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We develop a maximum likelihood method to infer relevant physical properties of elongated active
particles. Using individual trajectories of advected swimmers as input, we are able to accurately
determine their rotational diffusion coefficients and an effective measure of their aspect ratio, also
providing reliable estimators for the uncertainties of such quantities. We validate our theoretical con-
struction using numerically generated active trajectories upon no-flow, simple shear, and Poiseuille
flow, with excellent results. Being designed to rely on single-particle data, our method eases appli-
cations in experimental conditions where swimmers exhibit a strong morphological diversity. We
briefly discuss some of such ongoing experimental applications, specifically, in the characterization
of swimming E. coli in a flow.

I. INTRODUCTION

To monitor passive probes, living cells and microorgan-
isms moving in their environment, modern instrumenta-
tion is now offering possibilities for long-time tracking
and trajectory reconstruction, with excellent spatial and
temporal resolution [1]. The collected data sets contain
in principle relevant informations on the internal and ex-
ternal processes, of either mechanical or biological origin.
However, inferring them is still a challenging task which
has motivated the recent development of adapted analyt-
ical tools [2–7].

Tracking colloids close to thermal equilibrium in var-
ious media was proven quite fruitful as it allowed the
development of a quantitative micro-rheology instrumen-
tation [8]. This technique was further extended to inves-
tigate complex fluids [9, 10], and dynamical processes
inside living cells [1, 11, 12]. In recent years, much effort
was dedicated to the study of passive colloidal particles
as they diffuse in active suspensions composed of self-
propelling entities [13–15]. Several studies focus on the
contribution of the active environment to the diffusion
of tracers [16–18], while others aim at generalizing the
notion of thermal bath and to characterize the thermo-
dynamic fluctuations associated with the passive particle
in complex environments [19–22]. However, there has
been much less focus on understanding how an active
particle gets itself affected by the properties of its the
environment.

In this work, we develop a maximum likelihood (ML)
approach to study elongated active swimmers using raw
data of swimming tracks. The general aim is to extract
from a stochastic data set, the physical parameters that
characterize the particle dynamics as well as the source of
rotational noise. In general, such data encompass the ac-
tive transport contribution resulting from the interaction
between the flow and the swimmer, and the stochastic
component associated with rotational noise. Although
our framework is general, we focus here on three partic-
ular situations, (i) a free swimmer, (ii) a swimmer in a

shear flow and, finally, (iii) a swimmer in a Poiseuille
flow. We take into account inherent limitations encoun-
tered in experiments, such as the finite duration of the
tracks and their discrete sampling. The method is first
tested against numerical simulations, hence showing an
excellent agreement between prescribed parameter values
and our estimators.

Our tool has been conceived to study E. coli mu-
tants (smooth swimmers) in a parabolic flow, however,
it can be generalized to different experimental situations
by adapting the underlying stochastic process to the sys-
tem at hand. For instance, many studies focused on the
behavior of synthetic microswimmers in dynamic envi-
ronments [23], such as externally imposed chemical gra-
dients [24], or flows [25]. Our method can also be used
to extract key parameters from trajectories of synthetic
microswimmers in such situations.

Smooth swimmers were recently considered in
Ref. [26]. It was shown that a deterministic model, con-
sisting of an advected swimming ellipsoid, fairly repro-
duces bacterial trajectories at short times. However, at
longer times, a stochastic component comes into play as a
multiplicative noise leading to the stochastic exploration
of the phase space. Using the ML method, we are able to
extract the effective rotational diffusivity from the swim-
ming trajectories, which can be compared quantitatively
with the Brownian diffusion of an ellipsoid in a viscous
fluid.

ML approaches have been applied earlier to the char-
acterization of either passive or active tracers. For in-
stance, in Ref. [27] a combination of Bayesian and ML
analysis was used to infer the stochastic model that fits
best a given single-passive-particle track. In Ref. [28]
similar methods led to a noninvasive protocol to infer
molecular chemotactic responses from bacterial trajecto-
ries. Regarding those studies, the main differences with
our method are: (i) it disentangles the deterministic (ad-
vective) and random (diffusive) components of single bac-
terial trajectories to better understand how active swim-
mers interact with different flow profiles, (ii) the input
of our ML procedure are raw dynamical trajectories (i.e.,
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the set of positions and orientation vectors of the particle
as function of time).

The paper is organized as follows. In Sec. II we intro-
duce the theoretical model and briefly discuss the general
philosophy of our ML method. In Sec. III we sketch the
steps to build the log-likelihood and derive our ML esti-
mators as well as their uncertainties to leading order in
the number of sampling points. In Sec. IV we use numer-
ical simulations to validate our method in three config-
urations, no-flow, simple shear flow, and Poiseuille flow.
A preliminary application of our method in the analysis
of experimental tracking data is discussed in Sec. V, and
general conclusions are given in Sec. VI. All technical de-
tails regarding our calculations and experiments are left
to the Appendix.

