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Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a 
member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic 
target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα 
signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in con-
cert with other hormones the different stages of mammary development. We describe the cellular and molecular features of 
the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, 
highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic 
processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
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Introduction

The mammary gland is an exocrine gland of ectodermal 
origin whose primary function is to produce milk for the 
nourishment of offspring. In humans as in most mammals, 
mammary morphogenesis is initiated during the embryonic 
period but the most important part of mammary develop-
ment and remodeling occurs after birth, throughout puberty, 
pregnancy, lactation and involution [1–6]. Despite some dif-
ferences, the human and mouse mammary epithelium shares 
strong similarities in developmental processes, cellular 

organization and signaling molecules [4, 7]. Mouse mod-
els are, therefore, widely used to decipher the molecular 
mechanisms controlling the development and homeostasis 
of the mammary gland, and analyze their deregulation upon 
tumorigenic processes.

The post-natal development of the mammary gland and its 
function are controlled by a hormonal network that mainly 
comprises estrogens, progesterone, prolactin, growth hor-
mone (GH) and oxytocin [3, 8]. Prolactin, GH and oxytocin 
are peptide hormones of pituitary origin, whereas estrogens 
and progesterone are steroid hormones primarily produced 
by ovaries during reproductive life. Pioneering works show-
ing that ovariectomized and ERα-deficient mice were unable 
to develop mammary gland at puberty have indicated that 
signaling through estrogens is crucial for the post-natal 
mammary development [9–12]. In addition, ERα is routinely 
used as a diagnosis marker supporting the molecular clas-
sification of breast cancers [13–15] and remains an essential 
therapeutic target for hormone-dependent breast cancers, in 
particular through administration of tamoxifen (TAM) and/
or aromatase inhibitors (AI), that both are very efficient in 
reducing the risk of cancer recurrence [16–18].

As member of the nuclear receptor family, ERα has a 
well-established transcription factor activity and controls 
the expression a large spectrum of target genes [19, 20]. 
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However, estrogens and ERα can also act at the cell mem-
brane level to induce non-genomic events [21, 22]. The 
recent development of new transgenic mouse models and 
omics-based analyses has allowed to better characterize the 
ERα-positive luminal cell lineage and to further dissect the 
complex signaling events triggered by estrogens in the mam-
mary epithelium. Here, we review the current understanding 
of the mechanisms of ERα actions, derived from different 
studies on mammary development, stem cell function and 
tumorigenesis.

ERα and its modes of action

In humans and rodents, two distinct estrogen receptors, ERα 
and ERβ, have been identified. They show large sequence 
homology and similar binding affinity for 17β-estradiol (E2), 
the predominant form of circulating estrogens [19, 23]. Esr1 
(ESR1 in human) encoding ERα was first identified in 1986 
[24, 25] and located on a different chromosome than Esr2 
coding for ERβ, identified later in 1996 [26]. ERα is believed 
to be the ancestral steroid receptor originating 400–500 mil-
lion years ago [27] and its complex modes of action and gene 
organization remain abundantly studied [28]. In vivo, per-
turbation of ERα signaling has a major impact on mammary 
development [11, 12], whereas ERβ loss does not result in 
a deleterious mammary phenotype and impaired function 
[29, 30].

ESR1 gene spans over 300 kb and consists of nine cod-
ing exons and seven introns (Fig. 1). The first eight exons 
encode the major full-length 66 kDa isoform of ERα [31]. 
The promoter region (over 150 kb) contains several promoter 
sequences named A to T that drives its specific expression in 
target tissues [32, 33]. ESR1 gene expression is tightly regu-
lated by multiple regulatory elements, including transcrip-
tion factors, chromatin environment, autocrine, paracrine 
and endocrine secreted factors, and multiple environment 
factors (cell–cell and cell–matrix interactions, mechanical 

forces) [34]. In addition, the 3’UTR region of ERα contains 
several regulatory elements specific for miRNAs, such as 
miR18a, miR22, miR206 and miR221/22, that control ERα 
stability or translocation [35].

