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2Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Italy
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We show that in non-collinear magnetic molecules, non-adiabatic (dynamical) effects due to the
electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field.
As in these systems the electronic wavefunction can not be chosen as real, a nonzero geometric vector
potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum
occurs even for non-degenerate modes and in the absence of external probes. The vibronic modes
can then be seen as elementary quantum particles carrying a sizeable angular momentum. As
a proof of concept, we demonstrate the magnitude of this topological effect by performing non-
adiabatic first principles calculations on platinum clusters and by showing that these molecules host
sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant
ferromagnets.

Several experiments demonstrated the non-negligible
interaction between vibrational modes and magnetic
fields or optical probes. The phonon Hall effect [1, 2]
and the phonon contribution to the gyromagnetic ratio
detected in the Einstein de Haas effect [3, 4] are emi-
nent examples. Moreover, it has been demonstrated that
valley selective infrared optical absorption in transition
metal dichalcogenides breaks time-reversal symmetry for
the phonon field and can be used to probe the chiral-
ity of phonon modes at particular points in the Brillouin
zone [5, 6].

In the absence of external probes, phonons are usually
understood in terms of springs and as such they are con-
sidered as linearly polarized, so they do not break time-
reversal symmetry and they are not supposed to carry a
finite angular momentum. An intrinsic phonon angular
momentum can be obtained from a twofold degenerate
vibrational mode, as a linear combination of two linear
phonon eigenvectors can lead to a circularly polarized
mode, in the same way as circularly polarized light can
arise from two linear polarizations. This case has been
investigated in literature extensively [6–10], particularly
for hexagonal crystal lattices [11]. For each circularly
polarized phonon carrying an angular momentum ` there
exists another linearly independent combination of linear
polarizations leading to an angular momentum −`, so
that the total phonon angular momentum for the degen-
erate modes is zero. An external time-reversal symmetry
breaking probe, such as optical absorption or an external
magnetic field is then needed to break the degeneracy.

The question is still open if a non-degenerate phonon
mode can host an intrinsic angular momentum without
external probes. Namely, can an intrinsic mechanism
lead to a time-reversal symmetry breaking in the phonon
field?

In this work we demonstrate that non-adiabatic (dy-
namical) effects due to the electron-vibron interaction
generate synthetic gauge fields in insulating non-collinear

magnetic molecules. We provide the microscopic link be-
tween topology and the electron-vibron interaction by
showing that in these systems a nonzero Berry curvature
leads to a finite intrinsic vibrational angular momentum
even for non-degenerate modes and in the absence of ex-
ternal magnetic fields. As a proof of concept, we demon-
strate the effect by performing non-adiabatic first princi-
ples calculations on platinum clusters.

We introduce a cumulative index λ = (I, α) for
the Cartesian coordinates α = x, y, z of the Ith atom
in a molecule. The atomic position in a molecule is
Rλ = Req

λ + uλ where Req
λ are the coordinates of the

atomic equilibrium positions and uλ is the Cartesian
component of the ionic displacement of the Ith atom.
In the Born-Oppenheimer approximation the quantum-
mechanical Hamiltonian for the ionic motion reads [12]

H =
1

2M

∑
λ

[pλ − ~Aλ(u)]
2

+ E(u) (1)

where pλ = −i~∇uλ
≡ −i~∇λ is the ionic momentum,

Aλ(u) = i〈Ψ(u)|∇λΨ(u)〉 is a geometric vector potential
(the so-called Berry potential or Berry connection), E(u)
is the potential energy felt by the ions due to the electrons
and |Ψ(u)〉 is the ground-state electronic wavefunction
which depends parametrically on the nuclear displace-
ments u. For ease of notation, we consider equal masses
for all the atoms, as this also corresponds to the case
treated in this work.

