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1  | INTRODUC TION

The huge computational power available today allows researchers 
to develop individual-based models of high complexity to explore 
dynamical processes in ecology and evolution. Here, we aim to make 
a link between these individual-based descriptions and continuous 
models like (stochastic) differential equations that remain amenable 
to analysis. We review these techniques and apply them to some 
frequently used models in ecology and evolution.

In ecology, probably the most common description of popula-
tion dynamics is the logistic growth equation (Verhulst, 1838). Its 
attractiveness draws from its simplicity. It has a globally attractive 
fixed point (when started with any nonzero population size), the 
carrying capacity of the population. This simplicity comes at the 
cost that biological observations like population size fluctuations 

or even extinction events are not captured by this determinis-
tic model. To account for these stochastic effects, one needs to 
change to a stochastic differential equation which can be de-
rived from individual-based reactions (Champagnat et  al., 2006). 
Stochastic differential equations consist of a deterministic and a 
stochastic term, the latter also often referred to as noise. In the-
oretical ecology, the effect of random environmental fluctuations 
on deterministic dynamics like the logistic equation has been stud-
ied in great detail (e.g., Allen et  al.,  1993; Schaffer et  al.,  1986). 
Demographic stochasticity, which arises from the inherent ran-
domness of birth and death events of individuals, is often mod-
eled in discrete-time models (e.g., Melbourne & Hastings,  2008; 
Schreiber et  al.,  2018). Models including demographic stochas-
ticity in continuous time are more scarce in ecology. Typically, 
these models are studied in the context of evolutionary ecology, 

 

Received: 6 October 2020  |  Revised: 8 December 2020  |  Accepted: 23 December 2020

DOI: 10.1002/ece3.7205  

R E V I E W

Understanding evolutionary and ecological dynamics using a 
continuum limit

Peter Czuppon1,2,3  |   Arne Traulsen3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd

1Institute of Ecology and Environmental 
Sciences Paris, UPEC, CNRS, IRD, INRA, 
Sorbonne Université, Paris, France
2Centre Interdisciplinaire de Recherche 
en Biologie, CNRS, Collège de France, PSL 
Research University, Paris, France
3Department of Evolutionary Theory, Max 
Planck Institute for Evolutionary Biology, 
Plön, Germany

Correspondence
Peter Czuppon, Institute of Ecology and 
Environmental Sciences (IEES), Sorbonne 
Université, Campus Pierre et Marie Curie, 
Bâtiment 44-45 – 4ème étage, 4 Place 
Jussieu, 75252 Paris, France.
Email: peter.czuppon@upmc.fr

Funding information
Agence Nationale de la Recherche, Grant/
Award Number: ANR-14-ACHN-0003; 
European Commission, Grant/Award 
Number: 844369; Max-Planck-Gesellschaft

Abstract
Continuum limits in the form of stochastic differential equations are typically used 
in theoretical population genetics to account for genetic drift or more generally, in-
herent randomness of the model. In evolutionary game theory and theoretical ecol-
ogy, however, this method is used less frequently to study demographic stochasticity. 
Here, we review the use of continuum limits in ecology and evolution. Starting with 
an individual-based model, we derive a large population size limit, a (stochastic) dif-
ferential equation which is called continuum limit. By example of the Wright–Fisher 
diffusion, we outline how to compute the stationary distribution, the fixation prob-
ability of a certain type, and the mean extinction time using the continuum limit. In 
the context of the logistic growth equation, we approximate the quasi-stationary 
distribution in a finite population.

K E Y W O R D S

continuum limit, diffusion approximation, extinction time, fixation probability, stationary 
distribution

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0003-1462-7237
https://orcid.org/0000-0002-0669-5267
http://creativecommons.org/licenses/by/4.0/
mailto:peter.czuppon@upmc.fr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.7205&domain=pdf&date_stamp=2021-05-01


5858  |     CZUPPON and TRAULSEN

for example to model co-evolution in ecological communities 
(Dieckmann & Law,  1996). More generally, questions related to 
extinction and coexistence, transitions between different stable 
deterministic equilibria or the maintenance of quasi-cycles can be 
studied within the framework of stochastic differential equations 
(Boettiger,  2018; Jeltsch et  al.,  2019). Here, we outline how to 
derive stochastic differential equations from an individual-based 
model. We do this along similar lines as reviewed in Black and 
McKane (2012) but with a larger emphasis on the technical details.

In evolutionary game theory, the Moran process has become a 
popular model for stochastic dynamics in finite populations (Nowak 
et al., 2004). It is a model describing the dynamics of different alleles 
in a population of fixed size and overlapping generations. As this is 
a birth–death process, quantities like fixation probabilities, fixation 
or extinction times, and the stationary distribution can be calculated 
based on recursions (Allen, 2011; Goel & Richter-Dyn, 1974; Karlin & 
Taylor, 1975; Traulsen & Hauert, 2009). A continuum approximation 
for quantities that are known exactly may thus make limited sense at 
first sight—but it can provide a very useful new perspective. Another 
important process in population genetics is the Wright–Fisher pro-
cess—a model for allele frequency dynamics in a population of fixed 
size and nonoverlapping generations (Wright, 1931). It is more pop-
ular in population genetics but is also used in evolutionary game 
theory (e.g., Imhof & Nowak,  2006; Taylor & Maciejewski,  2012; 
Traulsen et al., 2006; Wakano & Lehmann, 2014). The Wright–Fisher 
process is mathematically more challenging to analyze exactly than 
the Moran process. Therefore, continuum approximations result-
ing in stochastic differential equations are used to compute typical 
quantities of interest such as the probability of fixation of a certain 
genotype or the mean time until this fixation event occurs (Crow & 
Kimura, 1970; Ewens, 2004). Additional to the derivation of the con-
tinuum limit, we also present how to compute these quantities. In 
evolutionary game theory, demographic stochasticity is particularly 
important for behaviors that only evolve in small populations, such as 
spite (Gardner & West, 2004; Nowak et al., 2004). Initially, stochas-
tic replicator dynamics have been developed to address the prob-
lem of equilibrium selection in evolutionary games (Cabrales, 2000; 
Foster & Young, 1990; Fudenberg & Harris, 1992). With the more 
recent development to look at games with a larger number of pos-
sible strategies, an approach based on weak mutation which allows 
to reduce the analysis to pairwise comparison between strategies 
became popular (Fudenberg & Imhof, 2006; Wu et al., 2011). These 
methods are particularly useful when many strategies have to be 
taken into account (García & Traulsen, 2019; Rand & Nowak, 2011; 
Sigmund et al., 2010; Traulsen et al., 2012; Vasconcelos et al., 2017). 
However, while the focus on weak mutation allows an analysis that 
takes demographic noise into account, additional approaches are 
necessary when, for example, internal equilibria are present (Black 
et al., 2012; Vasconcelos et al., 2017). The stochastic tools discussed 
here may be a further step into that direction.

Even though similar in the questions they try to answer, evolu-
tionary game theory and population genetics are developing in paral-
lel, sometimes with little interaction between them. As this is partly 

arising from the different methods applied, here we aim to provide 
an introduction to the continuum limit for those less comfortable 
with these methods and hesitant to go into the extensive, more 
mathematical, literature. In summary, for the theoretical population 
geneticist with a probabilistic background, we provide a summary of 
some key results on stochastic differential equations; for the evolu-
tionary game theorist, we give a new perspective on the derivations 
of results obtained when using discrete birth–death processes; and 
lastly, for the theoretical ecologist familiar with deterministic mod-
eling, we outline how to derive and work with stochastic versions of 
classical ecological and evolutionary processes.

Since our goal is to illustrate how to apply a continuum limit to 
individual-based descriptions of a biological process, the calculations 
and derivations below may remain vague where more mathematical 
theory is necessary. For a mathematically rigorous presentation of 
this topic, we refer to the lecture notes by Etheridge (2012) or the 
book by Ewens (2004). A more application-oriented treatment of 
stochastic processes in biology can be found in the books by Lande 
et al. (2003), Otto and Day (2007), and Allen (2011).

2  | E VOLUTIONARY AND ECOLOGIC AL 
PROTO -T YPE PROCESSES

We outline the derivation of continuum limits by application to ex-
emplary processes from evolution and ecology, the Wright–Fisher 
and Moran process, and the logistic equation. By showing the ex-
plicit derivation in these examples, we provide the necessary tool 
set to derive continuum limits of more complex processes motivated 
by individual-based models. In this section, we define the models by 
their microscopic descriptions, that is, we describe the model dy-
namics as viewed from an individual's perspective.

2.1 | Wright–Fisher and Moran process

The two most popular processes to model (stochastic) evolutionary 
dynamics are the Wright–Fisher and the Moran process. While in 
the Wright–Fisher process generations are nonoverlapping and time 
is measured in discrete steps, generations in the Moran model are 
overlapping and measured in either discrete or continuous time. 
Originally, both processes describe the stochastic variation of allele 
frequencies due to finite population size effects referred to as ge-
netic drift.

2.1.1 | Wright–Fisher model

One of the oldest population genetics model is the finite size 
Wright–Fisher process (Fisher, 1930; Wright, 1931). Given a popula-
tion of constant size, it describes the change in frequencies of al-
leles in nonoverlapping generations over time, measured in (discrete) 
generations.
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Classically, one considers a population of N individuals where 
each individual is of type A or B. The population is considered to 
be in its ecological equilibrium. The population size N is therefore 
constant over time. One interpretation of the dynamics is that every 
generation each individual chooses, independently of all other in-
dividuals, an ancestor from the previous generation and inherits its 
type. Under selection, the likelihood of drawing type A individuals 
increases (or decreases) which introduces a sampling bias. The prob-
ability for an offspring to have a parent of type A, conditional on k 
individuals being of type A in the parental generation, is

where s ∈ ℝ≥0 is the selective advantage of type A. The number of type 
A individuals in the next generation is then given by a binomial dis-
tribution with sample size N and success probability pk. Denoting the 
number of type A individuals in generation n by Xn, we have

Unfortunately, the Wright–Fisher model, even though very illus-
trative, is difficult to study analytically. Through the developments 
in stochastic modeling in the last century, a lot of this new theory 
could be adopted to overcome this problem (e.g., Ewens,  2004; 
Kimura, 1983).

2.1.2 | Moran model

Another way to resolve the difficulties associated with the Wright–
Fisher process is provided by the Moran process (Moran, 1958). The 
setup is the same as for the Wright–Fisher process (constant popula-
tion size N with two types or – in population genetics – alleles A and 
B) with one exception: Time is not measured in generations but each 
change in the population configuration affects only one individual, 
the one that dies and gets replaced by an offspring of another ran-
domly selected individual. Therefore, generations are overlapping, 
and time can be measured in discrete steps or continuously.

Discrete time
The Moran process in discrete time progresses as follows. Every 
time step, one individual is randomly chosen to reproduce and the 
offspring replaces a randomly chosen individual among the remain-
ing N − 1 individuals (sometimes, the replacement mechanism is not 
restricted to the remaining individuals but also includes the parent). 
Therefore, in a population with k type-A individuals, the probability 
that one of these replaces a type-B individual is given by

(1)pk =
(1 + s )k

(1 + s )k + N − k
,

(2)ℙ (Xn+1 = j �Xn = k ) =

⎛
⎜⎜⎝
N

j

⎞
⎟⎟⎠
p
j

k
(1 − pk )

N− j, 0 ≤ k ≤ N.