II. PRELIMINARIES

A. Stochastic dynamics of the active
Betherton-Jeffery model

In Ref. [26], it was shown that rotational diffusion con-
siderably affects the trajectories of mutant E. coli in a
flow. This fact represents a strong motivation to con-
sider the effects of rotational noise in the dynamics of
the orientation vector of smooth swimmers. We focus on
the model studied in Ref. [26] in presence of noise, which
we refer to as the stochastic active Betherton-Jefferey
(SABJ) model from now on. The model describes the
behavior of an ellipsoid swimming at a constant speed in
a flow. Its dynamics read:

ṙ = v0p + vF (r), (1)

ṗ =
(
1− p⊗ p

)[
βE(r) + 
(r)

]
p− 2DRp

+
√

2DRp ∧ ξR. (2)

Above, v0 is the self-propulsion velocity of the parti-
cle, vF is the local flow velocity, the symbol 1 denotes
the identity matrix, and ⊗ is used to denote tensor prod-
ucts. The number β = (r2− 1)/(r2 + 1) is the Betherton
parameter, which represents a measure of the geometri-
cal asymmetry of the swimmer (r is the aspect-ratio of
the ellipsoidal particle). The components of the tensors
E and 
 are given as follows, Eij(r) = (∂xiv

F
j +∂xjv

F
i )/2

and Ωij(r) = (∂xiv
F
j − ∂xjvFi )/2.

In Eq. (2), rotational diffusion is encoded in the dif-
fusion coefficient DR and the Gaussian white noise ξR
which has zero mean and variance 〈ξR(t) ⊗ ξR(t′)〉 =
1δ(t− t′). In this work, Eq. (2) is interpreted in the Ito
sense. The Ito term −2DRp is thus needed to guarantee
the conservation of the norm of p. Note that, although
one could also introduce a translational diffusion term in
Eq. (1), such contribution can be assumed negligible in
typical experimental situations. Consider, for instance,
an E. coli bacterium which is few microns length, swim-
ming at a typical speed of 25 µm s−1. The distance over
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FIG. 1. (a) Picture of an E. coli bacterium with the head
GFP labelled (green color) and the flagella bundle tagged in
red with a specific alexa fluor marker. (b) Sketch of the ef-
fective ellipsoid of aspect ratio r modeling the bacterium. (c)
Simple shear flow geometry characterized by a constant shear
rate γ̇ and, (d) Poiseuille flow geometry; γ̇W is the maximal
shear rate. We also introduce the Péclet number, which is the
natural dimensionless form of the inverse of the rotational dif-
fusion coefficient.

which it diffuses in 1 s is ≈ 0.1 µm to be compared to the
25 µm travelled due to its activity.

In Fig. 1 we illustrate our model system, making ex-
plicit the way in which geometrical parameters are de-
fined. It is important to remark that the bacterium is a
complex object and that the optical determination of β
is non-trivial. In other words, β is an effective parameter
and its determination based on imagery alone may not
be reliable. However, for an elongated bacterium such
as E. coli its expected value should be close to one (see
the sketch in Fig. 1(b)). In the same figure, we also show
how the Péclet number is defined in presence of shear and
Poiseulle flows. The Péclet number plays an important
role in numerics because it is the natural dimensionless
form of the inverse of the rotational diffusion coefficient,
see Sec. IV for more details.

An important role is played by the Markov kernel of the
process (1)-(2), which we denote by K(r,p, t|r′,p′, t′).
We focus here on stationary flow profiles in which case
the propagtor only depends on ∆t = t − t′ due to time-
translation invariance. We thus simplify the notations
by writing K(r,p, t|r′,p′, t′) = K(r,p,∆t|r′,p′, 0) ≡
K(r,p,∆t|r′,p′). The propagator satisfies the Fokker-

Planck equation ∂tK = L̂FPK with initial condition
K(r,p, 0|r′,p′) = δ(r− r′)δ(p− p′). The Fokker-Planck
operator associated to these dynamics reads

L̂FP (r,p) =DR

∑
i,j

∂2
pi,pj · M̃ij(p)−

∑
i

∂pi · hi(r,p)

−
∑
i

∂xi · vi(r,p). (3)
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To write (3), we condensed the translational part of
the motion into v(r,p) = v0p+vF (r), and the drift term
in Eq. (2) into h(r,p) = (1 − p ⊗ p)(βE(r) + 
(r))p −
2DRp. Additionally, each element of the matrix M̃(p) is

a quadratic form in p, M̃ij(p) =
∑
l,q Tijlqplpq, where

Tijlq =
∑
k

εilkεjqk = δijδlq − δiqδjl, (4)

and εijk denotes the Levi-Civita symbol.

B. Estimating parameters from single trajectories

By studying individual trajectories of bacteria, one
could access the statistics of DR and β over a population.
To achieve an accurate measurement of those parame-
ters, we develop an ML method. We start by construct-
ing the log-likelihood characterizing a single-bacterium
trajectory; then the relevant physical parameters are de-
termined by maximizing it.