In the absence of external magnetic fields and non-
collinear magnetic order, the electronic wavefunction
|Ψ(u)〉 can be taken as real and the geometric vector
potential in Eq. 1 is zero [13]. On the other hand, in
the absence of an external magnetic field but for a non-
collinear magnetic molecule, the electronic wavefunction
is complex and cannot be chosen as real, so that Aλ(u)
is nonzero and nontrivial geometric effects may occur.

The Berry curvature is defined as Ωλη = ∂λAη−∂ηAλ
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where ∂λ ≡ ∂/∂uλ. In linear response theory Ωλη is
independent on the parameter u. In the Heisenberg rep-
resentation, the equation of motion for the nuclear dis-
placement reads [14]

Müλ + ~
∑
η

Ωληu̇η + ∂λE = 0 (2)

In the harmonic approximation we expand the potential
energy up to the second order in the ionic displacement.
Using monochromatic solutions in ω, the equation of mo-
tion can thus be written as

1

M

∑
η

[Cλη − i~ωΩλη] eη = ω2eλ (3)

where Cλη = ∂λ∂ηE is the static harmonic force-constant
matrix and eλ are the vibrational polarization vectors.
The term in Ωλη is an effective Lorentz force exerted
by the geometrical magnetic field (note that Ωλη is a real
antisymmetric matrix). Formal solution of the non-linear
eigenvalue equation 3 can be found in the supplemental
material of Ref. [4].

At zero temperature, the expectation value of the
quantum vibrational angular momentum L =

∑
I uI×u̇I

over the quantum vibron ground state reads [4] 〈L〉 =∑
ν `ν , where ν labels the vibrational modes and `ν can

be expressed in terms of (the Cartesian components of)
the vibrational polarization vectors eIν as

`ν = −i~
∑
I

e∗Iν × eIν . (4)

We underline that the expectation value of the carte-
sian components of L over the vibron ground state, i.e.
〈Lα〉 =

∑
ν `ν,α for α = x, y, z, are not quantized quan-

tities and can assume any value. Indeed, while in the
absence of non-collinear magnetism and in the presence
of an external magnetic field along the z-direction Lz
commutes with H in Eq. 1, in the case of non collinear
magnetism treated here, the components of the phonon
angular momentum Lα do not commute with H. Thus,
in our case the ground state of Eq. 1 is not an eigenstate
of Lα and neither

∑
ν `ν,α nor `ν,α are quantized.

If the Berry curvature Ωλη in Eq. 3 vanishes (i.e. for
real wavefunctions), the polarization vectors are eigen-
functions of the static and real force constant matrix
Cλη and therefore they themselves are real (up to an
irrelevant global phase factor) and the angular momen-
tum `ν is equal to zero (since e∗ = e). On the con-
trary, in molecules with non-collinear magnetism, the
electronic wavefunctions are necessarily complex and the
Berry curvature does not vanish. The polarization vec-
tors of Eq. 3 are therefore intrinsically complex and give
rise to a nonzero vibrational angular momentum. Thus,
the occurrence of a vibrational mode with a finite angular
momentum is intimately connected with the existence of
a geometrical or physical gauge field.

We now show that, in the independent electron ap-
proximation, both Eq. 3 and the existence of a nonzero
intrinsic angular momentum for a molecular vibrational
mode naturally arise from the theory of non-adiabatic
(dynamical) effects developed in Ref. [15], providing the
link between the electron-vibron interaction, topological
effects and the existence of a nonzero intrinsic vibra-
tional angular momentum. Within time dependent den-
sity functional theory and in the adiabatic local density
approximation, the dynamical force constant matrix for
frequencies ω smaller than the HOMO-LUMO gap (∆)
reads:

Cλη(ω) = Cλη + Πλη(ω) (5)

where Cλη is the static force constant matrix and Πλη(ω)
can be written in perturbation theory as

Πλη(ω) = 2
∑
m,n

[
fm − fn

εm − εn + ~ω
− fm − fn
εm − εn

]
×

× 〈ψn|∂λHKS|ψm〉〈ψm|∂ηHKS|ψn〉. (6)