ERα is composed of six structural domains namely A to 
F, including two binding domains, one to DNA (DBD, C 
domain) and the other to ligand (LBD, E domain) [19, 21]. 
It also includes a ligand-independent (AF1) and a ligand-
dependent (AF-2) subdomain, mapping to the A/B and E 
domains, respectively [36, 37] (Fig. 1). The AF-1 transac-
tivation domain is mainly ligand independent, its stimula-
tion relying on the phosphorylation of serine 104/106, 118 
or 167 by kinases activated downstream of growth factors 
such as EGF (Epidermal Growth Factor), IGF-1 (Insulin-like 
Growth Factor-1), or TGFα (Tumor Growth Factor) [38–41]. 
However, AF-1 can also be modified in response to E2 and 
further stabilized following phosphorylation on serine 118 
[42–44]. The A domain interacts with the C-terminal domain 
to allow repression in absence of ligand [45]. The D domain 
is a hinge region that provides flexibility between the DBD 
and the LBD (E/ F) domains. The mutation of this D region 
affects the synergy between the AF-1 and AF-2 functions of 
ERα [46]. AF1 and AF2 display distinct activation functions 
that are specifically involved in the recruitment of cofac-
tors. These coregulators are not only proteins that link the 
receptor and the transcription machinery but rather have 
enzymatic activities that induce chromatin modification and 
remodeling, and control initiation of transcription [47–49]. 
Among the coregulators that bind to the AF-2 domain 
exposed following E2 binding, there are members of the 
p160 family that includes three analogous factors SRC-1, 
SRC-2 and SRC-3 (Steroid Receptor Coactivator, part of 
histone deacetylase) [50, 51]. Other well-known cofactors 
comprise CBP/p300 and MED1. Interestingly, p160 proteins 
also interact with the NH2-terminal domain of ERα, in par-
ticular the AF1 domain, and p300 allows a functional syn-
ergy between AF1 and AF2 [40, 52]. This was confirmed by 
the recent quaternary structure of an active ERα-coregulator 

Fig. 1   Structure of the ESR1 
gene and the different isoforms 
of ERα. On the top, the coding 
exons are annotated following 
the nomenclature published in 
[32]. Alternative splicing that 
generates the shorter ERα46 
and ERα36 isoforms are indi-
cated using solid lines
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complex on DNA identified using cryoelectron microscopy 
[53]. Moreover, ERα also interacts with some corepressors, 
such as the repressor of estrogen receptor activity (REA) 
repressor which binds on the LBD domain in a ligand-
dependent manner [54] or RIP140 (receptor interacting 
protein) through a direct competition with SCR-1 [55].

Natural isoforms of ERα

In addition to the “classic” full-length isoform of ERα (ERα-
66 kDa) which contains the two AF-1 and AF-2 activation 
functions, there is a shorter 46 kDa isoform lacking the first 
173 amino acids and, therefore, the AF-1 function (Fig. 1). 
Although the prominent, if any, mechanisms accounting for 
the expression of the ERα46 isoform still remain to be clari-
fied, three possible processes of generation were reported: (i) 
an alternative splicing that generated a mRNA deficient in 
the nucleotide sequence corresponding to exon 1 encoding 
the A/B domain generation [56]; (ii) proteolysis [57, 58]; 
and (iii) initiation of translation at a downstream ATG which 
encodes methionine 174 in the human ERα66 by an IRES 
(Internal Ribosome Entry Site) located within the full-length 
mRNA [59]. A recent study showed that the expression of 
ERα46 is due to the action of the oncoprotein HMGA1a 
(High Mobility Group A protein1a) that regulates the alter-
native splicing of ESR1 in MCF7 breast cancer cells [60]. 
Overexpression of ERα46 in proliferating MCF7 cells pro-
vokes a cell cycle arrest in G0/G1 phases and inhibits the 
ERα66-mediated estrogenic induction of all AF-1-sensitive 
reporters: c-fos and cyclin D1 as well as estrogen-respon-
sive element-driven reporters [56, 61]. The role of the AF-
1-deficient ERα46 isoform has also been questioned in vivo 
using a “knock in” strategy. These mice (named ERαAF-10) 
only express a short 49 kDa isoform that lacks 441 nucleo-
tides from exon 1 and is functionally similar to ERα46 [62]. 
The females are sterile, with uterine atrophy while they 
conserved several vasculoprotective actions of E2 [62–64]. 
Studies on mammary gland development are reported later 
in chapter 4.1.