In this paragraph we sketch out the general philos-
ophy of our procedure. In experiments, the trajectory
of a bacterium is recorded at regularly spaced time in-
stants {tα}, such that ∆tα = tα+1 − tα ≡ f−1 for each
α = 0, 1, . . . , N − 1, where f is the sampling frequency.
The data has the form of a discrete set of N position
and orientation values, {Γ}, where Γ = (r,p). Assuming
that the dynamics of the swimmer are compatible with
Eqs. (1)-(2), the probability of measuring that particular
track can be expressed as follows:

P
[{

Γ
}]

=

N−1∏
α=0

K(Γ(tα+1), f−1|Γ(tα)). (5)

Although not made explicit, the probability of the
track is parametrized by the relevant physical quantities
of the model, i.e., v0, DR, and β. One can introduce the
log-likelihood as S = lnP, or more explicitly

S =

N−1∑
α=0

lnK(Γ(tα+1), f−1|Γ(tα)), (6)

anticipating the importance of the Markov kernel of the
SABJ model in this work. By maximizing the log-
likelihood with respect to the parameters, we obtain the
best estimates compatible with the hypothesis that the
data are generated by Eqs. (1)-(2).

The above procedure can be formally justified by the
fact that the SABJ model is Markovian, which means
that the propagator encodes all the relevant physical in-
formation about the process. Markovianity, in conjunc-
tion with time-translational invariance, allows us then
to interpret one trajectory as an esemble of independent
‘events’, each consisting on the generation of new values
for the increments of the process, with each outcome be-
ing fully characterized by the same probabilistic model
K.

It is important to emphasize that our method can be
used to infer parameters from tracking data using generic
models and not only the one we consider here. In partic-
ular, our method does not depend on the precise shape of
the flow profile as far as it is stationary. It all comes down
to computing the corresponding propagator and follow-
ing the general steps sketched above. In the next section
we discuss the case of the SABJ model and derive the ML
estimators as well as their corresponding uncertainties.

III. MAXIMUM LIKELIHOOD METHOD

A. Approximate log-likelihood and maximum
likelihood estimators

As discussed above, we need access to the propagator
K in order to build the log-likelihood. However, solv-
ing the Fokker-Planck equation in presence of a generic
flow seems hopeless. This implies that, in practice, the
likelihood cannot be exactly constructed. Propitiously, a
fairly good approximant can be derived by relying on the
relatively large value of experimentally accessible sam-
pling frequencies. The scheme developed in this section
does not rely upon a direct approximate solution of the
Fokker-Planck equation for particular flow profiles, since
such approach would hinder the generality of our method.
As we discuss below, we start from the expression of the
continuous-time path probability representation of the
SABJ model in presence of a generic flow profile and then
introduce time-discretization in the simplest and more
natural way possible.

To begin with, let us first consider the (ideal) limit
at which a swimmer trajectory is sampled continuously,
which corresponds to f → ∞. In this case the track
probability (5) becomes the continuous path probability
associated to the process (1)-(2), which can be written in
the Martin-Siggia-Rose-de Dominics-Janssen (MSRDJ)
representation (see Refs. [29–31] for details) as follows:

P
[
Γ(•)

]
= J

[
Γ(•)

] ∫
D
[
Γ̂(•)

]
e−Â[Γ(•),Γ̂(•)], (7)

where Γ̂ = (r̂, p̂) denote the response fields of the MSRDJ
formalism, while the action has the form

Â =

∫ t

0

{
i
[
ṙ− v

]T
r̂ + i

[
ṗ− h

]T
p̂ +DRp̂

TM̃p̂

}
dt′. (8)

The vector fields v and h, as well as the matrix M̃(p),
were introduced in Sec. II and we have omitted their
explicit dependence on r and p for compactness. Addi-
tionally, the prefactor J in Eq. (7) is a Jacobian whose
precise form depends on the underlying discretization
scheme of both, the stochastic dynamics (1)-(2) and the
path probability. In the Ito convention (which we use
here), one has J = 1 and this factor can be omitted.

Imagine now that the sampling frequency is large
enough but finite. Then, to first order in f−1, one can
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approximate the time integral involved in the expression
of the continuous-time dynamical action (8) by a dis-
crete sum (with a prescribed discretization scheme, i.e.,
Ito), which is no more than approximating a Riemann
integral by one of its associated Darboux sums when the
time step is small enough. After integrating over the re-
sponse variables in (7), one gets for the (now discrete)
path probability

P
[{

Γ
}]

=

N−1∏
α=0

exp

(
− 1

f
L(Γ(tα+1),Γ(tα))

)
. (9)

The precise form of the function L is rather involved
and we prefer not to discuss it here. In Appendix A we
develop the full computation. The point we do wish to
highlight is that a direct comparison between Eqs. (5)
and (9) explicitly illustrates the nature of our approxi-
mation for the propagator K between two events sampled
within a very small time interval. In the same vein, tak-
ing the logarithm in (9) and comparing the result with
Eq. (6) leads to our approximation for the log-likelihood:

S = − 1

f

N−1∑
α=0

L(Γ(tα+1),Γ(tα)). (10)

Following this program, we derive an explicit expres-
sion for the log-likelihood of the SABJ model in Ap-
pendix A. The result reads:

S(ÑR, β) = N ln ÑR −
ÑR
4

(
AR − 2BRβ + CRβ

2
)
, (11)

where ÑR = D−1
R f is the inverse of the rotational dif-

fusion coefficient adimensionalized by the sampling fre-
quency. The dimensionless constants AR, BR, and CR
are extensive in the number of sample points N of the
trajectory for N � 1 (see Eq. (A13)), and depend on
the registered position and orientation vectors along the
track.

