

The challenge of gene therapy for neurological diseases: strategies and tools to achieve efficient delivery to the central nervous system

Timothée de Saint Denis, Françoise Piguet, Emilie Audouard, Kevin Beccaria, Arthur André, Guillaume Wurtz, Raphael Schatz, Sandro Alves, Caroline Sevin, Michel Zerah, et al.

▶ To cite this version:

Timothée de Saint Denis, Françoise Piguet, Emilie Audouard, Kevin Beccaria, Arthur André, et al.. The challenge of gene therapy for neurological diseases: strategies and tools to achieve efficient delivery to the central nervous system. Human Gene Therapy, 2021, 32 (7-8), pp.349-374. 10.1089/hum.2020.105. hal-03265982

HAL Id: hal-03265982 https://hal.sorbonne-universite.fr/hal-03265982

Submitted on 21 Jun2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1

The challenge of gene therapy for neurological diseases: strategies and tools to achieve efficient delivery to the central nervous system

4

5 Françoise Piguet^{1#*}, Timothée de Saint Denis^{1,2#}, Emilie Audouard¹; Kevin Beccaria^{1,2}, Arthur
6 André^{1,3}, Guillaume Wurtz¹, Raphael Schatz¹, Sandro Alves⁴, Caroline Sevin^{1,4}, Michel
7 Zerah^{1,2#*} and Nathalie Cartier^{1#*}

8

9 Authors affiliations

- 10 1 NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-
- 11 HP, University Hospital Pitié-Salpêtrière, Paris, France.
- 12 2 APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP
- 13 Centre. Université de Paris
- 14 3 APHP, Department of Neurosurgery, Hôpitaux Universitaires La Pitié-Salpêtrière, Sorbonne
- 15 Universités, UPMC Univ Paris 6, Paris, France
- 16 4 Brainvectis Therapeutics, iPeps Paris Brain Institute, Paris, France
- 17 5 APHP, Department of Neurology, Hopital le Kremlin Bicetre, Kremlin Bicetre, France.
- 18 # These authors equally contributed to the work
- 19 *Corresponding authors:
- 20 Françoise Piguet <u>francoise.piguet@icm-institute.org</u>
- 21 Michel Zerah michel.zerah@aphp.fr
- 22 Nathalie Cartier <u>nathalie.cartier@inserm.fr</u>
- 23
- 24

25 Abstract

For more than ten years, gene therapy for neurological diseases has experienced intensive research growth and more recently therapeutic interventions for multiple indicationsBeneficial results in several phase 1/2 clinical studies, together with improved vector technology have advanced gene therapy for the central nervous system (CNS) in a new era of development. While most initial strategies have focused on orphan genetic diseases, such as lysosomal storage diseases, more complex and widespread conditions like Alzheimer's disease, Parkinson's disease, epilepsy or chronic pain are increasingly targeted for gene

1 therapy. Increasing numbers of applications and patients to be treated will require improving 2 and simplifying gene therapy protocols to make them accessible to the largest number of 3 affected people. While vectors and manufacturing are a major field of academic research and 4 industrial development, there is a growing need to improve, standardize and simplify delivery 5 methods. Delivery is the major issue for CNS therapies in general, and particularly for gene 6 therapy. The blood brain barrier restricts the passage of vectors; and strategies to bypass this 7 obstacle are a central focus of research. Here, we present the different ways that can be used 8 to deliver gene therapy products to the CNS. We focus on results obtained in large animals 9 that have allowed the transfer of protocols to human patients and have resulted in the 10 generation of clinical data. We discuss the different routes of administration, their advantages 11 and their limitations. We describe techniques, equipment and protocols and how they should 12 be selected for safe delivery and improved efficiency for the next generation of gene therapy 13 trials for CNS diseases.

14

15 Introduction

16 The central nervous system (CNS) is protectected by a unique microvasculature, the 17 blood-brain-barrier (BBB), composed of endothelial cells connected by tight junctions and 18 adherent processes. The BBB controls brain homeostasis as well as ion and molecule 19 movements thus protecting the CNS against potential intruders. The restrictive nature of the 20 BBB provides an obstacle for drug delivery to the CNS, and major efforts have been made to 21 generate methods to modulate or bypass the BBB for delivery of therapeutics. Contrarily, 22 some pathologies of the CNS including stroke, multiple sclerosis, brain traumas and 23 neurodegenerative disorders, alter the BBB causing it to become more permeable, allowing 24 the entry of molecules that can induce inflammatory responses and lead to neuronal 25 damage^{1,2}.

Gene therapy has been applied to several CNS diseases, including neurodegenerative³ and neurodevelopmental disorders^{4,5}, but also increasingly for diverse conditions such as epilepsy⁶, glioblastoma⁷ and pain⁸. Increasingly, gene therapy products can be tailored to counter the pathophysiological mechanisms of particular disease mechanism, including the use of gene replacement^{9–11}-^{12,13}, gene silencing¹⁴, transplicing¹⁵, modulation of cellular pathways to improve phenotype^{16–19} or expression of suicide gene²⁰.

1 Gene therapy products can be delivered by various routes of administration, using 2 either ex vivo or in vivo strategies. Ex vivo gene therapy involves autologous transplantation 3 of hematopoietic stem cells corrected by genetic modification of lentivirus (HSC-GT) outside 4 the body and subsequent transplantation of the cells back into the patient. HSC-GT has shown 5 Efficacy for HCS-GT has been shown in clinical trials for leukodystrophies (ALD, MLD)^{21,22}. 6 Therapeutic action involves either production of the therapeutic protein by donor derived 7 cells that can migrate into the CNS (permanent source of the missing enzyme), and/or 8 modulation of the immune environment (replacement of microglial cells and/or perivascular 9 macrophages). In vivo gene therapy requires direct introduction of the vector (carrying the 10 therapeutic gene) into the patient (Figure 1). Intravenous administration is a common route 11 of administration for in vivo gene therapy but for CNS diseases the the limited capacity of 12 gene delivery systems to cross the BBB remains a significant obstacle Strategies such as 13 disruption of the BBB integrity (by osmotic or biochemical means) or improvement of viral 14 vector capsids continue to be developed toto enhance peripheral administration. Direct 15 delivery into the parenchyma of the brain or the cerebrospinal fluid (CSF) bypasses the BBB 16 and permits more targeted gene delivery . Following intrathecal or intracerebroventricular 17 administration, the therapeutic vector enters the cerebrospinal fluid and is delivered 18 throughout the CNS (at least to tissue adjacent to CSF spaces). Following intraparenchymal 19 administration, the therapeutic vector enters the brain parenchyma and is delivered locally 20 into brain cells. The diffusion of the therapeutic product is limited around the injection site; 21 however, secretion-uptake may improve diffusion, notably the case for most lysosomal 22 storage disease enzymes.

The vector of choice for *in vivo* CNS delivery is the adeno-associated viral (AAV) vector. Recombinant AAVs have been widely used for CNS gene therapy, demonstrating safety, stable and long-term expression and some degree of neuronal tropism relevant for many therapeutic applications. A large body of preclinical results have been obtained, particularly in large animals like dogs, cats and non-human primates that have demonstrated feasibility for clinical use²³.

Wild-type AAVs are non-enveloped parvovirus, which are characterized by an icosahedral capsid and a 4.7 kb single stranded DNA genome. To complete a replication cycle, AAVs require coinfection by a helper virus like adenovirus or herpes virus. AAVs infect humans and other species including the non-human primate (NHP)²⁴. Natural infection with AAV is not 1 known to lead to disease, although there is controversy concerning hepatocellular 2 carcinoma^{25,26}. The minimal sequence needed to generate Recombinant AAVs is restricted to 3 the 145 bp within the inverted terminal repeats (ITRs) flanking the transgene²⁷. The overall 4 capacity of AAV to package an ITR-flanked genome productively is the approximate size of the 5 wild-type AAV genome (i.e., 4.7 kb).

6 Overall AAV vectors have been used and have proven their safety and low immunogenicity tolerance in more than 200 human studies²⁸. Efficiency of an AAV administration is 7 8 determined mainly by the capsid, that directs the tropism of the virion, but can be impacted 9 by the route of administration²⁹. It is also well established that the specificity of transgene 10 expression is dependent on both the capsid and the regulatory elements present in the 11 vector³⁰. There are a large number of AAV serotypes based on capsid structure³¹. AAV2, the 12 first AAV serotype to be used as a replication-defective vector, has been the most extensively 13 characterized. Other AAV serotypes developed later as vectors, employ a cross-packaging 14 system, in which genomes flanked by AAV2 ITRs are packaged in other AAV capsids. These 15 serotypes have a wide variety of tissue and cell tropism³². For gene transfer to the CNS the most frequently used capsids have been AAV1³³, AAV2^{34–36}, AAV5³⁷, AAV9¹² and AAVrh.10^{9,38}. 16 17 AAV9 was shown to naturally cross the BBB and allowing for widespread, but 18 limited expression of the rapeutic genes in the CNS after a single intravenous injection of vector^{39,40}. Importantly, the first clinical report of gene-replacement therapy for SMA type I 19 has demonstrated the safety and efficacy of this approach⁴¹. However, the efficacy of brain 20 21 transduction efficacy may vary with the patient age at treatment. Ongoing efforts to engineer 22 capsids with improved capacity to cross the BBB. AAV variants^{42,43} such as AAV.PHP.B and AAV-B1^{41,44} have resulted in superior capacity for CNS targeting, at least in the animal models 23 24 tested⁴⁵.

25 Lentiviral vectors (LV) are members of the Retroviridae family, and based either on human 26 immunodeficiency virus (HIV), non-primate primates (SIV), or others such as equine infectious 27 anemia virus (EIAV)⁴⁶. The viral genome contains two long terminal repeats (LTR), with 28 elements required for gene expression, reverse transcription and integration into host 29 chromosome⁴⁷. For safety and efficacy, third generation of LVs do not have viral genes . Gag, 30 Pol and Rev genes are present in the packaging construct that allow the production of the 31 recombinant vector but not in the transgene construct. Different pseudotypes of LV with 32 different envelopes allowing for different viral tropism have been developed. The most frequently used is the vesicular stomatitis virus glycoprotein (VSV-G), which has a broad tropism *in vitro* and neuronal and glial tropism *in vivo*^{48,49}. Lentiviruses are able to penetrate the intact nuclear membrane through nuclear pores, do not require cell division and can efficiently infect quiescent cells^{50,51}. This ability to transduce dividing and non-dividing cells, long-term stable expression through transgene integration into the chromosomes of host cells, and their large cloning capacity make LVs desirable vectors for gene therapy⁵². They also have a cloning capacity of 9.7kb.

8 LVs are particularly useful for ex vivo gene therapy applications. Hematopoietic stem 9 cells (HSCs) can be stably transduced using lentiviral vectors; allowing for stable, indefinitely 10 persisting expression within the host cell, despite repeated cell division. This characteristic has 11 been widely applied to CNS lysosomal storage diseases or Adrenoleukodystrophy^{53,54}. Random 12 integration in the genome of host cells is associated with a potential genotoxicity risk, as previously observed with retroviruses^{55,56}. However, long-term follow-up of gene therapy 13 14 trials has not identified adverse events associated with insertional mutagenesis^{57–59}. In vivo 15 use of lentivectors for CNS applications has been more limited. Because of their capacity to 16 transduce neurons, they have been tested for the treatment of Alzheimer's disease (AD) and Parkinson's disease (PD)^{60–62}. For this review, we focused more on AAV since they have been 17 18 more widely used in CNS targeting for large animals and human clinical trials.

19

20 Evaluation of administration routes in preclinical studies

21 Translation to clinical application after proof-of-concept in mouse models of the 22 disease most often requires efficacy and tolerance studies in large animals.

23 Many species have been used⁶³ for preclinical development. Affinity for the different 24 types of brain cell in large animal species remains a major isssue. The choice of the large 25 animal model to be used is mainly based on the use of a large animal model of the disease 26 when available^{64–67} otherwise on anatomical aspect to mimic the best situation to be 27 reproduced for future clinical trials.

When the gene therapy product is administered by injection in the blood stream or the CSF any suitable species of large animal can be employed. However, when delivery is based on direct intra-parenchymal injection into the brain for characterizing biodistribution, toxicity, diffusion, affinity with different types of brain cells, pigs, sheep and non-human primates (NHP) are preferred species for modeling trajectories and efficient targeting. In all cases it must be emphasized that the use of large animals is strictly limited for ethical reasons and
 should be performed in GLP or GLP-like conditions to be usable for regulatory documents.

3

4 <u>Intraparenchymal delivery</u>

5 The principle studies of intra-parenchymal (IP) gene delivery in large animals are 6 summarized in Table 1. Direct IP injection – either direct perfusion or convection enhanced 7 delivery (CED)- allows targeted delivery in CNS regions while bypassing the BBB. However, IP 8 injections remain more complex to perform than ICV or IT techniques for several reasons⁶⁹. 9 The choice of the target region is always a challenging balance between efficacy and safety. 10 Therefore, the specific anatomy as well as pathophysiology of the disease should be 11 considered when choosing target sites.. Targeting the white matter in multiple sites may enhance vector spreading¹¹. In particular, AAV vectors are readily transported along axons 12 which facilitate the distribution of the therapeutic gene⁷⁰. The spreading and directionality of 13 14 AAV transport are serotype-dependent⁷¹. AAV2, which has been widely used in IP gene 15 delivery, resulted in anterograde transport⁷² of vector particles from basal ganglia to cortex in NHP^{73,74}. In contrast, AAV6 is axonally transported exclusively in a retrograde 16 17 direction⁷²while AAV9 shows a bidirectional transport and is dose dependent⁷⁵.

18 Recent studies suggest that AAV5 and AAvrh10 have more global transduction with 19 widespread distribution in the brain^{11,76,77} and spinal cord. Lentiviral vectors are able to deliver 20 the therapeutic gene in a restricted area^{78,79}.

21

22 Intracerebrospinal fluid delivery

As an alternative to intraparenchymal delivery and to target larger brain or spinal cord volumes, especially in neurodegenerative diseases involving widespread regions, an alternative to intraparenchymal injection is intra-CSF delivery.

For this purpose, three major routes can be used: intracerebroventricular delivery into the ventricles, the cisterna magna as widely used in large animal models (Table 1) or by intrathecal delivery into the CSF surrounding the spinal cord (Table 2).

Lentiviral vectors have been used in one approach in adult sheep, but this reported attempt resulted in very limited transduction close to the needle track with up to 2.5mm rostro-caudal transduction⁸⁰. AAVs lead to greater transduction especially in adults. ICV delivery in young animals differ, providing extensive transduction of motorneurons in some

1 cases. Using scAAV9 in 5-days old pigs⁸¹ and in 10-11 days old dog, Katz et al. reported a TPP1 2 activity increase in CSF a few days after transduction, but then loss of the transgene due to immune response against the transgene product⁸². AAV9 and AAVrh10 have been 3 predominantly injected with doses ranging from 10¹²vg to 5.10¹³vg in dogs, NHP and cat^{70,83-} 4 5 ⁹¹ mainly in the *cisterna magna* with either GFP or therapeutic genes (Table 2). Diffuse 6 transgene expression was obtained in the cortex and cerebellum (Table 2). In most studies, 7 efficacy of spinal cord targeting was not analyzed; however, available studies report highly 8 variable results with large motoneuron transduction⁹².