Here |ψm〉, εm and fm are the Kohn-Sham wavefunc-
tions, energy levels and Fermi occupations at equilib-
rium positions (i.e. u = 0), respectively, and HKS is the
electronic Kohn-Sham hamiltonian. The deformation po-
tential matrix element 〈ψm|∂ηHKS|ψn〉 is related to the
electron-vibron interaction. The non-adiabatic (dynami-
cal) vibrational frequencies (ω̃ν) and polarization vectors
(ẽην), which will be marked hereinafter with a tilde, are
obtained from the non-linear eigenvalue equation

1

M

∑
η

Cλη(ω̃ν)ẽην = ω̃2
ν ẽλν (7)

In the case when ~ω � ∆, Eq. 5 can be expanded at
first order to obtain

Cλη(ω) = Cλη − i~ωΩKS
λη +O(ω2) (8)

where ΩKS
λη =

∑
m fmΩKS

λη,m and ΩKS
λη,m is the Berry cur-

vature of the mth Kohn-Sham state [13] with respect to
the atomic displacement, namely:

ΩKS
λη,m = −2 Im

∑
n6=m

1

(εm − εn)2
×

× 〈ψm|∂λHKS|ψn〉〈ψn|∂ηHKS|ψm〉. (9)

The matrix ΩKS
λη is a real antisimmetric matrix that plays

the role of Ωλη in the case of Kohn-Sham independent
electrons. The non-adiabatic (dynamical) vibrational fre-
quencies ω̃ν and polarization vectors ẽIν can then be ob-
tained as solutions of the non-linear eigenvalue equation 7
and used to calculate the quantum angular momentum
via Eq. 4.
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The Eqs. 8 and 9 are the microscopic link between
the electron-vibron interaction, non-adiabatic (dynami-
cal) effects and the occurrence of a finite angular momen-
tum in molecules. Furthermore, they provide a practical
computational scheme of the vibrational quantum angu-
lar momentum using the theory proposed in Ref. [15].
Since Ωλη is proportional to the square of the deforma-
tion potential and inversely proportional to the HOMO-
LUMO gap, Eq. 9 suggests that large non-adiabatic (dy-
namical) effects and vibrational angular momenta could
be found in non-collinear magnetic molecules with a small
gap and a large electron-vibron interaction.

We demonstrate the occurrence of an intrinsic total vi-
brational angular momentum due to non-adiabatic (dy-
namical) effects by considering platinum clusters, namely
a trimer Pt3 and a pentamer Pt5. These systems are
ideal as they are (i) magnetic, (ii) the large spin-orbit
coupling leads to non-collinear magnetic structures and
(iii) the HOMO-LUMO gap is very small.
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FIG. 1. Non-collinear magnetic ground state of Pt3 and Pt5:
structure, interatomic distances and magnetic momenta.

We calculate the electronic structure and the vibra-
tional properties (adiabatic and non-adiabatic) of Pt3
and Pt5 by performing fully relativistic calculations using
version 6.4.1 of the Quantum-Espresso suite [16] and
the compatible version of Thermo pw [17] for the non-
collinear treatment of the magnetization densities. We
used version 3.3.0 of the fully relativistic ONCV pseu-
dopotential [18] with Perdew-Burke-Ernzerhof exchange-
correlation functional [19] and a kinetic energy cutoff of
120 Ry. A simple cubic Bravais lattice structure with a
parameter of 10.6 Å was used in order to minimize the
interaction between the molecules and their copies. The
binding energy per atom of each cluster is obtained as
(nE1 − En)/n where n is the number of atoms in the
cluster and E1 is the energy of the isolated atom.

We find that the lowest-energy structure of Pt3 is an
isosceles triangle with interatomic distances of 2.489 Å
and 2.501 Å, as shown in Fig. 1. The binding en-
ergy per atom is 2.177 eV. The HOMO-LUMO gap is
∆ = 137 meV in agreement with [20, 21]. The total
magnetization is 1.58 µB .

