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Introduction 
 

Glioblastoma (GBM) is the most common and the most aggressive primary malignant 
brain tumor in adults.1–3 Its annual incidence is close to 3 per 100,000 habitants per year. The 
treatment of newly diagnosed GBM patients relies on maximal safe surgical resection 
followed by radiotherapy with concurrent and adjuvant temozolomide chemotherapy 4. 
Despite the intensive therapeutic regimen, the prognosis of GBM patients remains poor with a 
median overall survival below 18 months and a five-year survival rate of 5.6%2. 

The propensity of GBM to metastasize to cerebrospinal fluid (CSF) flow stream 
inducing GBM leptomeningeal spread (LMS) was firstly described in 19315. LMS results 
from spreading of tumor cells from brain parenchyma to leptomeninges and CSF and is one of 
the most severe complications of GBM. Other severe complications of GBM include: (i) 
intratumor hemorrhage, (ii) status epilepticus and, (iii) hydrocephalus. As the prognosis of 
GBM patients improves, LMS becomes a more frequent clinical issue in neuro-oncology1,6,7. 

Considered initially as a rare complication in gliomas,8 the incidence of LMS seems 
above the estimated rate of 4% reaching 25% on postmortem neuropathological studies 
1,5,6,9,10 In case of LMS, the median overall survival of GBM patients varies between 2-5 
months 1,6,7,11,12. No risk factor has been clearly demonstrated although multiple factors have 
been suggested: (i) age, (ii) histologic features, (iii) molecular alterations, (iv) anatomical 
tumor site and, (iv) therapeutic interventions (e.g. surgical opening of the ventricles or 
antiangiogenic therapies)1,6,13–16. 

Diagnosis of LMS in GBM patients is challenging. The sensitivity of classical 
diagnostic investigations (i.e. MRI and cytological CSF analysis) remains low, failing 
identification of tumor CSF spread most of the time 17,18. 

There is no standard of care treatment for LMS in GBM patients even though multiple 
groups have proposed several therapeutic options (e.g. methotrexate, cytarabine, thiotepa 
and/or, ACNU) with limited efficacy so far. 1,6,7,11,15,19–21 Interestingly, the treatment with 
intrathecal chimeric antigen receptor T cells has demonstrated dramatic efficacy in a single 
patient22. The uprising molecular targeted therapies and immunotherapies supports further 
exploration of the molecular landscape of CSF circulating GBM cells 23–26.  

Diagnostic and therapeutic challenges raised by LMS in GBM patients will be 
presented and discussed in the current review. 
 
Method 
We conducted a survey, from 01/01/1989 to 31/12/2019, in PubMed Database and Scopus-
EMBASE using the following combination of terms connected by Boolean operators: (glioma 
OR high grade glioma OR glioblastoma) AND (meningeal OR leptomeningeal OR 
leptomeningeal dissemination OR meningeal gliomatosis OR leptomeningeal gliomatosis OR 
meningeal metastasis OR CSF dissemination) to identify relevant studies related to LMS and 
glioma.  
Our search retrieved 2043 articles. We have excluded: (i) duplicate articles, (ii) articles in 
other language than English and French and, (iii) irrelevant articles –i.e. primary meningeal 



gliomatosis, pediatric tumors. Eighty-five full text articles were selected. Based on this first 
selection and linked-list of references, additional articles were identified and included in our 
review. Overall, 156 articles were identified as relevant to the topic. The research algorithm is 
schematized in Figure 1. 
 
Epidemiology 

LMS in high-grade gliomas was reported by several authors (Table 1). In a series of 
600 GBM, Vertosick et al estimated the incidence rate of symptomatic LMS at 2% 1,6,7,10,11,27–

32 . This incidence rate is probably underestimated due to undiagnosed and asymptomatic 
cases. Indeed, in autopsy studies LMS was identified in up to 25% of high grade glioma 
patients1,10,15,27,28,33.  
 
Pathogenesis 

Few is known about the pathogenesis of LMS. CSF dissemination seems to follow two 
patterns: (i) intense CSF seeding with limited tumor progression at initial tumor site or, (ii) 
minimal CSF seeding with massive tumor progression at initial location 1,5,10,34.  

