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Abstract
Monadic programming is an essential component in the toolbox of functional programmers. For
the pure and total programmers, who sometimes navigate the waters of certified programming in
type theory, it is the only means to concisely implement the imperative traits of certain algorithms.
Monads open up a portal to the imperative world, all that from the comfort of the functional
world. The trend towards certified programming within type theory begs the question of reasoning
about such programs. Effectful programs being encoded as pure programs in the host type theory,
we can readily manipulate these objects through their encoding. In this article, we pursue the
idea, popularized by Maillard [21], that every monad deserves a dedicated program logic and that,
consequently, a proof over a monadic program ought to take place within a Floyd-Hoare logic
built for the occasion. We illustrate this vision through a case study on the SimplExpr module of
CompCert [18], using a separation logic tailored to reason about the freshness of a monadic gensym.
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1 Introduction

This article dwells on the challenges of verifying imperative algorithms implemented in a
proof assistant. As certified programming becomes more commonplace, proof assistants
are indeed being used as the ultimate integrated development environment [5, 10]. The
question of specifying and proving the correctness of such programs is part of a long tradition,
starting from various generalizations of monads [11, 33, 4] accounting for dependent types
and YNot [24], an axiomatic extension of type theory featuring imperative traits, as well as
the family of Dijsktra monads [3, 21, 22, 32] in F⋆ and their intuitionistic counterparts in
Agda [35], including the recent activity around algebraic presentations of effects and their
embedding in Coq and Agda [6, 7, 37, 20, 19]. This article reports on an experiment in
revisiting a proof of Leroy [18] with the help of Hoare [14] and Reynolds [29], under the
direction set by Plotkin and Power [28].

Before reaching for the top on the shoulders of these giants, let us warm up with a classical
monadic verification problem due to Hutton and Fulger [15] involving labelled binary trees

Inductive Tree (X: Type) :=
| Leaf: X → Tree X
| Node: Tree X → Tree X → Tree X.

The challenge consists in implementing a function label: Tree X → Tree nat that
labels every leaf with a fresh symbol, here a natural number. In order to implement this
relabeling procedure in Coq, we are naturally led to define the following variant of the state
monad [26]:
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29:2 Reaching for the Star: Tale of a Monad in Coq

Definition Fresh X := nat → X * nat.

Definition ret (x: X): Fresh X :=
fun n ⇒ (x, n).

Definition bind (m: Fresh X)(f: X → Fresh Y): Fresh Y :=
fun n ⇒ let (x, n’) := m n in f x n’.

Definition gensym (tt: unit): Fresh nat :=
fun n ⇒ (n, 1+n).

Notation "’do’ x ’← ’ e1 ’;’ e2" := (bind e1 (fun x ⇒ e2)).

Tree relabeling is then the straightforward imperative program one would have written in
any ML-like language:

Fixpoint label {X} (t: Tree X): Fresh (Tree nat) :=
match t with
| Leaf _ ⇒

do n ← gensym tt;
ret (Leaf n)

| Node l r ⇒
do l ← label l;
do r ← label r;
ret (Node l r)

end.

The function label is correct if the structure of the tree is preserved and each leaf stores
a unique number. Setting aside the question of preserving the tree structure, Hutton and
Fulger [15] offered the following formal specification for the latter property:

Lemma label_spec : ∀ t n ft n’,
label t n = (ft, n’) → n < n’ ∧ flatten ft = interval n (n’-1).

where flatten accumulates each leaf value during a left-to-right traversal and interval a b
computes the list of integers in the interval [a, b]. Note that this specification is extremely
prescriptive as it requires that label consecutively numbers the leaves of the tree from the
initial state n of the fresh name generator to its final state n′ in a left-to-right fashion.

It is easy to deduce the absence of duplicates, captured by the NoDup predicate in Coq
standard library:

Definition relabel (t: Tree X): Tree nat := fst (label t 0).

Lemma relabel_spec : ∀ t ft, relabel t = ft → NoDup (flatten ft).

which makes for a reasonable public API to expose, unlike the property established by
label_spec. The correctness of relabeling rests on our ability to prove label_spec. To do
so, it is obviously possible to treat label as a pure function (since it is one, after all) and
therefore directly manipulate the functional encoding of our variant of the state monad. For
example, to reason about a sequence of operations, we would use the inversion lemma

Remark bind_inversion: ∀ m f y n1 n3,
(do x ← m; f x) n1 = (y, n3) →
∃ v n2, m n1 = (v, n2) ∧ f v n2 = (y, n3).
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that reifies, through an existential, the intermediate state that occurs between the first and
second operation, thus allowing us to reason piece-wise about the overall program.