Western blot with antibodies directed against the C-ter-
minal domain is the unique procedure to detect the ERα46 
isoform since ERα46 and ERα66 share identical aminoacid 
sequences that cannot be distinguish by immunohistochemis-
try. Although the ERα46 isoform has not been studied exten-
sively, it was found expressed in various cell types such as 
vascular endothelial cells and macrophages [65–68]. ERα46 
is also expressed in breast cancer cells including tamoxifen-
resistant cells [69] and in more than 70% of human breast 
tumors with highly variable expression levels, sometimes 
even more abundant than the ERα66 protein [70]. Impor-
tantly, higher amounts of ERα46 proteins were associated 

with highly differentiated tumors of lower grade and smaller 
size [70].

In 2005, another shorter 36 kDa isoform of ERα was 
identified from a human endometrium cDNA library [71]. 
This ERα36 isoform is transcribed from an alternative pro-
moter located in the first intron of the ESR1 gene and is 
encoded by exons 1, 2–6, and 9 (Fig. 1). ERα-36 thus lacks 
the transactivation functions AF-1 and AF-2 but retains the 
DNA-binding domain of ERα66 and its partial dimeriza-
tion and ligand-binding domains. It also contains a unique 
27 amino acids at the C-terminus that replaced the last 138 
aminoacids encoded by exons 7 et 8 and can be detected by 
specific antibodies. ERα36 contains three potential myris-
toylation sites which are conserved in the full-length ERα66. 
These are residues 25–30 (GVWSCE), 76–81 (GMMKGG) 
and 171–176 (ELLTNL) [71]. Myristoylation being a post-
translational modification allowing anchoring to the plasma 
membrane, ERα-36 was suggested to be mainly localized 
at the plasma membrane where it could relay rapid estro-
gen signaling and inhibit the transcriptional activity of ERα 
66 kDa, probably by competition at DNA-binding sites [71, 
72]. The ERα36 receptor is not expressed in mice. How-
ever, it was found largely expressed in both ERα-positive 
and ERα-negative breast cancers, at a proportion that varies 
between 40 and 50% according to cohort studies [73–75]. 
ERα36 is mainly described in the literature to be involved 
in the acquired resistance to anti-estrogen drugs, such as 
tamoxifen and in the progression of mammary tumors in 
response to chemotherapy [76].

Complexity of actions of ERα signaling

ERα activation is a complex process involving many signal-
ing pathways that trigger either classical nuclear “genomic” 
or membrane “non-genomic” actions (Fig. 2).

The nuclear actions of ERα

As a member of the nuclear receptor family, ERα mainly 
functions as a ligand-activated transcription factor through 
different mechanisms (Fig. 2). Estrogen binding to the LBD 
induces dissociation from the Hsp90/Hsp70-multi-protein 
chaperone machinery, receptor dimerization and nuclear 
entry. Crystal structure revealed that the LBD has 12 alpha 
helices and E2-binding repositionnes helix 12, such that 
activation function AF-2 is exposed, allowing interactions 
with coregulators [77]. ERα is then stabilized in its active 
state and binds directly to specific DNA sites to estrogen-
response elements (ERE = 5’GGTCAnnnTGACC3’ palin-
dromic sequences) [78].