GBM cells migrate from the initial tumor site along brain vessels to subpial, 
subarachnoid and subependymal spaces (figure 2a) 5,10,35,36. The leptomeningeal seeding from 
cortical areas is preceded by subpial spread as an intermediary step 5,10,17,35. During this 
migratory process, GBM cells secrete multiple proteases degrading the extracellular matrix 
(ECM) (e.g. MMP 1, 2, 7, 9, 14, and 19 with a critical role of MMP 2 and 9) to create a 
moving space 37–42 and express multiple adhesion-migration proteins (e.g. glycosylated 
chondroitin sulfate proteoglycans, fibronectin, fascin and, integrins)35,39,41,43. Both molecule 
classes, working synergistically with cytoskeleton, allow tumor cells migration toward 
leptomeninges and CSF5,18,28,30,35,39,41,43–45. 

Furthermore in a mouse model prolonged VEGF inhibition converted tumor cells 
phenotype to invasive/mesenchymal leading to tumor invasion through perivascular and 
subpial spaces46. Multiple proteins including FGF, IGFBP2, MMP2, Podoplanin, Fascin, 
MET, TGF-B and, IL8 are involved in this process but further insight is needed44,46–50. 

The role of the glioma stem cell like cells and their cross talk with microenvironment 
cells in tumor cell migration remains poorly understood41,45. Translational and preclinical 
research are shedding light on molecular and cellular mechanisms of this phenomenon and its 
implication in invasiveness potential of GBM and in LMS development 26,37,51–53. 
 
Clinical presentation 

Two thirds of GBM patients develop LMS within the two first years after diagnosis 
1,7,11,20,28,30,33,54. The median delay from initial diagnosis of GBM to clinico-radiological 
evidences of LMS varies from 5 to 16.4 months 1,5–7,10,11,15,20,28,30,33,55–58. This delay is shorter 
in specific tumor location including pineal, spinal, periventricular and infratentorial 12,15,59–66. 

Clinical presentation of LMS is heterogeneous, from asymptomatic to severely 
symptomatic disease1,6,11,12,15,29,31,67. Usually the onset and the worsening of symptoms are 
progressive, acute presentation is exceptional 5,12,27,36,68–70. 

LMS patients can suffer from cranial nerves palsies, increased intracranial pressure 
syndrome, hydrocephalus, meningism, and/or focal neurological deficits 1,7,15,20,33,71–76. 



Seizures frequency does not seem to increase during LMS development 77. Confusion and 
generalized cognitive decline are the most common features of LMS in elderly GBM patients 
15,78,79. Although rare, aseptic fever, central neurogenic hyperventilation and cardiac arrest are 
reported 5,11,12,70,80,,  

Intractable vomiting may be an early symptom of CSF seeding to the fourth ventricle 
81. Cranial nerves deficits including 2nd, 3th, 4th, 6th and/or 7th, are observed in 6 % of cases 8,78. 
The 4th and 7th are the most frequently involved 78,82. Once installed, cranial nerve palsies are 
often irreversible 5,27. 

Progressive paraplegia, 9,27,36,69,73,83,84 sphincters incontinence1,11,36,55,80,84 and spinal 
ataxia 20,29,80 were described when the spinal cord or cauda equina are involved 
9,29,30,33,69,73,85,86. Isolated symptoms such as paresthesia, ataxia, back pain and leg or shoulder 
pain are rare 2729,87,88. Radicular pain has been described with various topography: the upper 
limbs, interscapular 89 thoracic or lumbar level as well as sciatalgia 1,5,11,15,20,33,55,90.  

Noteworthy, although LMS may manifest as communicating hydrocephalus 33, only 
25-40 % of LMS present this complication 75,91. 
 
Risk factors 

A number of risk factors of LMS have been investigated in GBM patients. Young age 
(around 35 to 45 years), brain location, male gender, long survival after initial diagnosis and 
tumor volume seem to be associated with a greater risk of LMS in GBM patients 1,6,27,78. 