Here, the proof proceeds by induction over the tree t. For instance, in the Node case, we
are given the hypothesis

(do l ← label t1;
do r ← label t2;
ret (Node l r)) n = (t’, n’)

which we invert twice using bind_inversion so as to reveal the intermediate states n2, n3
and intermediate results t1’, t2’:

label t1 n = (t1’, n2)
label t2 n2 = (t2’, n3)
Node t1’ t2’ = t’
n3 = n’

We can then proceed by induction over the first two hypothesis in order to deduce flatten t1
= interval n (n2-1) (with n < n2) on the one hand and flatten t2 = interval n2
(n3-1) (with n2 < n3) on the other hand. Properties of intervals allow us to deduce that

flatten (Node t1 t2) = interval n n’, which establishes the desired invariant. The
resulting proof is thus a back-and-forth between reasoning steps related to the monadic
structure of the program (for example, bind_inversion above) and reasoning steps related
to the invariants preserved by the program (for example, concatenating intervals above).

In order to decouple the monadic structure (whose role is to sequentialize effects) from
specific interpretations of this structure (which defines its admissible semantics), one can
follow the mantra of the algebraic presentations of effects [28]: start with syntax (by means
of signatures) and obtain monads. In Coq, we can easily give the term algebra corresponding
to the Fresh monad using the folklore free monad construction [19]:

Inductive FreeFresh X :=
| ret : X → FreeFresh X
| gensymOp : unit → (nat → FreeFresh X) → FreeFresh X.

Fixpoint bind (m: FreeFresh X)(f: X → FreeFresh Y): FreeFresh Y :=
match m with
| ret v ⇒ f v
| gensymOp _ k ⇒ gensymOp tt (fun n ⇒ bind (k n) f)
end.

Definition gensym (tt: unit): FreeFresh nat := gensymOp tt (@ret nat).

In effect, we are defining a syntax for an embedded imperative language (sequenced
through the bind construct) featuring all Coq values (through the ret constructor) as well
as a gensym operator. To give a semantics to this language, an avid Coq programmer would
claim that an interpreter is as good a denotational semantics as anything else:

Fixpoint eval (m: FreeFresh X): nat → X * nat :=
match m with
| ret v ⇒ fun n ⇒ (v, n)
| gensymOp _ k ⇒ fun n ⇒ eval (k n) (1 + n)
end.

ITP 2021



29:4 Reaching for the Star: Tale of a Monad in Coq

Alternatively, a zealous disciple of Dijsktra (who may well be his grand nephew [35])
would perhaps give a semantics based on predicate transformers, using for example a weakest-
precondition calculus:

Fixpoint wp (m: FreeFresh X)(Q: X → nat → Prop): nat → Prop :=
match m with
| ret v ⇒ fun n ⇒ Q v n
| gensymOp _ k ⇒ fun n ⇒ wp (k n) Q (1+n)
end.

To get them to come to an agreement, we would prove the adequacy of both semantics:

Lemma adequacy: ∀ m Q n n’ v,
wp m Q n → eval m n = (v, n’) → Q v n’.

Whilst we have argued against reasoning directly about the semantics of monadic programs
(which amounts to eval m here), the adequacy lemma gives us an opportunity to switch to
a more predicative reasoning style. In particular, Hoare triples [14], dear to the heart of
imperative programmers, can be obtained through a simple notational trick

Notation "{{ P }} m {{ Q }}" := (∀ n, P n → wp m Q n)

from which we can readily prove the usual rules of Hoare logic [27]

Lemma rule_value: ∀ Q v,
(*-----------------------*)
{{ Q v }} ret v {{ Q }}.

Lemma rule_composition: ∀ m f P Q R,
{{ P }} m {{ Q }} →
(∀ v, {{ Q v }} f v {{ R }}) →
(*-------------------------------*)
{{ P }} do x ← m; f x {{ R }}.

Lemma rule_gensym: ∀ k,
(*-------------------------------------------------------*)
{{ fun n ⇒ n = k }} gensym tt {{fun v n’ ⇒ v = k ∧ n’ = 1+k}}.

Lemma rule_consequence: ∀ P P’ Q Q’ m,
{{ P’ }} m {{ Q’ }} →
(∀ n, P n → P’ n) →
(∀ x n, Q’ x n → Q x n) →
(*-----------------------*)
{{ P }} m {{ Q }}.

or, put otherwise, we obtain a shallow embedding of Hoare logic within the logic of Coq.
While, syntactically, the code of label is unchanged, it is now a mere abstract syntax

tree. Accordingly, the correctness lemma is naturally expressed as a Hoare triple:

Lemma label_spec: ∀ t k,
{{ fun n ⇒ n = k }}

label t
{{ fun ft n’ ⇒ k < n’ ∧ flatten ft = interval k (n’-1) }}.
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This specification remains unsatisfactory: we have still over-specified the behavior of a
counter whereas, in fine, we are only ever interested in the property NoDup (flatten t).
To prove it, we only need the assurance that every call to gensym tt produce a number
distinct from any previous call (which is indeed verified by an implementation that produces
consecutive numbers but this is an implementation detail).