Although the computation leading to (11) is tedious,
the final result exhibits a very simple dependence on
both, DR and β. Maximizing S is now trivial. Provided
that ÑR 6= 0, we obtain the following expressions

β =
BR
CR

, (12)

ÑR =
4NCR

ARCR −B2
R

. (13)

For consistency, these results must be positive num-
bers. We discuss below on the accuracy of such estimates.

B. Note on convergence and uncertainties

From a methodological point of view, it is crucial to
be able to quantify the quality of the estimates (12)
and (13). A first important question is whether our

approximation for the log-likelihood is compatible with
experimental data or not. In other words, we need to
provide a quantitative meaning to the statement “f is
sufficiently large”. A good way to answer this question is
to have a closer look to a consistency condition derived in
Appendix A, namely (see Eq. (A11) and the discussion
following it)

p(tα) ·∆p(tα) + 2DRf
−1|p(tα)|2 = 0, (14)

where ∆p(tα) is the increment of the orientation vector
in a time step, ∆p(tα) = p(tα+1)−p(tα). This condition
is linked to the conservation of the norm of p. Indeed,
when f →∞, Eq. (14) becomes p(t)·dp(t) = 0. However,
an inconsistency may appear if f is not large enough.
To understand this, let us consider the scalar product
p(tα) ·p(tα+1) for vectors with constant norm, |p(tα)| =
|p(tα+1)| = 1 for all α, as is the case for the orientation
vector. From one side, we have p(tα)·p(tα+1) = cos(φα),
where φα is the angle between p(tα) and p(tα+1). On the
other hand, we can write p(tα)·p(tα+1) = p(tα)·(p(tα)+
∆p(tα)) ≡ 1 + p(tα) · ∆p(tα). Using then the condi-
tion (14), we finally get p(tα) · p(tα+1) = 1 − 2DRf

−1,
which implies cos(φα) = 1−2DRf

−1. It is now clear that
our approximation breaks down when f < DR, since in
that case, one would have | cos(φα)| > 1. In other words,
our approximation is not reliable when the rotational dif-
fusion coefficient to be estimated is larger than the sam-
pling frequency.

To assess the efficiency of the method, we estimate the
speed at which the computed parameters converge to-
ward their exact values as a function of the length of the
sample, N . Let us denote by θ = (β, ÑR) the estimated
two-dimensional parameter vector, and by ∆θ the esti-
mation error. We also write θ? to denote the vector of
the true values of the parameters. If the assumption that
the data is generated by the model (1)-(2) is statistically
correct, then one can assert that, up to order N−1/2, the
estimated parameters are unbiased. More precisely, the
error vector

√
N∆θ converges in distribution to a nor-

mal vector of zero mean and variance matrix F−1(θ?),
where F(θ?) is the Fisher information matrix [32], which
can be approximately determined from the log-likelihood
(for large N) as Fij(θ

?) = −N−1∂2
θi,θj

S
∣∣
θ=θ?

. Beyond

order N−1/2, the estimates (12) and (13) are known to
exhibit a bias of order O(1/N), but we can neglect such
contributions if N is large enough. From this calculation,
we estimate the following error bars (we use the notation

e(θi) =
√
〈θ2
i 〉):

e(β) ∼ 2
√
N√

Ñ ?
R[2NCR − Ñ ?

R(BR − β?CR)2]
, (15)

e(ÑR) ∼
√

2CR Ñ ?
R√

2NCR − Ñ ?
R(BR − β?CR)2

. (16)

Interestingly, there are also cross-correlations between
the errors, meaning that β and ÑR cannot be determined
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FIG. 2. Simulated track of a bacterium swimming at constant speed v0 = 25 µm s−1 in a Poiseuille flow. The height of the
channel is h = 100 µm. The maximal flow velocity is Um = 25 µm s−1 along the X direction, which sets Pe = 100. The
geometric parameter β = 0.9. (a) Projection of the trajectory in the shear plane z-x. (b) Projection of the trajectory in the
bottom of the channel i.e., the plane y-x. The red dot indicates the starting point of the trajectory. (c-e) x,y,z coordinates as
function of time.

independently with arbitrarily high accuracy. Explicitly,
we have

〈∆β∆ÑR〉 ∼
2Ñ ?

R(BR − β?CR)

2NCR − Ñ ?
R(BR − β?CR)2

. (17)

As a consistency check, note that as AR, BR and CR
are extensive for N � 1, one has e(θ) ∼ N−1/2, as it
should be.

IV. NUMERICAL VALIDATION OF THE
METHOD

In the previous section, we derived ML estimators for
the parameters of the SABJ model. To test theses ex-
pressions and their accuracy, we apply the ML method
on simulated bacterial tracks generated using Eqs. (1)-
(2), with an Euler-Maruyama scheme and with a given
set of parameters β∗ and D∗R. Then, we apply the ML
method (Eq. (12) and Eq. (13)) on these trajectories to
find the estimates β and DR. Finally, we compare our
estimators with the input parameters of the simulations.
We study three different cases, namely: (i) a free swim-
mer (in which case the parameter β plays no role), (ii)
a simple shear flow (Fig.1(c)) and (iii) a Poiseuille flow
(Fig.1(d)). In Fig. 2 we illustrate a simulated trajectory
of a swimmer in a Poiseulle flow.