The initial tumor location seems to be of importance. Indeed, infratentorial location (in 
45 % to 100 % of cases) 1,5,10,13,62,63 and GBM of the pineal region 59 are associated with a 
higher frequency of LMS. The spatial proximity to ventricles and the tumor size were 
considered as risk factor of LMS but existing data are conflicting 1,6,7,11. Indeed, invasive 
behavior of tumor cells and the environment of the subventricular zone (SVZ) have been 
pinpointed 1,14,15,30,85,92,93. 

Ventricular opening during surgery and repeated surgeries, even more in patients 
treated with radiotherapy or chemotherapy5,89 have been proposed as risk factors of LMS 
15,65,94,95. However, none has been clearly validated 1,14,29,75,92–97 and prophylactic radiotherapy 
in these cases does not bring supplementary benefit98. Persistence of preoperative 
leptomeningeal enhancement after initial surgical resection was also correlated with a higher 
LMS incidence in recurrence99. 

Hydrocephalus with subsequent ependymal fissuring has also been suggested as a 
potential but not formally validated risk factor 89,100.  

Histological and molecular characteristics of initial tumor were also investigated. 
Astrocytic phenotype, high Ki67/Mib1 expression index 1,29,60,85,101,102 and GFAP loss of 
expression either at initial diagnosis10 or at recurrence 28,29 were correlated with higher risk of 
LMS. Epithelioid GBM 26,103,104 and GBM with a neuronal component or PNET-like GBM 
56,74 disseminate more frequently to CSF.  

Some molecular alterations have been also suggested as risk factors of LMS85. Gain of 
1p36 105, PTEN mutation102,106 and PlK3CA mutations 107 seem to predispose to meningeal 
seeding 102,105,106. O6-methylguanine-DNA methyltransferase promoter methylation was also 
proposed as risk factor by isolated studies65,108 The suspected mechanisms is increased 
survival in MGMT promoter methylation GBM patients giving time to tumor cells to reach 



CSF65. This was not confirmed by larger studies 11,109 and up to date, no molecular signature 
has been validated as risk factor of LMS in high grade glioma. 

Antiangiogenic therapies (VEGF and COX2 inhibitors) have been suggested as 
promoters of distant recurrence including LMS44,48 but available data are conflicting. Further 
studies are needed 1,49,50,110.  
 
Diagnostic approach 
Imaging  

Currently, the standard exam for LMS diagnosis is contrast MRI with a sensitivity 
reported between 90% and 100% for brain 1,6,11,99,111–114 and 56-95 % for spinal LMS in 
symptomatic patients1,6,11,114. Radiological screening of the neuraxis is required in GBM 
patients with suspected LMS symptoms 71,111,115.  

However, the benefit of neuraxis screening for GBM patients without LMS symptoms 
remains unclear. This could be considered since the presentation can be asymptomatic and 
LMS can occur with stable disease at initial tumor site particularly in subgroups of high risk 
of LMS1,29,56,59,63,103,111. Exceptional cases of asymptomatic LMS like-leptomeningeal 
enhancement on MRI were reported in the setting of radio induced pseudo progression 116. 

Typically LMS appears on MRI as linear and/or nodular foci with high signal intensity 
on T2 weighted images, low signal intensity on T1 weighted images and enhanced after 
gadolinium injection111. MRI LMS pattern was proposed using enhancement characteristics: 
(i) nodular -type Ia, fig.  4-, (ii) diffuse -Ib, fig. 5- in the subarachnoid space18,34 and, (iii) 
subependymal dissemination -type II fig. 4,6- is also described regardless CSF cytology status 
34 Mixed pattern is also possible – figure 61,34. Distribution of LMS varies involving 
commonly the anterior parts of brain stem and cranial nerves 101. Still, the expanded use of 
antiangiogenic agents seems to modify this pattern making it more difficult to distinguish, in 
these cases a potential interest of contrast enhanced FLAIR sequences can be discussed 34,55. 