In the remaining of this article, we argue that separation logic [29] is the perfect vehicle
for this kind of specification. Our plan is to unleash the power of the wonderful ecosystem
created by the MoSel [17] (and, by extension, Iris [16]) – initially introduced to model and
reason about fine-grained models of concurrent systems and languages– to bear on the
verification of our monadic programs. Our contributions are the following:

We instantiate the MoSel framework (Section 2) with a custom logic to reason (exclusively)
about freshness over monadic programs. The result is a tailor-made program logic
embedded within Coq supporting modular reasoning about freshness, MoSel offering a
wonderful environment to harness this flexibility;
We resume our formalization of relabel in this framework (Section 3) and highlight the
key point of the methodology;
We offer a larger case study (Section 4) by porting the SimplExpr module of CompCert [18]
to our framework. This module extensively relies on a monad offering a fresh name
generator together with non catchable exceptions. Crucially, we show that separation
logic can be used locally while the resulting theorems can be integrated in a larger
(pre-existing) development standing solely in Prop.

Our Coq development is available online1. The symbol [ ] in the electronic version of the
paper will lead the reader to the corresponding source code.

2 Supporting Modular Specifications [ ]

Separation logic [29] prominently features a frame rule that enables modular reasoning
about properties supporting a notion of disjointedness. This is particularly relevant for
freshness: we naturally expect to be able to reason separately about two programs producing
fresh identifiers, without interference. We now formalize this intuition by instantiating the
MoSel [17] framework with a minimalist separation logic to reason about generated symbols.

The type of assertions hprop corresponds to predicates over finite sets2 of identifiers:

Definition hprop := gset ident → Prop.

Through this definition, hprop inherits the logical apparatus of Prop (through pointwise
lifting): existential quantification, universal quantification, conjunction, etc. This also
includes any Coq propositions P, called pure propositions and written ⌜ P ⌝

Definition hpure (P : Prop) : hprop := fun _ ⇒ P.

The defining feature of a separation logic is the presence of a separating conjunction

Definition hstar (P1 P2 : hprop) : hprop := fun idents ⇒
∃ ids1 ids2, P1 ids1 ∧ P2 ids2 ∧ ids1 ## ids2 ∧ idents = ids1 ∪ ids2.

1 https://github.com/Artalik/CompCert/tree/ITP
2 Implemented by the gset type in the Coq-std++ library [23]
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that splits a given set of identifiers idents in a two sets ids1 and ids2 that are distinct
(ids1 ## ids2), form a partition of idents (idents ≡ ids1 ∪ ids2), each satisfying its
respective predicate. Unlike standard conjunction (where both propositions must hold
for the whole set of identifiers), the separating conjunction translates the independence of
both predicates by extracting two independent subsets of identifiers. Dually, the separating
implication, written P1 −∗ P2, amounts to the predicate

fun ids1 ⇒ ∀ ids2, ids1 ## ids2 ∧ P1 ids2 → P2 (ids1 ∪ ids2).

and consists, intuitively, in offering P2 provided that one can extend the existing set of
identifiers so as to satisfy P1.

The assertion emp = fun idents ⇒ idents = ∅ states that no identifier has been gen-
erated. We can also assert the freshness of an identifier ident (written & ident) by stating
that it is the sole identifier in the supporting set

Definition hsingle ident : hprop := fun idents ⇒ idents = {[ ident ]}.

and, more generally, the operator && h states that the set of identifiers amounts precisely to
the identifiers in h. The interplay between the separating connectives and this characterization
of freshness allows us to prove the absence of duplicates, such as the following instrumental
lemma3:

Lemma singleton_neq : ∀ l l’, ⊢ & l −∗ & l’ −∗ ⌜l ̸= l’⌝.

From such an algebra of logical connectives, we instantiate the MoSel [17] framework.
As a result, we obtain a full-featured interactive environment for reasoning about and
manipulating statements in the corresponding separation logic. MoSel introduces the type
iProp of (suitably-encoded) separation logic assertions, which subsumes hprop and its
connectives. The relationship between the separation logic and Prop is preserved through a
(somewhat more noisy) characterization

Lemma equivalence (P: iProp) idents: P () idents ↔ (⊢ && idents −∗ P).

3 Monadic Proof in Separation Logic [ ]

Equipped with a separation logic, we can redefine our weakest precondition calculus to take
advantage of the added structure

Fixpoint wp (m: FreeFresh X)(Q: X → iProp): iProp :=
match m with
| ret v ⇒ Q v
| gensymOp _ k ⇒ ∀ (v: ident), & v −∗ wp (k v) Q
end.

from which we naturally derive Hoare triples and their associated logic [9] as a shallow
embedding

Notation "{{ P }} m {{ v ; Q }}" := (P −∗ wp m (fun v ⇒ Q))

Lemma rule_gensym : ⊢ {{ emp }} gensym tt {{ ident; & ident }}.

3 The infix operator ⊢ embeds assertions expressed in the internal separation logic into the ambiant logic
of Coq Propositions.

https://github.com/Artalik/CompCert/tree/ITP/relabels/example3.v
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Lemma rule_consequence: ∀ P P’ Q Q’ m,

(⊢{{ P’ }} m {{ v; Q’ v }}) →
(P ⊢ P’) →
(∀ v, Q’ v ⊢ Q v) →

(*-----------------------*)
⊢{{ P }} m {{ v; Q v }}.

Lemma frame: ∀ P Q P’ m,

(⊢{{ P }} m {{ v; Q v }}) →
(*----------------------------*)
⊢{{ P ∗ P’ }} m {{ v; Q v ∗ P’ }}.

while the statement of the earlier lemmas rule_value and rule_composition remains
essentially unchanged (but their signification did change!).