A. Free swimmer

In this case, the orientation of the bacteria follows a
diffusion process in the 2-dimensional unit sphere:

ṗ = −2p +
√

2p ∧ ξR. (18)

We adimensionalized time using the rotational diffu-
sion coefficient DR, and simulated trajectories with dif-
ferent duration T . The (dimensionless) time interval be-
tween two sampling events is fixed as ∆t = 10−6. To test
the convergence of the method, we compute the diffusion
coefficient DML

R , using Eq (13), for trajectories of differ-
ent duration. In Fig. 3, we illustrate the convergence of
the estimated value DML

R towards the prescribed value
D∗R = 1 as the length of the trajectory increases. For
instance, we find a value of DML

R very close to 1, i.e
DML
R = 0.9994, at T = 1.

B. Shear flow

In this case we simulate Eqs. (1) and (2) with a flow
profile of the form vF (r) = γ̇zex, where γ̇ is the shear
rate. As before, simulations are performed using dimen-
sionless variables. Time is adimensionalized by the in-
verse of the shear rate, so the relevant dimensionless,
diffusion-related quantity to be estimated in this case is
is the Péclet number, Pe = γ̇/DR. Note that the Péclet
number can be directly estimated using Eq. (13), since it
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FIG. 3. Convergence of the estimated rotational diffusion
coefficient DML

R in the free swimmer case. Inset: zoom close
to the region DML

R = 1.

is just a rescaling of ÑR by the known quantities γ̇ and
f , Pe = (γ̇/f)ÑR.

We simulate trajectories for a vector (β∗, P e∗) =
(0.9, 100). To test the convergence of the ML method,
we generate a set of trajectories of different duration T
with randomly chosen initial positions and orientations.
In Fig. 4, we present the results of shear flow simula-
tions. For a given trajectory length T , the estimated
value of the parameters (βML in Fig. 4(a) and PeML in
Fig. 4(b)) are scattered around Pe∗ and β∗. This scat-
tering is linked to the randomness encoded in the noise
and the initial orientations. The average value of the es-
timations over all trajectories of the same length (dark
blue points) is very close to the input value of the simu-
lations. On average, even for short trajectories, the ML
method gives a good estimation of the parameters. For
instance, for a trajectory of duration T = 10, the av-
eraged estimated parameter differ only by 1% from the
input values. As T increases, the scattering of the es-
timators decreases and our estimators become accurate
for individual trajectories. Moreover, the standard de-
viation of the estimated parameters is bounded by the
uncertainties computed using the expressions Eq. (15)
and Eq. (16) and decays as N−1/2.

C. Poiseuille flow

We now test the method on a Poiseuille flow profile.
Here we consider a flow confined between two infinite
plates separated by a vertical distance h, so that the ve-

locity profile is given by vF (r) = 4Um
h z

(
1 − z

h

)
ex. Um

denotes the maximal flow velocity at the middle of the
Poiseille flow (z = h/2). We also work with dimension-
less variables in this case, so that lengths and time are
adimensionlalized using h and the maximum shear rate
γ̇W = 4Um

h , respectively. In addition to β, the rele-
vant dimensionless parameter is again the Péclet num-
ber, Pe = γ̇W

DR
. We simulate trajectories for a vector:

(β∗, P e∗) = (0.9, 100) and different durations T with the
additional constraint that the simulation ends when the
particle hits the surfaces (located in z=0 and z=1). For
instance, for the parameters used in the Fig.5, it is diffi-
cult to have trajectories longer than T=50.

For a given T , the estimators are scattered around the
input values. As T increases the scattering decreases.
The estimator PeML remains very good, both on aver-
age (less than 2% of error) and for individual trajectories
(less than 10% of error), even for trajectories with du-
rations as short as T = 1. The estimator βML is not
as good as in the shear flow, but we still have an av-
erage estimated value within a 10% of the input one.
The standard deviation of the estimated values are still
bounded by the expressions Eq. (15) and Eq. (16) and
still decrease as N−1/2. Our estimators can be further
improved by computing errors up to O(N−1) to compen-
sate for the shorter tracks. This will be discussed in more
detail elsewhere.
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FIG. 4. Convergence of the estimated (a) βML and (b) Péclet
PeML for simulated trajectories in shear flow. For each du-
ration T , 20 trajectories were simulated. Each cyan point
corresponds to the estimation of one trajectory, the dark blue
points are the average of these estimations over the 20 trajec-
tories. The red curves represent the uncertainties computed
using the expressions Eq. (15) (resp. Eq. (16)).
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FIG. 5. Convergence of the estimated (a) βML and (b) Péclet
PeML. For each duration T , 20 trajectories were simulated.
Each cyan point corresponds to the estimation of one trajec-
tory, the dark blue points are the average of these estima-
tions over the 20 trajectories. The red curves represent the
uncertainties computed using the expressions Eq. (15) (resp.
Eq. (16)).