(3)Tk+ = pk
N − k

N − 1
, for 0 ≤ k ≤ N

(
sometimes Tk+ = pk

N − k

N

)

with pk as defined in Equation 1. Analogously, the probability for the 
number of type-A individuals to decrease from k to k − 1 reads

We have implemented selection on the reproduction step, but 
it could also affect the replacement step. In a nonspatial setting, 
as considered here, this leads to the same transition probabilities. 
However, the Moran model can also be studied on a graph which 
aims to model spatial structure. In that case, the order of repro-
duction and replacement, and which of these steps is affected by 
selection, matters and can potentially give rise to different evolu-
tionary dynamics (Kaveh et  al., 2015; Lieberman et  al., 2005). We 
note further that without selection (s = 0) we have pk = k/N, that is, 
the increase and decrease probabilities are equal for any choice of k. 
Dynamics with this property are called neutral.

Continuous time
The same dynamics (albeit on a different time scale) are obtained by 
assuming that each pair of individuals is associated with a random 
exponentially distributed time (also described as exponential clocks). 
The next pair to update their types is determined by the smallest 
random time (or the clock that rings first). At these updating times, 
one of the two individuals is chosen to reproduce, the offspring re-
placing the other individual of the pair. There is no standard choice 
when it comes to choosing the rate of these exponential times.

Both formulations of the Moran process are Markov chains, 
either in discrete or continuous time, with the special property of 
having jumps of ±1 only. These processes are called birth–death pro-
cesses. The theory of these is well developed, see for example the 
books of Karlin and Taylor (1975, 1981), Gardiner (2004), or Allen 
(2011), so that the dynamics of Moran processes are often amenable 
to analysis (typically by solutions of recursion equations).

To sum up the introduction to these two evolutionary models, 
the difference between the Wright–Fisher model and the Moran 
model is the progression of populations in time. In the Wright–Fisher 
process, generations are nonoverlapping, that is, all individuals up-
date their type at the same time. Therefore, the distribution of types 
in the offspring generation is binomial. In contrast, generations are 
overlapping in the Moran model and the dynamics are described by 
a birth–death process since only one individual is updated at a time.

2.2 | Logistic growth

In ecology, one is typically interested in population sizes or densi-
ties rather than allele frequencies. The simplest population growth 
model is that of exponential growth. Obviously, a population cannot 
grow exponentially forever. Its growth will be limited at some point, 
for example due to spatial constraints or resource depletion. This 
form of density regulation suffices to stabilize a population around 
its carrying capacity, the positive population size at which in the de-
terministic process the growth rate equals zero.

(4)Tk− = (1 − pk )
k

N − 1
, for 0 ≤ k ≤ N.
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Here, we give the mechanistic basis that could potentially de-
scribe such a process. We denote a single individual of the popula-
tion by Y. The birth and death processes can then be written as

The parameters β and δ correspond to the rates at which the two 
reactions happen, that is, each reaction corresponds to an exponen-
tial clock with rate either β or δ. For β > δ, the population grows to 
infinity (exponential growth), whereas for β <δ, it goes extinct.

Population regulation is achieved through a nonlinear term that 
is interpreted as an interaction between two individuals, for exam-
ple, competition for space. The corresponding microscopic process 
is given by

The parameter γ is referred to as the intraspecific competition 
coefficient, and K is a measure of the number of individuals at carry-
ing capacity. The division by K in the competition rate is accounting 
for the probability of interaction of two individuals in a well-mixed 
population where space is measured by the parameter K so that Y/K 
becomes a density (or rate of encountering an individual when ran-
domly moving in space). For a more detailed derivation of these type 
of interaction rates, we refer to Anderson and Kurtz (2015).

The logistic process is, like the Moran process, a birth–death 
process. We will see in the next section that in the infinite popula-
tion size limit (we let K tend to infinity), the mechanistic description 
above yields the logistic equation

where r = β − δ is the per-capita growth rate, c = (β − δ)/γ is the rescaled 
carrying capacity, and y = Y/K is the density of the population.

3  | INFINITE POPUL ATION SIZE LIMIT

The microscopic descriptions can be implemented by a stochastic 
simulation algorithm. Yet, the theoretical analysis of finite size popu-
lations can be challenging. A common technique to overcome this 
challenge is to consider a continuum approximation, that is, studying 
the limiting model for N (or K) to infinity. The limit is a (stochastic) 
differential equation of the form

where (Wt)t ≥ 0 is a standard Brownian motion. This equation describes 
the population dynamics, that is, the macroscopic evolution of a certain 
model. For a general introduction to stochastic differential equations, 
see for example the books by Karlin and Taylor (1981) and Gard (1988).

(5)Y
�

⟶Y+Y, birth;

Y
�

⟶∅, death.

(6)Y + Y
�∕K
⟶Y, competition.

(7)dy

dt
= ry

(
1 −

y

c

)
,

(8)dxt = � (xt )dt +

√
�2 (xt )dWt,

The term μ(xt) is called the infinitesimal mean, that is, the expected 
change of the stochastic process (xt)t ≥ 0 in a very short (infinitesimal) 
time interval. It represents the deterministic dynamics of the process. 
The term σ2 (xt) is called the infinitesimal variance, that is, the expected 
variation of the continuum limit in very small time steps. It quantifies 
the random fluctuations. In the case where σ2 (x) is zero, the limit is de-
terministic and Equation 8 reduces to an ordinary differential equation.

One can formally show that the terms μ(x) and σ2 (x) indeed cor-
respond to the changes of the mean and the variance in infinitesi-
mally small time steps if they are derived formally (Appendix 1). This 
allows us to compute them by the following identities:

where � and � denote the expectation and variance of the process xt.
A solution of a stochastic differential equation of the form in 

Equation 8 is called a diffusion. Another common representation of 
Equation 8 is the following integral equation

where the stochastic integral is interpreted in the sense of Itô. For a 
discussion of the different choices of stochastic integrals and their con-
sequences in terms of modeling, we refer for example to Turelli (1977).

We now present how to derive Equation 8 for the three intro-
duced models. The strategy is rather simple: Compute the infinitesi-
mal mean and variance as given in Equation 9 for the individual-based 
model.

3.1 | Discrete-time derivation: Wright–Fisher model

For the reason of illustration, we assume a Wright–Fisher model as 
outlined in Section 2.1 without selection, s = 0. We need to com-
pute the expectations in Equation 9 using the probability distribu-
tion given in Equation 2 (with s = 0). Let us ignore the time step Δt 
for the moment and simply compute the change in expectation and 
variance from one generation to the other. Writing Xt for the number 
of individuals of type A and setting ΔXt = Xt − Xt−1, we find

where we used that the number of individuals of a certain type in the 
next generation is binomially distributed. Analogously, the infinitesimal 
variance is

(9)
�(x)= lim

Δt→0

1

Δt
�[(xΔt−x0)|x0=x],

�2(x)= lim
Δt→0

1

Δt
� [(xΔt−x0)|x0=x],

(10)xt = ∫
t

0

� (xs )ds + ∫
t

0

� (xs )dWs,

(11)� [ΔXt |Xt−1 = k ] = � [Xt |Xt−1 = k ] − k = N
k

N
− k = 0,

(12)

�[(ΔXt)
2|Xt−1=k] =�[X2

t
||Xt−1=k]−2k�[Xt

||Xt−1=k]+k2

=� [Xt
||Xt−1=k]+�[Xt

||Xt−1=k]2−2k2+k2

=N
k

N

(
1−

k

N

)
.
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It remains to account for the transition from discrete to continu-
ous time. In this case, the natural choice is Δt = N−1. This can be seen 
by examining the infinitesimal variance. To obtain a limit different 
from zero or infinity in Equation 12 for N to infinity, we need to di-
vide that equation by N. Comparing Equation 12 to the correspond-
ing line in Equation 9, we set Δt = N−1. Replacing k/N by x and taking 
the limit N → ∞, we find the neutral Wright–Fisher diffusion for the 
allele frequency dynamics

This equation is called Wright–Fisher diffusion and describes the 
dynamics of a neutral allele due to genetic drift. In other words, the 
allele frequency behaves like a random walk in continuous time and 
space. A similar derivation as above can be done by including se-
lection and mutation. The more lengthy computation is relegated to 
Appendix 2.

Conclusion 1: To derive a continuum limit of a finite population 
size model in discrete time, one computes the infinitesimal mean 
and variance as given in Equation  9 and rescales time so that the 
two quantities converge in a meaningful way, that is, do not tend to 
infinity.

3.2 | Continuous-time derivation: general case

In principle, the same methodology as above is applicable for the 
derivation of the continuum limit of a process measured in con-
tinuous time. However, in view of our subsequent analysis of the 
limit Equation  8, we will introduce a new tool, the infinitesimal 
generator.

The change in infinitesimal time of any continuous-time Markov 
process (xt)t ≥ 0 can be described by the infinitesimal generator, de-
noted (Ethier & Kurtz,  1986, chapter 1, eq. (1.10)). Intuitively, one 
can think of it as the derivative of the expectation (of an arbitrary 
function) of a stochastic process. Formally, it is defined by

where � [ f (xΔt ) |x0 = x ] denotes the conditional expectation of the 
stochastic process f(xt) at time Δt given the initial value x0 = x. Here, 
f is an arbitrary function so that the limit is well-defined. For exam-
ple, applying � to f(x) = x describes the dynamics of the mean of xt, 
and for f(x) = x2, we obtain the dynamics of the second moment of xt. 
From the first two moments, we can recover the variance, so that from 
Equation 14, one can derive the infinitesimal mean and variance.

The infinitesimal generator is useful in our context since it can 
be related to a diffusion process. More precisely, the infinitesimal 
generator associated with the stochastic diffusion

(13)dxt =

√
xt (1 − xt )dWt.

(14)(�f ) (x ) = lim
Δt→ 0

(
� [ f (xΔt ) |x0 = x ] − f (x )

Δt

)
,

(15)dxt = � (xt )dt + � (xt )dWt

is given by (we refer to Appendix 1 for a derivation by the Itô formula)

Our strategy is to find a limit of the infinitesimal generator as-
sociated with a finite population size process, which corresponds 
to the form given in Equation  16. We consider a continuous-time 
birth–death process with transition rates Tk+ and Tk− for 0 ≤ k ≤ N. 
Due to the exponentially distributed waiting times, the probability 
for a single update until time t is λt exp(−λt), where λ is the rate of the 
corresponding exponential clock. Setting x = X/N, the frequency of 
type-A individuals, we find the infinitesimal generator for the model 
with finite population size N, �N, to be of the form

We have used the Landau notation o(Δt) to summarize processes 
that scale with order (Δt)1 + ε for any ε > 0. We will also use the Big-O 
notation O(Δt) for processes that scale with order Δt or higher. 
Doing a Taylor expansion for large N and neglecting the terms of 
order higher than 1/N2, we find

Translating this equation to a stochastic differential equation, we 
identify the single components as

Note that we have made no assumption on the dependence of the 
transition probabilities on the frequency x, such that this approach is 
applicable for constant selection, linear frequency dependence aris-
ing in two player games (Traulsen et al., 2005) or multiplayer games 
with polynomial frequency dependence (Gokhale & Traulsen, 2010; 
Peña et al., 2014).

(16)(�f ) (x ) = � (x ) f � (x ) +
1

2
�2 (x ) f �� (x ) .