We are now able to specify label by actively exploiting the separating conjunction4:

Lemma label_spec_aux : ∀ t,
⊢ {{ emp }}

label t
{{ ft; ([∗ list] x ∈ (flatten ft), & x) ∗ ⌜sameShape t ft⌝ }}.

Through this move to separation logic, we have discharged the handling of freshness down
to the logic, which conveniently provides us with the frame rule (rule_frame) to abstract
over disjoint sets of identifiers. The proof of label_spec_aux is thus significantly simpler and
consists only in local invariants. This is in stark contrast with our earlier proof in Section 1,
where we had to maintain a global invariant across the whole execution of the program.

Thanks to MoSel, the proof script now sums up to the following instructions, which are
almost intelligible. The MoSel framework provides the underlined tactics, which we extended
with custom tactics (underlined with dashes) specifically manipulating the Hoare triples:

induction t.

- iBind .

+ eapply rule_gensym.

+ iRet . simpl; auto.

- simpl label. iBind .

+ eapply IHt1.

+ iBind . Frame .

* eapply IHt2.

* iRet .

iIntros "[[HA %] [HB %]]".

iSplitL; auto. simpl.

iApply big_sepL_app.

iFrame.

subgoal 1 :
{{ emp }} gensym () {{ v; ?Q0 v}}
subgoal 2 :
{{ ?Q0 v }} ret Leaf v
{{ v’; ([∗ list] x0 ∈ flatten v’, & x0) ∗ ⌜sameShape (Leaf x) v’⌝ }}

subgoal 1 :
{{ ([∗ list] x ∈ flatten v, & x) ∗ ⌜sameShape t1 v⌝ }} label t2
{{ v0; ?Q1 v0}}
subgoal 2 :
{{ ?Q1 v0 }} ret Node v v0
{{ v’; ([∗ list] x ∈ flatten v’, & x) ∗ ⌜sameShape (Node t1 t2) v’⌝ }}

subgoal 1 :
{{ emp }} label t2 {{ v0; ?Q2 v0}}
subgoal 2 :
{{ ?Q2 v0 ∗ ([∗ list] x ∈ flatten v, & x) ∗ ⌜sameShape t1 v⌝ }}
ret Node v v0
{{ v’; ([∗ list] x ∈ flatten v’, & x) ∗ ⌜sameShape (Node t1 t2) v’⌝ }}

4 The notation ([* list] x in l, P x) asserts that every element x of the list l satisfies the predicate
P. In the present case, we state that all the elements in the flattened tree are fresh.

ITP 2021
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In the leaf case, the proof essentially boils down to applying rule_gensym. The power of
the approach strikes in the node case, where we gain access to the recursive cases through the
composition rule, at which point the proof is over: the frame rule allows us to automatically
combine the results of both sub-calls.

However, at this stage, we only have a proof in iProp while our users are expecting a
pure Coq proposition, living in Prop. We can first narrow the gap between the two worlds
by showing that the non-pure post-condition of label_spec_aux amounts to a pure one

∀ idents, ⊢ ([∗ list] i ∈ idents, & (i: ident)) −∗ ⌜NoDup idents⌝.

and, consequently, we obtain a specification with a pure post-condition

Lemma label_spec: ∀ t,
⊢ {{ emp }} label t {{ ft; ⌜NoDup (flatten ft) ∧ sameShape t ft⌝ }}.

The gap is finally bridged through an adequacy lemma, relating the execution of monadic
programs with the generator set to 0

Definition run (m: FreeFresh X): X := fst (eval m 0).

with pure post-conditions obtained in the separation logic

Lemma adequacy : ∀ {X} {m: FreeFresh X} {Q},
(⊢ {{ emp }} m {{ v; ⌜Q v⌝ }}) →
Q (run m).

As a corollary, we obtain a publicly-usable relabeling function together with a specification
expressed at a suitable level of detail:

Definition relabel (t: Tree X): Tree nat := run (label t).

Lemma relabel_spec : ∀ t ft,
relabel t = ft → NoDup (flatten ft) ∧ sameShape t ft.

4 Case study: SimplExpr

To evaluate our approach, we tackle a pre-existing certified program, namely the SimplExpr
module of the CompCert certified compiler. This module implements a simplification phase
over C expressions, pulling side-effects out of expressions and fixing an evaluation order. In the
following, we offer a side-by-side comparison of the original specification with ours, exploiting
separation logic (Section 2) to reason about freshness. We first materialize the underlying
monad in Section 4.1 together with its dynamic and predicate transformer semantics. We
then delve into the benefits of having a rich logic of assertions (Section 4.2) to carry the
proofs. We finally demonstrate how these properties can then be translated to and interact
with pure Coq propositions (Section 4.3), so as to be usable in the correctness proof of the
whole compiler.

4.1 The monad [ ]
As for our introductory example, we crucially rely on a syntactic description of the monad
mon used by the SimplExpr module. This monad, which has received some attention in the
literature [34], exposes two operations: an error e operator, to report a run-time error e;
a gensym ty operator, to generate a fresh symbol associated with a type ty, and a trail
operator, to get the association list of identifiers to types constructed thus far.