V. EXPERIMENTAL DETERMINATION OF
THE PARAMETERS

In this section, we give an example of the applicability
of the ML method on experimental bacterial trajecto-
ries. A set of Lagrangian 3D swimming trajectories of
mutant bacteria with inhibited tumbling (smooth swim-
mer δ CheY) was recorded at a frequency fac = 80 Hz for
freely swimming bacteria and fac = 100 Hz for bacteria
in flow. Further details on the experimental setup are
given in the Appendix.

We first consider the free swimmer case. The absence
of flow makes the determination of the rotational diffu-
sion coefficient easier and standard methods can be ap-
plied. For each trajectory, we computed the correlation
function of the orientation vector p as a function of time.
It decays exponentially with a characteristic time scale
τ = (2DR)−1, which provides a first estimation of the
rotational diffusion coefficient for each bacterium.

To be able to use the ML method, the time interval
between two samplings, ∆t has to fulfill some conditions.
As discussed in Sec. III B, it has to be small enough so
that our approximations are reliable. On the other hand,
if ∆t is too small, the change in the bacterium orienta-
tion between any instants t and t+∆t will be dominated
by noise coming from the measurement and not by real
physical contributions. The optimal value of fac can be
estimated from the theoretical value of the Brownian dif-
fusion coefficient obtained by Perrin [33, 34]:

DB =
3kBT ln(2l/a)

πηl3
(19)

where l is the length of the ellipsoid and a its width,
while η denotes de viscosity of the fluid at a temperature
T . For an elongated objet of length l = 10 µm and width
a = 1 µm (typical bacterium dimensions), it gives DB ≈
0.012 s−1. One should then have f � DB ; accordingly,
we resampled our trajectories at a frequency 1/f = ∆t =
1/3 s.

By varying the point from where the resampling starts,
we obtained from one trajectory Γ(1/fac), a set of trajec-
tories Γi(1/f), i = 1, ..., N , N = fac/f . We applied the
ML method on each resampled trajectory Γi to obtain
N values of the estimated DR that we averaged to get
DML
R ; the ML estimation of the rotational diffusion co-

efficient of the trajectory. We then applied this method
on each of the trajectories. Fig. 6(a) displays a scatter
plot where DR is in the vertical axis, while the horizon-
tal axis corresponds to DML

R . One can immediately see
that both methods give similar results and that the ML
estimation works remarkably well.

In our second experimental test, we injected a sus-
pension of smooth swimmers in a microchannel of rect-
angular cross section (height h = 100 µm and width
w = 600 µm). Dozens of 3D bacterial trajectories were
recorded at different flow rates. We focused on bulk
trajectories that are at least 10 µm away from the top
and the bottom walls and that last at least 10∆t (∆t =
1/3 s). The ML method is then used on those trajectories
to determine the Péclet number. Fig. 6(b) displays the
results of the estimated Péclet number PeML on exper-
imental bacterial trajectories. One can see that PeML

increases with γ̇W , as expected for a constant rotational
diffusion coefficient. By a linear fit on the average val-
ues of PeML, we get the rotational diffusion coefficient
of the bacteria which is the inverse of the slope. It then
gives DML = 0.032 ± 0.016 s−1 which is consistent with
< DML

R >= 0.029 s−1 measured in absence of flow, as
well as with values reported in presence of flow [26].

VI. DISCUSSION

We have developed an ML method suitable to infer
parameters from individual stochastic trajectories. We
were able to estimate the parameters of the SABJ model
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FIG. 6. (a) Comparison between the rotational diffusion co-
efficients obtained by the orientation decorrelation method
(DR) and with the ML method (DML

R ). Each point corre-
sponds to a track. The black line corresponds to the equation
y = x. Average values are < DR >= 0.031 s−1, with stan-
dard deviation σR = 0.031 s−1 and < DML

R >= 0.029 s−1 with
standar deviation σML

R = 0.027 s−1. (b) Experimental deter-
mination of PeML. Squares are the average value of all the
PeML at a given γ̇W ; the error bars represent the correspond-
ing standard deviation at a given γ̇W . The black dashed line
corresponds to a linear fit over the averaged estimated values:
< PeML >= γ̇W /DML, with DML = 0.032 ± 0.016 s−1.

accurately using both, numerical simulations and experi-
ments. Preliminary results obtained from the analysis of
experimental tracks are encouraging. One of the out-
comes of our numerical study is that uncertainties fit
well an O(N1/2) decay even for relatively short trajec-
tories. As an important remark, note such estimates can
in principle be further improved in a systematic way by
considering errors up to O(N−1).

Our estimators for the rotational diffusion coefficient
are much more scattered in experiments than in simu-
lations. In particular, standard deviations in Figs. 6(a)
and (b) are large. However, it is important to keep in

mind that each point in Fig. 6 represents a different bac-
terium, which implies that one should be careful not to
conflate biological variability with a lack of accuracy of
the method. In support of the hypothesis of individual
variability, note that the shape of a bacterium affects
the value of DR, which depends sensitively on the effec-
tive value of the ellipsoid long axis l. Such l−3 depen-
dence may naturally lead to a rather broad distribution
of coefficient values within a population, which is indeed
what was found. For instance, for an effective ellipsoid of
length l = 5 to 10 µm and width a = 1 µm, the estimation
of DR using Eq. (19), yields DR = 1.25 to 5 × 10−3s−1.
We thus conclude that there is an intrinsic variability of
DR within a bacterial population, which is precisely why
one needs a method like the one developed in this work
to analyze individual trajectories.