For Pt5 we obtain as the lowest energy structure a
non-collinear magnetic trigonal bipyramid with the ver-

tex atoms slightly shifted towards one side of the basis
triangle. The interatomic distances and the non-collinear
magnetic atomic momenta are shown in Fig. 1. The cal-
culated binding energy per atom is 2.835 eV in agreement
with [22]. The HOMO-LUMO gap is ∆ = 92 meV and
the total magnetization is 3.63 µB , in agreement with
[21]. The smallness of ∆ suggests the occurrence of large
non-adiabatic effects both in Pt3 and in Pt5.

Once the magnetic ground state is converged, we study
the vibrational properties of the Pt clusters using linear
response theory. The adiabatic (static) optical frequen-
cies of Pt3 and Pt5 are shown in the second column of
Tab. I.

Then the non-linear eigenvalue equation 7 is solved
by simply evaluating the force-constant matrix Cλη(ω)
at different frequencies and by diagonalizing it. For
each mode, the non-adiabatic (dynamical) vibrational
frequency and polarization vectors can be found when
the square root of the eigenvalue is equal to the value of
the frequency fed into the dynamical force constant ma-
trix. The optical frequencies thus obtained are shown in
the fourth column of Tab. I for Pt3 and Pt5. We find that
both in Pt3 and Pt5, the non-adiabatic effects are small
and do not modify the frequency of the optical modes
substantially. The vibrational frequencies ω̃′ν obtained
by solving the non-linear eigenvalue equation 7, having
replaced Cλη(ω̃ν) with the low-energy expansion of the
dynamical matrix Eq. 8, are shown in column 5 of Tab. I.

Non-adiabatic (dynamical) effects modify the oscilla-
tory motion of the ions around their equilibrium posi-
tions. The phonon ionic displacements are related to the
polarization vectors through uI = Re

[
ẽIνe

−iω̃νt
]
. In the

adiabatic case the polarization vectors eIν are real and
the ionic motion reduces to a one-dimensional oscilla-
tion. Instead, in the non-adiabatic case, the polarization
vectors ẽIν are complex and therefore the ions perform
elliptical trajectories around their equilibrium positions.
Consequently, each ion gives rise to an orbital angular
momentum perpendicular to the plane of the orbit. For
each mode, the angular momentum of the molecule is
equal to the sum of the angular momenta of the rotating
ions. It can be evaluated by replacing the non-adiabatic
phonon polarization vectors ẽIν into Eq. 4.

As an illustrative example, we represent in Fig. 2 the
adiabatic and non-adiabatic polarization vectors of two
stretching modes of Pt3 and Pt5. In both cases the po-
larization vectors acquire an imaginary part and the non-
adiabatic mode carry nonzero angular momentum.

The angular momentum of the optical modes of Pt3
and Pt5 is listed in the right hand side of Tab. I.
Unexpectedly, we record a sizeable vibrational angu-
lar momentum even where the vibrational frequency is
marginally altered by the non-adiabatic (dynamical) ef-
fects. The magnitude of these vibrational angular mo-
menta is of the same order of the typical values of the
electron orbital momenta in itinerant ferromagnets [23].
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TABLE I. Non-adiabatic effects in the optical modes of Pt3 and Pt5. From left to right, adiabatic mode index ν, adiabatic
vibrational frequencies ων , non-adiabatic frequencies ω̃ν , non-adiabatic frequencies ω̃′ν obtained from the low-energy expansion
of the dynamical matrix Eq. 8, Cartesian components of the angular momentum `ν in units of ~/2.

