. 

BMAT is currently considered as a tissue with significant paracrine and endocrine activities 

which make it a major player on different pathologies. BM adipocytes’ gene expression pattern 

is similar to white-like adipocytes, they have one unilocular lipid droplet with abundant 

mitochondria and recent study has proved the progenitors to be more white-like. Their secretory 

profile includes extracellular vesicles and numerous molecules like inflammatory factors, 

adipokines or RANKL. BMAT is a unique adipose tissue which functions are still to be reveled. 

BMAT has a high intrinsic plasticity, increases with age as well as in other pathological contexts 

like: obesity, type 2 diabetes or osteoporosis. BMAT content can also decrease with exercise, 

mechanical loading or hormonal changes. In terms of development it can be classified into 

cBMAT or constitutive BMAT and rBMAT or regulated BMAT. cBMAT developed early in 

life, located in the distal skeleton, repository of unsaturated lipids and constituted by adipocytes 

larger in size with reduced expression of adipogenic markers. On the other hand, rBMAT 

increases with age, is located in the proximal skeleton where the adipocytes contain saturated 

lipids and express high levels of known adipogenic markers. 

 

Figure 3. Possible role of bone marrow adiposity in joint health. 

BMAT may play a role on inflammation, subchondral bone sclerosis, aberrant angiogenesis, 

adipogenic differentiation and bone remodeling all of them involved on joint health and OA 

development and progression. Femoral heads from OA patients contain high amounts of fat, 

especially arachidonic acid precursor of prostaglandin E2 a known participant on OA 

inflammation [75]. Lipodystrophic mice were protected from spontaneous or post-traumatic OA, 
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this study proposes that adipose tissue is a critical antagonist of cartilage health and integrity due 

precisely to the paracrine signalling from fat [76]. Mice without adiponectin-positive progenitors 

had elevated trabecular bone mass and their vessels within the bone marrow were less in number 

and high in diameter; characteristics that were far from normal. Sclerostin produced by the bone-

mechanosensing osteocytes inhibits Wnt signaling stimulated adipogenesis of mouse MSCs and 

human MSCs [79]. Nevertheless, the cross-talk between all joint tissues and BMAT is far from 

being unveiled and more studies are needed to describe the mechanisms, adipokines, pathways 

and signalling involved on OA pathogenesis. OA BMAd (bone marrow adipocytes from OA 

patients), Pre-BMAd (bone marrow adipocytes precursors). 
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