(17)

(�Nf)(x) = lim
Δt→0

⎧
⎪⎪⎨⎪⎪⎩

1

Δt

⎡
⎢⎢⎢⎢⎢⎣

NTxN+Δte−NT
xN+Δt

�
f

�
x+

1

N

�
− f(x)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
probability of birth of type A until time Δt

+ NTxN−Δte−NT
xN−Δt

�
f

�
x−

1

N

�
− f(x)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
probability of death of type A until time Δt

⎤
⎥⎥⎥⎥⎥⎦

+ o(Δt)
⏟⏟⏟

more than one update until time Δt

⎫
⎪⎪⎬⎪⎪⎭

=N

�
TxN+

�
f

�
x+

1

N

�
− f(x)

�
+TxN−

�
f

�
x−

1

N

�
− f(x)

��
.

(18)

(�Nf)(x) =N

(
TxN+

(
f

(
x+

1

N

)
− f(x)

)
+TxN−

(
f

(
x−

1

N

)
− f(x)

))

≈N

(
TxN+

(
f(x)+

1

N
f�(x)+

1

2N2
f��(x)− f(x)

)

+TxN−
(
f(x)−

1

N
f�(x)+

1

2N2
f��(x)− f(x)

)
+O

(
1

N3

))

=N

(
(TxN+−TxN−)

f�(x)

N
+ (TxN++TxN−)

f��(x)

2N2
+O

(
1

N3

))

= (TxN+−TxN−)f�(x)+
1

2N
(TxN++TxN−)f��(x)+O

(
1

N2

)
.

(19)� (x ) = lim
N→∞

(TxN+ − TxN− ) and �2 (x ) = lim
N→∞

(TxN+ + TxN− )

N
.
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Conclusion 2: For time-continuous finite population size models 
with jumps of ±1, that is, a birth–death process, the terms of the 
continuum limit can be computed by Equation 19.

3.2.1 | Example: Moran process with 
selection and mutation

Returning to our proto-type processes, we explicitly derive the sto-
chastic differential equation corresponding to the Moran model with 
selection and mutation. We decouple reproduction and mutation 
processes, but similar derivations can be made if we assume a cou-
pling of mutations to reproduction events. The selection coefficient 
is denoted by s, and the mutation rates from type A to B and type B 
to A are given by uA→B and uB→A, respectively. Then, the transition 
rates are

Inserting these into Equation 19 yields

Depending on the choice of selection and mutation rates, these 
equations result in different limits. Typically, one is interested in 
nontrivial limits for these equations, that is, a limit so that not both 
components equal zero. Often this can be achieved by rescaling time 
(Section 3.3) and/or defining the strength of selection and mutation 
in terms of the population size N. As an example, we will focus on 
two specific limits: (a) strong selection and strong mutation and (b) 
weak selection and weak mutation.

Strong selection and mutation
We consider large selection and mutation rates. We assume that s 
and ui do not depend on N but are constant. To obtain a limit equa-
tion for the frequency of individuals of type A, x = X/N, we rescale 
time by N, that is, t→Nt, which transforms Equation 21 to

The first equation is independent of N and the vanishing variance 
in the second equation implies that the limit process is deterministic. 
We find the ordinary differential equation

which describes the change in allele frequency in a population under 
strong selection and mutation over time.

(20)
Tk+ = (1 + s )k

(N − k )

N
+ uB→A (N − k ) , and Tk− = (N − k )

k

N
+ uA→Bk.

(21)
�(x)= lim

N→∞

(
sk
(N−k)

N
+uB→A(N−k)−uA→Bk

)
,

�2(x)= lim
N→∞

(
(2+s)k

N−k

N
+uB→A(N−k)+uA→Bk

N

)
.

(22)

�(x) = lim
N→∞

(sx(1−x)+uB→A(1−x)−uA→Bx)= sx(1−x)+uB→A(1−x)−uA→Bx,

�2(x) = lim
N→∞

(
2x(1−x)+sx(1−x)+uB→A(1−x)+uA→Bx

N

)
=0.

(23)dxt = � (xt )dt = sxt (1 − xt ) + uB→A (1 − xt ) − uA→Bxt,

Weak selection and mutation
In contrast to the previous scenario, we now assume that both se-
lection and mutation are weak. We let s and ui scale inversely with 
N and define the constants α = sN and νi = uiN. Inserting these into 
Equation 21 (and here without rescaling time) yields

which gives the diffusion limit

Note that compared to the Wright–Fisher diffusion in Equation 13 this 
limit has twice as much variance. This difference is explained by the differ-
ent sampling schemes in the individual-based description of the model. To 
see this, we assume no selection, s = 0, and no mutation, uA→B = uB→A = 0.

In the Wright–Fisher process, individuals are updated by binomial 
sampling. The variance of this sampling procedure is Nx(1 − x), where 
the factor N vanishes by rescaling the time. This gives σ2 (x) = x(1 − x).

In the Moran model, or more generally for a birth–death pro-
cess, the variance is computed by the sum of the transition rates, 
cf. Equation 19. In our example, both transitions happen at rate 1, 
which explains the additional factor 2. The difference between the 
variances is therefore a result of the different sampling schemes of 
the individual-based models.

As a consequence of this difference in the variance σ2 (x) between 
the two models, the Moran diffusion limit progresses twice as fast 
as the Wright–Fisher diffusion limit which can be seen by the scaling 
property of the Brownian motion. In terms of the original discrete pro-
cesses, this means that N individual jumps, like in the Moran process, 
accumulate more variance than one update of the whole population, 
like in the Wright–Fisher process. The sampling therefore determines 
the variance and consequently the speed of the continuum limit.

Conclusion 3: The Moran process, by definition, has the same 
mean behavior as the Wright–Fisher model. However, its variance in 
the diffusion limit is twice the variance of the corresponding Wright–
Fisher diffusion. This difference arises from the different sampling 
schemes of the individual-based models.

3.3 | Change of time scales in the derivation of a 
continuum limit

In the derivation of the continuum limit, we have repeatedly 
rescaled time to obtain a nontrivial limit, for example, right before 
Equations 13 and 22. Rescaling the time speeds up (or slows down) 
the original process so that the dynamics of interest, for example, al-
lele frequency changes, become observable. For example, if the dy-
namics were to be very fast in the original process, we would need to 
slow down time appropriately to observe the changes of the quan-
tity of interest more gradually. In general, we are free to chose any 

(24)
�(x)= lim

N→∞
(�x(1−x)+�B→A(1−x)−�A→Bx)=�x(1−x)+�B→A(1−x)−�A→Bx,

�2(x)= lim
N→∞

(
2x(1−x)+

�x(1−x)+�A→B(1−x)+�A→Bx

N

)
=2x(1−x),

(25)
dxt = (�xt (1 − xt ) + �B→A (1 − xt ) − �A→Bxt )dt +

√
2xt (1 − xt )dWt.
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scaling of time. However, it is important to keep in mind the scaling 
when interpreting results obtained in the limiting process in terms of 
the original process. Especially so, if one is interested in quantities 
involving time, for example, fixation or extinction times.

Conclusion 4: Different assumptions on the model dynamics, for 
example, on selection and mutation, can lead to different contin-
uum limits on the population level. To identify parameter combina-
tions that result in a reasonable continuum limit, one needs to study 
Equation 19 to match the orders of the scaling parameter. Rescaling 
time gives an additional degree of freedom when trying to match 
these orders to obtain a reasonable limit.

4  | DIFFUSION APPROXIMATION

We have seen that if we let the population size N tend to infinity, we 
can derive a (stochastic) differential equation describing the studied 
evolutionary or ecological process. A natural question that arises is how 
these results relate to finite population size models. To study this differ-
ence between the finite population process and the continuum limit, we 
consider the logistic growth equation. The transition rates are given by

(26)Tj+ = �j and Tj− = j

(
� +

� ( j − 1)

K

)
.

Repeating the steps from the previous section with y  =  j/K, 
we find the following expressions for the infinitesimal mean and 
variance:

Thus, the classical deterministic logistic equation is obtained in 
the infinite population size limit, K → ∞:

How well does the finite population size description approxi-
mate this deterministic limit? One way to approach this question is 
to simply not take the limit of K to infinity. The finite population size 
logistic equation, derived from Equation 27, is then approximated by

where the superscript K in yK
t
 indicates the order of magnitude of the 

carrying capacity.

(27)
�(y)= lim

K→∞

(
TyK+−TyK−

K

)
= (�−�)y

(
1−

�y

(�−�)

)
,

�2(y)= lim
K→∞

(
TyK++TyK−

K2

)
= lim

K→∞

(�+�+�y)y

K
=0.

(28)dyt = (� − � )yt

(
1 −

�yt

� − �

)
dt = � (yt )dt.

(29)dyK
t
= � (yK

t
)dt +

√
(� + � + �yK

t
)yK

t

K
dWt,

F I G U R E  1   Individual-based simulations of the logistic growth model. (a) For low population sizes, the individual-based simulation (solid 
lines) fluctuates strongly around the deterministic solution of the population (dashed lines) given by Equation 28. (b) Increasing the scaling 
parameter K, the stochastic fluctuations around the deterministic prediction decrease, until eventually the individual-based simulation is 
indistinguishable from the deterministic curve. The parameter values are chosen as follows: β = 2, δ = 1, γ = 1, and (a) K=100, (b) K=1,000. 
The initial population sizes are stated in subfigure (b)

F I G U R E  2   Allele frequency dynamics with selection and mutation. (a) The deterministic system given by Equation 23 converges to the 
fixed point (dashed line) and remains there. (b) The stochastic process given by Equation 25 fluctuates strongly in frequency space and for 
the chosen parameter values spends most time close to the monotypic states x = 0 and x = 1
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The approximation in Equation 29 is called Diffusion approximation. 
One can prove formally that this approximation, under the assump-
tions that the function μ(x) and σ2(x) are (twice) continuously differen-
tiable, performs equally well as a more accurate analysis based on the 
central limit theorem (Ethier & Kurtz, 1986, Theorem 11.3.2). For a rig-
orous discussion of diffusion approximations and their relation to the 
central limit theorem, we refer to Ethier and Kurtz (1986, Chapter 11).

In terms of performance of the diffusion approximation, the 
population size measure K does not need to be very large for 
the individual-based model to approach the deterministic limit 
(K ≈ 1,000 is enough in this example, Figure 1).

Conclusion 5: Not taking the limit in Equation  19 yields the dif-
fusion approximation of the studied model. This approximation is a 
stochastic differential equation (Equation 29) where the variance (typ-
ically) scales inversely with the square root of the scaling parameter.

5  | STATIONARY DISTRIBUTIONS

For the Moran model, we have derived two different limits that dif-
fer in their assumptions on selection and mutation. If both selection 
and mutation are strong, the infinite population size limit is an ordi-
nary differential equation. For weak selection and weak mutation, 
we derived a stochastic differential equation. One qualitative dif-
ference between these two limits is that trajectories of the deter-
ministic limit will always converge to a fixed point (other limits are 
possible in general, e.g., limit cycles) while the stochastic differential 
equation fluctuates indefinitely for positive mutation rates. The de-
terministic fixed point of the Moran model is given by the solution 
of Equation 23 equal to zero. In our example, a single fixed point x* 
lies within the interval between 0 and 1 and is stable. Therefore, all 
trajectories will approach this value, for example, Figure 2a.