9 As an alternative to ICV delivery or depending on the pathology to improve spinal cord 10 targeting, delivery in the CSF can be achieved through intrathecal injection. Studies have been performed in dogs^{89,93,94}, NHP^{13,88,95}, pigs^{87,96} and marmosets⁹⁷ mainly using AAV9 or AAVrh10 11 12 vector in neonates (5 day-old) to adult animals (Table 3). Two major techniques are routinely 13 used for intrathecal delivery, either a single delivery without the use of a catheter, generally 14 performed in the L4/L5 space, or with prior insertion of a catheter to allow either single or multiple deliveries^{87,98}. Intrathecal delivery leads to efficient motoneurons transduction with 15 efficiency ranging from 10-30%⁸⁷ to 80%¹³ depending on the study (Table 3), but sparse 16 17 transduction in the brain (Table 3). Two studies have evaluated placing the animal in the 18 Tredelenburg position with the feet elevated above the level of the head to improve the 19 upward diffusion of the vector. Variable results were reported, one showing no improvement⁹⁹ and the other one a slight increase, with up to 55% targeting of cervical 20 21 motoneurons¹³ (Table 3).

Even if ICV delivery is designed to target basal ganglia (Figure 1d), intracisternally to target the cortex (Figure 1c) and intrathecal delivery for the spinal cord (Figure 1b), the direct relationship between the site of injection and the efficient delivery to the target has never been proven, and appear to different between NHP and human in relation to the volume of the respective brains and the distance between CSF pathways and the CNS targets.

In between intraparenchymal and intra-CSF delivery, for intraspinal targets, spinal subpial delivery has been proposed in mice, rats and pigs^{100,101}. Despite the short distances for spinal diseases, the primary issues remain the need for an open micro-neurosurgical approach following laminectomy (or a laminotomy) and the risk of neurological deficits secondary to spinal cord subpial bleeding.

1 Intravenous delivery

2 As an alternative to more invasive injections, IV delivery has recently become an option to target the CNS, especially with the SMN trial⁴¹. AAV9 and AAVrh10 are once again the major 3 serotypes injected dosing from 10¹²vg/kg up to 10¹⁴vg/kg. In neonates (2 to 7 days-old) studies 4 have demonstrated up to 39% transduced motoneurons in cats⁸¹ but other studies were 5 6 unable to detect the transgene⁹² (Table 4). In adults differ with mild to no neuronal transduction^{85,94} either in spinal cord and brain (Table 4). Transduction was in any case much 7 8 lower compared to ICV⁸⁸ or intrathecal delivery and glial cells were predominantly transduced ^{90,96}, without clear explanation. In addition, IV delivery led to an significant transduction of 9 10 peripheral organs (Table 4).

11

12 **Routes of administration in clinical studies**

13 While intravenous delivery is readily transferred from animal models to human trial 14 conditions, CSF or brain delivery techniques must be carefully adapted for human conditions 15 (brain anatomy and volumes). ICV, cisternal and intrathecal methods, can however all be used 16 in human subjects. There is very little intraventricular vector diffusion after cisternal or 17 intrathecal injection; most of the product remains in the spinal compartment or reaches the 18 peri-cerebral space. Because of the size of the brain and the distance between the ventricles 19 and the cortex, it is impossible to achieve consequent and homogenous diffusion by any CSF 20 route.

Intraparenchymal injection is possible in the human brain, in deep nuclei, or in the white matter (but may need multiple simultaneous injections to obtain sufficient diffusion), but there is no reliable technique for delivering to the spinal cord parenchyma.

The doses of vector delivered depends on the route of administration. While intraparenchymal delivery requires small amounts of vector ranging from 10⁹ to 2.5.10¹² total vg in NHP and human, doses from 10¹² to 5.10¹³ vg are required for ICV or intrathecal delivery. Intravenous delivery dramatically increases the number of particles required; from 5.10¹² to 5 10¹⁴ vg (10¹² to 10¹⁴ vg/kg) in NHP and close to 10¹⁵ vg in patients in the SMA trial (2.10¹⁴/kg) (see tables 1-6).

Local administration of low doses of vector limits biodistribution and the risk of
 immunogenicity or toxicity due to AAV capsid or expression of the transgene. The high doses

required for intra-CSF and IV administration raise issues of immunogenicity, manufacturability
 and final cost.

3 Translating gene therapy proof of concept in animal models to clinical application in 4 patients requires adapting delivery protocols. Translation may be simple for intra-CSF or IV 5 delivery, based on the weight of the animal or the volume of the brain tissue or of the CSF. 6 Modeling the delivery into the brain parenchyma is more critical for designing a clinical 7 protocol. This should take into consideration the volume of the target region determined by 8 imaging, the sites and the number of injections, the degree of anatomical precision required, 9 the volumes to be injected, and the flow (constant or CED). Translating these parameters from 10 large animal brain to human brain requires specific anatomical adaptations (needle track in 11 particular) and evaluation of feasibility, safety and efficiency in terms of biodistribution in 12 animal models under conditions as close as possible to the human clinical procedure.

There is no limits for age, and theoretically, it is possible to treat even newborns by all routes of delivery. It is possible to use frameless stereotactic delivery using magnetic or optic neuronavigation. In addition, robotic systems are now available even in the youngest subjects. The youngest child treated by our team with intracerebral delivery (16 targets supra and infratentorial) was 9 month-old⁹.

18

19 Intra cerebro-spinal fluid delivery

To overcome the inability of the gene therapy vectors to cross the BBB, direct injection within the CNS compartment has been attempted¹⁰². All trials using these routes of administration are summarized in Table 5. Three main modalities can be discussed:

• Intrathecal lumbar administration with 2 potential modalities:

24 (1) Direct unique injection by a lumbar tap or through an intraspinal catheter 25 connected to a subcutaneous reservoir. The use of a single injection by lumbar 26 tapping is a non-surgical procedure. It could be done, in a medical environment, 27 with local anesthesia. In difficult cases, the use of Fluoroscopy or Ultrasonography⁶⁸ can facilitate the procedure (or to guide a catheter insertion). 28 29 The main inconvenience of this techniqueis the risk of CSF leak in the extradural 30 space at the moment of needle removal and the one to two days post procedure. 31 Consequently, it is impossible to precisely control the quantity of vector

1 2 administered within the intradural space. The use of atraumatic G22 needle (Sprotte) can minimize this risk⁶⁸.

- 3 (2) To avoid this major inconvenience, the alternative is to install a subcutaneous reservoir connected to an intraspinal catheter⁶⁸. This procedure must be done in 4 5 the operative room, under general anesthesia. Injection must be performed one 6 or two weeks after the initial surgery and the removal of the system at least one 7 week after. This technic guaranties control of the injected volume, but needs two 8 general anesthesias and increases the risk of infection. The main incertitudes of 9 this technique is determining the exact distribution of the product between the 10 different compartments; intraspinal CSF, intraventricular and intracranial 11 subarachnoidal spaces (Figure 1). The main disadvantage of the ITL access results 12 from the natural flow of CSF from the intraventricular choroid plexus to the subarachnoid space around the spinal cord and finally to the pericerebral spaces 13 14 for resorption through the venous system. Reaching the brain target through the 15 CSF stream requires a large dose volume. Other associated strategies can be used 16 to improve the efficacy such as a buffer flush or a Tredelenburg position. 17 Complications due to the device and its implantation also have to be considered. 18 Meningitis can be a severe infectious complication that needs removal of the 19 system and adapted antibiotics treatment. Other mechanical complication can be 20 encountered such as migration, rupture or disconnection, kinked or obstructed 21 catheter. A CSF leak around the catheter to the subcutaneous space can lead to an 22 artificial meningocele that can impair the ability to infuse the treatment. To 23 overcome this problem, two other modes of administration have been proposed.
- 24

Intracisternal administration^{103,104}:

In most cases, it is possible to inject within the cisterna magna at the level of the
 craniovertebral junction. Even if it is possible to do it while the patient is awake,
 general anesthesia will be preferred, especially in the pediatric population. The risk of
 leakage is very low through this route and in most cases the reservoir is useless.

• Intraventricular administration

A third way route to the CSF space is to inject directly within the cerebral ventricles.
 In most cases, it will be done in the frontal horn by direct puncture under stereotactic
 guidance or more frequently now under frameless neuronavigation. In adults, it is

easily doable under local anesthesia and light sedation, in the pediatric population general anesthesia is preferavble. Installation of an intraventricular catheter connected to a reservoir amy be preferred, however for a single injection, direct injection is safe and efficient. It is also better for controlling the volume of injection and its distribution. However, because of the risk of parenchymal bleeding, most authors prefer the cisternal approach.

7 Intraparenchymal delivery

8 Few human trials using the intracerebral route are reported (Table 6); Both in adults 9 (Huntington, Parkinson and Alzheimer diseases) and children (SMA, Canavan, Batten, 10 mucopolysaccharidosis, MLD). The vast majority of the trials have employed AAV vectors 11 (from 10⁷ to 10¹³vg) with injections in the deep grey nuclei or in the white matter (only for 12 metabolic diseases in children). Most published trials are Phase 1/2 and one is phase 3. Several 13 studies obtained romising results even if partial or preliminary. Importantly, few severe 14 adverse events have been reported.

15

16 **Technical aspects: state of the art**

17 Regarding delivery technique, we focus here on intracerebral delivery, indeed, other routes 18 of delivery have been largely described previously and have not been researched as 19 intensively.

20 Devices for intraparenchymal delivery of therapeutics agents

Intraparenchymal drug delivery systems offer a practical method for bypassing the BBB to deliver gene therapy. Direct access to parenchyma allows delivery at doses and concentrations that would otherwise correspond to very high levels and volumes systemically. However, this method still has constraints and limitations. For more than ten years, considerable research has focused on developing methods to enhance drug delivery¹⁰⁵, through dedicated intraparenchymal devices.

27 <u>Principles:</u> Intraparenchymal delivery has two principle challenges : minimize backflow 28 along the injection device and promote optimal drug distribution¹⁰⁶, often in a spherical tissue 29 volume. The distribution volume depends on infusion flow rate, infusion volume and number 30 of injection sites and the type of vector that is injected¹⁰⁷. The occurrence of backflow depends 31 on several variables including cannula radius, infuse flow rate, and tip location¹⁰⁸. Indeed,

1 many parameters influence the safety and efficiency of infusion: infusion flow rate, cannula size, infusion volume, and drug molecular size/charge¹⁰⁹. Variations in flow rate impact the 2 3 location of infusate distribution. Lower infusion rates (under 1 µl/min) are associated with 4 distribution localized primarily to the target tissue (they are used for focal injection in specific 5 areas, mainly in grey matter nuclei) whereas higher infusion rates result in increased distribution into the surrounding parenchyma («overflow»)^{106,109}. Several techniques have 6 been proposed to increase infusion rates (up to 10 μ l/min); among them the use of CED¹¹⁰ 7 8 (convection enhanced delivery) which appears to provide the best compromise for extensive 9 diffusion with minimal local damage. They are used combined with multiple injections (up to 16)⁹ when the whole brain must be treated (lysosomal diseases)¹¹. Increases in infusion rates 10 11 raise the local pressure around the infusion site and also increases the extent of backflow. 12 Cannula size seems to have no effect on distribution ; however, larger cannulas cause more 13 tissue damages and therefore produce decreased resistance pathways along the brain 14 parenchyma-catheter interface that are associated with increased rates of backflow¹⁰⁹.

15 <u>Catheters subtypes</u>: Three kind of delivery devices can be distinguished : catheters 16 derived from another use (especially intraventricular devices), «homemade» designed 17 catheters^{11,38,105,111} from teams experimenting with pre-clinical intracerebral drug delivery or 18 for early clinical studies³⁸, and more recently commercialized catheter for specific 19 intraparenchymal use (often developed from the homemade devices, and for intracerebral 20 chemotherapy). Principal available devices are described in Table 7.

Ventricular catheters (2–3 mm outer diameter) that have been implanted in clinical trials to treat glioma have failed to distribute effectively and have been linked to poor distributions^{112,113} Microcatheters (less than 1mm outer diameter) seem more reliable, and all FDA approved catheters for CED belong to this category.

25 Design: Recent catheters have been designed to reach the goals of parenchyma 26 delivery : minimize invasiveness through a minimal diameter tubing (Casanova), optimize 27 infusion parameters to maximize distribution volume, and a reflux inhibiting feature is 28 required to halt backflow along the catheter entry track¹¹². All these characteristics are 29 summarized in Table 7. Means to minimize backflow are the following : polymer-impregnated 30 tips^{105,114}; stepped-design cannula^{108,115,116} Recessed-design cannula^{112,117} (Bristol). Means to 31 enhance delivery are: multiporous cannula, multiport catheters, mobile-tip catheter, balloon-32 type cannula. A 'valve tip' has been proposed to prevent blockage by occluding the inner bore

of the cannula with a stylet during insertion¹⁰⁶. Another new advance is a multi-site delivery
 catheter with one single tube¹¹⁸ (CMC, IMI) that allows multiple targeting points and more
 homogenous delivery in a three dimensional array.

<u>Pumps and syringes</u>: To enable injection of small volumes at precise, low speeds, specific
pumps and syringes must be employed. For pumps, most are manufactured for research use
(Harvard Apparatus, Holliston Massachusetts, USA), and special authorizations must be
obtained for clinical use.

8 Injection systems: Combining precision delivery and limited procedure time.

9 Classical stereotactic technics are well adapted for injection in a unique site of brain 10 parenchyma - however, new techniques allowing multiple brain injections of the gene therapy 11 for many indications are needed. Specific 3D MR sequences allow precisetargeting in white 12 matter or in deep grey matter nuclei (striatum, thalamus, caudate nucleus...). Preplanning 13 using neuronavigation software (Medtronic[®] or Brainlab[®]) facilitates the choice of 14 trajectories, modeling delivery and rehearsingthe surgical procedure. Optic or magnetic 15 neuronavigation system with or without robotic tools (Rosa[®], Renishaw[®], Medtronic[®], 16 Brainlab[®]) allows frameless insertion of multiple cannulas, supra or infra-tentorially according 17 to the preplanning. Altogether these systems allow the delivery of therapeutic product 18 reproducibly with high precision (around 1mm). Intra-operative Real-time MRI has also been 19 proposed as an additive tool to verify the position of the cannula and to check the diffusion of the product with simultaneous gadolinium injection^{119,120}, albeit with the risk of long term 20 21 toxicity.

22

23 **Risks assessment**

24 Linked to the delivery procedure

Risks due to anesthesia are mainly correlated to the disease itself and related comorbidities. All injections or catheter placement can result in a CNS injury or hemorrhagic complications. Lumbar puncture is at very low risk of complication if done at the low lumbar level without spinal cord anomalies such as low tethered cord. Epidural hematoma can occur, especially with repeated punctures. Spinal epidural hematoma can remain asymptomatic but sometimes cause radicular pain and even rare motor impairment or sphincter dysfunction in case of cauda equina syndrome. A motor impairment requires a surgical evacuation. Lumbar

puncture can cause subarachnoid bleeding leading to radiculitis, pain and headache. In case
 of spinal deformity, fluoroscopy or ultrasonography may help to guide the puncture.