About 25% of estrogen-regulated genes lack complete 
ERE sequences in their promoter regions [79]. Moreo-
ver, ERα can bind to DNA by indirect tethering to other 
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transcription factors such as the Stimulating protein 1 
(SP1) on sites rich in GC, the jun/c-fos proteins which 
form a dimeric complex binding to “Activator Protein 1” 
(AP-1) sites [80] and Nuclear factor–κβ (NF-κβ). Genome-
wide analysis of ERα DNA-binding sites has identified 
not only rigorously dissociate the genomic and, but also 

PITX1 whose binding motif was found present in 28% of 
genome-wide ERα-binding sites [81–83].

Studies using CHIP-Chip and CHIP-seq on MCF7 breast 
cancer cells have revealed that ERα binds to 5000–10,000 
locations [84–86]. However, only < 5% of these ERα bind-
ing sites (ERBs) are located in the proximal region of ERα 
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Fig. 2   Estrogen receptor ERα signaling. Classic ERα signaling 
leads to genomic actions through ligand-receptor binding, leading to 
dimerization of ERα that binds directly to specific DNA sites (called 
estrogen response elements, ERE) that activate transcription. ERα can 
also bind by indirect tethering to other transcription factors, such as 
AP1 or SP1 (blue line). The ERα can also be activated in a ligand-
independent manner through downstream events of receptor tyrosine 
kinases (RTKs) activated by growth factors in the mammary gland, 
such as IGF-1, EGF (blue dotted line, in particular through phospho-
rylation of serine residues in the AF-1 domain). Induction of tran-
scriptional response depends on the chromatin remodeling, induced 
by pioneer factors such as FoxA1 and GATA-3 in the mammary 
gland, and is modulated by the specific recruitment of coregulators. 

Non-genomic, membrane-initiated steroid signaling (MISS) actions 
involve a small pool of ERα located on the extracellular compart-
ment or close to the membrane, at least in part through direct inter-
action with caveolin-1 in response to post-translational modifications 
such as palmitoylation. Transient methylation of arginine 260 has 
also been observed to induce ERα interaction with the p85 subunit 
of PI3K and Src, Upon E2 binding, these non-genomic activations 
activate the subsequent interaction of ERα with protein kinases (Src 
and PI3K), G-coupled protein I, leading to activation of signaling 
cascades (Akt, ERK1/2) and further shuttle of these phosphorylated 
transcription factors in the nucleus. These non-genomic signaling 
pathways are rapidly activated and further induce genomic activations 
(orange dotted line)
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target genes and conserved in the mouse genome [79, 87]. 
Most of these ERBs are distally located from targets genes 
and function as distal-cis-regulatory elements, generating a 
complex numbers of loops and anchors to bring the receptor 
binding sites closer to the transcription initiation site [85, 
88]. CHIP-seq in the mouse mammary gland identified close 
to 6000 high confidence ERBs, with half of them enriched in 
ERE, PAX2, SF1 and AP1 motifs located at distal enhancer 
regions [89].

Transcriptional activity can also be regulated in a ligand-
independent manner through downstream events of receptor 
tyrosine kinases (RTKs) activated by growth factors such as 
EGF, IGF-1 or TGFα [38]. Although ligand independent, 
these effects can be blocked by an anti-estrogen [90, 91]. 
This can affect either AF-1 on serine residues via phospho-
rylation by cyclin/Cdk2, MAPK or GSK3, thereby modulat-
ing ligand-independent activation of ERα, or AF-2, in par-
ticular on Y537 where ligand binding is located [38, 92]. 
These modifications were shown to be particularly essential 
for the genomic effects of ERα, in particular for the recruit-
ment of transcriptional co-activators [93–96]. Thus, phos-
phorylation integrates these signaling pathways, such as 
epidermal growth factor receptor (EGFR)/human epidermal 
growth factor receptor 2 (HER2) into a complex cross-talk 
network with estrogen signaling. [92, 97].