In contrast, Equation  25 is a stochastic equation. Thus, even if 
the trajectories approach or hit the deterministic fixed point they will 
not stay there due to the stochasticity of the Brownian motion, cf. 
Figure 2b. Still, we can make predictions about the time a trajectory 
spends in certain allele configurations. This information is summarized 
in the stationary distribution, the stochastic equivalent of a determin-
istic fixed point. If the initial state of the population is given by the 
stationary distribution, then the distribution of all future time points 
will not change. For birth–death processes, the stationary distribution 
can be calculated based on detailed balance, that is, the incoming and 
outgoing rates need to be equal for every state of the process (Antal 
et al., 2009; Claussen & Traulsen, 2005; Gardiner, 2004). Formally, the 
stationary distribution, denoted ψ, is defined as the solution of

where x0∼ψ denotes that x0 is distributed according to ψ and f is an 
arbitrary function. Importantly, this condition means that the distribu-
tion of allele frequencies does not change over time because its de-
rivative in time is zero (for any choice of f). The above equation can be 
solved with the infinitesimal generator (Etheridge (2012, Chapter 3.6)). 

(30)d

dt
� [ f (xt ) |x0 ∼ � ] = 0,

The solution is expressed in terms of the speed measure density m(x), 
which we introduce in Box 1, and is given by

(31)
� (x ) =

m (x )

∫
1

0

m (y )dy

.

BOX 1 Scale function and speed measure of a 
one-dimensional diffusion

A one-dimensional stochastic diffusion can be transformed 
into a standard Brownian motion. Since the Brownian mo-
tion is well-studied, a lot of results can then be translated 
to the stochastic diffusion by the transformation func-
tions, the scale function, and the speed measure.
First, we rescale the space of the original process by the 
scale function. It is defined by 

where the lower boundaries of the integrals can be chosen 
arbitrarily. The name of this function derives from the fact 
that for a one-dimensional diffusion xt satisfying 

the scaled process S(xt) becomes a time-changed Brownian 
motion on the interval [S(0), S(1)], that is, there is no deter-
ministic contribution in the scaled process. The process S(xt) 
is a Brownian motion with a “non-standard” time scale. To 
map this time-changed Brownian motion to the time scale 
of a standard Brownian motion, one needs to rescale time 
by the speed measure M. It defines how much faster (or 
slower) the process S(xt) is evolving compared to a standard 
Brownian motion. The speed measure is defined by 

the density of the speed measure. The time is then rescaled 
by �(t) = ∫ t

0
m(S(xs))ds.

Compactly written, we have changed the stochastic diffu-
sion xt to the standard Brownian motion by the following 
steps: 

(32)S (x ) = ∫x exp
(
−2∫y

� (z )

�2 (z )
dz

)
dy, x ∈ (0, 1) ,

(33)dxt = � (xt )dt + � (xt )dWt,

(34)M (x ) = ∫
x

m (y )dy, with m (y ) =
1

�2 (y )S � (y )

xt

(stochastic

diffusion)

x↦S(x)
⟶

S(xt)=Bt

(time - changed

Brownianmotion)

t↦�(t)
⟶

B�(t)

(standard

Brownianmotion)

.
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Intuitively, the speed measure at a point x, m(x), quantifies the 
time which the process spends in this state. Therefore, ψ(x) is noth-
ing but the average time spent in state x.

Conclusion 6: The stationary distribution of a one-dimensional 
diffusion can be expressed in terms of the density of the speed mea-
sure m(x) through Equation 31. The density of the speed measure is 
given by the scale function corresponding to the stochastic diffusion 
process, Equations 32 and 34 in Box 1.

5.1 | Stationary distribution of the Wright–
Fisher diffusion

As an example, let us consider the Wright–Fisher diffusion with 
selection and mutation as derived in Equation 13 (and Equation 25 
when derived from the Moran model), that is,

Computing Equation  31 with help of the quantities defined in 
Box 1, one obtains

where Γ (x ) is the Gamma function and 1F1 (a, b, z) is the generalized 
hypergeometric function.

The equation itself does not provide much insight. To illustrate the 
possible shapes of stationary distributions, we plot several choices of 
mutation rates and selection coefficients in Figure 3. We see that for 
higher mutation rates, more probability mass is allocated to intermedi-
ate allele frequencies (compare the solid and dashed lines). In this case, 
the Wright–Fisher diffusion spends more time in states of coexistence 
than in monotypic states (the boundaries of the allele frequency space 
in Figure 3) because temporary extinction events are prevented by re-
current mutations. If the mutation rates are asymmetric (dotted line), 
the stationary distribution is skewed toward the type with the lower 
mutation rate. If one type is favored selectively (dash-dotted line), the 
stationary distribution is skewed toward the favored type.

Stationary distributions are the stochastic equivalents of deter-
ministic fixed points and as such provide a basic description and a 
starting point for further analysis of the qualitative behavior of a 
stochastic model, especially in situations where polymorphisms of 
alleles, coexistence of species, or spatial population distributions are 
to be expected (e.g., Czuppon & Rogers, 2019; Gaston & He, 2002; 
Lehmann, 2012; Polansky, 1979; Turelli, 1981).

5.2 | Quasi-stationary distribution of the 
logistic process

Next, we consider the diffusion approximation of the logistic growth 
model, that is,

(35)dxt = (�xt (1 − xt ) + �B→A (1 − xt ) − �A→Bxt )dt +

√
xt (1 − xt )dWt.

(36)

� (x ) = e2�xx2�B→A − 1 (1 − x ) 2�A→B − 1 Γ (2 (�A→B + �B→A ) )

Γ (2�A→B )Γ(2�B→A)1F1 (2�B→A, 2 (�A→B + �B→A ) , � )
,

The logistic process for finite K has a (unique) absorbing state, 
y = 0 because there is no transition from this state to positive popula-
tion densities. Once the population went extinct, it remains so. Since 
the extinction state is accessible from all values y > 0 (and because 
the population size remains finite for all times), the population will go 
extinct with probability 1. The only stationary distribution is the point 
measure on 0, that is, ψ ∼ δ0 (δx is the Dirac measure at point x).

In contrast, the positive deterministic population equilibrium, 
y*  =  (β  −  δ)/γ, is a stable fixed point of the deterministic system. 
Considering large values of the deterministic equilibrium (K ≫ 1), we 
expect the finite population size process from Equation 37 to remain 
close to this value for long times. In fact, the expected extinction time 
of the logistic growth process when started in the positive population 
equilibrium is of order exp(K) (Champagnat, 2006). This suggests that 
the process will be in a quasi-stationary state, that is, before its extinc-
tion the population is described by the stationary distribution of the 
corresponding logistic process conditioned on nonextinction.

Formally, the quasi-stationary distribution is computed by con-
ditioning the original process on its survival. This means that the 
transition rates change and the novel process can be analyzed by 
the techniques described above. However, this method goes be-
yond the scope of this manuscript. For a theoretical treatment of 
this topic in the context of the logistic equation, we refer to Cattiaux 
et al. (2009), Assaf et al. (2010), Méléard and Villemonais (2012). For 
a general review on methods related to quasi-stationary distribu-
tions, see Ovaskainen and Meerson (2010).

Another way to approximate the quasi-stationary distribution 
when extinction is very unlikely for long times (which is the case for 
large K) is provided by the central limit theorem (sometimes also called 
linear noise approximation in this context). Here, the distribution of 
the process is derived from its local dynamics around the determinis-
tic fixed point y* (Ethier & Kurtz, 1986; van Kampen, 2007). The un-
derlying assumption is that the population stays close to its positive 

(37)dyK
t
=
(
� − � − �yK

t

)
yK
t
dt +

√(
� + � + �yK

t

)
yK
t

K
dWt.

F I G U R E  3   Stationary distribution of the Wright–Fisher diffusion 
with selection and mutation. The lines are given by Equation 36. 
Larger mutation rates accumulate more probability on intermediate 
allele frequencies (compare solid and dashed lines). Selection (or 
asymmetric mutation) skews the stationary distribution toward 
the selectively favored type (or type with the lower mutation rate), 
dash-dotted (dotted) line
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stochastic differential equations, fixation probabilities can be com-
puted explicitly. As before, we denote by xt the frequency of type A 
individuals at time t ≥ 0 in the population. We use the fact that the 
mean of the scaled process S(xt) in Equation 32 does not change over 
time. Stochastic processes with this property are called martingales. 
With pfix (x0 ) = ℙ (x∞ = 1 |x0 ) we find

where we have used the martingale property of the scaled process S(x) 
in the first equality. The second equality is explained by the process 
being absorbed at one of the two boundaries x = 0 or x = 1 at large 
times. For a formal derivation, we refer to Otto and Day (2007, Chapter 
15.3.3) or Etheridge (2012, Lemma 3.14).

As an example, let us consider the Wright–Fisher diffusion 
with selection and without mutations (νA→B  =  νB→A  =  0) given in 
Equation 35. We have μ(x) = αx(1 − x) and σ2(x) = x(1 − x) such that 
the scale function simplifies to

Recalling the definition of α = sN for a finite population of size N 
and plugging this into Equation 42 yields

which for x0  =  1/N becomes ℙ1∕N (x∞ = 1) ≈ 2s, the result of 
Haldane for the fixation of a single mutant copy in a population of 
size N (Haldane, 1927). The first line of Equation 44, the classical 
result of fixation probabilities when derived from diffusion theory, 
and its applicability has been the subject of extensive research, for 
example, Bürger and Ewens (1995) and references therein; for a 
more general review on fixation probabilities, we refer to Patwa and 
Wahl (2008).

Of course, the fixation probability can also be calculated for 
more complicated stochastic differential equations where the sign 
of the deterministic dynamics μ(x) depends on the population con-
figuration. Most classically, these frequency-dependent problems 
were studied in deterministic evolutionary game theory intro-
duced by Maynard Smith and Price (1973) (see also Hofbauer and 
Sigmund (1998) for an introduction to evolutionary game dynam-
ics). In Appendix 3, we (re-)derive the fixation probability in case of 
frequency-dependent selection.

Conclusion 8: The fixation probability of a one-dimensional diffu-
sion is given by the scale function as stated in Equation 42.

(42)

(43)S (x ) = ∫
x

exp

(
−2∫

y
�z (1 − z )

z (1 − z )
dz

)
dy = −

1

2�
exp ( − 2�x ) .

(44)
ℙx0

(x∞ =1) =
1−e−2𝛼x0

1−e−2𝛼
=
1−e−2sx0N

1−e−2sN
Ns≫1
≈ 1−e−2sx0N

s≪1
≈ 2sx0N,

steady state and just slightly fluctuates around this value. This is only 
a valid assumption when the probability of extinction within the stud-
ied time frame is essentially zero. These small fluctuations are de-
scribed by a Gaussian distribution. Formally this translates to

where U is a Gaussian random variable and yt the deterministic trajec-
tory. Writing μ(y) = (β − δ − γy)y and σ2 (y) = (β + δ + γy)y, the dynamics 
of U can be rewritten as

Evaluating the process U at yK
t
= yt = y ∗, we obtain a description 

of the variance in the deterministic fixed point. For this fixed choice 
of yt and yK

t
, U becomes an Ornstein–Uhlenbeck process. Its station-

ary distribution is then given by

This distribution describes the fluctuations of the process yK
t
 

around the deterministic steady state y*. Therefore, when plugging 
the distribution ψU into the original process from Equation 38, we 
find the quasi-stationary distribution of yK

t
 around the deterministic 

equilibrium y* which yields

For increasing population sizes K, the variance is decreasing and 
vanishes in the limit K→∞, as is to be expected by the deterministic limit.

Conclusion 7: If the deterministic process has a stable steady 
state but is almost surely going extinct for finite population sizes, 
a quasi-stationary distribution can be computed to describe the be-
havior of the process conditioned on survival. If the extinction prob-
ability is very low, an approximation of this distribution is given by 
the linear noise approximation where the variance around the deter-
ministic steady state is modeled by the Ornstein–Uhlenbeck process 
derived from Equation 39.