Intrathecal catheter placement needs the use of a guide wire to conduct the catheter to the thoracic level or higher and can result in a spinal cord injury and cause motor or sensitive (transient in the vast majority of the cases) dysfunction. The risk of a hemorrhagic complication in the epidural or intradural space is higher in relation to the larger size of the needle.

8 Intracranial hypotension symptoms can occur secondary to a lumbar puncture and 9 cause severe orthostatic headaches which can be managed with supine position, painkillers 10 and if needed, blood transfusion.

11 Intracisternal puncture requires an adequate cisternal space (verified by MRI), a 12 motionless situation and an experienced operator. The size of the cisterna magna and the 13 shape of the skull, a Chiari anomaly or a foramen magnum stenosis increase the risk of 14 neurological complication (Bulbomedullary junction injury responsible for cardiorespiratory 15 arrest).

16 Intraventricular access is performed through a right frontal of the brain. Bleeding can 17 occur along the trajectory at each level: sub cutaneous hematoma or epidural hematoma are 18 rare. Subdural hematoma can occur by direct bleeding or an intracranial hypotension 19 secondary to a CSF loss, intraparenchymal hematoma can be asymptomatic but may, if 20 extended, lead to motor or cognitive impairment. Intraventricular bleeding may be 21 responsible for headaches and sometimes secondary hydrocephalus.

22

23 <u>Linked to the treatment</u>

24 Gene therapy using viral vectors is mainly hampered by immunogenicity^{121–125} particularly 25 with AAV. Indeed, many people have already been infected by wild-type AAV once in their 26 life, inducing anti-capsid neutralizing antibodies (NAb) spread among various serotypes^{126–129}. 27 Moreover, cross-reactive immunologic material (CRIM) status is also important to predict 28 clinical response. CRIM-negative patients with null mutations or out of frame stop codons are 29 completely unable to produce protein [that has to be supplied/involved in their disease] and 30 are therefore more predisposed to develop an anti-transgene response^{130,131}. Such host 31 immune responses, particularly happening when intravenous and intramuscular injections are 32 performed, significantly impair delivery of the therapeutic protein and be possibly deleterious

for patients^{132–134}. Delivery of AAV vectors directly into the brain induce low or absentanti-1 capsid or anti-transgene NAb titers in serum^{119,135–138}. Thus, it must be considered for patient 2 3 inclusion criterias and study design in clinical trials. Conventional strategies to prevent 4 immunogenicity include corticosteroids or immunosuppressive drugs. Corticosteroids (e.g. 5 methylprednisolone, prednisone) and immunosuppressive drugs (e.g. sirolimus, tacrolimus, 6 rituximab, bortezomib, mycophenolate, cyclosporine) are administered post-injection and 7 eventually in pretreatment in several clinical trials^{41,139,140}, though their effects are controversial^{141,142}. Other approaches are emerging such as plasmapheresis^{141,142}, editing AAV 8 9 capsids to eradicate epitopes that induce NAb generation¹⁴³, using tolerogenic nanoparticles^{144,145}, and the incorporation in the transgene of microRNAs (miR) target 10 11 sequences integrated in the expression cassette that specifically repress translation in antigen-presenting cells (APCs)^{146,147} or oligonucleotide sequences that inhibit toll-like 12 receptor 9 (TLR9) activation (in development by George Church's laboratory, Harvard Medical 13 14 School, patent WO2017214378A1).

15

16 **Future development and perspectives**

17 <u>New AAV serotypes with broad CNS transduction after IV delivery</u>

18 Over the last decade, significant efforts have been expended in updating the natural 19 repertoire of viral vectors as well as engineering new serotypes¹⁴⁸. Using the Cre 20 recombination-based AAV targeted evolution (CREATE) technique, new AAV variants have 21 been isolated, some able to homogenously transduce the central nervous system, especially 22 neurons and astrocytes, after intravenous injection in mice^{149,150}, and potentially in NHP 23 although clear evidence of efficacy remain to be emonstrated. Improved CNS transduction is 24 linked to Ly6 which is not expressed in all mouse lines and not in NHP^{151,152}. Indeed a major 25 challenge is to identify capsids that will be able to efficiently pass the BBB and in mice, NHPs 26 and human subjects. In addition, the selected capsids should be compatible for large scale 27 production.

28

29 Blood Brain barrier opening as a solution to enhance CNS targeting

Temporary disruption of the BBB might help delivery in the brain parenchyma. Osmotic disruption of the BBB with intra-arterial injection of mannitol has been widely studied and allows for delivery of a variety of drugs and agents into the CNS, including viral vectors¹⁵³. However, this technique induces a diffuse opening of the BBB, precluding for targeted delivery
 of drugs and is potentially associated with significant neurological side effects.

3 Ultrasound-induced transitory disruption of the BBB is another technique that has gained 4 increasing interest since Hynynen et al. demonstrated that the IV injection of preformed gas 5 bubbles prior to low intensity pulsed ultrasound (US) sonications allowed for a reduction of the acoustic pressure necessary to safely open the BBB in rabbits¹⁵⁴. The interaction between 6 7 US and injected microbubbles is essential for opening of the BBB, and mechanisms of BBB 8 disruption may include transcytosis, cell fenestrations, and opening of tight junctions¹⁵⁵. US-9 induced BBB disruption can be monitored with MRI, as a contrast enhancement in T1weighted sequences after gadolinium injection¹⁵⁴ and is limited to the US beam¹⁵⁶. 10

The safety of the technic has been assessed through pre-clinical studies. With optimized parameters, histological side effects are limited to red blood cell extravasation and petechial bleeding¹⁵⁷ after both single or multiple US sessions¹⁵⁸. BBB disruption may induce a transitory sterile inflammatory response¹⁵⁹. Recent studies have confirmed that the technic was clinically well-tolerated in non-human primates¹⁶⁰.

16 This technic was used to deliver an AAV1/2 viral vector in a targeted manner to the striatum 17 of rats. Transduction observed was mainly restricted to neurons and stable during more than one year¹⁶¹. Two main approaches have been developed in order to bypass the skull interface 18 19 that induces attenuation and distortion of the ultrasound beam. In one case, InSightec (Haifa, 20 Israel) developed a 512-element phased-array transducer, the ExAblate® 4000 system, that allows a transcranial and noninvasive opening of the BBB (McDannold et al. 2010). On-going 21 22 clinical trials are currently evaluating the safety of the ExAblate[®] system for drug delivery after 23 BBB disruption (NCT02343991, NCT02253212). In another case, CarThera SAS (Paris, France) designed an implantable device, the SonoCloud® device, which can be plugged into the skull, 24 and activated through a transdermal needle ¹⁵⁶. Interim results of the first clinical trial 25 26 (SONOCLOUD, NCT02253212) evaluating the safety of this system in adult patients treated for 27 recurrent glioblastoma with systemic carboplatin have shown no dose limiting toxicities and 28 no treatment-related serious adverse events¹⁶². A phase I trial (SONOKID) assessing the safety 29 of repeated BBB disruptions by the SonoCloud® device in association with intravenous 30 chemotherapy in recurrent supra-tentorial malignant primitive tumors in the pediatric 31 population should begin during 2020¹⁶³. More recent studies have been reported with 32 percutaneous ultrasound but with no additional value¹⁶⁴.

1

2 <u>Encapsulated cells and Optogenetics</u>

Encapsulated cell technology (ECT) eventually combined with optogenetics allows the delivery
of treatment in a continuous or in a controlled/discontinuous ways, respectively.

5 ECT is a concept based on the confinement of the grafted cells within a permeable device.

6 ECT has already been shown to be well tolerated in large animals such as dogs for the treatment of intervertebral disc degeneration¹⁶⁵, in pigs¹⁶⁶ and NHPs¹⁶⁷ for Alzheimer's 7 8 disease. Moreover, ECT has already been translated to clinical studies where the safety, 9 feasibility, and tolerability of procedure has been shown e.g the delivery of neurotrophic factor in disorders of eye (168-170; clinicalTrial.gov NCT00447980, NCT00447993, 10 11 NCT02228304, NCT00447954), in Alzheimer's disease (¹⁷¹; NCT01163825), in Huntington's disease^{172,173} and in amyotrophic lateral sclerosis¹⁷⁴. Moreover delivery of anti-amyloid 12 immunotherapy by ECT is described in AD patients^{175,176}. Thus, ECT provides an innovative 13 14 approach for the local and systemic delivery of a recombinant protein in the CNS.

15 The optogenetics approach uses optical methods to modulate the cellular expression of 16 molecules, which are activated by irradiation with light energy by genetic engineering to 17 control/regulate cellular function or intracellular signal transduction¹⁷⁷. One of the challenges 18 of optogenetics is its translatability to the clinic. Many improvements in optogenetic 19 technologies in NHPs have been performed to exert precise control of specific cells or brain regions at the millisecond timescale and to reliably transduce cells and readout the optically 20 21 induced neural modulation^{178,179}. A new optogenetic approach has been described by Ruiz et 22 al., 2013 in which the native dura is replaced with optically transparent artificial dura allowing 23 visual monitoring of the expression of the optogenetic agent over time.

24 The first optogenetic study of NHP was performed in 2009¹⁸⁰ and followed by numerous 25 studies performed to study the link between brain function and behavior using optogenetic stimulation^{181,182}. None of the optogenetic studies allowing the delivery of treatment was 26 27 performed in NPH. However, many applications of optogenetics in CNS diseases (Stroke, 28 Epilepsy, MS, AD, PD) were described by Ordaz et al., 2017. One of the major obstacles to 29 widely use optogenetic tools in patients remains the delivery to the brain. For this reason, it 30 is essential to reduce brain tissue damage inflicted by probe penetrations and light-induced 31 heating for optogenetic procedures. Once these problems are overcome, optogenetics can be 32 an advantageous tool to treat neurological diseases providing an alternative treatment with less side effects than current therapies¹⁸³. The first patient dosed with optogenetics was
 treated for retinitis pigmentosa in a clinical trial conducted by RetroSense Therapeutic in 2016.
 More recently, one Phase I/II clinical trial of optogenetics for vision restoration is registered
 (NCT02556736, sponsor Allergan; NCT03326336, sponsor GenSight), but no results have been
 published to date.

6

7

7 <u>Hematopoietic Stem cell gene therapy to treat CNS diseases</u>

8 Hematopoietic stem cell transplantation (HSCT) is the best example of stem-cell therapy and 9 is currently an established treatment for several neurologically devastating inherited metabolic diseases, including adrenoleukodystrophy and LSDs^{21,22}. In LSDs, donor-derived 10 11 microglia cells of myeloid origin are thought to be the source of enzyme after HSCT, crosscorrecting the metabolic defect in affected host cells¹⁸⁴. In addition, engrafted donor-derived 12 13 cells may potentially help in reducing accumulated toxic substrates in the brain. Of 14 importance, there is evidence that stem cells are not only replacing dying cells, but are also 15 regulating inflammation and immune responses and have pro-neurogenic effects¹⁸⁵.

Numerous studies support the notion of using stem cells as a treatment for inherited diseases
 like LSDs¹⁸⁴, HD, but also for complex diseases like AD, PD, ALS^{186,187}. Further pre-clinical and
 clinical studies are needed to ensure the safety and efficacy of these treatment options¹⁸⁷.

19

20 Conclusion

21 The recent beneficial results demonstrated in phase I-II studies in human patients together 22 with improved vector technology have placed gene therapy for CNS diseases in a new 23 development paradyme. These approaches are no longer restricted to rare genetic diseases, 24 but are being applied to common disease indications and pathways significantly expanding 25 the scope of gene therapy for CNS indications This expansion requires simplifying delivery 26 protocols and anticipating the increasing need of vector production, particularly for IV 27 targeting. Treating an increasing number of patients requires standardized delivery protocols 28 suitable for adaptation in multiple centers around the world. Further, manufacturability is a 29 central component in expanding the GT field; not only the production of high quality and high 30 quantity of vectors to meet future clinical demand, but also the cost and our capacity to make 31 new gene therapy products accessible to all patients.

1 References

- Daneman R, Prat A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol;7. Epub ahead of
 print 2015. DOI: 10.1101/CSHPERSPECT.A020412.
- Zlokovic B V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders.
 Neuron 2008;57:178–201.
- 6 3. Hocquemiller M, Giersch L, Audrain M, et al. Adeno-Associated Virus-Based Gene Therapy for
 7 CNS Diseases. Hum Gene Ther 2016;27:478–96.
- 8 4. Tărlungeanu DC, Novarino G. Genomics in neurodevelopmental disorders: an avenue to
 9 personalized medicine. Exp Mol Med 2018;50:100.
- 105.Gray SJ. Gene therapy and neurodevelopmental disorders. Neuropharmacology 2013;68:136–11142.
- 12 6. Drew L. Gene therapy targets epilepsy. Nature 2018;564:S10–S11.
- Kwiatkowska A, Nandhu MS, Behera P, et al. Strategies in gene therapy for glioblastoma.
 Cancers (Basel) 2013;5:1271–305.
- B. Guedon J-MG, Wu S, Zheng X, et al. Current gene therapy using viral vectors for chronic pain.
 Mol Pain 2015;11:27.
- Tardieu M, Zérah M, Husson B, et al. Intracerebral Administration of Adeno-Associated Viral
 Vector Serotype rh.10 Carrying Human SGSH and SUMF1 cDNAs in Children with
 Mucopolysaccharidosis Type IIIA Disease: Results of a Phase I/II Trial. Hum Gene Ther
 2014;25:506–516.
- Tardieu M, Zérah M, Gougeon M-L, et al. Intracerebral gene therapy in children with
 mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet
 Neurol 2017;16:712–720.
- Zerah M, Piguet F, Colle M-A, et al. Intracerebral Gene Therapy Using AAVrh.10-hARSA
 Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic
 Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. Hum
 Gene Ther Clin Dev 2015;26:113–124.
- Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal
 Muscular Atrophy. N Engl J Med 2017;377:1713–1722.
- Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving Single Injection CSF Delivery of AAV9 mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates.
 Mol Ther 2015;23:477–487.
- 33 14. Bestor TH. Gene silencing as a threat to the success of gene therapy. J Clin Invest
 34 2000;105:409–11.
- 35 15. Rindt H, Yen P-F, Thebeau CN, et al. Replacement of huntingtin exon 1 by trans-splicing. Cell
 36 Mol Life Sci 2012;69:4191–4204.
- 3716.Boussicault L, Alves S, Lamazière A, et al. CYP46A1, the rate-limiting enzyme for cholesterol38degradation, is neuroprotective in Huntington's disease. Brain 2016;139:953–70.
- Burlot M-A, Braudeau J, Michaelsen-Preusse K, et al. Cholesterol 24-hydroxylase defect is
 implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol
 Genet 2015;24:5965–5976.
- 42 18. Rose C, Dorard E, Audrain M, et al. Transient increase in sAPPα secretion in response to Aβ143 42 oligomers: an attempt of neuronal self-defense? Neurobiol Aging 2018;61:23–35.
- 44 19. Audrain M, Souchet B, Alves S, et al. βAPP Processing Drives Gradual Tau Pathology in an Age 45 Dependent Amyloid Rat Model of Alzheimer's Disease. Cereb Cortex 2017;1–18.
- 46 20. Hulou MM, Cho C-F, Chiocca EA, et al. Experimental therapies. In: Handbook of clinical
 47 neurology; pp. 183–197.
- Sessa M, Lorioli L, Fumagalli F, et al. Lentiviral haemopoietic stem-cell gene therapy in early onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label,
 phase 1/2 trial. Lancet 2016;388:476–487.
- 5122.Eichler F, Duncan C, Musolino PL, et al. Hematopoietic Stem-Cell Gene Therapy for Cerebral52Adrenoleukodystrophy. N Engl J Med 2017;377:1630–1638.