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/MonadSL.v
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Following the usual free monad construction, we reify this interface through a datatype:

Inductive mon (X : Type) : Type :=
| ret : X → mon X
| errorOp : Errors.errmsg → mon X
| gensymOp : type → (ident → mon X) → mon X
| trailOp : unit → (list (ident * type) → mon X) → mon X.

Definition error {X} (e : Errors.errmsg) : mon X := errorOp e.
Definition gensym (t : type) : mon ident := gensymOp t ret.
Definition trail (_ : unit): mon (list (ident * type)) := trailOp tt ret.

The definition of the monadic bind follows naturally. As before, we will use the user-friendly
notation do _ ← _ ; _ in code.

Note that an error does not require a continuation: at run-time, it corresponds to
an uncatchable exception. It is used by the compiler to abort when some input program
falls outside the semantic domain of C (delineated by the mechanized semantics given by
CompCert).

The dynamic semantics of mon is slightly richer than the one of FreeFresh (Section 1).
First, we must handle the addition of an uncatchable error during execution. We piggy-back
on CompCert’s implementation of the error monad

Inductive res (A: Type) : Type :=
| OK: A → res A
| Error: errmsg → res A.

and, essentially, inline the usual error monad transformer over the state monad necessary
to maintain the internal state of the gensym operator. However, unlike earlier, gensym now
associates fresh identifiers with their provided type. This is reflected in the semantics, which
maintains an association list of ident and types together with the next fresh ident:

Record generator : Type := mkgenerator { gen_next : ident;
gen_trail: list (ident * type) }.

The dynamic semantics amounts to the usual interpretation of errors in res and stateful
operations in generator → M (generator * X):

Fixpoint eval {X} (m : mon X) : generator → res (generator * X) :=
match m with
| ret v ⇒ fun s ⇒ OK (s, v)
| errorOp e ⇒ fun s ⇒ Error e
| gensymOp ty f ⇒

fun s ⇒
let h := gen_trail s in
let n := gen_next s in
eval (f n) (mkgenerator (n+1) ((n,ty) :: h))

| trailOp _ f ⇒
fun s ⇒

let h := gen_trail s in
eval (f h) s

end.

ITP 2021



29:10 Reaching for the Star: Tale of a Monad in Coq

The compiler pass is ran with an initial_generator that is provided from the OCaml
driver, remaining opaque to Coq until after extraction:

Definition run {X} (m: mon X): res X :=
match eval m (initial_generator tt) with
| OK (_, v) ⇒ OK v
| Error e ⇒ Error e
end.

The predicate transformer semantics is given by a straightforward weakest-precondition
calculus:

Fixpoint wp {X} (e1 : mon X) (Q : X → iProp) : iProp :=
match e1 with
| ret v ⇒ Q v
| errorOp e ⇒ True
| gensymOp _ f ⇒ ∀ l, & l −∗ wp (f l) Q
| trailOp _ f ⇒ ∀ l, wp (f l) Q
end.

where the semantics of gensym follows exactly our earlier definition. The semantics of
error does not require any precondition (but, as we shall see in the adequacy lemma, this
also means that our post-conditions are only true if the compiler did not raise an error).
The specification of trail is purposefully non-committal: CompCert does not make any
assumption about the output of trail (in a rather elegant twist, the fact that the identifiers
produced by trail are all distinct is a decidable property that is checked at run-time in a
later compilation pass: trail is indeed free to return any list of identifiers but CompCert
will simply refuse to compile a piece of code triggering an invalid output.)

As in Section 1, we derive Floyd-Hoare triples {{ P }} m {{ v; Q }} from our weakest-
precondition calculus, together with the usual structural rules. The monad-specific operators
are specified as follows:

Lemma rule_gensym ty : ⊢{{ emp }} gensym ty {{ ident; & ident }}.

Lemma rule_error Q e: ⊢{{ True }} error e {{ v; Q v }}.

Lemma rule_trail : ⊢{{ emp }} trail tt {{ _; emp }}.

In particular, the operator error amounts to a “get out of proof free card”, allowing us
to discharge any post-condition by refusing to do any work. We relate the dynamic and
predicate transformer semantics through an adequacy lemma

Lemma adequacy: ∀ m Q v,
(⊢ {{ emp }} m {{ v; ⌜ Q v ⌝}}) →
run m = OK v → Q v.

that only proves the post-condition when the evaluation succeeds in producing a value.

4.2 Proofs and Programs [ ]
The expression simplification pass is part of the CompCert front-end. It consists of 3 files:
cfrontend/SimplExpr.v (which contains the monadic programs), cfrontend/
SimplExprspec.v (which contains a Prolog-like specification of the monadic programs
through inductive relations, as well as the proof relating the monadic programs to their

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/SimplExpr.v
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Figure 1 SimplExpr call graph (left) and the corresponding specifications (right).

specification) and cfronted/SimplExprproof.v (which contains the proof of correctness of
the compilation pass, exploiting the relational specifications). Syntactically, cfrontend/
SimplExpr.v is left unchanged when we swap in our monad: we were careful to implement
the same interface as the previous one. However the semantics is very different: whereas
the previous monad was building an actual computation, ours is just building an abstract
syntax tree. We therefore need to add suitable call to run to turn this syntax into an actual
computation.