6  | FIX ATION PROBABILITIES

We have seen that stochastic descriptions of processes can lead 
to outcomes that are different from their deterministic counter-
parts. Here, we study one of these phenomena: the probability for 
a certain type to become fixed in a population. For one-dimensional 

S(x0)=�[S(xt)|x0] t≫1
= pfix(x0)S(1)+ (1−pfix(x0))S(0)

⇔ pfix(x0)=
S(x0)−S(0)

S(1)−S(0)
,

(38)yK
t
≈ yt +

1√
K
U,

(39)

1√
K
dU ≈dyK

t
−dyt=

�
�
�
yK
t

�
−�

�
yt
��

dt+

�
�2

�
yK
t

�
K

dWt

≈��(yt)
�
yK
t
−yt

�
dt+

�
�2

�
yK
t

�
K

dWt (Taylor series approximation)

≈
1√
K

�
��

�
yt
�
Udt+�

�
yK
t

�
dWt

�
.

(40)�U ∼ �

(
0, −

�2 (y ∗ )

2� � (y ∗ )

)
.

(41)� ∼ �

(
y ∗ , −

�2 (y ∗ )

2K� � (y ∗ )

)
.
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7  | ME AN TIME TO FIX ATION

A related quantity of interest is the expected time to fixation (or 
extinction from the other type's point of view), that is, the average 
time of coexistence of two types. Again, the calculation relies on 
a special function, this time Green's function G(x,  y), which can be 
interpreted as the average time that a diffusion started in x spends 
in the interval [y,  y  +  dy) before reaching one of the boundaries 
(Etheridge, 2012, Chapter 3.5). It is therefore also called sojourn time 
density (Ewens, 2004). It is defined as

where S(x) is the previously defined scale function and m(x) denotes 
the speed measure density (Box 1).

The expected time to fixation for a process started at frequency 
x, denoted �x [� ], is then given by (Ewens, 2004, section 4.4).

This integral corresponds to the summation of the sojourn times 
in the discrete case, for example, we refer to Ohtsuki et al. (2007) for 
an application in finite populations. In some cases, the result of this 
equation yields an analytically tractable result, for example, for the 
neutral Wright–Fisher diffusion

In this case, the scale function and speed measure density are 
given by

Then, the expected time to fixation of one of the two alleles can 
be expressed as

In Appendix  3, we consider the more involved example of 
frequency-dependent selection (Altrock & Traulsen,  2009; 
Pfaffelhuber & Wakolbinger, 2018).

Similarly to fixation probabilities, the mean time to fixation has 
been studied extensively through stochastic diffusions, for example, 
Kimura and Ohta (1969). It is especially important in population ge-
netics where one is interested in the time to extinction or fixation of 
newly arising alleles (van Herwaarden & van der Wal, 2002). In ecol-
ogy, the mean time to extinction or fixation is for example applied 

(45)G (x, y ) =

⎧
⎪⎨⎪⎩

2
S(x)−S(0)

S(1)−S(0)
(S(1)−S(y))m(y), 0≤x≤y≤1,

2
S(1)−S(x)

S(1)−S(0)
(S(y)−S(0))m(y), 0≤y≤x≤1,

(46)�x [�] = ∫
1

0

G (x, y )dy.

(47)dxt =

√
xt (1 − xt )dWt.

(48)S (x ) = x and m (x ) =
1

x (1 − x )
.

(49)�x[�] =∫
x

0

2(1−x)
y

y(1−y)
dy+∫

1

x

2x
(1−y)

y(1−y)
dy

=2(1−x)ln((1−x)−1)+2xln(x−1).

in the context of population extinction (Lande, 1994) and speciation 
events (Yamaguchi & Iwasa, 2013).

Conclusion 9: Expected unconditional fixation times, that is, the 
expected time of coexistence of two types in a population, can be 
calculated by integrating over Green's function (the mean occu-
pation time of a certain frequency until extinction), as shown in 
Equation 46.

8  | DISCUSSION AND CONCLUSION

We have outlined how to derive a stochastic differential equa-
tion from an individual-based description of two classical models 
in evolutionary theory and theoretical ecology, the Wright–Fisher 
diffusion and the logistic growth equation. The resulting stochas-
tic differential equations in one dimension describe the dynamics 
of the allele frequency and population density, respectively. Using 
probabilistic properties of this equation, that is, transforming it to a 
standard Brownian motion (Box 1), it is possible to analytically derive 
the (quasi-) stationary distribution, fixation probability, and the mean 
time to fixation. As an example, we derived these quantities for the 
Wright–Fisher diffusion.

The diffusion process emerges as the infinite population size 
limit. However, as we have shown in Section 4, one can also derive 
a finite population size approximation of the dynamics, the diffusion 
approximation. The fixation probability, mean extinction time, and 
stationary distribution are accessible by the same means as for the 
continuum limit. Applications of diffusion approximations are abun-
dant and cover diverse topics (e.g., Assaf & Mobilia, 2011; Constable 
et al., 2016; Czuppon & Gokhale, 2018; Czuppon & Traulsen, 2018; 
Débarre & Otto, 2016; Houchmandzadeh, 2015; Kang & Park, 2017; 
Koopmann et al., 2017; McLeod & Day, 2019; Parsons et al., 2018; 
Reichenbach et al., 2007; Schenk et al., 2020; Serrao & Täuber, 2017; 
Traulsen et al., 2005).

Apart from the fixation probability and the mean time to fixa-
tion, the (quasi-)stationary distribution is a commonly used mea-
sure to describe stochastic processes. Its calculation through 
the speed measure of the associated scaled process (Box 1) is (in 
many cases) numerically straightforward. If the process has an 
absorbing state, for example, an extinction boundary of the pop-
ulation, the stationary distribution is not meaningful. Here, the 
quasi-stationary distribution describes the stationary distribu-
tion conditioned on the survival of the population. For negligible 
extinction probabilities, that is, very large survival probabilities 
of the population, the functional central limit theorem (or lin-
ear noise approximation) can be used to approximate this quasi-
stationary distribution. In the theoretical biology literature, this 
method is frequently used in models of gene regulatory networks 
(see Anderson and Kurtz (2015) for a mathematical introduction), 
and less so in the context of ecology or evolution (e.g., Boettiger 
et al.  (2010); Kopp et al.  (2018); Wienand et al.  (2018); Czuppon 
and Constable (2019); and Assaf and Meerson (2017) for a review 
of the physics literature related to this topic).
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Lastly, we did not cover multi-dimensional or spatially explicit sto-
chastic differential equations in this methods review. These processes 
are often much more complicated to analyze. Here, we aimed to give 
a brief introduction into the derivation of a continuum limit from an 
individual-based model. We hope, that with our basic comparisons 
between different approaches used in different subfields of theoreti-
cal biology, we help to clarify the common foundation, the individual-
based model, on which these different methods are based.

ACKNOWLEDG MENTS
We are very grateful to Florence Débarre who carefully read an 
earlier version of the manuscript and made numerous sugges-
tions that led to the current version. Both authors appreciate 
generous funding from the Max Planck Society. PC also received 
funding from the Agence Nationale de la Recherche, grant num-
ber ANR-14-ACHN-0003 provided to Florence Débarre and 
the European Union's Horizon 2020 research and innovation 
program under the Marie Skłodowska -Curie grant agreement 
PolyPath 844369.

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

AUTHOR CONTRIBUTION
Peter Czuppon: Conceptualization (equal); methodology (lead); 
writing–original draft (lead); writing–review and editing (equal). Arne 
Traulsen: Conceptualization (equal); writing–review and editing (equal).

DATA AVAIL ABILIT Y S TATEMENT
No data are used.

ORCID
Peter Czuppon   https://orcid.org/0000-0003-1462-7237 
Arne Traulsen   https://orcid.org/0000-0002-0669-5267 

R E FE R E N C E S
Allen, J. C., Schaffer, W. M., & Rosko, D. (1993). Chaos reduces species 

extinction by amplifying local population noise. Nature, 364(6434), 
229–232. https://doi.org/10.1038/364229a0

Allen, L. (2011). An introduction to stochastic processes with applications to 
biology (2nd ed.). Pearson Education.

Altrock, P., & Traulsen, A. (2009). Fixation times in evolutionary games 
under weak selection. New Journal of Physics, 11(1), 013012. https://
doi.org/10.1088/1367-2630/11/1/013012

Anderson, D., & Kurtz, T. G. (2015). Stochastic analysis of biochemical sys-
tems. Springer.

Antal, T., Nowak, M., & Traulsen, A. (2009). Strategy abundance in 2£2 games 
for arbitrary mutation rates. Journal of Theoretical Biology, 257, 340–344.

Assaf, M., & Meerson, B. (2017). WKB theory of large deviations in sto-
chastic populations. Journal of Physics A: Mathematical and Theoretical, 
50(26), 263001. https://doi.org/10.1088/1751-8121/aa669a

Assaf, M., Meerson, B., & Sasorov, P. (2010). Large fluctuations in 
stochastic population dynamics: Momentum-space calcula-
tions. Journal of StatisticalMechanics, 2010, P07018. https://doi.
org/10.1088/1742-5468/2010/07/P07018

Assaf, M., & Mobilia, M. (2011). Fixation of a deleterious allele under mu-
tation pressure and finite selection intensity. Journal of Theoretical 
Biology, 275, 93–103. https://doi.org/10.1016/j.jtbi.2011.01.025

Black, A. J., & McKane, A. J. (2012). Stochastic formulation of ecologi-
cal models and their applications. Trends in Ecology and Evolution, 27, 
337–345. https://doi.org/10.1016/j.tree.2012.01.014

Black, A., Traulsen, A., & Galla, T. (2012). Mixing times in evolutionary 
game dynamics. Physical Review Letters, 109(2), 028101. https://doi.
org/10.1103/physr​evlett.109.028101

Boettiger, C. (2018). From noise to knowledge: How randomness gener-
ates novel phenomena and reveals information. Ecology Letters, 21(8), 
1255–1267. https://doi.org/10.1111/ele.13085

Boettiger, C., Dushoff, J., & Weitz, J. (2010). Fluctuation domains in adap-
tive evolution. Theoretical Population Biology, 77(1), 6–13. https://doi.
org/10.1016/j.tpb.2009.10.003

Bürger, R., & Ewens, W. J. (1995). Fixation probabilities of additive alleles 
in diploid populations. Journal of Mathematical Biology, 33(5), 557–
575. https://doi.org/10.1007/BF001​63042

Cabrales, A. (2000). Stochastic replicator dynamics. International Economic 
Review, 41(2), 451–481. https://doi.org/10.1111/1468-2354.00071

Cattiaux, P., Collet, P., Lambert, A., Martínez, S., Méléard, S., & San 
Martín, J. (2009). Quasistationary distributions and diffusion models 
in population dynamics. The Annals of Probability, 37(5), 1926–1969. 
https://doi.org/10.1214/09-AOP451

Champagnat, N. (2006). A microscopic interpretation for adaptive dy-
namics trait substitution sequencemodels. Stochastic Processes and 
their Applications, 116(8), 1127–1160. https://doi.org/10.1016/j.
spa.2006.01.004

Champagnat, N., Ferrière, R., & Méléard, S. (2006). Unifying evolution-
ary dynamics: From individual stochastic processes to macroscopic 
models. Theoretical Population Biology, 69(3), 297–321. https://doi.
org/10.1016/j.tpb.2005.10.004

Claussen, J., & Traulsen, A. (2005). Non-Gaussian fluctuations arising 
from finite populations: Exact results for the evolutionaryMoran 
process. Physical Review E, 71, 025101(R).