1 23. Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, 2 Present, and Future. *Human Gene Therapy* 2017;28:988–1003. 3 24. Gao G, Vandenberghe L, Wilson J. New Recombinant Serotypes of AAV Vectors. Curr Gene 4 Ther 2005;5:285-297. 5 25. Srivastava A, Carter BJ. AAV Infection: Protection from Cancer. Hum Gene Ther 2017;28:323-6 327. 7 26. Nault JC, Mami I, La Bella T, et al. Wild-type AAV insertions in hepatocellular carcinoma do not 8 inform debate over genotoxicity risk of vectorized AAV. Molecular Therapy 2016;24:660–661. 9 27. Hastie E, Samulski RJ. Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, 10 Research, and Gene Therapy Success - A Personal Perspective. Human Gene Therapy 11 2015;26:257-265. 12 28. Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An 13 update. Journal of Gene Medicine 2018;20:e3015. 14 Pillay S, Carette JE. Host determinants of adeno-associated viral vector entry. Current Opinion 29. 15 *in Virology* 2017;24:124–131. 16 30. Castle MJ, Turunen HT, Vandenberghe LH, et al. Controlling AAV tropism in the nervous 17 system with natural and engineered capsids. In: Methods in Molecular Biology. Humana Press 18 Inc.; pp. 133–149. 19 31. Vandenberghe LH, Wilson JM, Gao G. Tailoring the AAV vector capsid for gene therapy. Gene 20 *Therapy* 2009;16:311–319. 21 32. Auricchio A. Exchange of surface proteins impacts on viral vector cellular specificity and 22 transduction characteristics: the retina as a model. Hum Mol Genet 2001;10:3075–3081. 23 33. Hadaczek P, Stanek L, Ciesielska A, et al. Widespread AAV1- and AAV2-mediated transgene 24 expression in the nonhuman primate brain: implications for Huntington's disease. Mol Ther -25 Methods Clin Dev 2016;3:16037. 26 34. Bartus RT, Baumann TL, Siffert J, et al. Safety/feasibility of targeting the substantia nigra with 27 AAV2-neurturin in Parkinson patients. Neurology 2013;80:1698–701. 28 35. Chien Y-H, Lee N-C, Tseng S-H, et al. Efficacy and safety of AAV2 gene therapy in children with 29 aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child 30 Adolesc Heal 2017;1:265-273. 31 36. Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-Term Evaluation of a Phase 1 Study 32 of AADC Gene Therapy for Parkinson's Disease. Hum Gene Ther 2012;23:377–381. 33 37. Colle M-A, Piguet F, Bertrand L, et al. Efficient intracerebral delivery of AAV5 vector encoding 34 human ARSA in non-human primate. Hum Mol Genet 2010;19:147–158. 35 Tardieu M, Zérah M, Husson B, et al. Intracerebral Administration of Adeno-Associated Viral 38. 36 Vector Serotype rh.10 Carrying Human SGSH and SUMF1 cDNAs in Children with 37 Mucopolysaccharidosis Type IIIA Disease: Results of a Phase I/II Trial . Hum Gene Ther . Epub 38 ahead of print 2014. DOI: 10.1089/hum.2013.238. 39 39. Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a 40 mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010;28:271-4. 41 40. Murrey DA, Naughton BJ, Duncan FJ, et al. Feasibility and Safety of Systemic rAAV9-h NAGLU 42 Delivery for Treating Mucopolysaccharidosis IIIB: Toxicology, Biodistribution, and 43 Immunological Assessments in Primates. Hum Gene Ther Clin Dev 2014;25:72–84. 44 41. Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal 45 Muscular Atrophy. N Engl J Med 2017;377:1713–1722. 46 42. Lipinski DM, Reid CA, Boye SL, et al. AAV Vectors II 314. Systemic Vascular Transduction 47 Following Intravenous Injection of Capsid Mutant Adeno-Associated Virus. 2015 . Epub ahead 48 of print 2015. DOI: 10.1038/mt.2015.74. 49 43. Gessler DJ, Tai PWL, Li J, et al. Intravenous infusion of AAV for widespread gene delivery to 50 the nervous system. In: Methods in Molecular Biology. Humana Press Inc.; pp. 143–163. 51 44. Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for 52 widespread gene transfer to the adult brain. Nat Biotechnol 2016;34:204–209.

1 45. Hordeaux J, Wang Q, Katz N, et al. The Neurotropic Properties of AAV-PHP.B Are Limited to 2 C57BL/6J Mice. Mol Ther 2018;26:664–668. 3 46. Zufferey R, Dull T, Mandel RJ, et al. Self-Inactivating Lentivirus Vector for Safe and Efficient In 4 Vivo Gene Delivery. J Virol 1998;72:9873–9880. 5 47. Escors D, Breckpot K. Lentiviral vectors in gene therapy: Their current status and future 6 potential. Archivum Immunologiae et Therapiae Experimentalis 2010;58:107–119. 7 48. Delzor A, Aurélie D, Escartin C, et al. Lentiviral vectors: a powerful tool to target astrocytes in 8 vivo. Curr Drug Targets 2013;14:1336-46. 9 49. Hastie E, Cataldi M, Marriott I, et al. Understanding and altering cell tropism of vesicular 10 stomatitis virus. Virus Research 2013;176:16–32. 11 50. Carlotti F, Bazuine M, Kekarainen T, et al. Lentiviral vectors efficiently transduce quiescent 12 mature 3T3-L1 adipocytes. Mol Ther 2004;9:209-217. 13 51. Geng X, Doitsh G, Yang Z, et al. Efficient delivery of lentiviral vectors into resting human CD4 T 14 cells. Gene Ther 2014;21:444-449. 15 52. Jakobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Molecular 16 Therapy 2006;13:484-493. 17 53. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy 18 with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818–23. 19 54. Staal FJT, Aiuti A, Cavazzana M. Autologous Stem-Cell-Based Gene Therapy for Inherited 20 Disorders: State of the Art and Perspectives. Frontiers in Pediatrics 2019;7:443. 21 55. Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with 22 monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous 23 disease. Nat Med 2010;16:198-204. 24 Zychlinski D, Schambach A, Modlich U, et al. Physiological promoters reduce the genotoxic risk 56. 25 of integrating gene vectors. Mol Ther 2008;16:718–725. 26 57. Poletti V, Charrier S, Corre G, et al. Preclinical Development of a Lentiviral Vector for Gene 27 Therapy of X-Linked Severe Combined Immunodeficiency. Mol Ther - Methods Clin Dev 28 2018;9:257-269. 29 58. Doi K, Takeuchi Y. Gene therapy using retrovirus vectors: vector development and biosafety at 30 clinical trials. Uirusu 2015;65:27-36. 31 59. Rothe M, Modlich U, Schambach A. Biosafety Challenges for Use of Lentiviral Vectors in Gene 32 Therapy. Curr Gene Ther 2014;13:453–468. 33 60. Katsouri L, Lim YM, Blondrath K, et al. PPAR γ -coactivator-1 α gene transfer reduces neuronal 34 loss and amyloid- β generation by reducing β -secretase in an Alzheimer's disease model. Proc 35 Natl Acad Sci U S A 2016;113:12292–12297. 36 61. Palfi S, Gurruchaga JM, Lepetit H, et al. Long-Term Follow-Up of a Phase I/II Study of ProSavin, 37 a Lentiviral Vector Gene Therapy for Parkinson's Disease. Hum Gene Ther Clin Dev 38 2018;29:148-155. 39 62. Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal 40 gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP 41 cyclohydrolase I induces sustained transgene expression, dopamine production, and 42 functional improvement in a rat model of Parkinson's disease. J Neurosci 2002;22:10302-43 10312. 44 63. Blagbrough IS, Zara C. Animal Models for Target Diseases in Gene Therapy — using DNA and 45 siRNA Delivery Strategies. Pharm Res 2009;26:1–18. 46 64. Hattori N, Sato S. Animal models of Parkinson's disease: similarities and differences between 47 the disease and models. Neuropathology 2007;27:479–83. 48 65. Lasbleiz C, Mestre-Francés N, Devau G, et al. Combining Gene Transfer and Nonhuman 49 Primates to Better Understand and Treat Parkinson's Disease. Front Mol Neurosci 2019;12:10. 50 66. Gopinath C, Nathar TJ, Ghosh A, et al. Contemporary Animal Models For Human Gene 51 Therapy Applications. Curr Gene Ther 2015;15:531–40. 52 67. Dawson T, Mandir A, Lee M. Animal models of PD: pieces of the same puzzle? Neuron

1		2002;35:219–22.
2	68.	Wolfe JH. Gene therapy in large animal models of human genetic diseases. Introduction. ILAR
3		J 2009;50:107–11.
4 5	69.	Bankiewicz KS, Sudhakar V, Samaranch L, et al. AAV viral vector delivery to the brain by shape- conforming MR-guided infusions. J Control Release 2016;240:434–442.
6 7	70.	Samaranch L, Salegio EA, San Sebastian W, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene
8		Ther 2013;24:526–32.
9	71.	Salegio EA, Samaranch L, Kells AP, et al. Axonal transport of adeno-associated viral vectors is
10		serotype-dependent. Gene Ther 2013;20:348–352.
11	72.	Salegio EA, Samaranch L, Kells AP, et al. Axonal transport of adeno-associated viral vectors is
12		serotype-dependent. Gene Ther 2013;20:348–352.
13	73.	Kells AP, Forsayeth J, Bankiewicz KS. Glial-derived neurotrophic factor gene transfer for
14		Parkinson's disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol
15		Dis 2012;48:228–35.
16	74.	Ciesielska A, Mittermeyer G, Hadaczek P, et al. Anterograde Axonal Transport of AAV2-GDNF
17		in Rat Basal Ganglia. Mol Ther 2011;19:922–927.
18	75.	Green F, Samaranch L, Zhang HS, et al. Axonal transport of AAV9 in nonhuman primate brain.
19		Gene Ther 2016;23:520–6.
20	76.	Evers MM, Miniarikova J, Juhas S, et al. AAV5-miHTT Gene Therapy Demonstrates Broad
21		Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington's Disease Minipig
22		Model. Mol Ther . Epub ahead of print 2018. DOI: 10.1016/j.ymthe.2018.06.021.
23	77.	Hocquemiller M, Hemsley KM, Douglass ML, et al. AAVrh10 Vector Corrects Disease Pathology
24		in MPS IIIA Mice and Achieves Widespread Distribution of SGSH in Large Animal Brains. Mol
25		Ther - Methods Clin Dev 2020;17:174–187.
26	78.	Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration Prevented by Lentiviral Vector
27		Delivery of GDNF in Primate Models of Parkinson's Disease. Science (80-) 2000;290:767–773.
28	79.	Jarraya B, Boulet S, Scott Ralph G, et al. Dopamine Gene Therapy for Parkinson's Disease in a
29	00	Nonhuman Primate Without Associated Dyskinesia. Sci Transl Med 2009;1:2ra4-2ra4.
3U 21	80.	Linterman KS, Palmer DN, Kay GW, et al. Lentiviral-mediated gene transfer to the sneep brain:
21	01	Implications for gene therapy in Batten disease. Hum Gene Ther 2011;22:1011–20.
32 22	81.	buque SI, Arnold WD, Odermall P, et al. A large animal model of spinal muscular alrophy and
22 24	റ	Correction of phenotype. Ann Neurol 2015;77:399–414.
25	82.	Kalz ML, Tecedor L, Chen Y, et al. AAV gene transfer delays disease onset in a TPP1-deficient
35		
37	83	Samaranch I. Salegio FA. San Sebactian W. et al. Adeno-associated virus serotype 9
38	05.	transduction in the central nervous system of nonhuman primates. Hum Gene Ther
39		2012·23·282_9
40	84	Samaranch I Sebastian WS Kells AP et al AAV9-mediated expression of a non-self protein in
41	0.11	nonhuman primate central nervous system triggers widespread neuroinflammation driven by
42		antigen-presenting cell transduction. Mol Ther 2014:22:329–337.
43	85.	Rosenberg JB. Sondhi D. Rubin DG. et al. Comparative Efficacy and Safety of Multiple Routes
44		of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10
45		Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates. Hum Gene Ther Clin Dev
46		2014;25:164–177.
47	86.	Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-Mediated APOE2 Central Nervous System
48		Gene Therapy for APOE4-Associated Alzheimer's Disease. Hum Gene Ther Clin Dev
49		2018;29:24–47.
50	87.	Passini MA, Bu J, Richards AM, et al. Translational Fidelity of Intrathecal Delivery of Self-
51		Complementary AAV9–Survival Motor Neuron 1 for Spinal Muscular Atrophy. Hum Gene Ther
52		2014;25:619–630.