In intracranial LMS, brain MRI can show multiple aspects: (i) nodular enhancement 
38% -subarachnoid or ventricular fig 4- and, (ii) pial enhancement 47 % -focal or diffuse-
1,11,34. Nerve roots enhancement can be seen in some cases (57%) as well as cranial nerve 
infiltration (11-19%)1,34,78. Exceptional presentation mimicking chronic subdural hematoma or 
empyema have been reported117,118. 

Spinal LMS has been reported to be more frequently in lower thoracic, upper lumbar 
(most often posterior)36,101, lumbosacral regions, cauda equina and dural sac 36. 31% of lesions 
are described on cervical level, 52 % on thoracic level and 41% at lumbar level (fig 
2b).1,34,101,111 Cauda equina and conus medullaris were involved in up to 38% of cases 1,111. 

Intraoperative detection of LMS using 5-aminolevulinic acid (5-ALA) was reported as 
useful in anaplastic astrocytoma (histone K27M mutated)9 but its benefit is inconsistent66. 
Nuclear imaging detecting hyper metabolic foci using F-FDG 22,23 or TSPO(translocator 
protein) with F-GE-180 119,120

 can be helpful. 
 
CSF study 

CSF analysis is often negative for detection of tumor cells, only 25-45% are positive 
after a first assay1,11,30,65. Repeated lumbar puncture increases the diagnostic sensitivity to 
86% with 3 consecutive lumbar punctures 65,71,78 and to 93% with more than 3 lumbar 



punctures 6. Nevertheless, even in cases of radiologically confirmed LMS, CSF cytological 
results were positive in only 4–75% of cases making an abnormal neuropathological CSF 
study sufficient but not necessary for diagnosis of LMS in gliomas1,6,11,28,65,85. Indirect aspects 
can be observed as high intracranial pressure (>15 cm H2O ), high proteins level (>50-100 
mg/dL) with or without low glucose, high lactate with an acellular aspect 15,85,121 although a 
mild pleocytosis with presence of macrophages has been described 94. 

On cytological exam, GBM cells were noted most often to be singly dispersed in the 
CSF (fig 2c). The main challenge is their distinction from monocytes 18.  

The input of liquid biopsies in diagnosis and monitoring of LMS in GBM patients, has 
been explored with increasing interest over the last years122–124. Collecting and analyzing 
tumor components floating in CSF (i.e. circulating tumor cells, CTCs; cell-free tumor DNA 
(ct DNA) RNAs, (ctRNA, miR and exosomes) may help noninvasive diagnosis of CNS 
tumors and heighten the sensitivity in LMS detection 122,123,125. CTCs and ctDNA seem to be 
of clinical interest 126. In systemic malignancies CSF CTC assay has a reported sensitivity 
between 81-100% and a specificity of 85-97%. However, for non-epithelial malignancies such 
as GBM, the appropriate detection technique needs to be established 122,126. 

As for the CSF ctDNA, analysis can be particular useful for detection of clonal 
mutations (BRAF V600E, IDH1, IDH2, TERT promoter, ATRX and TP53 mutations, EGFR 
amplification,) 23,122,123,127. Noteworthy, although there is a clear correlation between CSF 
ctDNA and survival, the CSF detection of ctDNA does not systematically mean LMS, its 
clinical value in this context remains to be established122. 
 
Therapeutic approach 

In most cases, LMS in glioma patients is considered an untreatable end stage 
complication of the disease34. There is no consensus nor standard of care regarding 
treatments81. Multiple treatment modalities, such as intrathecal chemotherapeutics and 
radiation therapy, seem to have improved median survival from 4–6 weeks to 3–6 months in 
high grade gliomas 128 Survival of LMS GBM patients in studies is reported at 0.2-9.7 months 
with a mean of 4.7 months1,28,129. 

Progression of the disease or treatment related complications (as hemorrhage130, 
infections20,33 after intrathecal administrated treatment or ventriculoperitoneal 
shunting20,131,132) may sometimes contribute to the fatal outcome 82,130. 
 