Constable, G., Rogers, T., McKane, A., & Tarnita, C. (2016). Demographic 
noise can reverse the direction of deterministic selection. Proceedings 
of the National Academy of Sciences of the United States of America, 
113(32), E4745–E4754.

Crow, J., & Kimura, M. (1970). An introduction to population genetics the-
ory. Harper and Row.

Czuppon, P., & Constable, G. (2019). Invasion and extinction dynamics of 
mating types under facultative sexual reproduction. Genetics, 213(2), 
567–580. https://doi.org/10.1534/genet​ics.119.302306

Czuppon, P., & Gokhale, C. (2018). Disentangling eco-evolutionary ef-
fects on trait fixation. Theoretical Population Biology, 124, 93–107. 
https://doi.org/10.1016/j.tpb.2018.10.002

Czuppon, P., & Rogers, D. (2019). Evolution of mating types in finite 
populations: The precarious advantage of being rare. Journal of 
Evolutionary Biology, 32(11), 1290–1299. https://doi.org/10.1111/
jeb.13528

Czuppon, P., & Traulsen, A. (2018). Fixation probabilities in populations 
under demographic fluctuations. Journal ofMathematical Biology, 
77(4), 1233–1277. https://doi.org/10.1007/s0028​5-018-1251-9

Débarre, F., & Otto, S. (2016). Evolutionary dynamics of a quantitative 
trait in a finite asexual population. Theoretical Population Biology, 108, 
75–88. https://doi.org/10.1016/j.tpb.2015.12.002

Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolu-
tion: A derivation from stochastic ecological processes. Journal of 
Mathematical Biology, 34(5–6), 579–612. https://doi.org/10.1007/
bf024​09751

Etheridge, A. (2012). Some mathematical models from population ge-
netics. Lecture notes in mathematics (119pp.). Berlin Heidelberg: 
Springer-Verlag.

https://orcid.org/0000-0003-1462-7237
https://orcid.org/0000-0003-1462-7237
https://orcid.org/0000-0002-0669-5267
https://orcid.org/0000-0002-0669-5267
https://doi.org/10.1038/364229a0
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1088/1751-8121/aa669a
https://doi.org/10.1088/1742-5468/2010/07/P07018
https://doi.org/10.1088/1742-5468/2010/07/P07018
https://doi.org/10.1016/j.jtbi.2011.01.025
https://doi.org/10.1016/j.tree.2012.01.014
https://doi.org/10.1103/physrevlett.109.028101
https://doi.org/10.1103/physrevlett.109.028101
https://doi.org/10.1111/ele.13085
https://doi.org/10.1016/j.tpb.2009.10.003
https://doi.org/10.1016/j.tpb.2009.10.003
https://doi.org/10.1007/BF00163042
https://doi.org/10.1111/1468-2354.00071
https://doi.org/10.1214/09-AOP451
https://doi.org/10.1016/j.spa.2006.01.004
https://doi.org/10.1016/j.spa.2006.01.004
https://doi.org/10.1016/j.tpb.2005.10.004
https://doi.org/10.1016/j.tpb.2005.10.004
https://doi.org/10.1534/genetics.119.302306
https://doi.org/10.1016/j.tpb.2018.10.002
https://doi.org/10.1111/jeb.13528
https://doi.org/10.1111/jeb.13528
https://doi.org/10.1007/s00285-018-1251-9
https://doi.org/10.1016/j.tpb.2015.12.002
https://doi.org/10.1007/bf02409751
https://doi.org/10.1007/bf02409751


     |  5869CZUPPON and TRAULSEN

Ethier, S., & Kurtz, T. (1986). Markov processes: Characterization and con-
vergence. Wiley series in probability and mathematical statistics. J. 
Wiley & Sons.

Ewens, W. (2004). Mathematical population genetics. I. Theoretical 
Introduction. Springer.

Fisher, R. (1930). The genetical theory of natural selection. Clarendon Press.
Foster, D., & Young, P. (1990). Stochastic evolutionary game dynam-

ics¤. Theoretical Population Biology, 38(2), 219–232. https://doi.
org/10.1016/0040-5809(90)90011​-j

Fudenberg, D., & Harris, C. (1992). Evolutionary dynamics with aggre-
gate shocks. Journal of Economic Theory, 57(2), 420–441. https://doi.
org/10.1016/0022-0531(92)90044​-i

Fudenberg, D., & Imhof, L. A. (2006). Imitation processes with small 
mutations. Journal of Economic Theory, 131(1), 251–262. https://doi.
org/10.1016/j.jet.2005.04.006

García, J., & Traulsen, A. (2019). Evolution of coordinated punishment to 
enforce cooperation from an unbiased strategy space. Journal of the 
Royal Society Interface, 16(156), 20190127. https://doi.org/10.1098/
rsif.2019.0127

Gard, T. (1988). Introduction to stochastic differential equations. Marcel 
Dekker, Inc.

Gardiner, C. (2004). Handbook of stochastic methods (3rd edition). 
Springer.

Gardner, A., & West, S. A. (2004). Spite and the scale of competi-
tion. Journal of Evolutionary Biology, 17(6), 1195–1203. https://doi.
org/10.1111/j.1420-9101.2004.00775.x

Gaston, K. J., & He, F. (2002). The distribution of species range size: A 
stochastic process. Proceedings of the Royal Society of London. Series B: 
Biological Sciences, 269(1495), 1079–1086. https://doi.org/10.1098/
rspb.2002.1969

Goel, N., & Richter-Dyn, N. (1974). Stochastic models in biology. Academic 
Press.

Gokhale, C., & Traulsen, A. (2010). Evolutionary games in the multiverse. 
Proceedings of the National Academy of Sciences of the United States of 
America, 107, 5500–5504. https://doi.org/10.1073/pnas.09122​14107

Haldane, J. (1927). A mathematical theory of natural and artificial selec-
tion, part V: Selection and mutation. Proceedings of the Cambridge 
Philosophical Society, 23(838), 838–844. https://doi.org/10.1017/
S0305​00410​0015644

Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dy-
namics. Cambridge University Press.

Houchmandzadeh, B. (2015). Fluctuation driven fixation of cooperative 
behavior. Biosystems, 127, 60–66. https://doi.org/10.1016/j.biosy​
stems.2014.11.006

Imhof, L., & Nowak, M. (2006). Evolutionary game dynamics in a Wright-
Fisher process. Journal of Mathematical Biology, 52, 667–681. https://
doi.org/10.1007/s0028​5-005-0369-8

Jeltsch, F., Grimm, V., Reeg, J., & Schlägel, U. E. (2019). Give chance a 
chance: From coexistence to coviability in biodiversity theory. 
Ecosphere, 10(5), e02700. https://doi.org/10.1002/ecs2.2700

Kallenberg, O. (2002). Foundations of modern probability. Springer Verlag.
Kang, Y.-G., & Park, J.-M. (2017). Demographic-noise-induced fix-

ation in subdivided populations with migration. Journal of 
Physics A: Mathematical General, 50(47), 475001. https://doi.
org/10.1088/1751-8121/aa8ce0

Karlin, S., & Taylor, H. (1975). A first course in stochastic processes (2nd 
ed.). Academic.

Karlin, S., & Taylor, H. (1981). A second course in stochastic processes (1st 
ed.). Academic.

Kaveh, K., Komarova, N. L., & Kohandel, M. (2015). The duality of spatial 
death-birth and birthdeath processes and limitations of the isother-
mal theorem. Journal of the Royal Society Open Science, 2(4), 140465. 
https://doi.org/10.1098/rsos.140465

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge 
University Press.

Kimura, M., & Ohta, T. (1969). The average number of generations until 
fixation of amutant gene in a finite population. Genetics, 61(3), 763–
771. https://doi.org/10.1093/genet​ics/61.3.763

Koopmann, B., Müller, J., Tellier, A., & Živković, D. (2017). Fisher-
Wright model with deterministic seed bank and selection. 
Theoretical Population Biology, 114, 29–39. https://doi.org/10.1016/j.
tpb.2016.11.005

Kopp, M., Nassar, E., & Pardoux, E. (2018). Phenotypic lag and population 
extinction in the moving-optimum model: Insights from a small-jumps 
limit. Journal of Mathematical Biology, 77(5), 1431–1458. https://doi.
org/10.1007/s0028​5-018-1258-2

Lande, R. (1994). Risk of population extinction from fixation of new 
deleterious mutations. Evolution, 48(5), 1460–1469. https://doi.
org/10.1111/j.1558-5646.1994.tb021​88.x

Lande, R., Engen, S., & Saether, B.-E. (2003). Stochastic population dynam-
ics in ecology and conservation. Oxford University Press.

Lehmann, L. (2012). The stationary distribution of a continuously varying 
strategy in a classstructured population under mutation-selection-
drift balance. Journal of Evolutionary Biology, 25(4), 770–787. https://
doi.org/10.1111/j.1420-9101.2012.02472.x

Lessard, S., & Ladret, V. (2007). The probability of fixation of a single-
mutant in an exchangeable selectionmodel. Journal ofMathematical 
Biology, 54, 721–744. https://doi.org/10.1007/s0028​5-007-0069-7

Lieberman, E., Hauert, C., & Nowak, M. A. (2005). Evolutionary dynam-
ics on graphs. Nature, 433, 312–316. https://doi.org/10.1038/natur​
e03204

Maynard Smith, J., & Price, G. (1973). The logic of animal conflict. Nature, 
246, 15–18. https://doi.org/10.1038/246015a0

McLeod, D., & Day, T. (2019). Why is sterility virulence most common in 
sexually transmitted infections? Examining the role of epidemiology. 
Evolution, 73(5), 872–882. https://doi.org/10.1111/evo.13718

Melbourne, B. A., & Hastings, A. (2008). Extinction risk depends strongly 
on factors contributing to stochasticity. Nature, 454(7200), 100–103. 
https://doi.org/10.1038/natur​e06922

Méléard, S., & Villemonais, D. (2012). Quasi-stationary distributions and 
population processes. Probability Surveys, 9, 340–410. https://doi.
org/10.1214/11-PS191

Moran, P. (1958). Random processes in genetics. Mathematical 
Proceedings of the Cambridge Philosophical Society, 54(1), 60–71. 
https://doi.org/10.1017/S0305​00410​0033193

Nowak, M., Sasaki, A., Taylor, C., & Fudenberg, D. (2004). Emergence of 
cooperation and evolutionary stability in finite populations. Nature, 
428, 646–650. https://doi.org/10.1038/natur​e02414

Ohtsuki, H., Bordalo, P., & Nowak, M. (2007). The one-third law of evo-
lutionary dynamics. Journal of Theoretical Biology, 249, 289–295. 
https://doi.org/10.1016/j.jtbi.2007.07.005

Otto, S. P., & Day, T. (2007). A biologist’s guide to mathematical modeling in 
ecology and evolution. Princeton Univ. Press.