The first cistrome of ERα has been performed in 2006 
[84] and allowed to identify close to ERBs, some pioneer 
factors bound to DNA, in particular FOXA1 “ForkHead 
Box A1” [98], FOXM1 “ForkHead Box M1” [99], raising 
the idea that these pioneer factors control accessibility of 
ERα on chromatin [100]. The same goes for the PBX1 factor 
[101], and for the factor GATA3 “GATA Binding Protein” 
[102]. The crucial role of these pioneer factors for the ERα 
response was demonstrated when FOXA1 and AP2gamma 
binding to several sites is decreased upon ERα silencing 
[103] (see also Chapter 4.2 for their roles in the mammary 
gland development).

The membrane “non‑genomic” actions of ERα

A small fraction of the ERα is found at the plasma mem-
brane where it activates the so-called “rapid”, “non-
genomic”, or MISS for “Membrane-Initiated Steroid 
Signaling”, which induces multiple signaling pathways 
[49, 104] and creates cross-talk between membrane and 
nuclear signaling [21, 22] (Fig. 2). The first rapid effect 
was described in 1967 when AMPc production was found 
to be increased within minutes in response to 17β-estradiol 
in the uterus [105]. The hypothesis of receptors, localized 
to the plasma membrane was then emitted but was con-
troversial until 1977, when E2 binding was observed in 
membrane isolated from endometrial cells and hepatocytes 
[106]. Meanwhile, high number of data has shown that E2 

rapidly activates G proteins, and a number of kinases such 
PI3K, P21ras, c-Src/ERK1-2 [21, 107]. Membrane ERα 
has near identical affinity for E2 than nuclear ERα and 
originates from the same transcript, but its abundance is 
very low (around 3% as compared to nuclear ERα) [108]. 
The so-called membrane ERα is localized within lipid 
rafts called caveolae within the plasma membrane, and 
S522A mutant of ERα was 60% less effective than wt ERα 
in binding caveolin-1 [109]. The receptor will thus form a 
real signaling platform made up of several proteins such 
as caveolin, striatin, Src, G proteins or even growth fac-
tors. Striatin directly binds to amino acids 183–253 of 
ERα, targets ERα to the cell membrane, and serves as a 
scaffold for the formation of an ERα-Gαi complex [110]. 
Post-translational modifications, such as palmitoylation 
on Cys 447 (451 in mice) allows membrane anchoring by 
its palmitate [111, 112] and the membrane-initiated sign-
aling (MISS). Transient methylation of arginine 260 has 
also been observed to induce ERα interaction with the p85 
subunit of PI3K and Src, recruiting also the focal adhesion 
kinase (FAK) in this complex [113].

Membrane ERα effects were studied using transgenic 
mouse models mutated either for the palmitoylation site 
(ERα-C451A, murine counterpart of human C447) [114, 
115], or the methylation site (R264A, murine counterpart 
of human R260) [116]. Rapid signaling was also blocked by 
overexpression of a peptide that prevents ERs from interact-
ing with the scaffold protein striatin (the disrupting mouse 
peptide) [117]. This membrane localization is crucial on 
endothelial cells where membrane ERα are coupled to eNOS 
in a functional signaling module that may regulate rapid 
NO synthesis and acceleration of re-endothelialization by 
E2 (reviewed in [21]).

To rigorously dissociate the genomic and non-genomic 
activities of E2, John Katzenellenbogen has developed two 
pharmacological tools to specifically activate the rapid 
membrane signaling: (i) the Estrogen-dendrimer conjugate 
(EDC), which can cross the plasma membrane but cannot 
enter the nucleus due to its charge and size [118] and (ii) the 
“pathway preferential estrogens” (PaPEs) which only acti-
vate non-genomic signaling, due to their very low affini-
ties and rapid dissociation rates [119]. About 25% of genes 
responding to E2 also respond to EDC in MCF7 cells [120]. 
In contrast, the specific inhibition of PI3K, MAPK or even 
c-Src kinases by chemical inhibitors lead to a significant 
deregulation of the transcriptional response induced by E2, 
demonstrating that estrogen signaling interacts with other 
pathways allowing the establishment of a complete tran-
scriptional response [120]. The integration of non-genomic 
actions of E2 at the chromatin level was also perfectly 
illustrated by the work of Miguel Beato’s laboratory. Five 
minutes after hormone treatment, the cytoplasmic signal-
ing cascade Src/Ras/Erk is activated via an interaction of 
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the progesterone receptor with ERα leading to chromatin 
remodeling and cell proliferation [121].