1 88. Hinderer C, Bell P, Vite CH, et al. Widespread gene transfer in the central nervous system of 2 cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol Ther -3 Methods Clin Dev 2014;1:14051. 4 89. Haurigot V, Marcó S, Ribera A, et al. Whole body correction of mucopolysaccharidosis IIIA by 5 intracerebrospinal fluid gene therapy. J Clin Invest 2013;123:3254–3271. 6 90. Gray SJ, Matagne V, Bachaboina L, et al. Preclinical differences of intravascular AAV9 delivery 7 to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 8 2011;19:1058-69. 9 91. Duque S, Joussemet B, Riviere C, et al. Intravenous Administration of Self-complementary 10 AAV9 Enables Transgene Delivery to Adult Motor Neurons. Mol Ther 2009;17:1187–1196. 11 92. Bucher T, Dubreil L, Colle M-A, et al. Intracisternal delivery of AAV9 results in oligodendrocyte 12 and motor neuron transduction in the whole central nervous system of cats. Gene Ther 13 2014;21:522-528. 14 93. Gurda BL, De Guilhem De Lataillade A, Bell P, et al. Evaluation of AAV-mediated Gene Therapy 15 for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Mol Ther 16 2016;24:206-216. 17 94. Hinderer C, Bell P, Louboutin J-P, et al. Neonatal Systemic AAV Induces Tolerance to CNS Gene 18 Therapy in MPS I Dogs and Nonhuman Primates. Mol Ther 2015;23:1298–1307. 19 Borel F, Gernoux G, Cardozo B, et al. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult 95. 20 SOD1 G93A Mice and Nonhuman Primates. Hum Gene Ther 2016;27:19–31. 21 96. Bevan AK, Duque S, Foust KD, et al. Systemic Gene Delivery in Large Species for Targeting 22 Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders. Mol Ther 2011;19:1971-23 1980. 24 97. Yang B, Li S, Wang H, et al. Global CNS transduction of adult mice by intravenously delivered 25 rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. In: Molecular Therapy. 26 Nature Publishing Group; pp. 1299–1309. 27 98. Borel F, Gernoux G, Sun H, et al. Safe and effective superoxide dismutase 1 silencing using 28 artificial microRNA in macaques. Sci Transl Med 2018;10:eaau6414. 29 99. Hinderer C, Bell P, Katz N, et al. Evaluation of Intrathecal Routes of Administration for Adeno-30 Associated Viral Vectors in Large Animals. Hum Gene Ther 2018;29:15–24. 31 100. Bravo-Hernandez M, Tadokoro T, Navarro MR, et al. Spinal subpial delivery of AAV9 enables 32 widespread gene silencing and blocks motoneuron degeneration in ALS. Nat Med 33 2020;26:118-130. 34 101. Tadokoro T, Miyanohara A, Navarro M, et al. Subpial adeno-associated virus 9 (AAV9) vector 35 delivery in adult mice. J Vis Exp;2017 . Epub ahead of print July 13, 2017. DOI: 10.3791/55770. 36 Wolf DA, Banerjee S, Hackett PB, et al. Gene therapy for neurologic manifestations of 102. 37 mucopolysaccharidoses. Expert Opin Drug Deliv 2015;12:283–296. 38 103. Hordeaux J, Dubreil L, Robveille C, et al. Long-term neurologic and cardiac correction by 39 intrathecal gene therapy in Pompe disease. Acta Neuropathol Commun 2017;5:66. 40 104. Hordeaux J, Hinderer C, Goode T, et al. Toxicology Study of Intra-Cisterna Magna Adeno-41 Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques. Mol Ther -42 Methods Clin Dev 2018;10:79-88. 43 105. Kim I, Paek S, Nelson BD, et al. Implementation of a chronic unilateral intraparenchymal drug 44 delivery system in a swine model. J Neurosci Methods 2014;227:29-34. 45 106. Brady ML, Raghavan R, Alexander A, et al. Pathways of Infusate Loss during Convection-46 Enhanced Delivery into the Putamen Nucleus. Stereotact Funct Neurosurg 2013;91:69–78. 47 Belova E, Shaffer CL, Trapa PE. Insights from mathematical modeling for convection-enhanced 107. 48 intraputamenal delivery of GDNF. Med Biol Eng Comput 2017;55:2069–2077. 49 108. Vazquez LC, Hagel E, Willenberg BJ, et al. Polymer-coated cannulas for the reduction of 50 backflow during intraparenchymal infusions. J Mater Sci Mater Med 2012;23:2037–2046. 51 109. Ung TH, Malone H, Canoll P, et al. Convection-enhanced delivery for glioblastoma: targeted 52 delivery of antitumor therapeutics. CNS Oncol 2015;4:225–34.

1	110.	Lueshen E. Tangen K. Mehta AI, et al. Backflow-free catheters for efficient and safe
2		convection-enhanced delivery of therapeutics. Med Eng Phys 2017;45:15–24.
3	111.	Krauze MT, Saito R, Noble C, et al. Reflux-free cannula for convection-enhanced high-speed
4		delivery of therapeutic agents. J Neurosurg 2005;103:923–9.
5	112.	Lewis O, Woolley M, Johnson D, et al. Chronic, intermittent convection-enhanced delivery
6		devices. J Neurosci Methods 2016;259:47–56.
7	113.	Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors.
8		Expert Rev Neurother 2009;9:1519–1527.
9	114.	Fan X, Nelson BD, Ai Y, et al. Continuous intraputamenal convection-enhanced delivery in
10		adult rhesus macaques. J Neurosurg 2015;123:1569–1577.
11	115.	Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors.
12		Expert Rev Neurother 2009;9:1519–27.
13	116.	Lewis O, Woolley M, Johnson D, et al. Chronic, intermittent convection-enhanced delivery
14	447	devices. Journal of Neuroscience Miethoas 2016;259:47–56.
13	117.	Bienemann A, white E, woolley W, et al. The development of an implantable catheter system
10		TOF Chronic of Intermittent convection-enhanced delivery. J Neurosci Methods 2012;203:284–
17	110	291. Vogelbaum MA Brower C Barnett GH et al Eirst-in-human evaluation of the Cleveland
10	110.	Multiport Catheter for convection-enhanced delivery of tonotecan in recurrent high-grade
20		glioma: results of nilot trial 1. I Neurosurg 2019-130-476–485
20	119	Christine CW. Bankiewicz KS. Van Laar AD. et al. Magnetic resonance imaging-guided phase 1
22		trial of putaminal AADC gene therapy for Parkinson's disease. Ann Neurol 2019:85:704–714.
23	120.	Bankiewicz KS. Sudhakar V. Samaranch L. et al. AAV viral vector delivery to the brain by shape-
24		conforming MR-guided infusions. J Control Release 2016;240:434–442.
25	121.	Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther
26		2010;17:295–304.
27	122.	Mingozzi F, Maus M V, Hui DJ, et al. CD8+ T-cell responses to adeno-associated virus capsid in
28		humans. Nat Med 2007;13:419–422.
29	123.	Basner-Tschakarjan E, Mingozzi F. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts
30		and Potential Solutions. Front Immunol 2014;5:350.
31	124.	Calcedo R, Wilson JM. Humoral Immune Response to AAV. Front Immunol 2013;4:341.
32	125.	Rogers GL, Martino AT, Aslanidi G V., et al. Innate Immune Responses to AAV Vectors. Front
33	496	Microbiol 2011;2:194.
34 25	126.	Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide Epidemiology of Neutralizing
33 26	107	Antibodies to Adeno-Associated Viruses. J Infect Dis 2009;199:381–390.
30 37	127.	veron P, Leborgne C, Montelinet V, et al. Humoral and central capsid-specific infinute
38		
39	128	Boutin S Monteilbet V Veron P et al. Prevalence of Serum IgG and Neutralizing Factors
40	120.	Against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population:
41		Implications for Gene Therapy Using AAV Vectors. Hum Gene Ther 2010:21:704–712.
42	129.	Wang Z, Tapscott SJ, Chamberlain JS, et al. Immunity and AAV-Mediated Gene Therapy for
43		Muscular Dystrophies in Large Animal Models and Human Trials. Front Microbiol 2011;2:201.
44	130.	Banugaria SG, Prater SN, Ng Y-K, et al. The impact of antibodies on clinical outcomes in
45		diseases treated with therapeutic protein: lessons learned from infantile Pompe disease.
46		Genet Med 2011;13:729–36.
47	131.	Berrier KL, Kazi ZB, Prater SN, et al. CRIM-negative infantile Pompe disease: characterization
48		of immune responses in patients treated with ERT monotherapy. Genet Med 2015;17:912-8.
49	132.	Ferreira V, Petry H, Salmon F. Immune Responses to AAV-Vectors, the Glybera Example from
50		Bench to Bedside. Front Immunol;5 . Epub ahead of print 2014. DOI:
51		10.3389/fimmu.2014.00082.
52	133.	Gaudet D, Méthot J, Déry S, et al. Efficacy and long-term safety of alipogene tiparvovec

1 2		(AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 2013:20:361–369.
3 4	134.	Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV- Factor IX and limitations imposed by the host immune response. Nat Med 2006:12:342–347.
5 6	135.	Marks WJ, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial, Lancet Neurol 2010;9:1164–1172.
7 8	136.	Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009:73:1662–1669.
9 10	137.	McPhee SWJ, Janson CG, Li C, et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 2006:8:577–588.
11 12	138.	Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno- associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial.
13		Lancet 2007;369:2097–2105.
14 15 16	139.	Mingozzi F, Chen Y, Edmonson SC, et al. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Ther 2013;20:417–24.
17 18 19	140.	Corti M, Liberati C, Smith BK, et al. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV- <i>hGAA</i>) Gene Therapy in Children Affected by Pompe Disease. Hum Gene Ther Clin Dev 2017;28:208–218
20 21 22	141.	Montenegro-Miranda PS, Bloemendaal L ten, Kunne C, et al. Mycophenolate Mofetil Impairs Transduction of Single-Stranded Adeno-Associated Viral Vectors. Hum Gene Ther
22 23 24	142.	2011;22:005–612. Unzu C, Hervás-Stubbs S, Sampedro A, et al. Transient and intensive pharmacological
25		Transl Med 2012;10:122.
26 27	143.	Tseng Y-S, Agbandje-McKenna M. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Front Immunol 2014;5:9.
28 29	144.	Kishimoto TK, Ferrari JD, LaMothe RA, et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat Nanotechnol 2016;11:890–899.
30 31	145.	Meliani A, Boisgerault F, Hardet R, et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat
32 33	146.	Commun 2018;9:4098. Majowicz A, Maczuga P, Kwikkers KL, et al. Mir-142-3p target sequences reduce transgene-
34 35		directed immunogenicity following intramuscular adeno-associated virus 1 vector-mediated gene delivery. J Gene Med 2013;15:219–232.
36 37	147.	Annoni A, Brown BD, Cantore A, et al. In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood
38 39	148	2009;114:5152–5161. Keeler AM FIMallah MK Flotte TR Gene Therapy 2017 [.] Progress and Future Directions Clin
40	110.	Transl Sci 2017;10:242–248.
41 42	149.	Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016;34:204–209.
43	150.	Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to
44 45	151.	the central and peripheral nervous systems. Nat Neurosci 2017;20:1172–1179. Huang Q, Chan KY, Tobey IG, et al. Delivering genes across the blood-brain barrier: LY6A, a
46 47	152	novel cellular receptor for AAV-PHP.B capsids. bioRxiv 2019;538421. Hordeaux I, Yuan Y, Clark PM, et al. The GPI-Linked Protein LY6A Drives AAV-PHP B Transport
48	192.	across the Blood-Brain Barrier. Mol Ther 2019;27:912–921.
49 50	153.	Garg T, Bhandari S, Rath G, et al. Current strategies for targeted delivery of bio-active drug
51 52	154.	Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology 2001;220:640–646.

1 155. Sheikov N, McDannold N, Vykhodtseva N, et al. Cellular mechanisms of the blood-brain 2 barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 3 2004;30:979-989. 4 156. Beccaria K, Canney M, Goldwirt L, et al. Opening of the blood-brain barrier with an unfocused 5 ultrasound device in rabbits. J Neurosurg 2013;119:887–98. 6 157. Hynynen K, McDannold N, Sheikov NA, et al. Local and reversible blood-brain barrier 7 disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull 8 sonications. Neuroimage 2005;24:12–20. 9 158. Kobus T, Vykhodtseva N, Pilatou M, et al. Safety Validation of Repeated Blood–Brain Barrier 10 Disruption Using Focused Ultrasound. Ultrasound Med Biol 2016;42:481–492. 11 159. McMahon D, Hynynen K. Acute Inflammatory Response Following Increased Blood-Brain 12 Barrier Permeability Induced by Focused Ultrasound is Dependent on Microbubble Dose. 13 Theranostics 2017;7:3989-4000. 14 Marquet F, Tung Y-S, Teichert T, et al. Noninvasive, Transient and Selective Blood-Brain 160. 15 Barrier Opening in Non-Human Primates In Vivo. PLoS One 2011;6:e22598. 16 161. Stavarache MA, Petersen N, Jurgens EM, et al. Safe and stable noninvasive focal gene delivery 17 to the mammalian brain following focused ultrasound. J Neurosurg 2019;130:989–998. 18 Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by 162. 19 pulsed ultrasound. Sci Transl Med 2016;8:343re2-343re2. 20 Beccaria K, Canney M, Bouchoux G, et al. Blood-brain barrier disruption with low-intensity 163. 21 pulsed ultrasound for the treatment of pediatric brain tumors: A review and perspectives. 22 Neurosurg Focus 2020;48:E10. 23 164. Pouliopoulos AN, Wu SY, Burgess MT, et al. A Clinical System for Non-invasive Blood–Brain 24 Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound 25 Transducer. Ultrasound Med Biol 2020;46:73-89. 26 Ying J, Han Z, Zeng Y, et al. Evaluation of intervertebral disc regeneration with injection of 165. 27 mesenchymal stem cells encapsulated in PEGDA-microcryogel delivery system using 28 quantitative T2 mapping: a study in canines. Am J Transl Res 2019;11:2028–2041. 29 166. Fjord-Larsen L, Kusk P, Tornøe J, et al. Long-term Delivery of Nerve Growth Factor by 30 Encapsulated Cell Biodelivery in the Göttingen Minipig Basal Forebrain. Mol Ther 31 2010;18:2164-2172. 32 167. Emerich DF, Winn SR, Harper J, et al. Implants of polymer-encapsulated human NGF-secreting 33 cells in the nonhuman primate: Rescue and sprouting of degenerating cholinergic basal 34 forebrain neurons. J Comp Neurol 1994;349:148-164. 35 Zhang K, Hopkins JJ, Heier JS, et al. Ciliary neurotrophic factor delivered by encapsulated cell 168. 36 intraocular implants for treatment of geographic atrophy in age-related macular 37 degeneration. Proc Natl Acad Sci 2011;108:6241–6245. 38 169. Birch DG, Bennett LD, Duncan JL, et al. Long-term Follow-up of Patients With Retinitis 39 Pigmentosa Receiving Intraocular Ciliary Neurotrophic Factor Implants. Am J Ophthalmol 40 2016;170:10-14. 41 170. Birch DG, Weleber RG, Duncan JL, et al. Randomized Trial of Ciliary Neurotrophic Factor 42 Delivered by Encapsulated Cell Intraocular Implants for Retinitis Pigmentosa. Am J 43 Ophthalmol 2013;156:283-292.e1. 44 Eriksdotter-Jönhagen M, Linderoth B, Lind G, et al. Encapsulated Cell Biodelivery of Nerve 171. 45 Growth Factor to the Basal Forebrain in Patients with Alzheimer's Disease. Dement Geriatr 46 Cogn Disord 2012;33:18-28. 47 172. Bachoud-Lévi A-C, Déglon N, Nguyen J-P, et al. Neuroprotective Gene Therapy for 48 Huntington's Disease Using a Polymer Encapsulated BHK Cell Line Engineered to Secrete 49 Human CNTF. Hum Gene Ther 2000;11:1723–1729. 50 Bloch J, Bachoud-Lévi AC, Déglon N, et al. Neuroprotective Gene Therapy for Huntington's 173. 51 Disease, Using Polymer-Encapsulated Cells Engineered to Secrete Human Ciliary Neurotrophic 52 Factor: Results of a Phase I Study. Hum Gene Ther 2004;15:968–975.