Surgery 

Because of the multifocal character of LMS, surgical approach is not suitable 87. 
Surgical resection of compressive nodular focal leptomeningeal lesions may provide 
symptomatic benefit without impacting survival 9,68,83. Another use for surgery in LMS is 
placement of a ventriculo-peritoneal (VP) shunt in case of hydrocephalus 11,14,20,72,131,133. This 
seems to be necessary in up 20-30% of patients 11. The main complications are shunt 
occlusion due to high fibrinogen CSF concentration132,134, VP valve malfunction134, 
hemorrhage, meningitis 20,131,134 as well as extracranial dissemination in peritoneal cavity 
111,134. The latter is exceedingly rare, although postmortem diagnosis in asymptomatic patients 
is possible111,134. In case of shunt occlusion, the use of urokinase can be considered 132 and 
careful monitoring should be ensured20,131.  



 
Radiotherapy 

Palliative radiation therapy is the most commonly used treatment modality. Doses 
between 20 to 40 Gy are usually delivered allowing a good symptomatic control, especially 
for pain relief 27,68,87,115,135, compressive symptomatology 83,87 or intractable vomiting due to 
seeding to fourth ventricle81. Although focal LMS from systemic cancers is sometimes treated 
by stereotactic radiosurgery, its use in GBM LMS is rarely reported1,6,60.  The clinical benefit 
is limited in terms of neurological deficit recovery or survival when administered alone 
27,33,68,84,87,136 and it improves slightly when added to surgery 27,68,69. Isolated trials of 
radiolabeled monoclonal antibodies failed to improve significantly the survival of the LMS 
patients137.  
 
Pharmacological treatment 

Multiple chemotherapeutic regimens have been investigated : (i) TMZ alone or 
combined with BCNU7 or CCNU55, (ii) Thiotepa alone57,58 or combined with 
Procarbazine20,58,64, (iii) Methotrexate6,15,20,57,138, (iv) Cytarabine19,57,129,139,140, (v) Topotecan 
or Irinotecan15,141,142 and, (vi) Platinum based agents with or without Etoposide56,74. Drug 
administration was either oral7, intravenous1,6,11,15,64,143 intrathecal via Ommaya reservoir/ 
lumbar puncture6,11,19,21,57,58,139,141,142 or subcutaneous port 138 or combined 1,6,7,11,20,110. 

Antiangiogenic drugs (e.g. bevacizumab) alone1,44,118,143 or combined with cytotoxic 
agents (e.g. irinotecan) were used with inconsistent clinical benefit 15,55,64,85,110,135,144. 
Concurrent radio-chemotherapy can be proposed in selected cases eventually in association 
with antiangiogenic agents15,31,55,135. 

Targeted therapy can be considered in selected cases (Table 2) as the MAPK pathway 
inhibitors (i.e. BRAF and/or MEK inhibitor) in BRAFV600E mutant GBM 23. Dramatic clinical 
and radiological response were reported with a survival benefit from 1 to 11 months 23–25,76. 
This incites to extensive molecular testing 23–25. 

 As the brain-blood barrier breakdown is low and given the potential resistance 
mechanism, combined therapy with anti MEK should be considered from the start as it seems 
associated to longer survival 23,26 Radiotherapy can be discussed in order to increase survival 
while balancing the treatment benefit and  its toxicity145,146. Due to the rarity of druggable 
targets in GBM, this option is available for about 6% of LMS GBM 11. 
 
 
Immunotherapy  

Immune checkpoint inhibitors were proposed in cases of high mutational load and 
with microsatellite instability, alone or in combination with molecular targeted therapies23,147. 
Nevertheless, there is no clear evidence of their efficacy in LMS 6,22,85,147. The use of adoptive 
cell therapy seems to be of interest. The IL13R α2-targeted–CAR T cells (with 4-1BB as 
costimulatory domain and tCD19 as a marker for transduction) had encouraging results with 
no high-grade therapy-related side effects when used in a LMS of IDH wildtype, MGMT 
methylated GBM.22,148 After repeated intraventricular administration of IL13BBζ–CAR T 
cells a clinical and radiologic response was sustained up to 7.5 months 22. Other constructs 
targeting EGFRvIII and HER2 having different costimulatory domains were explored but 



their impact on LMS is not reported 149,150 . However, the difficulty in finding an adequate 
target, the immunosuppressive microenvironment as well as the consequent toxicities are the 
limitations of immunotherapy in GBM, including LMS patients148. 