ν ων (cm−1) ω̃ν (cm−1) ω̃′ν (cm−1) `νx (~/2) `νy (~/2) `νz (~/2)

Pt3

1 102.4 100.6 102.5 −0.048 0.000 0.000

2 121.7 121.2 121.7 0.000 0.000 0.000

3 217.7 217.7 217.7 0.001 0.000 0.000

Pt5

1 54.0 53.6 54.0 0.000 0.000 −0.064

2 71.1 71.1 71.1 0.000 0.000 −0.094

3 97.0 96.6 96.7 0.001 0.000 −0.089

4 103.3 103.5 103.5 0.002 0.000 −0.086

5 119.6 119.5 119.6 0.002 0.000 0.000

6 134.8 134.7 134.7 −0.003 0.000 0.071

7 138.6 138.6 138.6 0.000 0.000 0.093

8 169.4 169.4 169.5 0.000 0.000 0.001

9 210.4 209.9 210.5 0.000 0.000 −0.003

The total phonon angular momentum 〈L〉 =
∑
ν `ν is

nonzero because the angular momentum `ν is calculated
at a different frequency for each mode ν. Since the an-
gular momentum of the molecule must be conserved, a
non-adiabatic variation of the electron angular momen-
tum (spin plus orbital) must also occur in order to com-
pensate the phonon contribution. The calculation of such
variation, however, requires simulating the non-adiabatic
dynamics of the whole molecule, which goes beyond the
purpose of this work.

In conclusion, we have shown that in non-collinear
magnetic molecules, non-adiabatic (dynamical) effects
due to the electron-vibron coupling are time-reversal
symmetry breaking interactions for the vibrational field.
As in these systems the electronic wavefunction cannot
be chosen as real, a non-zero geometric vector potential
arises. As a result, an intrinsic non-zero phonon angular
momentum occurs even for non-degenerate modes and in
the absence of external time-reversal symmetry breaking
probes. Our work provides the conceptual link between
topology, electron-phonon interaction and the existence
of a non-zero intrinsic phonon angular momentum in in-
sulating non-collinear magnetic molecules.

As a proof of concept, we have demonstrated the
magnitude of this topological effect by performing non-
adiabatic first principles calculations on platinum clus-
ters and by showing that vibrons display host sizeable in-
trinsic angular momenta with magnitude comparable to
the typycal orbital electronic angular momenta in itiner-
ant ferromagnets[23]. As the same conclusions obtained
for a molecule can be easily generalized to an insulat-
ing crystal, we expect that in any non-collinear magnetic
system (solid or molecule) with strong electron-phonon
interaction and sufficiently small gap non-adiabatic ef-
fects break time-reversal symmetry and generate sizeable
intrinsic phonon angular momenta.

Finally, the question arises if the angular momenta of

FIG. 2. From left to right, top (x-y) and side (y-z) repre-
sentation of the adiabatic (static) polarization vectors eν , of
the real and imaginary parts of the non-adiabatic (dynamical)
polarization vectors ẽν and of the vibrational angular momen-
tum `ν . a) Asymmetric stretching mode of Pt3 (ν = 1). b)
Asymmetric stretching mode of Pt5 (ν = 6).

phonons can be observable in experiments. There are
two cases in which it could be detected. The first is the
case in which a twofold degenerate mode at zone cen-
ter occurs in the adiabatic phonon frequencies of the
non-collinear magnetic system. As the time-reversal
symmetry-breaking non-adiabatic term related to the
Berry connection in Eq. 1 and Eq. 3 lowers the crys-
tal symmetry, then the twofold degenerate mode could



5

split in two different modes hosting different angular mo-
menta. In this case, even if the angular momentum itself
would not be observed, its effects on the phonon spec-
trum would. The second case is infrared absorption from
left and right circularly polarized modes. As the vibra-
tional angular momentum affects the atomic dipoles, the
infrared intensities could be different for different circular
polarizations.

We acknowledge IDRIS, CINES, TGCC, PRACE and
CINECA for high performance computing resources. We
acknowledge P. Giannozzi and J. Carusotto for useful
discussions.
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