In view of these studies, it is, therefore, difficult to func-
tionally dissociate these two actions of estrogenic signaling. 
It is conceivable that, according to the cell type, differen-
tiation and environment, genomic and membrane-initiated 
signaling (MISS) can act i) in concert, participating syner-
gistically in the transcriptional initiation of hormone recep-
tors in general, through post-translational modifications and 
epigenetic modifications of the chromatin, or ii) indepen-
dently following the concept of moonlighting proteins [122, 
123], playing one role in the extranuclear compartment, as 
already demonstrated in the endothelium, and one genomic, 
transcriptional role in the nuclear compartment.

Mammary development and cell lineages

Overview of the post‑natal mammary development 
and its hormonal context

Comprehensive reviews on mammary development have 
been recently published [4–6]. An overview of each mam-
mary developmental stage and their different hormonal con-
texts is provided below and illustrated in Fig. 3.

The mammary gland consists of a ramified epithelial tree 
embedded into a fatty stroma. When fully differentiated, the 
mammary tree is composed of milk-secreting alveoli con-
nected by branching ducts (Fig. 3). In ducts and alveoli, the 
mammary epithelium is composed of an inner layer of lumi-
nal cells lining a lumen and an outer layer of basal myoepi-
thelial cells sitting on a basement membrane (Fig. 4A). 
During lactation, the secretory luminal cells produce milk 

components, whereas the contractile myoepithelial cells 
serve for milk expulsion [1, 124, 125].

In mouse females, the mammary tree remains rudimen-
tary until puberty. At about 4 weeks of age, initiation of 
puberty triggers ductal elongation and branching, a process 
associated with elevated levels of GH and 17β-estradiol (E2), 
[2, 8, 126] (Fig. 3). Cell proliferation mainly occurs at the 
tips of growing ducts within specialized bulbous structures, 
the terminal end buds (TEBs), that are composed of sev-
eral inner layers of luminal-type cells and an outer layer of 
basal-type cells, known as body and cap cells, respectively 
[127]. TEBs drive ductal progression through the fat pad, 
with coordinated cell proliferation, differentiation, apop-
tosis and migration events [128–130]. At sexual maturity, 
TEBs regress and ductal elongation ceases. Estrogen and 
progesterone levels fluctuate with the recurrent estrus cycles, 
peaking during the pre-ovulatory (proestrus and estrus) and 
post-ovulatory (diestrus) phases, respectively [126, 131]. 
Cell proliferation and apoptosis successively occur with each 
cycle, leading to the formation of side branches and nascent 
alveolar buds that wax at the diestrus stage and partially 
regress thereafter [126, 131, 132].

During pregnancy, the mammary secretory tissue under-
goes a massive expansion and prepares for milk production. 
Alveolar buds are formed all over the ductal tree and pro-
gressively develop into secretory alveoli that will be mature 
and fully functional upon lactation [1]. These processes 
are accompanied by an early surge of estrogen followed by 
a peak of progesterone. Concomitantly, levels of prolac-
tin increase [126, 131]. Around parturition, progesterone 
levels abruptly drop down resulting in induction of labor. 
Prolactin levels remain high throughout lactation together 
with oxytocin, a hormone that controls myoepithelial cell 

Fig. 3   Hormonal context of the major stages of the post-natal mouse 
mammary development. From left to right: images of carmine-stained 
whole mounts from 6-week-old pubertal, 12-week-old adult vir-
gin, 16-day-pregnant and 2-day lactating mice. The pubescent gland 

is characterized by the presence of terminal end buds (TEBs) at the 
tips of the growing ducts. The steroid hormones, estrogens and pro-
gesterone, are in red whereas the peptide hormones are in black. GH 
growth hormone. Bar: 0.25 mm
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contractility and milk ejection [1, 125, 133]. At weaning, 
the secretory tissue goes through a controlled process of 
cell death leading to involution and the gland returns to a 
pre-pregnant-like state until a novel cycle of gestation and 
lactation [6].