We give an overview of the SimplExpr module through its call graph (Figure 1). The raison
d’etre of this module is to define transl_function: Csyntax.function → res function
that performs the simplification over functions. This is the (only) entry-point into the error
monad res. It hosts the call run. transl_function recursively depends on a host of helpers
operating in the error and trail fragment of the monad, grouped in the circular frame
(Figure 1). Crucially, none of the functions invoke a fresh symbol generator themselves. A
third group of functions, all dispatched from transl_expr and collected in the rectangular
frame (Figure 1), consists of those functions that actually generate fresh symbols and must
therefore belong to the full-fledged monad mon.

In the following, we present several programs extracted or modified from CompCert,
together with their specifications. In those, aspects related to the freshness of names is
a means toward an overall correctness result. Consequently, programs and specifications
involve a backbone of operations and properties dealing with freshness, fleshed out with
further transformations and properties implementing the desired compilation pass. In order
to see the forest (of freshness) for the trees, we adapt a typographical legerdemain: we
typeset in a tiny font size the parts of the program and proof that do not involve freshness.
As part of our work, we were led to replace definitions from the original CompCert with new
ones: when recalling the original, we display it on a gray background to set it apart.

Let us begin our exploration of the SimplExpr module through transl_expr, which
involves both fresh name generation and errors

Fixpoint transl_expr (dst: destination) (a: Csyntax.expr) : mon (list statement * expr)

Its argument dst may wrap, in the For_set case, an identifier within a value of type
set_destination
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Inductive set_destination : Type :=
| SDbase (tycast ty: type) (tmp: ident)
| SDcons (tycast ty: type) (tmp: ident) (sd: set_destination).

Inductive destination : Type :=
| For_val
| For_effects
| For_set (sd: set_destination).

The type destination specifies how to pass along the result of a given expression, i.e.
whether the contribution of an expression lies in its returned value, or solely in its side effects,
or in a temporary variable in which its denotation has been saved.

For correctness of this optimization pass, it is crucial that this identifier is fresh with
respect to any identifier that transl_expr may produce. The function transl_expr itself is
defined by pattern-matching over the source AST, we focus here on the assignment case:

| Csyntax.Eassign l1 r2 ty⇒
do (sl1, a1)← transl_expr For_val l1;
do (sl2, a2) ← transl_expr For_val r2;
let ty1 := Csyntax.typeof l1 in

let ty2 := Csyntax.typeof r2 in

match dst with
| For_val | For_set _ ⇒

do t ← gensym ty1;
ret (finish dst

(sl1 ++ sl2 ++ Sset t (Ecast a2 ty1) ::

make_assign a1 (Etempvar t ty1) :: nil)

(Etempvar t ty1))

| For_effects ⇒
ret (sl1 ++ sl2 ++ make_assign a1 a2 :: nil,

dummy_expr)

end

It performs two recursive calls with destinations that do not involve fresh identifiers
(For_val). However, when its own destination is a value (For_val) or an assignment
(For_set), it also performs a call to gensym. The specification needs to reflect the fact that
the identifiers generated by the recursive calls are distinct between each other and distinct
from the identifier potentially generated in the assignment case. In CompCert, this is achieved
by explicitly threading the lists (in this case, tmp, tmp1 and tmp2) of identifiers generated
and asserting their disjointness:

Inductive tr_expr: temp_env → destination → Csyntax.expr → list statement → expr →

list ident → Prop :=

| tr_assign_val: ∀ le dst e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 t tmp ty1 ty2,
tr_exprle For_val e1 sl1 a1 tmp1 →
tr_expr le For_val e2 sl2 a2 tmp2 →
incl tmp1 tmp → incl tmp2 tmp →
list_disjoint tmp1 tmp2 →
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In t tmp → ~In t tmp1 → ~In t tmp2 →
ty1 = Csyntax.typeof e1 →

ty2 = Csyntax.typeof e2 →

tr_expr le dst (Csyntax.Eassign e1 e2 ty)

(sl1 ++ sl2 ++

Sset t (Ecast a2 ty1) ::

make_assign a1 (Etempvar t ty1) ::

final dst (Etempvar t ty1))

(Etempvar t ty1) tmp

In order to express the precondition on transl_expr, stating that any potential identifier
in dst is fresh, CompCert introduces the following predicate

Definition sd_temp (sd: set_destination) :=
match sd with SDbase _ _ tmp ⇒ tmp | SDcons _ _ tmp _ ⇒ tmp end.

Definition dest_below (dst: destination) (g: generator) : Prop :=
match dst with
| For_set sd ⇒ Plt (sd_temp sd) g.(gen_next)
| _ ⇒ True
end.

that, in a very operational manner, asserts that the identifiers stored in dst occurred earlier
in the execution of the fresh name generator and are therefore distinct from any future
identifier (since they are produced as consecutive numbers).