1	174.	Aebischer P, Schluep M, Déglon N, et al. Intrathecal delivery of CNTF using encapsulated
2		genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med
3		1996;2:696–9.
4	175.	Lathuilière A, Schneider BL. Un implant bioactif pour prévenir la maladie d'Alzheimer.
5		médecine/sciences 2017;33:81–84.
6	176.	Lathuilière A. Mach N. Schneider BL. Encapsulated cellular implants for recombinant protein
7		delivery and therapeutic modulation of the immune system. Int I Mol Sci 2015:16:10578–600
8	177	Vizhar O. Fenno I.F. Davidson T.L. et al. Ontogenetics in Neural Systems. Neuron 2011;71:9–34
9	178	Han X Chow BV Zhou H et al. A High-Light Sensitivity Ontical Neural Silencer: Development
10	170.	and Application to Optographic Control of Non-Human Drimate Cortex. Front Syst Neurossi
10		
12	170	Galvan A. Stauffer W.R. Acker I. et al. Nonhuman Primate Ontogenetics: Recent Advances and
12	175.	Euture Directions Neurosci 2017:37:1080/_10003
13	190	Han Y. Oian Y. Bernstein IG. et al. Millicecond Timescale Ontical Control of Neural Dynamics in
14	160.	the Nonhuman Brimate Brain, Neuron 2000;62:101, 108
15	101	Carita A. Vanduffel W. Ontegenetics in primetees a chining future? Trends Canot
10	181.	Gents A, vanduner W. Optogenetics in primates: a snining ruturer frends Genet
1/	4.0.2	2013;29:403–411.
18	182.	Yazdan-Shahmorad A, Diaz-Botia C, Hanson TL, et al. A Large-Scale Interface for Optogenetic
19		Stimulation and Recording in Nonnuman Primates. Neuron 2016;89:927–939.
20	183.	Ordaz J, Wu W, Xu X-M. Optogenetics and its application in neural degeneration and
21		regeneration. Neural Regen Res 2017;12:1197.
22	184.	Siddiqi F, Wolfe JH. Stem Cell Therapy for the Central Nervous System in Lysosomal Storage
23		Diseases. Hum Gene Ther 2016;27:749–757.
24	185.	Sun JM, Kurtzberg J. Cell therapy for diverse central nervous system disorders: inherited
25		metabolic diseases and autism. Pediatr Res 2018;83:364–371.
26	186.	Ghosh HS. Adult Neurogenesis and the Promise of Adult Neural Stem Cells. J Exp Neurosci
27		2019;13:117906951985687.
28	187.	Nguyen H, Zarriello S, Coats A, et al. Stem cell therapy for neurological disorders: A focus on
29		aging. Neurobiol Dis 2019;126:85–104.
30	188.	Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-Mediated APOE2 Central Nervous System
31		Gene Therapy for APOE4-Associated Alzheimer's Disease. Hum Gene Ther Clin Dev
32		2018;29:24–47.
33	189.	Ellinwood NM, Ausseil J, Desmaris N, et al. Safe, Efficient, and Reproducible Gene Therapy of
34		the Brain in the Dog Models of Sanfilippo and Hurler Syndromes. Mol Ther 2011;19:251–259.
35	190.	Sondhi D, Peterson DA, Giannaris EL, et al. AAV2-mediated CLN2 gene transfer to rodent and
36		non-human primate brain results in long-term TPP-I expression compatible with therapy for
37		LINCL. Gene Ther 2005;12:1618–1632.
38	191.	Ciron C, Cressant A, Roux F, et al. Human α -Iduronidase Gene Transfer Mediated by Adeno-
39		Associated Virus Types 1, 2, and 5 in the Brain of Nonhuman Primates: Vector Diffusion and
40		Biodistribution. Hum Gene Ther 2009;20:350–360.
41	192.	Hadaczek P, Forsayeth J, Mirek H, et al. Transduction of Nonhuman Primate Brain with Adeno-
42		Associated Virus Serotype 1: Vector Trafficking and Immune Response. Hum Gene Ther
43		2009:20:225–237.
44	193	Hadaczek P. Kohutnicka M. Krauze MT. et al. Convection-enhanced delivery of adeno-
45		associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain
46		Hum Gene Ther 2006:17:291–302
47	194	Salegio FA Kells AP Richardson RM et al Magnetic resonance imaging-guided delivery of
48	<u> </u>	adeno-associated virus type 2 to the primate brain for the treatment of lysosomal storage
49		disorders. Hum Gene Ther 2010:21:1092–1103
50	105	Meneghini V Lattanzi A Tiradani L et al. Dervasive supply of therapeutic lysosomal onzymos
51	т <i>у</i> у.	in the CNS of normal and Krabbe-affected non-human primates by intracerebral lontiviral
52		and the case of normal and Mabbe-arrected non-numan primates by intracerebrarientivital
54		gene merapy . Eivido ividi ivieu 2010,0.403-310.

1 2	196.	Naidoo J, Stanek LM, Ohno K, et al. Extensive Transduction and Enhanced Spread of a Modified AAV2 Capsid in the Non-human Primate CNS, Mol Ther 2018;26:2418–2430
3	197.	Bu J, Ashe KM, Bringas J, et al. Merits of Combination Cortical, Subcortical, and Cerebellar
4 5	198.	Jarraya B, Boulet S, Scott Ralph G, et al. Dopamine Gene Therapy for Parkinson's Disease in a
6		Nonhuman Primate Without Associated Dyskinesia. Sci Transl Med 2009;1:2ra4-2ra4.
7	199.	Bucher T, Colle M-A, Wakeling E, et al. scAAV9 Intracisternal Delivery Results in Efficient Gene
8		Transfer to the Central Nervous System of a Feline Model of Motor Neuron Disease. Hum
9	200	Gene Ther 2013;24:670–682.
10	200.	Naidoo J, Stanek LM, Ohno K, et al. Extensive Transduction and Enhanced Spread of a
11	204	Modified AAV2 Capsid in the Non-human Primate CNS. Mol Ther 2018;26:2418–2430.
12	201.	Unno K, Samaranch L, Hadaczek P, et al. Kinetics and MiR-Based Monitoring of AAV9 Vector
13		Delivery into Cerebrospinal Fluid of Nonnuman Primates. Mol Ther - Methods Clin Dev
14	202	2019;13:47-54.
15	202.	anti AAV neutralizing antibadias by intrathocal AAV administration in pan human primates
10		Cono Thor 2012:20:450, 0
18	202	Taghian T. Marosfoi MG. Puri AS, et al. A Safe and Peliable Technique for CNS Delivery of AAV
10	205.	Vectors in the Cisterna Magna, Mol Ther 2020;28:411–421
20	204	Wang H. Yang B. Oiu L. et al. Widespread spinal cord transduction by intrathecal injection of
21	204.	rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet
22		2014:23:668–681
23	205.	Choudhury SR. Fitzpatrick Z. Harris AF. et al. In Vivo Selection Yields AAV-B1 Capsid for Central
24		Nervous System and Muscle Gene Therapy. Mol Ther 2016:24:1247–1257.
25	206.	LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson's
26		disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol
27		2011;10:309–319.
28	207.	Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene
29		therapy for Parkinson disease. Neurology 2009;73:1662–1669.
30	208.	Marks WJ, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson's disease:
31		a double-blind, randomised, controlled trial. Lancet Neurol 2010;9:1164–1172.
32	209.	Souweidane MM, Fraser JF, Arkin LM, et al. Gene therapy for late infantile neuronal ceroid
33		lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr 2010;6:115–122.
34	210.	Tardieu M, Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with
35		mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet
36		Neurol . Epub ahead of print 2017. DOI: 10.1016/S1474-4422(17)30169-2.
37	211.	Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene
38	242	therapy for Parkinson disease. Neurology 2008; /0:1980–1983.
39 40	212.	Muramatsu S, Fujimoto K, Kato S, et al. A Phase I Study of Aromatic L-Amino Acid
40	212	Decarboxylase Gene Therapy for Parkinson's Disease. Mol Ther 2010;18:1731–1735.
41	213.	Lewis O, Woolley IVI, Johnson D, et al. Chronic, Intermittent convection-enhanced delivery
42	214	devices. J Neurosci Mielhous 2016;259:47–56.
43	214.	infusion characteristics in ex vive and in vive non human primate brain tissue. Ann Neurosci
44 15		
ч 5 Лб	215	2013,20.100-14. Brady ML Baghayan P. Singh D. et al. In vivo performance of a microfabricated catheter for
47	215.	intranarenchymal delivery I Neurosci Methods 2014.229.76–83
48	216	Gill T Barua NU Woolley M et al. In vitro and in vivo testing of a novel recessed-step catheter
49	210.	for reflux-free convection-enhanced drug delivery to the brain 1 Neurosci Methods
50		2013:219:1–9.
51	217.	Lewis O. Woolley M. Johnson DE. et al. Maximising coverage of brain structures using
52		controlled reflux, convection-enhanced delivery and the recessed step catheter. J Neurosci

 Methods 2018;308:337–345.
 218. Wernicke AG, Lazow SP, Taube S, et al. Surgical Technique and Clinically Relevant Resection Cavity Dynamics Following Implantation of Cesium-131 Brachytherapy in Patients With Brain Metastases. Oper Neurosurg 2016;12:49–60.
 219. Singleton W, Collins A, Bienemann A, et al. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int J Nanomedicine 2017;Volume 12:1385–1399.
 10

1 Legends

2 **Figure 1:**

- 3 (A) Circulation of the CSF. Secretion by the choroid plexus and circulation within the ventricles
- 4 to the foramen of Magendie and Lushka (black arrows) to the extraventricular subarachnoid
- 5 spaces. Then circulation around the brain and the spinal cord (blue arrows), to the resorption
- 6 spaces (mainly the superior sagittal sinus)
- 7 (B) Intrathecal injection targeting the spinal cord
- 8 (C) Injection within the cisterna magna targeting the more superficial area of the brain (mainly
- 9 the cortical zone)
- 10 (D) Intraventricular injection targeting the deepest regions of the brain (mainly the basal
- 11 ganglia and the subventricular nucleus. Notice that the hippocampus region can be
- 12 theoretically reached by cisternal or intraventricular injection
- 13 (E) Following the CSF flow, a part of the vectors will reach the resorption areas and join the
- 14 cerebral blood stream and then the cerebral circulation to the peripheral organs
- 15
- 16

17 Figure 2: Intracerebral injection in NHP and humans

(A) Personal data of intracerebral gene therapy with 12 intracerebral delivery in white matter
for San Filippo A and MLD. (B) Neuronavigation software for preplanning. (C) Delivery
improvement with MRI Smartflow catheters; (D) Immediate Post-operative MRI and (E) Brain
delivery in NHP with the same MRI smartflow catheters.

22

23

Figure 1:

1 Figure 2: Intracerebral injection in NHP and humans

Table 1: Intraparenchymal delivery in large animal models

Transgene / Pathology	Target	Specie	Age	Number	Vector / Buffer	Dose	Volume	Speed	Results	Article
ARSA for MLD	3 areas of the centrum semiovale white matter or in the deep gray nuclei (caudate nucleus, putamen, thalamus)	NHP	2–3-year- old	6	AAV 2 - 5	1.9.10 ¹² vg to 3.8.10 ¹¹ vg	40 μl/deposit	3 μl/min	AAV vector was detected in a brain volume of 12–15 cm3 that corresponded to 37–46% of the injected hemisphere. ARSA enzyme was expressed in multiple interconnected brain areas over a distance of 22–33 mm. ARSA activity was increased by 12–38% in a brain volume that corresponded to 50–65% of injected hemisphere	37
GDNF for PD	striatum, substantia nigra, caudate nucleus	NHP, rhesus	8 aged (25years) + 5 young adults	8+5	Lentiviral vector				Extensive GDNF expression with anterograde and retrograde transport was seen in all animals. In aged monkeys, lenti-GDNF augmented dopaminergic function. In MPTP-treated monkeys, lenti-GDNF reversed functional deficits and completely prevented nigrostriatal degeneration. Additionally, lenti-GDNF injections to intact rhesus monkeys revealed long-term gene expression (8 months). In MPTP-treated monkeys, lenti-GDNF treatment reversed motor deficits in a hand-reach task	78
APOE2-HA for AD	intrahippocampal	NHP	4- to 7- year-old	2	Recombinant AAVrh.10	5.10 ¹² vg (vg; 0.7– 1.2. 10 ¹² vg/kg	15 μL per injection site	1 μL/min	AAVrh.10hAPOE2-HA directly into the hippocampus/entorhinal cortex achieved easily detectable, diffuse ApoE2 expression in targeted regions using this route of delivery compared to the non-treated controls	188
NAGLU for lysosomal disease	white matter	dog		25	AAV2.5 AAV 5.5	5.10 ¹¹ vg, 1.5.10 ¹² vg/ml; 8.10 ¹¹ vg, 2.5.10 ¹² vg/ml; 20.10 ¹¹ vg, 6.5.10 ¹² vg/ml	8 x 40µl	2 μL/min)	In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α -N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions	189
CLN2 for Late infantile neuronal ceroid lipofusciosis	head and body of the caudate nucleus , hippocampus and overlying cerebral cortex	NHP			AAV 2	3.6 × 10 ¹¹ pu	180 µl	1 μl/min	Assessment at 5 and 13 weeks demonstrated widespread detection of TPP-I in neurons, but not glial cells, at all regions of injection. The distribution of TPP-I-positive cells was similar between the two time points at all injection sites	190
α-iduronidase	putamen and centrum semiovale	NHP		6	(rAAV2/1, rAAV2/2, and rAAV2/5	1.4.10 ¹⁰ vg	2x50 μl		global diffusion throughout the brain was not significantly different between the three serotypes. However, rAAV2/1 and rAAV2/5 resulted in higher vector copy numbers per cell than did rAAV2/2, respectively, in the brain and the distal neuronal structures	191
CMV-hrGFP	corona radiata, striatum, and basal forebrain	NHP cynomo lgus		8	AAV1	2.3 to 6.9 10 ¹¹ vg	10 to 150 μl	0.2 to 3 μl/min	AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector	192
AAV-TK ,AAV2- AADC		NHP			AAV2				at least 75% of the putamen could be covered by a single infusion of the vector	193
human acidic sphingomyelin ase For Nieman Pick disease	brainstem (1 site) and thalamus (bilateral)	NHP		4	AAV2	1.10 ¹² vg/ml	33 to 199 μl	0,1 increased at 10-min intervals to 0.2, 0.5, 0.8, 1.0, and 2.0 μl/min	We found that enzymatic augmentation in brainstem, thalamic, cortical, as well subcortical areas provided convincing evidence that much of the large NHP brain can be transduced with as few as three injection sites.	194
hARSA	external capsule and thalamus	NHP	2-3 months	9	Lentivirus	5.10 ⁷ TU/injection site	80 µl	NA	favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS	195
<u>heparan</u> <u>sulfate</u>	thalamus + ICV	NHP			AAV2				The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers	196

proteoglycan receptor										
hARSA	White matter, 6 sites	NHP		14	AAVrh10	5.5.10 ¹¹ vg/hemisphere	30 ll for each deposit, 0.5 ll/min	0.5 ll/min	After injection of the 1 · dose, AAVrh.10- hARSA vector was detected in a large part of the injected hemisphere, while ARSA activity exceeded the normal endogenous activity level by 14–31%	11
hASM for NP-A	12 sites : motor cortex, occipital cortex, striatum and thalamus, hippocampus, cerebellum	NHP	2Y/o	2	AAV1	2.6. 10 ¹² gc	520 μl total	NA	a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain	197
ARSA	6 sites deep gray matter + white matter	NHP	3- to 6- year-old	11	AAVrh.10	1.5.10 ¹² vg	50-µl/deposit	1-3 microl/min	Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls	85
SGSH	Subcortical white matter	Dogs		3	AAVrh.10	1. 10 ¹² vg and 2. 10 ¹² vg	500µl/deposit (2 or 4 deposits)	10ul/min	extensive distribution into both rostral and caudal brain regions. significant amounts of vector DNA were found in only 37% of brain punches, increases of SGSH activity of 20% or greater relative to vehicle-treated animals were found in 78% of the brain punches tested 4 weeks after injection.	77
SGSH	Subcocrtical white matter	NHP	4 years	2	AAVrh.10	7.2. 10 ¹¹ vg	50µl/deposit (4 deposits)	5ul/min	presence of vector DNA in a limited proportion (11%) of brain punches, but a wide distribution of SGSH enzymatic activity of 20% or more of control levels in the near totality (97%) of the NHP brain 6 weeks after injection.	77
	striatum	NHP			tricistronic lentiviral vector				restoration of extracellular concentrations of dopamine and corrected the motor deficits for 12 months without associated dyskinesias	198