The tool we have devised here is general in a natu-
ral way and can be applied to any Markovian and time-
translationally invariant stochastic process. In the con-
text of swimming bacteria, one can study variations of
parameters due to external conditions and physical ef-
fects that are not considered in the SABJ model. For in-
stance, shear may shorten the flagella bundle leading to
higher effective DR (i.e lower Pe). Modifying the SABJ
model as to account for rheotactic effects [35, 36], and ad-
dapting our ML method appropriately, one could study
rheotactic drift [37] in detail, analyze possible changes in
bundle formation due to shear, and probe the flexibility
of the hook at the base of the flagellum and its interplay
with external flow. These and other physical questions
will be addressed in the immediate future.
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Appendix A: Approximate log-likelihood for the
SABJ model

In this secction we go through the full calculation lead-
ing to the result (11) for the log-likelihood of the SABJ

model. Our starting point is the MSRDJ path-integral
representation of the process (1)-(2), which is given by
Eqs. (7) and (8) with J = 1. As mentioned in the text,
one approximates the time integrals by discrete sums in
the action when the sampling frequency is large enough.
We write

Â[{Γ, Γ̂}] =
1

f

∑
α

{
i
[
f∆rα − vα

]T
r̂α + i

[
f∆pα − hα

]T
p̂α +DRp̂

T
αM̃(pα)p̂α

}
, (A1)

where Γα (Γ̂α) is a shorthand notation for Γ(tα) (Γ̂(tα)), while ∆Γα ≡ Γα+1 − Γα. Additionally, we have introduced
the notations vα ≡ v(Γα) and hα ≡ h(Γα). With all this, we write

P[{r,p}] =

∫ ∏
α

d3r̂αd
3p̂α exp

(
− 1

f

∑
α

{
i
[
f∆rα − vα

]T
r̂α + i

[
f∆pα − hα

]T
p̂α +DRp̂

T
αM̃(pα)p̂α

})
. (A2)

The integrals over {r̂α} are immediate and can be readily performed to yield

P[{r,p}] =
∏
α

δ
(
∆rα − f−1vα

) ∫ ∏
α

d3p̂α exp

(
− 1

f

∑
α

{
i
[
f∆pα − hα

]T
p̂α +DRp̂

T
αM̃(pα)p̂α

})
. (A3)

The remaining integrals over {p̂α} are less trivial because, as can be verified, the matrix M̃ is singular, i.e., det(M̃) =
0. Such singularity is linked to the fact that the continuous dynamics Eq. (2) imposes a hard constraint on p, i.e.,
|p|2 = 1. This means that at any time instant only two numbers are needed to fully describe the state of the three-
dimensional vector p. For instance, by knowing the projection of p on the z axis, pz, and the polar angle θ of the
projection of p in the x− y plane, one can write p = (

√
1− p2

z cos θ,
√

1− p2
z sin θ, pz).

From this discussion, one can infer that there is a relevant two-dimensional sub-space allowing to fully describe p.
One can indeed isolate the singularity, so that a Gaussian integration can still be made in a reduced, two-dimensional
submanifold. To show this, we introduce the change of variables p̂α = Rαωα, where the matrix Rα is given as

Rα =


px,α −pz,α − py,αp

2
x,α

p2x,α+p2z,α

py,α 0 px,α

pz,α px,α −px,αpy,αpz,αp2x,α+p2z,α

 . (A4)

One can check that the determinant of Rα is given by det(Rα) = −px,α|pα|2. Introducing the new vector

ρα = RT
α [f∆pα − hα], (A5)

we have:

P[{r,p}] =
∏
α

δ
(
∆rα − f−1vα

)
I[{r,p}], (A6)

where

I[{r,p}] =

∫ ∏
α

d3ωα exp

(
− 1

f

∑
α

{
iρT
αωα +DRω

T
α�αωα − f ln

(
|px,α||pα|2

)})
, (A7)

and the matrix �α has the following form:

�α =


0 0 0

0 (p2
x,α + p2

z,α)|pα|2 0

0 0
p2x,α|pα|4
p2x,α+p2z,α

 . (A8)
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The integrals over {ωα} in (A7) can now be immediately performed to yield

I[{r,p}] =

(
πf

DR

)N∏
α

[
1

|pα|
δ(f−1ρx,α)

]
exp

(
− 1

4DRf

∑
α

{
ρ2
y,α

(p2
x,α + p2

z,α)|pα|2
+
ρ2
z,α(p2

x,α + p2
z,α)

p2
x,α|pα|4

})
. (A9)

This result can be written in a more illustrative way if one calculates ρx,α explicitly using (A5). One has f−1ρx,α =
f−1pα · [f∆pα − hα] ≡ pα · ∆pα + 2DRf

−1|pα|2. With all this we finally obtain that the probability of a given
sequence {r,p}, in this approximation, is

P[{r,p}] =

(
πf

DR

)N
Σ[{r,p}] exp

(
− 1

4fDR

∑
α

{
ρ2
y,α

(p2
x,α + p2

z,α)|pα|2
+
ρ2
z,α(p2

x,α + p2
z,α)

p2
x,α|pα|4

+ 4fDR ln |pα|
})