Ovaskainen, O., & Meerson, B. (2010). Stochastic models of population 
extinction. Trends in Ecology and Evolution, 25(11), 643–652. https://
doi.org/10.1016/j.tree.2010.07.009

Parsons, T., Lambert, A., Day, T., & Gandon, S. (2018). Pathogen evolution 
in finite populations: Slow and steady spreads the best. Journal of the 
Royal Society Interface, 15(147), 20180135. https://doi.org/10.1098/
rsif.2018.0135

Patwa, Z., & Wahl, L. (2008). The fixation probability of beneficialmuta-
tions. Journal of the Royal Society Interface, 5(28), 1279–1289. https://
doi.org/10.1098/rsif.2008.0248

Peña, J., Lehmann, L., & Nöldeke, G. (2014). Gains from switching and evo-
lutionary stability in multi-player matrix games. Journal of Theoretical 
Biology, 346, 23–33. https://doi.org/10.1016/j.jtbi.2013.12.016

Pfaffelhuber, P., & Wakolbinger, A. (2018). Fixation probabilities and 
hitting times for low levels of frequency-dependent selection. 
Theoretical Population Biology, 124, 61–69. https://doi.org/10.1016/j.
tpb.2018.09.003

https://doi.org/10.1016/0040-5809(90)90011-j
https://doi.org/10.1016/0040-5809(90)90011-j
https://doi.org/10.1016/0022-0531(92)90044-i
https://doi.org/10.1016/0022-0531(92)90044-i
https://doi.org/10.1016/j.jet.2005.04.006
https://doi.org/10.1016/j.jet.2005.04.006
https://doi.org/10.1098/rsif.2019.0127
https://doi.org/10.1098/rsif.2019.0127
https://doi.org/10.1111/j.1420-9101.2004.00775.x
https://doi.org/10.1111/j.1420-9101.2004.00775.x
https://doi.org/10.1098/rspb.2002.1969
https://doi.org/10.1098/rspb.2002.1969
https://doi.org/10.1073/pnas.0912214107
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1016/j.biosystems.2014.11.006
https://doi.org/10.1016/j.biosystems.2014.11.006
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1002/ecs2.2700
https://doi.org/10.1088/1751-8121/aa8ce0
https://doi.org/10.1088/1751-8121/aa8ce0
https://doi.org/10.1098/rsos.140465
https://doi.org/10.1093/genetics/61.3.763
https://doi.org/10.1016/j.tpb.2016.11.005
https://doi.org/10.1016/j.tpb.2016.11.005
https://doi.org/10.1007/s00285-018-1258-2
https://doi.org/10.1007/s00285-018-1258-2
https://doi.org/10.1111/j.1558-5646.1994.tb02188.x
https://doi.org/10.1111/j.1558-5646.1994.tb02188.x
https://doi.org/10.1111/j.1420-9101.2012.02472.x
https://doi.org/10.1111/j.1420-9101.2012.02472.x
https://doi.org/10.1007/s00285-007-0069-7
https://doi.org/10.1038/nature03204
https://doi.org/10.1038/nature03204
https://doi.org/10.1038/246015a0
https://doi.org/10.1111/evo.13718
https://doi.org/10.1038/nature06922
https://doi.org/10.1214/11-PS191
https://doi.org/10.1214/11-PS191
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1038/nature02414
https://doi.org/10.1016/j.jtbi.2007.07.005
https://doi.org/10.1016/j.tree.2010.07.009
https://doi.org/10.1016/j.tree.2010.07.009
https://doi.org/10.1098/rsif.2018.0135
https://doi.org/10.1098/rsif.2018.0135
https://doi.org/10.1098/rsif.2008.0248
https://doi.org/10.1098/rsif.2008.0248
https://doi.org/10.1016/j.jtbi.2013.12.016
https://doi.org/10.1016/j.tpb.2018.09.003
https://doi.org/10.1016/j.tpb.2018.09.003


5870  |     CZUPPON and TRAULSEN

Polansky, P. (1979). Invariant distributions for multi-population models in 
random environments. Theoretical Population Biology, 16(1), 25–34. 
https://doi.org/10.1016/0040-5809(79)90004​-2

Rand, D. G., & Nowak, M. A. (2011). The evolution of antisocial punish-
ment in optional public goods games. Nature Communications, 2(1). 
https://doi.org/10.1038/ncomm​s1442

Reichenbach, T., Mobilia, M., & Frey, E. (2007). Noise and correlations in 
a spatial population model with cyclic competition. Physical Review 
Letters, 99, 238105. https://doi.org/10.1103/PhysR​evLett.99.238105

Schaffer, W. M., Ellner, S., & Kot, M. (1986). Effects of noise on some 
dynamical models in ecology. Journal ofMathematical Biology, 24(5), 
479–523. https://doi.org/10.1007/bf002​75681

Schenk, H., Schulenburg, H., & Traulsen, A. (2020). How long do Red 
Queen dynamics survive under genetic drift? A comparative analy-
sis of evolutionary and eco-evolutionary models. BMC Evolutionary 
Biology, 20(8). https://doi.org/10.1186/s1286​2-019-1562-5

Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J., & Hart, S. P. (2018). 
Does deterministic coexistence theory matter in a finite world? 
bioRxiv. https://doi.org/10.1101/290882

Serrao, S., & Täuber, U. (2017). A stochastic analysis of the spatially extended 
may–leonard model. Journal of Physics A: Mathematical and Theoretical, 
50(40), 404005. https://doi.org/10.1088/1751-8121/aa87a8

Sigmund, K., Silva, H. D., Traulsen, A., & Hauert, C. (2010). Social learning 
promotes institutions for governing the commons. Nature, 466(7308), 
861–863. https://doi.org/10.1038/natur​e09203

Taylor, P., & Maciejewski, W. (2012). An inclusive fitness analysis of syn-
ergistic interactions in structured populations. Proceedings of the 
Royal Society B: Biological Sciences, 279(1747), 4596–4603. https://
doi.org/10.1098/rspb.2012.1408

Traulsen, A., Claussen, J., & Hauert, C. (2005). Coevolutionary dynam-
ics: From finite to infinite populations. Physical Review Letters, 95, 
238701.

Traulsen, A., Claussen, J. C., & Hauert, C. (2012). Stochastic differential 
equations for evolutionary dynamics with demographic noise and-
mutations. Physical Review E, 85(4), 041901. https://doi.org/10.1103/
physr​eve.85.041901

Traulsen, A., & Hauert, C. (2009). Stochastic evolutionary game dynam-
ics. In H. G. Schuster (Ed.), Reviews of nonlinear dynamics and complex-
ity (Vol. II, pp. 25–61). Wiley-VCH.

Traulsen, A., Pacheco, J., & Imhof, L. (2006). Stochasticity and evolution-
ary stability. Physical Review E, 74, 021905. https://doi.org/10.1103/
PhysR​evE.74.021905

Turelli, M. (1977). Random environments and stochastic calcu-
lus. Theoretical Population Biology, 12(2), 140–178. https://doi.
org/10.1016/0040-5809(77)90040​-5

Turelli, M. (1981). Temporally varying selection on multiple alleles: A 
diffusion analysis. Journal of Mathematical Biology, 13(1), 115–129. 
https://doi.org/10.1007/bf002​76870

van Herwaarden, O. A., & van der Wal, N. J. (2002). Extinction time and 
age of an allele in a large finite population. Theoretical Population 
Biology, 61(3), 311–318. https://doi.org/10.1006/tpbi.2002.1576

van Kampen, N. (2007). Stochastic processes in physics and chemistry. 
North Holland.

Vasconcelos, V. V., Santos, F. P., Santos, F. C., & Pacheco, J. M. (2017). 
Stochastic dynamics through hierarchically embedded mar-
kov chains. Physical Review Letters, 118(5), 058301. https://doi.
org/10.1103/physr​evlett.118.058301

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son 
accroissement. CorrespondanceMathématique Et Physique Publiée Par 
A. Quetelet, 10, 113–121.

Wakano, J., & Lehmann, L. (2014). Evolutionary branching in deme-
structured populations. Journal of Theoretical Biology, 351, 83–95. 
https://doi.org/10.1016/j.jtbi.2014.02.036

Wienand, K., Frey, E., & Mobilia, M. (2018). Eco-evolutionary dynamics of 
a population with randomly switching carrying capacity. Journal of the 
Royal Society Interface, 15(145), 20180343. https://doi.org/10.1098/
rsif.2018.0343

Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2), 
97–159.

Wu, B., Gokhale, C. S., Wang, L., & Traulsen, A. (2011). How small are 
small mutation rates? Journal of Mathematical Biology, 64(5), 803–
827. https://doi.org/10.1007/s0028​5-011-0430-8

Yamaguchi, R., & Iwasa, Y. (2013). First passage time to allopatric spe-
ciation. Interface Focus, 3(6), 20130026. https://doi.org/10.1098/
rsfs.2013.0026

How to cite this article: Czuppon P, Traulsen A. Understanding 
evolutionary and ecological dynamics using a continuum limit. 
Ecol Evol. 2021;11:5857–5873. https://doi.org/10.1002/
ece3.7205

https://doi.org/10.1016/0040-5809(79)90004-2
https://doi.org/10.1038/ncomms1442
https://doi.org/10.1103/PhysRevLett.99.238105
https://doi.org/10.1007/bf00275681
https://doi.org/10.1186/s12862-019-1562-5
https://doi.org/10.1101/290882
https://doi.org/10.1088/1751-8121/aa87a8
https://doi.org/10.1038/nature09203
https://doi.org/10.1098/rspb.2012.1408
https://doi.org/10.1098/rspb.2012.1408
https://doi.org/10.1103/physreve.85.041901
https://doi.org/10.1103/physreve.85.041901
https://doi.org/10.1103/PhysRevE.74.021905
https://doi.org/10.1103/PhysRevE.74.021905
https://doi.org/10.1016/0040-5809(77)90040-5
https://doi.org/10.1016/0040-5809(77)90040-5
https://doi.org/10.1007/bf00276870
https://doi.org/10.1006/tpbi.2002.1576
https://doi.org/10.1103/physrevlett.118.058301
https://doi.org/10.1103/physrevlett.118.058301
https://doi.org/10.1016/j.jtbi.2014.02.036
https://doi.org/10.1098/rsif.2018.0343
https://doi.org/10.1098/rsif.2018.0343
https://doi.org/10.1007/s00285-011-0430-8
https://doi.org/10.1098/rsfs.2013.0026
https://doi.org/10.1098/rsfs.2013.0026
https://doi.org/10.1002/ece3.7205
https://doi.org/10.1002/ece3.7205


     |  5871CZUPPON and TRAULSEN

APPENDIX 1
INFINITE SIMAL ME AN AND VARIANCE
Given the stochastic differential equation

the corresponding infinitesimal generator is defined by

The connection between the infinitesimal generator and its as-
sociated stochastic differential equation is outlined in more detail 
in, for example, Kallenberg (2002, Chapter 23). Briefly, one needs 
to apply Itô's formula (Kallenberg,  2002, Theorem 17.18) to the 
process f(xt), where xt solves the stochastic differential equation in 
Equation 50:

Taking the expectation yields the result since the last term on the 
right-hand side vanishes (the mean of a standard Brownian motion 
is zero).

Additionally, we show that μ(x) is indeed the infinitesimal mean 
of the stochastic process with infinitesimal generator � as given in 
Equation 51. Setting f1(x) = x (and thus f ��

1
(x ) = 0) we find for the 

infinitesimal change of the mean

Similarly, we see that σ2(x) is the infinitesimal variance. With 
f2(x) = x2, we have

This justifies that calculating the infinitesimal mean and variance 
(right-hand sides in Equation 9) indeed yields the functions μ and σ2 
of the diffusion.

APPENDIX 2
DERIVING A S TOCHA S TIC DIFFERENTIAL EQUATION 
FROM THE WRIG HT–FISHER MODEL WITH SELEC TION 
AND MUTATION
In the main text, we have derived the Wright–Fisher diffusion in the 
absence of selection and mutation. Here, we provide the calculation 
steps when including both these processes.