Transgene / Pathology	Target	Specie	Age	Number	Vector / Buffer	Dose	Volume	Speed	Results	Article
shRNA SMN +GFP or SMN	Cisterna Magna	Pig	5 days	14	scAAV9	6.5.10 ¹² vg/kg (shSMN)		slow and constant	reduction of SMN mRNA levels by 73% in motoneurons postnatally	81
GFP	Cisterna Magna	NHP	adult	3	AAV9	1.1.10 ¹³ vg	2ml		Presence of serious adverse side effects with a non- pronounced cellular loss in the Purkinje layer. No side effect in animal with more restricted GFP expression.	84
hAADC	Cisterna Magna	NHP	adult	1	AAV9	3.10 ¹³ vg	2ml		broad transduction throughout cerebellum and brain cortex similar to what was obtained with GFP but no cerebellar cell dysfunction	
GFP	Cisterna Magna	Sheep	adult	3	LV	1.3.10 ⁸ TU (N=2) and 1.10 ⁹ TU	10 and 100ul	1min	GFP expression in cells along the needle track and in the brain parenchyma up to 2.5 mm rostral-caudal and lateral to the injection site. Both neurons and astrocytes were similarly transduced	80
VEGF	Cisterna Magna	cat	adult	3	ssAAV1	10 ¹² /kg	1ml/kg		strong expression of the transgene in the spinal cord, even at the lowest dose.	199
VEGF	Cisterna Magna	cat	adult	4	scAAV9	10 ¹² /kg and 10 ¹³ /kg	1ml/kg		numerous GFP-positive neurons in the cortex, thalamus and cerebellum	1
CAG-GFP	Cisterna Magna	NHP	adult	2	AAV7 (saline, 5% sorbitol, 0.001% pluronic F-68)	2.10 ¹³ vg	2ml	0.5ul/min	cells throughout the NHP brain from prefrontal to occipital cortex and cerebellum, sparsely in striatum. GFP-positive cells clustered around blood vessels weak transduction in periphery. GFP-positive cells at all spinal cord levels, in motor neurons and some astrocytes DRG of the cervical region, proximal to the site of injection and some satellite glial cells surrounding DRG neurons	70
CAG-GFP	Cisterna Magna	NHP	adult	2	AAV9 (saline, 5% sorbitol, 0.001% pluronic F-68)	1.8.10 ¹³ vg	2ml	0.5ul/min	cells throughout the brain from prefrontal to occipital cortex and cerebellum, sparsely in striatum. GFP-positive cells clustered around blood vessels. GFP-positive cells at all spinal cord levels, in motor neurons and some astrocytes. DRG of the cervical region, proximal to the site of injection and some satellite glial cells surrounding DRG neurons	
GFP	Cisterna Magna	NHP	2-3 years	3	sc AAV9	1.25.10 ¹³ vg	3+3ml		15–50% motor neuron transduction throughout the cervical, thoracic, and lumbar segments. GFP-positive pyramidal neurons; Purkinje cells throughout the cerebellar cortex were also efficiently transduced. not detected in the liver and spleen of the monkeys	87
GFP	Cisterna Magna	Dog	adult	7	AAV9	2.10 ¹³ vg	1ml	100ul/min or bolus in 15s	widespread CNS transduction	
human SGSH	Cisterna Magna	Dog	adult	2	AAV9	2.10 ¹³ vg	1ml	bolus in 15s	the loss of transgene expression was due to the use of a nonspecies-specific transgene	89
canine SGSH	Cisterna Magna	Dog	adult	3	AAV9	2.10 ¹³ vg	1ml	bolus in 15s	activity peaked 2–4 weeks, but persistent at high levels for 3 months	
eGFP	Cisterna Magna	NHP	adult	4	ssAAV9	5.10 ¹² /kg and 2.5.10 ¹² /kg			substantial vector deposition in the brain and spinal cord (1VGC) Vector copy numbers quite high in liver and spleen.	88
ApoE2/HA	Cisterna Magna	NHP	adult	3	AAVrh10	5.10 ¹³ vg	1-1.3ml	0.5ml/min	CM: 92.0% of cubes had vector levels >1,000 copies/lg DNA, heavy staining of the ependymal cells of the choroid plexus, but also in areas around the frontal and mid-brain, including the hippocampal region, as well as areas around the posterior of the brain and spinal cord.	86
CAG-GFP	Cisterna Magna	NHP	adult	2	AAV9 sc	1.8.10 ¹³ vg	2ml	0.5ul/min	prefrontal to occipital cortex and mainly cerebellum. number and intensity of GFP-positive cells were much greater after CM infusion than ICA delivery. greater astrocytic than neuronal tropism via both routes. not shield against AAV antibodies. Sparse GFP expression was observed in the spleen and liver.	83
CMV-hAADC	Cisterna Magna	NHP	adult	5	AAV9	0.3 / 1 / 3.10 ¹³ vg	2ml	0.5ul/min	prefrontal to occipital cortex and mainly cerebellum. number and intensity of GFP-positive cells were much greater after CM infusion than ICA delivery, greater astrocytic than neuronal tropism via both routes. not shield against AAV antibodies. Sparse GFP expression was observed in the spleen and liver	
GUSB	Cisterna Magna	Dogs	adult and 2months	7	AAV9	1.8.10 ¹³ vg	1ml	1-2 min	ICV and IC vector administration resulted in similarly efficient transduction throughout the brain and spinal cord. ICV cohort developed encephalitis associated with a T-cell response to the transgene product, a phenomenon that was not observed in the IC cohort	99
GFP	Cisterna Magna	NHP	adult	2	AAV9	1.83.10 ¹² vg	1.5ml		substantial transduction was found in the hypothalamus along the third ventricle and in the central gray surrounding the Sylvian aqueduct. extensive transduction was found in the subcommissural organ, located within the dorsal third ventricle, whereas some (GFP)-positive vestibular neurons were found near the fourth ventricle.	90

Table 2: Intracerebroventricular administration in large animal models

GFP	Cisterna Magna	NHP	adult	2	AAV2,5	2.10 ¹² vg	1.5ml		very strong transduction of the ependymal structure	
GFP	Cisterna Magna	Cat	50 days	6	scAAV9	10 ¹² vg/kg	1-1,5ml		more efficiently targeting of MNs of the lumbar (99%) than of the cervical regions (84%) spinal cord. numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates	92
CAG-ARSA- FLAG / MLD	lateral ventricle	NHP	adult	2	AAVrh10 in PBS	1,5.10 ¹² vg	75ul	15ul/min	almost no copies and no ARSA expression (11/83=13%) whereas gold standard: white matter 82%	85
ApoE2/HA	left or right ventricle	NHP	adult	3	AAVrh10	5.10 ¹³ vg	1-1.3ml	0.2ml/min	ICV: 90.0% of cubes had vector levels >1,000 copies/lg DNA, heavy staining of the ependymal cells of the choroid plexus, but also in areas around the frontal and mid-brain, including the hippocampal region, as well as areas around the posterior of the brain and spinal cord.	86
CAG-TPP1 /CLN2	lateral ventricles +/- CM	Dog (TPP deficient)	10-11 days	7	AAV2	1.1.10 ¹² vg	1,5ml		TPP1 activity in CSF detectable at 5 days but no more detectable at 2 months	82
IDUA / MPS I	suboccipital	Cat	adult	5	AAV9	10 ¹² vg/kg	1-2ml	bolus	complete correction of biochemical and histological manifestations throughout the CNS. antibody responses against IDUA which reduced detectable enzyme without substantially reducing efficacy. no evidence of toxicity	88
GFP	ICV	Dog	adult	2	AAV9	2.10 ¹³ vg	1ml	bolus in 15s	Comparable with CM administration	89
GFP	ICV	NHP			AAV2 - HBKO	1.8.10 ¹³ vg	1.5ml	1-10ul/min	widespread cortical transduction, with oligodendrocytes transduced. Robust motor neuron transduction observed in all levels of the spinal cord	200
hASM-HA	СМ	NHP	adult	6	AAV9	1.32.10 ¹³ vg	6ml	1ml/min (n=3) or 1ml/h (n=3)	Infusion of the vector in brain and spinal cord after MRI but only with High speed delivery	201
hASM-HA	ICV	NHP	adult	2	AAV9	1.32.10 ¹³ vg	6ml	1ml/min (n=3) or 1ml/h (n=3)	much larger cortical distribution at the end of the acquisitions, including occipital cortical regions that were not covered by any other routes of delivery	201
cIDUA	Suboccipital	Dogs	28 days	3	AAV9	10 ¹² vg/kg	0.5ml	bolus	vector distributed throughout the CNS. supraphysiologic expression of IDUA in CSF, which declined to the normal range	94

Transgene / Pathology	Target	Specie	Age	Number	Vector / Buffer	Dose	Volume	Speed	Results	Article
GUSB / MPS VII	IT	Dog	18-20 days	3	AAV9	5.10 ¹² vg/kg	1-2ml	1-2min	~50-fold higher expression and a more profound effect on markers of disease than IV delivery	93
GUSB / MPS VII	IT	Dog	18-20 days	2	AAV10	5.10 ¹² vg/kg	1-2ml	1-2min	~50-fold higher expression and a more profound effect on markers of disease than IV delivery	
GUSB	Lumbar L4/L5	NHP	adult	6	AAV9	2.10 ¹³ vg	5ml		transduction efficiency was not improved by placing animals in the Trendelenburg position after injection.	99
GFP	Lumbar citern	NHP	adult	8	AAV9	1.83.10 ¹² vg (N=6) and 5.5.10 ¹² vg (N=2)	1ml		very strong transduction of the ependymal structure	202
GFP	L4/L5	NHP	adult	7	scAAV9	1.10 ¹³ vg/kg	1ml	Bolus	73% of motor neurons targeted in the lumbar region, 53% of motor neurons targeted in thoracic region, and 29% in the cervical spinal cord; tilting for 10 minutes was sufficient to increase motor neuron transduction to 55, 62, and 80% in the cervical, thoracic, and lumbar region. GFP in all brain regions with particularly strong signals in the hippocampus and in the motor cortex. In the brainstem, high transduction of the hypoglossal and trigeminal nuclei, with more than 60 and 75% motor neurons. In the cerebellum, both Purkinje cells and cells of the nuclear layer demonstrated high GFP expression	13
miRNA anti SOD1	L5 and cathether	NHP	adult	32	AAV10		2.5ml	7.5ml/hour	preimplantation of a catheter and placement of the subject with head down at 30° during intrathecal infusion. efficient delivery and effective silencing of the SOD1 gene in motor neurons	98
GFP	L5/L6	Pig	5 days	1	AAV9	5.2.10 ¹² vg/kg	0.25ml	bolus	Extensive motor neuron transduction at all levels of the spinal cord. The brain regions with the highest levels of GFP expression were cerebellar Purkinje cells, nerve fibers within the medulla as well as discrete nuclei, such as the olivary nucleus. Expression within the rest of the brain was restricted to scattered cells near the meningeal surfaces. No obvious expression in periphery	96
miRNA anti SOD1	Lumbar	Marmo sets	less than 4 years	9	AAV10	6.10 ¹² vg/kg	300ul	bolus	high transduction of lumbar spinal cord, than thoracic and cervical . High liver transduction. In brain, mild to good transduction, depending on the regions. Robust GFP staining was seen at the injection site at LSC level all the way to CSC level.	95
GFP	L5 with cathethers	Pigs	2 months	2	scAAV9	3 x 1.10 ¹² vg	3x0.5ml	Bolus	GFP expression in 10–30% of the motor neurons, and one segment (L2) showed GFP expression in 35% of the motor neurons.	87
eGFP	Lumbar punctura	NHP	adult	2	ssAAV9	2.5.10 ¹² /kg			10x lower gene transfer throughout the spinal cord, and up to 100-fold less in the brain compare to CM. Vector copy numbers quite high in liver and spleen.	88
hASM-HA	Lumbar	NHP	adult	3	scAAV9	1.32.10 ¹³ vg	6ml	1ml/min or 1ml/hour	Leakage of the infusion in musculature	201
GFP	Lumbar	Sheep	adult	2	scAAV9		15ml	1ml/min	the frontal, occipital, and parietal cortices exhibited extensive neuronal and glial cell transduction, whereas in the motor cortex glial transduction was primarily observed. Scarce positive neurons were present in the caudate, putamen, and thalamus.Strong GFP staining was noted in the cerebellum, including Purkinje cells, deep cerebellar nuclei and adjacent	203

Table 3 : Intrathecal administration in large animal models

									axons in the white matter, cerebellar peduncles, and brainstem. Robust neuronal transduction was observed along the entire length of the spinal cord, from cervical to lumbar	
miRNA anto SOD1	Lumbar L4/L5	Marmo set	adult	1	AAV10	2.7.10 ¹² vg	250ul	slow bolus	robust expression in motor neurons along the full length of the spinal cord	204