, (A10)

where Σ[{r,p}] is a singular measure inforcing a set of constraints on the trajectories generated by Eqs. (1) and (2):

Σ[{r,p}] =
∏
α

δ
(
∆rα − f−1vα

)∏
α

δ
(
pα ·∆pα + 2DRf

−1|pα|2
)
. (A11)

Let us analyze these constraints in more detail. The condition pα·∆pα+2DRf
−1|pα|2 = 0 is related the conservation

of the norm of |p|. Note that, in particular, when f → ∞, it takes the form p(t) · dp(t) = 0, as one would expect.
On the other hand, the condition ∆rα − f−1vα = 0 provides, in practice, a practical way to determine pα at each
time step. Indeed, the tracking device measures the trajectory of the particle, while p has to be determined indirectly.
Writing this condition more explicity as ∆rα − f−1(v0pα + vFα ) = 0, one has pα = v−1

0 (f∆rα − vFα ), which is the
expression that is used in practice to determine pα at each time step. In summary, if we restrict our analysis to
the relevant sub-space of the trajectories which are compatible with the constraints Σ (inforcing, in particular, that
|pα| = 1 for all α), we have the following expression for the discretized path probability:

PΣ[{r,p}] =

(
πf

DR

)N
exp

(
− 1

4fDR

∑
α

{
ρ2
y,α

p2
x,α + p2

z,α

+
ρ2
z,α(p2

x,α + p2
z,α)

p2
x,α

})
. (A12)

To proceed further, we introduce the notations aα = f∆pα−(1−pα⊗pα)
(rα)pα, and bα = (1−pα⊗pα)E(rα)pα,
so that we have f∆pα − hα ≡ aα − βbα + 2DRpα. We also define

Sα = p2
x,α + p2

z,α

Aα = az,αpx,α − ax,αpz,α,
Bα = bz,αpx,α − bx,αpz,α,
Cα = ay,αSα − (ax,αpx,α + az,αpz,α)py,α,

Eα = by,αSα − (bx,αpx,α + bz,αpz,α)py,α,

AR = f−2
∑
α

S−1
α (A2

α + C2
α),

BR = f−2
∑
α

S−1
α (AαBα + CαEα),

CR = f−2
∑
α

S−1
α (B2

α + E2
α). (A13)

The log-likelihood can be derived by taking the logarithm of Eq. (A12) after having into account that |pα| = 1 for
all α in any experimental or numerical track, and that Eq. (1) is used to fix the evolution of the vector p. To take

the logarithm, we define P̃ = π−NPΣ, with PΣ given by (A12). It is also convenient to introduce the dimensionless

inverse diffusion coeffient ÑR = D−1
R f . In terms of the quantities introduced in (A13), we write S = ln P̃, which gives

Eq. (11).

Appendix B: Experimental set-up and protocol

Bacteria used in this work are smooth swimmer mu-
tants of an E. coli (strain CR20, ∆-CheY) that almost

never tumble and were transformed with a plasmid cod-
ing for a yellow fluorescent protein (YFP). Bacteria are
grown overnight at 30◦C until the early stationary phase.
The growth medium is then removed by centrifuging the
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culture and removing the supernatant. The bacteria are
resuspended in a Motility Buffer (MB) below the very
low concentration of 3 × 107 bacteria per mL, in order
to visualize one bacterium at a time and to minimize the
interactions between bacteria. The suspension is supple-
mented with L-serine at 0.08g/mL and polyvinyl pyrroli-
done (PVP) at 0.005%; L-serine maintains good motility
for a few hours and PVP is used to prevent bacteria from
sticking to surfaces. The solution is also mixed with Per-
col (1:1) to avoid bacterial sedimentation. The experi-
ments are performed at a temperature of 25oC.

The channel is visualized using a home-made La-
grangian tracking microscope [38] here used to track flu-
orescent swimming bacteria. By a visualization based
feedback acting on a mechanical (horizontal) and piezo-
electric (vertical) stage, the targeted object is kept close
to the center of the visualization field and in focus on an
inverted microscope (Zeiss-Observer, Z1 with an objectif

C-Apochromat 63x/1.2 W). Images of the tracked objects
are acquired at 80 or 100 Hz with a Hamamatsu Orca-
flash 4.0 camera. Simultaneously, the three-dimensional
positions of the object are recorded.

The measurements take place in a microfluidic channel
of rectangular cross-section (height h = 100 µm, width
w = 600 µm), made in Polydimethylsiloxane (PDMS)
using standard soft-lithography techniques. Flow is im-
posed through the channel via a Nemesys syringe pump
(dosing unit Low Pressure Syringe Pump neMESYS
290N and base Module BASE 120N). The flow rate varies
from 1 to 4.3 nL s−1 corresponding respectively to Um be-
tween (28±1.9) µm/s and (120±4.0) µm/s and maximal
shear rates γ̇M = 4Um/h between (1.12± 0.076) s−1 and
(4.82±0.16) s−1. We set our region of interest in the cen-
ter of the channel with respect to its width and consider
only trajectories which are at least 200µm away from the
lateral walls.
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