We say that type A alleles are beneficial (deleterious) if s  >  0 
(s < 0). Given that there are k type A individuals in the population, 

the probability for an offspring to choose a type A individual as a 
parent is given by

We can also add mutations to the Wright–Fisher model, that is, 
type A individuals can mutate to type B and vice versa. We set uA→B as 
the probability to mutate from type A to B and uB→A as the mutation 
probability from B to A. Then, the probability for an individual to be 
of type A given k type A individuals in the parental generation reads

In this model, mutation is intimately connected with the reproduc-
tion mechanism. For the Moran model, compare Section 3, these pro-
cesses do not necessarily need to be coupled (even though this would, 
biologically speaking, make the most sense).

Following the same methodology as for the neutral Wright–
Fisher model in the main text, we can derive a diffusion process by 
computing the infinitesimal mean and variance. Writing xt = Xt/N 
and setting Δt = 1/N, we obtain for the infinitesimal change in al-
lele frequency

This is a rather unhandy expression. However, we can make fur-
ther progress by assuming that selection and mutation are weak, 
that is, we set s = α/N and ui = νi/N. Rewriting the equation in terms 
of α and νi, expanding the equation in terms of 1/N, and neglecting 
terms of order 1/N3 and higher we find

Thus, for the infinitesimal mean in the infinite population size 
limit, we find

The infinitesimal variance in terms of α and νi derives to

(50)dxt = � (xt )dt + � (xt )dWt,

(51)(�f ) (x ) = � (x ) f � (x ) +
1

2
�2 (x ) f �� (x ) .

(52)df (xt )
Itô
= f � (xt ) dxt +

�2 (xt )

2
f �� (xt ) dt

Eq.(50)
=

(
� (xt ) f

� (xt ) +
�2 (xt )

2
f �� (xt )

)
dt + � (xt ) dWt.

(53)lim
Δt→ 0

1

Δt
� [xΔt − x0 |x0 = x ]

def.
= (�f1 ) (x )

Eq.(51)
= � (x ) .

(54)

lim
Δt→0

1

Δt
� [(xΔt−x0)|x0=x]

def.
= lim

Δt→0

1

Δt
�[(xΔt−x0−�[xΔt−x0|x0=x])2|x0=x]

= lim
Δt→0

1

Δt
�[(xΔt−x0)

2|x0=x]− (�[xΔt−x0|x0=x])2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=O((Δt)2)

= lim
Δt→0

1

Δt
�[x2

Δt
−x2

0
−2x0(xΔt−x0)|x0=x]

def.
= (�f2)(x)−2x(�f1)(x)

Eq.(51)
= 2x�(x)+�2(x)−2x�(x)=�2(x).

(55)pk =
(1 + s )k

(1 + s )k + N − k
.

(56)pk =
(1 + s )k (1 − uA→B )

(1 + s )k + N − k
+

uB→A (N − k )

(1 + s )k + N − k
.

(57)

1

Δt
�[xΔt−x0|x0=x] =�[XΔt−X0|X0=k]= (Npk−k)

=

(
N
(1+s)k(1−uA→B)

N+sk
+N

uB→A(N−k)

N+sk
−k

)
.

(58)

1

Δt
�[xΔt−x0|x0=x] =N

(
1+

�

N

)
k
(
1−

�A→B

N

)

N+
k�

N

+N

�B→A

N
(N−k)

N+
k�

N

−k

=k+
�k

N
−
�A→Bk

N
+
�B→A(N−k)

N
−k−�

k2

N2
+O

(
1

N3

)

=�x(1−x)−�A→Bx+�B→A(1−x)+O

(
1

N3

)
.

(59)� (x ) = �x (1 − x ) − �A→Bx + �B→A (1 − x ) .
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where we used

Therefore, the infinitesimal variance for N → ∞ is given by

Putting together the final results for the infinitesimal mean 
and variance, we get the weak selection and mutation limit of the 
Wright–Fisher model with selection and mutation, that is,

APPENDIX 3
FREQUENC Y- DEPENDENT SELEC TION
In the main text, we have exclusively considered situations with 
constant selection coefficients s (or α). Here instead, we apply the 
derived formulas for the fixation probability and the mean time 
to fixation for the case of frequency-dependent selection. More 
precisely, we consider a stochastic diffusion with linear frequency 
dependence (we refer to Traulsen et al. (2006) for a physical formu-
lation of this and Pfaffelhuber and Wakolbinger (2018) for a more 
general mathematical analysis). We denote the strength of selection 
by α and let u, v be arbitrary real numbers. We write αx(1 − x)(ux + v) 
for the linear frequency-dependent dynamics of selection. Then, the 
allele frequency evolves according to the following equation

We have μ(x) = αx(1 − x)(ux + v) and σ2(x) = x(1 − x).
Fixation probability
Recall the formula for the fixation probability, Equation 42

where S(x) is the scale function given in Equation 32 and given by

For α = 1, we can linearize the exponential and write the scale 
function as

Plugging this into Equation 65, we obtain

In the context of evolutionary game theory, this result is a rederi-
vation of the 1/3-law (Nowak et al., 2004) (generalized by Lessard & 
Ladret, 2007). It states that for an allele starting with one individual, 
it is more likely to become fixed in the population than under neutral 
dynamics if the deterministic fixed point is smaller than 1/3. This can 
be seen by plugging in u = a − b − c + d and v = b − d, where a, b, c, 
and d represent the payoffs of an evolutionary game.
Mean time to fixation
The mean time to fixation is given by Equation 46 that was given as

where G(x,y) is Green's function and defined as (Equation 45)

Similar to the computation of the fixation probability, we will con-
sider the case of small initial frequencies and weak selection, that is, 
α,x << 1. More precisely, we neglect terms of order α2 and αx2. We 
recall the approximation of the scale function in this case that we 
derived in Equation 67

Employing these approximations, the first integral in Equation 69 
yields

(60)

1

Δt
�
[
(Δxt)

2|x0=x
]
=
1

N
(�[X2

t+
1

N

−2XtXt+ 1

N

+X2
t
|X0=k])

=
1

N

(
�

[
X
t+

1

N

|X0=k
]
+
(
�

[
X
t+

1

N

|X0=k
]
−k

)2
)

=pk(1−pk)+
1

N
�2(x)

=x(1−x)+O

(
1

N

)
,

(61)pk =

(
k +

k�

N
−

k�A→B

N
−

k��A→B

N2 +
�B→A

N
(N − k )

)

N +
�k

N

= x + O

(
1

N

)
.

(62)�2 (x ) = x (1 − x ) .

(63)

dxt =
(
�xt (1 − xt ) − �A→Bxt + �B→A (1 − xt )

)
dt +

√
xt (1 − xt )dWt.

(64)dxt = �xt
(
1 − xt

) (
uxt + v

)
dt +

√
xt
(
1 − xt

)
dWt.

(65)ℙx0
(x∞ = 1) =

S (x0 ) − S (0 )

S (1 ) − S (0 )
,

(66)S (x ) = ∫
x

exp −2∫
y � z

�2 z
dz dy, x ∈ (0, 1 ) .

(67)

S(x) =∫
x

exp −2 ∫
y

y𝛼(v+uz)dz dy

=∫
x

exp(−2𝛼vy−𝛼uy2)dy

𝛼≪1
≈ x−2𝛼 ∫

x

vy+
1

2
uy2 dy

=x−𝛼vx2−
𝛼

3
ux3.

(68)

S (x)−S (0)

S (1)−S (0)
=
S (x)

S (1)
=
x
(
1−�vx−

�

3
ux2

)

1−�v−
�

3
u

=x
(
1−�vx−

�

3
ux2+�v+

�

3
u
)
+O

(
�2

)

=x

(
1+�u

(
v

u
(1−x)+

1

3

(
1−x2

)))
+O

(
�2

)
.

(69)

�x[�] =∫
1

0

G(x, y)dy

=∫
x

0

2
(S(1)−S(x))

(S(1)−S(0))

(S(y)−S(0))

�2 (y) S� (y)
dy+∫

1

x

2
(S(x)−S(0))

(S(1)−S(0))

(S(1)−S(y))

�2(y)S�(y)
dy,

(70)G (x, y ) =

⎧
⎪⎨⎪⎩

2
S(x)−S(0)

S(1)−S(0)
(S(1)−S(y))m(y), 0≤x≤y≤1,

2
S(1)−S(x)

S(1)−S(0)
(S(y)−S(0))m(y), 0≤y≤x≤1,

(71)S (x )
𝛼≪1
≈ x − 𝛼vx2 −

𝛼

3
ux3

x≪1
≈ x.
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Approximating the second integral in a similar way, we find

Taking these two expressions together we rederived the re-
sults already known in the literature (Altrock & Traulsen,  2009; 
Pfaffelhuber & Wakolbinger, 2018), that is,

for α and x sufficiently small.(72)

∫
x

0

�
2
(S(1)−S(x))

S(1)−S(0)

(S(y)−S(0))

�2(y)S�(y)

�
dy

=2
S(1)−S(x)

S(1) ∫
x

0

⎡
⎢⎢⎢⎣

y
�
1−�vy−

�

3
uy2

�

y(1−y)(1−2�vy−�uy2)

⎤
⎥⎥⎥⎦
dy

≈2

⎛⎜⎜⎜⎝
1−

x�
1−�v−�

u

3

�
⎞⎟⎟⎟⎠
∫
x

0

⎡⎢⎢⎢⎣

�
1−�

�
vy+

u

3
y2
��

(1+�(2vy+uy2))

(1−y)

⎤⎥⎥⎥⎦
dy

≈2
�
1−x

�
1+�

�
v+

u

3

���
∫
x

0

⎡⎢⎢⎢⎣

1−�
�
vy+

u

3
y2−2vy−uy2

�

(1−y)

⎤⎥⎥⎥⎦
dy

≈2(1−x)

⎛
⎜⎜⎜⎜⎜⎝
∫
x

0

1

1−y
dy+∫

x

0

�y
�
v+

2

3
y
�

1−y
dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈O(�x2)

⎞
⎟⎟⎟⎟⎟⎠

≈2 (1−x) ln(1− (1−x)−1).

∫
1

x

2
S(x)

S(1)

(S(1)−S(y))

�2(y)S�(y)
dy

=2S(x) ∫
1

x

��
1−

S(y)

S(1)

�
1

y(1−y)(1−2�vy−�uy2)

�
dy

≈2S(x) ∫
1

x

⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝
1−

y
�
1−�vy−

�

3
uy2

�

1−�
�
v+

u

3

�
⎞⎟⎟⎟⎠

(1+�(2vy+uy2))

y(1−y)

⎤⎥⎥⎥⎦
dy

≈2S(x) ∫
1

x

��
1−y

�
1−�vy−

�

3
uy2

��
1+�

�
v+

u

3

��� (1+�y(2v+uy))

y(1−y)

�
dy

≈2S(x) ∫
1

x

��
1−y−�y

�
v(1−y)−

u

3
(1−y2)

�� (1+�y(2v+uy))

y(1−y)

�
dy

≈2S(x) ∫
1

x

⎡⎢⎢⎢⎣
1

y
+�(2v+uy)−

�
�
v(1−y)+

u

3
(1−y2)

�

1−y

⎤⎥⎥⎥⎦
dy

=2S(x) ∫
1

x

�
1

y
+�

�
2v+uy−v−

u

3
(1+y)

��
dy

≈2xln(x−1)+2x�
�
v(1−x)+

u

3
(1−x2)−

u

3
(1−x)

�

≈2xln(x−1)+2x�v.

(74)�x [� ] ≈ 2(1 − x ) ln ( (1 − x ) − 1 ) + 2xln (x− 1 ) + 2x�v,