Table 4 : Intravenous administration in large animal models

Transgene / Pathology	Target	Specie	Age	Number	Vector / Buffer	Dose	Volume	Speed	Results	Article
CAG-GFP	Internal carotid artery	NHP		3	AAV9 sc	3.10 ¹³ vg	11 / 21 / 40ml	4ml/min	broader transgene distribution throughout the CNS, extending through several cortical regions. Scattered GFP-expressing cells were found from the pre- frontal to occipital cortex, and in the cerebellum. widespread peripheral organ transduction (Liver and Spleen)	83
CAG-ARSA- FLAG / MLD	Intra-arterial (right middle cerebral artery)	NHP	adult	1	AAVrh10 in PBS	1,5.10 ¹² vg	12ml	bolus	almost no copies and no ARSA expression (6/77=7,8%) whereas gold standard: white matter 82%	85
GUSB / MPS VII	IV	Dog	3 days	1	AAV9	2.10 ¹³ vg/kg	1-2ml	1-2min	limited GUSB expression in cortical and hippocampal neurons, and Purkinje cells, while average expression levels in other brain tissues were only ~1 to 6% of normal levels Similar to AAV10 injected animals. Clear motoneurons transduction	93
GUSB / MPS VII	IV	Dog	3 days	1	AAV10	2.10 ¹³ vg/kg	1-2ml	1-2min	limited GUSB expression in cortical and hippocampal neurons, and Purkinje cells, while average expression levels in other brain tissues were only ~1 to 6% of normal levels Similar to AAV9 injected animals. Clear motoneurons transduction	
NAGLU	IV	NHP	adult	8	ssAAV9	1 (N=2) or 2.10 ¹³ vg/kg (N=4)	5ml	bolus	global CNS and broad somatic transduction. evident vector transduction throughout the brain. Low levels of preexisting anti-AAV9 antibodies did not diminish vector transduction but high-level of preexisting anti- AAV9 Abs lead to reduced transduction in liver and other somatic tissues, but had no detectable impact on transgene expression in the brain.	40
GFP	carotid artery	Cat	2 months	1	AAV-B1	3.4.10 ¹² vg		Bolus	sparse but widespread neuronal gene transfer throughout the brain. AAV-B1 transduced neurons in the cerebral cortex, striatum, hippocampus, thalamus and Purkinje neurons in the cerebellum and motor neurons throughout the midbrain. no indication that AAV-B1 transduced endothelial cells. negligible transduction of liver was observed with AAV-B1, while strong gene transfer to skeletal and cardiac muscle could be detected	205
VEGF	jugular vein	Cat	2 days	3	scAAV9	10 ¹² vg/kg	1ml/kg	bolus	no detectable protein	92
GFP	jugular vein	Cat LIX1	7 days	2	scAAV9	1.5.10 ¹² vg	1ml	Bolus	GFP was detected from the cervical part of the spinal cord to the cauda equina in a number of cells in the ventral spinal cord. In neonates, up to 39 and 34% of the MNs. Nerve fibers of the fasciculi gracilis and cuneatus dorsal sensory tracts also contained large amounts of GFP.	91
GFP	jugular vein	Cat LIX1	7 weeks	2	scAAV9	1.2.10 ¹² vg	3.6ml	Bolus	up to 15% of MNs transduction observed	
cIDUA	jugular vein	Dogs	90 days	4	AAV8	3.10 ¹² vg/kg	0.5-1ml	bolus	mild in serum IDUA activity	94
GFP	saphenous or intracarotid	NHP	adult	4	sc AAV9	0.9- 1.10 ¹³ vg/kg	10ml/kg	2.5ml/min	predominant transduction of glia in NHPs after both intravenous and intra-arterial administration	90

VEGF	jugular vein	cat	adult	6	scAAV9	10 ¹² /kg (N=2) and 10 ¹³ /kg (N=4)	1-2ml		transduction of the spinal cord occurs in neonatal and adult cats but the level of transgene expression remained low in both adult and neonate-injected animals. transduction was detected essentially in liver.	199
GFP	saphenous vein	NHP	adult	1	AAV9	1-3.10 ¹⁴ vg/kg		bolus	only MN and and cells with glial morphology that were sparsely scattered. most abundant number of GFP- expressing cells in all cortical regions lateral geniculate midbrain, pons and medulla. Subcortical structures such as thalamus and putamen were also GFP+ but at a lower cell density. mostly glial transduction with microglia and astrocytes.high levels of vector in liver and also other peripheral tissues	96
GFP	cathether through the brachial artery until aorta	NHP	adult	1	AAV9	2.7.10 ¹³ vg/kg		bolus	Motor neuron targeting extensive transgene expression throughout the entire brain. most abundant number of GFP-expressing cells in all cortical regions lateral geniculate, midbrain, pons and medulla. Subcortical structures such as thalamus and putamen were also GFP+ but at a lower cell density. glial transduction with microglia and astrocytes. Liver, heart, testis and largely peripheral transduction	
IDUA	IV	NHP	adult	2	AAV9	2.5.10 ¹³ vg/kg 7.5.10 ¹³ vg/kg	1ml	Bolus	vector well tolerated. GFP expression was detected in most non-CNS tissues, including liver and muscle, kidney, pancreas, heart, spleen, and pituitary. very low transduction was observed the frontal cortex and spinal cord and hippocampus and cerebellum but transduction in DRG. Good tolerance of the virus	45
IDUA	IV	NHP	adult	2	AAVPHP.B	2.5.10 ¹³ vg/kg 7.5.10 ¹³ vg/kg	1ml	Bolus	vector well tolerated. GFP expression was detected in most non-CNS tissues, including liver and muscle, kidney, pancreas, heart, spleen, and pituitary equivalent to AAV9 except for in skeletal muscle, where transduction was higher for PHP.B vector well tolerated. Immune response against the virus	45
eGFP	IV	NHP		1	ssAAV9	2.10 ¹³ vg /kg			vector distribution to the CNS was substantially lower than that achieved at four- to eightfold lower doses via CM	88

Table 5 : Clinical trials with Intra CSF or intravenous administration

Transgene / Pathology	Target	Age	Number	Vector / Buffer	Dose	Volume	Speed	Identification of the trial and results if available	Article
CLN6 / Batten	IT		13	AAV9	1.5.10 ¹³ vg			NCT02725580, Phase I/II	NA
JeT-GAN / Giant Axonal Neuropathy	IT			AAV9				NCT02362438	
NAGLU / MPSIIIB				scAAV9					
SGSH / MPSIIIA	IV		9?	AAV sc9	5.10 ¹² vg/kg (n=3) and 1.10 ¹³ vg/kg (n=1)			NCT02716246, Phase I/II	
SMN type 1 / SMA	IV	child	15 (cohort 1 n=3, cohort 2 n=12)	AAV9	6.7.10 ¹³ vg/kg cohort 1 and 2.10 ¹⁴ vg/kg cohort 2			NCT02122952, Phase I/II , longer survival, motor improvement	41
SMN	IV	child	6	AAV9				NCT03837184, Phase III	NA
SGSH / MPSIIIA	IV		12	scAAV9	3.10 ¹³ vg/kg			NCT04088734	NA
GLB1 / GM1 type I and II	IV	6 months – 1 year for GM1 type I and 2- 12 for GM1 type II	45	AAV9	1.5 to 4.5.10 ¹³ vg/kg			NCT03952637	NA
hTERT/ AD	IV /IT	45 years and older	5					NCT04133454	NA
HEXA / HEXB Tay sachs	IT	7 and 30 months old	2	AAVrh8	HEXA vector (0.5 mL, 9.9. 10 ¹² vg/mL) mixed with HEXB (0.413 mL, 1.2 .10 ¹³	12ml	1ml/min		203

					vg/mL) to generate a 1:1 equimolar formulation			
GBA / Parkinson	ICM	40 to 75 years	16		Low and high dose		NCT04127578	NA
GRN / Fronto temporal dementia	ICM	30 to 80 years	15		Low, medium and high dose		NCT04408625	NA
IDUA / MPS1	ICM	4 months and older	5	AAV9	1 and 5.10 ¹⁰ gc/kg		NCT03580083	NA
IDS / MPS2	ICM	4 months to 5 years	6	AAV9	1.3 and 6.5.10 ¹⁰ gc/kg		NCT03566043	NA
CLN3	IT	children	7	scAAV9	Low or high dose		NCT03770572, Phase I/IIa	NA

Table 6 : Clinical trials with Intra parenchymal administration

Transgene / Pathology	Target	Age	Number	Vector / Buffer	Dose	Volume	Speed	Identification of the trial and results if available Ar	
AADC/ParkD	Striatum	adult		AAV2				NCT00229736, Increased risk of intracranial hemorrhage, Phase I motor improvement	
TPP-1/LINCL	12 sites in WM	Children		AAV2				Unsufficient but suggestion of slowing progression of disease	207
NTN (CERE-120) /Parkinson	Putamen		12	AAV2	1.4.10 ¹¹ vg/mL and 5.7.10 ¹¹ vg/mL	40 µl		well tolerated, significant motor score improvement 6 months after infusion	
NTN (CERE-120) /Parkinson	Putamen	Adult 35-75 years	38 /20 sham	AAV2	5.7.10 ¹¹ vg/mL	40 μl/ hemisphere		NCT00252850, CERE 120, double blinded clinical trial, afetr 1 year : 13/38, 4/20 sham reacted adversely to the injection, no clinically significant improvement versus placebo at 12 months	208
NTN (CERE-120) / Parkinson	Putamen + Subst Nigra, bilateral	Adult 35-70 years	60	AAV2	2.4.10 ¹² vg			NCT00985517, Phase I, double blinded, safely tolerated, 5 years f-up, no significant improvement	
AADC / Parkinson	Putamen		10	AAV2	9.10 ¹⁰ vg and 3.10 ¹¹ vg			Low and high vector dose, well tolerated, dose dependent improvement in domapine synthesis Elevated PET signal persisted over 4 years in both groups	
Prosavin	Striatum	Adult 48-65 years	15	Lentiviral EIAV	$1.9.10^7$; 4.10^7 and 1.10^8 TU			NCT01856439, Phase I /II, safely tolerated, modest effects but patients with higher dose of Prosavin required lower dose of dopamine (enhanced dopamine production ?)	208
NGF (CERE-110) / Alzheimer		Adult 55-80 years	49	AAV2	2.10 ¹¹ vg			NCT00876863, Phase II, inefficient, safely tolerated	209
CLN2 / Batten	(x12 by 6 bur holes)	Children	10	AAV2	2.5.10 ¹² vg	150 µl	2 μl/min	NCT00151216, Phase I, Radiographical changes in 65% of 60 injections sites	209
GAD65 and GAD67 / Parkinson	SubThalamic Nucleus (unilateral)	Adult 25-75 years	12	AAV2	1.10 ¹¹ vg/mL; 3.10 ¹¹ vg/mL and 1.10 ¹² vg/mL	50 μl		NCT00195143, Phase I/II, safe; neuroimaging improvement, clinical improvement at 12 months post infusion, decrease of STN activity	209
NTN (CERE-120) / Parkinson			58	AAV2	5.4.10 ¹¹ vg			NCT00400634, Phase II, not effective	208
GAD65 and GAD67/ Parkinson	SubThalamic Nucleus	Adult 30-75 years	44	AAV2	1.10 ¹² vg			NCT00643890, Phase II, well tolerated, improvement at 6 months (not greater than DBS)	206
ASPA / Canavan			21	AAV2	1.10 ⁹ vg				206
ASPA Canavan	(X6)	4-83 years	13	AAV2	9.10e11vg			Phase I/II, No longterm adverse event, slowing of disease	206

CLN2 / Batten	WM		16	AAV rh.10	9.10 ¹¹ vg (n=6) and 2.85.10 ¹¹ vg (n=10)			NCT01161576, Phase I/II	
CLN2 / Batten	WM		8	AAV rh.10	9.10 ¹¹ vg and 2.85.10 ¹¹ vg			NCT01414985, Phase I/II	
NAGLU / MPSIIIB		Child (20-53 months)	4	rAAV2/5	4.10 ¹² vg			ISRCTN19853672, Phase I/II, well tolerated, induced sustained enzyme production in the brain, best results in the youngest patients	
AADC / Parkinson			5	AAV2	9.10 ¹⁰ vg			Phase I, Safely tolerated, modest improvement in motor coordination at 6 months (placebo effect ?)	211
AADC / Parkinson			10	AAV2	3.10 ¹¹ vg			Phase I, safe possibly effective	212
SHSH-IRES-SUMF1 / MPSIIIA	12 sites in WM	Child (32-70 months)	4	AAV rh.10	7.2.10 ¹¹ vg	60 µl	2h	NCT01474343 , good tolerance, possible but moderate clinical improvement,	
AADC / AADC deficiency	Putamen	Child (1.67- 8.42 years)	10	AAV2	1.81.10 ¹¹ vg	80 µl /target	3 μl /min	NCT01395641, Phase I/II, motor development improvement in children	
AADC/AADC deficiency	SN + VTA							NCT02852213, Phase I	
CAG-NGF / Alzheimer	Nucleus Basalis Meynert	Adult 50-80 years	10	AAV2				NCT00087789, Phase I, Safe, biologically effective	
NGF / Alzheimer		Adult >50 years	8					NCT00017940	
GDNF	putamen	adult	12	AAV2				NCT04167540 / Phase 1B	
GDNF / Parkinson	(x16, 4 in cerebellum)	Adult >18 years	24	AAV2	9.10 ¹⁰ vg; 3.10 ¹¹ vg; 9.10 ¹¹ vg and 3.10 ¹² vg			NCT01621581, Phase I	
ARSA / MLD	12 sites in WM	Child 6-60 months	4	AAV rh.10	1.10 ¹² vg/kg (n=2) and 4.10 ¹³ vg/kg (n=2)	60 μl / site	0,5 μl /min	NCT01801709, Phase I/II	NA
SGSH / MPS IIIA	6 sites in WM	Child	20	AAVrh10				NCT03612869, Phase III	NA
miHTT/Huntingto n	Intra striatal	adult	26	AAV5	6.10 ¹² vg and 6.10 ¹³ vg			NCT04120493, Phase I/II	NA
AADC		Adults 40 to 75 years	42	AAV2	2,.5.10 ¹² vg			NCT03562494, Phase II	NA

Table 7 : Devices for intracerebral gene therapy delivery

Intracerebral cathether	Developing team/ company		back flow reduction	design	Article
Hamilton Syringe	Hamilton	rigid, steel	no	endport	
UCSF « homemade »	UCSF, Medgenesis Therapeutics and Brainlab AG	rigid, fused silica, then flexible canna with rigid tip ;	stepped profile	end port, step design	213
Smartflow	MRI Interventions, Inc / UCSF	rigid, ceramic, fused silica liner and a polymer sheath	stepped profile	endport, step design	214
MEMS	Alycone,Inc, Cornell	microfrabricated silicon cannula	stepped profile	dual lumen, coupled to multiple proximal tubing	215
Neuroinfuse	Renishaw / Univ Bristol Renishaw Medical Solutions, Neurological Applications Department, New Mills, Wotton-Under-Edge, Gloucestershire GL12 8JR, UK	carbothane	stepped profile / recesses stepped	Sub 1 mm diameter catheters and guide tubes	216,217
gliasite / emory University	IsoRay / Emory University	inflatable	no	balloon tipped, 2, 3, and 4 cm with corresponding full volumes of 5, 15 and 35 cc.	218
hollow fiber	Twin Star Medical			micro-porous	

Cleveland Multiport	Cleveland Clinic	rigid	yes	Multichannel	212
Catheter	Infuseon Therapeutics				
Custom Made.Bristol	Bristol University	rigid	No	One port	219
University					
Barium - impregnated one	Vygon Valley Forge, PA, USA			one port	212
port infusion catheter					
Barium - impregnated one	Medtronic		barium impregnated	one port	212
port infusion catheter					