Having access to a notion of freshness in our language of assertions, we can prevent these
operational details from leaking out and simply assert that such an identifier must be fresh:

Definition dest_below (dst: destination) : iProp :=
match dst with
| For_set sd ⇒ & (sd_temp sd)
| _ ⇒ emp
end.

The implementation of transl_expr is then abstracted away thanks to the relational
specification given by tr_expr as follows

Lemma transl_meets_spec:
(∀ r dst g sl a g’ I,
transl_expr dst r g = Res (sl, a) g’ I →
dest_below dst g →
∃ tmps, (∀ le, tr_expr le dst r sl a (add_dest dst tmps)) ∧

contained tmps g g’)

where g and g’ represent the state of the fresh name generator at the beginning and,
respectively, the end of the transformation. These are necessary to assert that any ident in
dst is indeed fresh (through dest_below) and that the temporaries produced by transl_expr
will not conflict with any earlier or later use of the generator (through contained tmps g g’,
which guarantees that all the identifiers in tmps were produced between g and g’).

ITP 2021



29:14 Reaching for the Star: Tale of a Monad in Coq

In our setting, the freshness of the identifiers produced in the subcalls and of the locally
generated identifier is captured with separating conjunctions:

Fixpoint tr_expr (le : temp_env) (dst : destination) (e : Csyntax.expr)

(sl : list statement ) (a : expr) : iProp :=

| Csyntax.Eassign e1 e2 ty ⇒
match dst with
| For_val | For_set _ ⇒
∃ sl2 a2 sl3 a3 t,
tr_expr le For_val e1 sl2 a2 ∗
tr_expr le For_val e2 sl3 a3 ∗
& t ∗
dest_below dst ∗
⌜ sl = sl2 ++ sl3 ++ Sset t (Ecast a3 (Csyntax.typeof e1)) ::

make_assign a2 (Etempvar t (Csyntax.typeof e1)) ::

final dst (Etempvar t (Csyntax.typeof e1)) ∧

a = Etempvar t (Csyntax.typeof e1)⌝

Similarly, the relationship between transl_expr and tr_expr is now straightforward, the
constraint that dst is fresh with respect to the identifiers produced by transl_expr being
naturally expressed through a separating implication

Lemma transl_meets_spec :
(∀ r dst,

⊢ {{ emp }} transl_expr dst r

{{ res; dest_below dst −∗ ∀ le, tr_expr le dst r res.1 res.2 }})

Through this process, we have entirely removed the painstaking need to track the
operational state of the name generators and maintain global invariants about the relative
freshness of program fragments. Doing so, we have elevated our specification and successfully
decoupled it for the operational aspects of generating fresh identifiers. As an added bonus, we
can now rely on MoSel to prove that our implementation meets its specification. In practice,
we observe that the length of the proof scripts is divided by two when moving to MoSel but
we shall resist from the temptation of drawing any conclusion from such an unreliable metric.

4.3 Leaving iProp [ ]
Reasoning about freshness occurs only in the group of functions below transl_expr in the
call graph. For the functions (and their respective specifications) above transl_expr, the set
of fresh identifiers ranged over by the specification is always existentially quantified. Since, by
construction, iProp is isomorphic to gset ident → Prop (Section 2), we have integrated
this discipline in a wrapper-specification

Inductive tr_top: destination → Csyntax.expr → list statement → expr → Prop :=

| tr_top_base: ∀ dst r sl a tmp,
tr_expr le dst r sl a () tmp →
tr_top dst r sl a.

As a consequence, functions above transl_expr do not need to propagate freshness
invariants. As a result, Prop is a sufficient vehicle to write their specifications. However, to
show that these functions satisfy their specifications, we took on ourselves to port the proofs

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/SimplExprspec.v
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to MoSel as well. For example, the function transl_stmt, which translates statements, is
specified as follow in our setting

Lemma transl_stmt_meets_spec : ∀ s,
⊢ {{ emp }} transl_stmt s {{ res; ⌜ tr_stmt s res ⌝}}

which is merely a iota away from the original

Lemma transl_stmt_meets_spec:
∀ s g ts g’ I, transl_stmt s g = Res ts g’ I → tr_stmt s ts

While a purely cosmetic change, this has allowed us to streamline the proofs, which
were designed around inversion lemmas over the monadic structure (themselves wrapped in
tactics). Note that this effort was not strictly necessary: we could have kept the pre-existing
definitions and their proofs.

To restore the overall compiler correctness proof [ ], we must re-establish a simulation
lemma relating source and target programs. This work is carried solely over the specifications
of the various functions (right-hand side of Figure 1). Above tr_top (included), the specific-
ations lives in Prop so the proofs remain unchanged. For tr_expr, where the specification
lives in iProp, we resort to reasoning in separation logic: we have therefore updated the
original predicates so as to fully exploit the separating connectives to handle freshness. We
carry this part of the simulation proof in MoSel. To bridge the gap between iProp and Prop,
which occurs when we go through tr_top, we resort to lemmas such as singleton_neq
(Section 2) that translates freshness assertions into propositional facts.