Amongst perspectives, we count gene therapy using engineered mesenchymal stem 
cells transduced with herpes simplex virus-thymidine kinase gene (MSCtk) followed by 
systemic Ganciclovir (GCV) in a rat experimental leptomeningeal glioma model that seems to 
have encouraging results151 and oncolytic viruses tested in transgenic mice inoculated with 
GBM cells152. Intrathecal immunoconjugates have also been advocated90,153 as well as 
intratumoral/intrathecal targeted therapy154.  

The completed clinical trials (Table 3) explored the use of multiple intrathecal 
chemotherapies including topotecan, methotrexate and cytarabine in LMS.  Although the 
safety profile was satisfactory, none of them showed significant improvement of LMS 
patients’ survival21,57,140,141. Noteworthy, the ongoing disease-agnostic clinical trials (Table 4) 
allow LMS GBM patients inclusion. Nonetheless, their severe neurological impairment and 
their poor prognosis limit their enrollment. 

Following the literature review, a management algorithm is proposed in fig 7. 
 
Survival  

LMS in primary malignant CNS tumor implies more aggressive behavior and a worse 
prognosis. Mean overall survival after diagnosis of treated LMS in high grade gliomas is 4.94 
months (2-9 months) 1,6,7,27,44,60,86,143 . Exceptional OS up to 12 months were reported in cases 
with nodular LMS where the surgical resection was possible83.  

Among treated patients, the median OS was higher regardless chemotherapeutic 
regimen but the bias of delivering more intensive treatments in patients in better performance 
status should be taken into account 1,6,7,11,58,73,139,141. Among studies, there seems to be a 
tendency of better survival for patients having received intrathecal chemotherapy (either 
Depocyt® or thiotepa) with mean survival up to 10 months 20,30. A better survival seems 
associated with antiangiogenic (6-7.6 months mean survivals) 11,55,143 and molecular targeted 
therapy when appropriate 11,24,25. Nevertheless, all this data needs to be validated in 
prospective trials. 
  Despite significant efforts to standardize the response assessment in LMS, this has 
been proven challenging155 and it varies according to clinical trial outcome measures. The 
main criteria for assessing objective response in LMS treatments are the improvement of CSF 
cytology140,141 and radiological decrease of LMS extent1,6,7,11,15. 
 Up to 50% of LMS patients are treated only by best supportive care and considering 
the symptoms severity, we need to underline importance of palliative care guidelines in LMS 
management 156 
 
 
   
Prognostic factors 

Although the reserved prognosis of LMS is well known, data on the prognostic factors 
are limited. The interval time from the initial glioma diagnosis to the LMS diagnosis is a 
potential prognostic factor 7 as well as Karnofsky Performance Status 30,82. Males seem to 



have shorter progression free survival  though the impact on overall survival does not seem 
significant 30. Noteworthy, the extent of LMS does not seem to have a predictive value1. 
 
 
Conclusion 
 
Data on LMS in GBM patients remain scarce while it becomes more common in neuro-
oncology clinics. The main problems are the lack of reliable early diagnostic tools and 
consensual standard of care.  
Based on our review of the literature, multimodal treatment of LMS including surgery, 
radiotherapy, chemotherapy and/or best supportive care is a suitable approach to be discussed 
during multidisciplinary brain tumor board.  
Interestingly, given the advances in glioma therapeutics including molecular targeted 
therapies and immunotherapies the landscape of LMS treatment is evolving. However, 
investigations of these innovative treatments remains limited in the setting of LMS and need 
further studies. Given the dismal prognosis and increasing incidence of this GBM 
complication, identification of risk factors, biomarkers and efficient therapeutic options in 
large prospective studies and clinical trials are warranted. 
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