5 Related Work

Early on, dependent type theory was used to develop various models of Hoare logic [25, 30],
including several ones based on separation logic [24, 8, 16]. However, these formalisms were
introduced to reason about models of imperative or concurrent programs: type theory was
not yet recognized as a vehicle for writing effectful programs. CompCert was instrumental in
showing that non-trivial effectful programs could be written within a proof assistant. This
inspired the work of Swiertra [34], aiming at rationalizing and generalizing the indexed state
monad construction introduced by Leroy specifically in SimplExpr.

The Dijkstra Monad [13, 31, 3, 2, 32] research program, spearheaded by Swamy and
collaborators, has demonstrated that effectful programming has its place in the context of
certified programming in F⋆. On their journey, the designer of F⋆ have shown the benefits
of a modular approach to effects (polymonads), each equipped with a suitable program
logic (Dijkstra monad) which – in some instances – could be automatically derived from the
underlying monad (using an interpretation in the continuation monad). However, this line of
work actively exploits the refinement-based approach to typing of F⋆ (relying extensively on
an SMT solver to decide the conversion of indices). As-is, this would be ill-fitted for a proof
assistant based on dependent type theory, where conversion is not as rich and relying on
functional values at the type level would make for a painful experience. Our approach is
rooted in the pragmatics of indexed programming in dependent type theory and of Coq in
particular. In that respect, MoSel offers the ultimate development environment for reasoning
– in a natural manner – about effectful programs in Coq.

Before us, this approach has been pursued in the context of the FreeSpec project [19] in
Coq. While its scope was limited to modeling and reasoning about (hardware) interfaces,
FreeSpec has shown the benefits of a syntactic treatment of monads (through the free monad
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construction) and how to construct domain-specific logics for those through pre/post pairs.
The key contribution of FreeSpec is a generic treatment of effects, which we could easily
borrow to factor out our monadic constructions.

In Agda, Swierstra and Baanen [35] have shown how the FreeSpec approach (based on
free monads) and the Dijsktra Monads (deriving program logics from monads) could be
fruitfully combined. This results in a library of predicate transformers, operating over the
syntactic model of the monad. We followed this approach to the letter, specializing our
definition to the monads at hand for pedagogical purposes. Being in Coq, we also benefit
from the impredicativeness of Prop and, by extension, iProp, which saves us from tiptoeing
around universe stratification when defining the predicate transformer semantics.

While many of the work above is focused on emulating some form of Hoare logics in
type theory, there is also a parallel and rich line of work betting on the power of equational
reasoning for effectful programs. Gibbons and Hinze [12] were instrumental in illustrating –
on paper – how to use algebraic presentations of monads to prove the correctness of programs
implemented in those. In particular, they revisited the relabel program from Hutton and
Fulger and gave a purely equational proof of correctness. Affeldt et al. [1] realized this vision
in the Coq theorem prover, extensively relying on SSReflect [36] to enable a compositional
treatment of monads and to effectively reason about monadic programs by rewriting.

Interaction Trees [37] are a middle ground between the purely equational treatment of
Affeldt et al. and the syntactic treatment of FreeSpec. Much like FreeSpec, interaction trees
are constructed from a signature of possible operations. However, the authors dispense with
the free monad construction altogether and directly manipulate the free completely iterative
monad, i.e. infinite unfoldings of the signature’s control-flow graph. Program equivalence
is thus proved by establishing a bisimilarity between two unfoldings: in practice, this is
achieved through equational reasoning; substituting equivalent program fragments for each
others. The treatment of diverging computations is worthwile and would deserve further
attention in our setting.

6 Conclusion

This paper reports on an experiment: use one of the most advanced piece of technology for
reasoning about imperative features – separation logic, embodied by the MoSel framework –
to reason about certified monadic programs in Coq. To exercise this approach, we ported the
SimplExpr module of CompCert to use a separation logic for reasoning about fresh names.
Our version of SimplExpr is feature-complete and integrated in the rest of compiler pipeline.
The definition of the monad and its separation logic introduce an additional 750 lines of code
[ ] (ignoring the 30 000 lines of code of Iris/MoSel). Conversely, the specifications and their
proofs go from 1100 lines of code originally down to 650 lines of code [ ]. The correctness
proof stands at around a thousand lines of code [ ].

We should be careful when interpreting these numbers, as code size is but a poor metric to
judge the quality of a development. It is however clear that, while certainly encouraging, this
experiment points towards developing an integrated library of monads and their operational
semantics (à la FreeSpec [19] and interaction trees [37]) as well as their predicate transformer
semantics (à la Dijkstra monad [3]). This effort should also be aimed at providing a library
of ready-made separation logics for reasoning about common effects, which would allow us
to amortize some of those 750 additional lines of code.

As far as proof engineering goes, it would be interesting to study how our proofs fare
compared to the original ones when the underlying code evolves. We believe that the abstract
reasoning style enabled by separation logic provides more opportunities for automation,
which should smooth out the proof update process. Further experiment is required to confirm
or refute this hypothesis.

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/MonadSL.v
https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/SimplExprspec.v
https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/SimplExprproof.v
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