Ovariectomy of prepubertal females impedes mammary 
development, whereas administration of exogeneous estro-
gens restores its growth, resulting in morphological changes 
similar to those observed at puberty [9, 134]. Noticeably, 
the response of the mammary tissue to estrogen stimula-
tion is dose dependent. Low-to-moderate doses induce TEB 
formation and ductal elongation, while these processes are 
inhibited at higher doses [135]. This dose response effects 
underline the complex action of estrogen signaling on mam-
mary gland and may have a physiological significance since 

E2 levels are lower during the pubertal growth than during 
pregnancy.

Thus, elevated levels of circulating estrogens are asso-
ciated with two major morphogenetic events, the pubertal 
ductal growth and the onset of alveolar expansion at ges-
tation. Of note, signaling of mammotropic hormones syn-
ergizes at multiple levels. In particular, estrogens induce 
the expression of progesterone receptor (PR) and prolactin 
receptor (PRLR) transcripts, highlighting the pivotal role of 
ERα signaling in the hormonal response of the developing 
mammary epithelium [136–138].

ERα- luminal cell
ERαlow luminal cell
ERαhigh luminal cell

Myoepithelial cell

A

B

AlveolusDuct

Duct and TEB (puberty) Alveoli (pregnancy)

ER
αα

K8, K18
E-cadherin
ERαα, PR
FOXA1

K8, K18
E-cadherin

Milk  proteins
ELF5

ER+/PR+ ER-/PR-

K5, K14
P-cadherin,
α-SMA

Podoplanin
OXTR 

SNAIL2, p63

Basal  myoepithelial

Luminal

Fig. 4   Organization of the mammary bilayer and localization of 
ERα-expressing cells. A Schematic representation of mammary duct 
and alveolus and main specific markers of the basal myoepithelial, 
ERα-positive and –negative luminal cell lineages. Ductal ERαhigh 
cells express nuclear ERα as detected by IHC whereas ERαlow cells 
express ERα transcripts without detectable nuclear staining. Kerat-
ins (K5, K14, K8, K18); α-smooth muscle actin  (α-SMA); oxytocin 
receptor (OXTR). B: ERα expression in ductal and alveolar struc-

tures, as revealed by IHC on PFA-fixed paraffin sections, using mouse 
monoclonal anti-ERα (Santa Cruz, sc-542, MC-20, described in 
[212]). Left: sections through a duct and a TEB (insert) from a puber-
tal mouse. Right: section through a group of alveoli from a preg-
nant mouse. Unlike ductal, alveolar luminal cells rarely display ERα 
nuclear expression. The arrowhead points to an ERα cell located in 
the stroma. Bars, 50 μm and 25 μm
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Mammary basal and luminal lineages

It is now established that stem cells drive the post-natal 
mammary development. Pioneering orthotopic transplanta-
tion studies have shown that basal cells isolated from the 
adult mammary epithelium were able to regenerate bilayered 
ducts and alveoli, even at single cell level, whereas luminal 
cells had no significant regenerative potential [139–141]. 
This observation, confirmed by numerous subsequent trans-
plantation assays, initially supported the notion that basal-
type multipotent stem cells generated the myoepithelial and 
luminal cell lineages during puberty and pregnancy [4].

However, recent data from lineage-tracing experiments 
revealed that in situ, the post-natal mammary development 
and its homeostasis are essentially sustained by distinct basal 
and luminal unipotent stem cells [142–146]. Two distinct 
luminal lineages have been identified, relying on the pres-
ence or absence of ERα expression [144, 145] (Fig. 4A). 
The ERα-positive lineage is viewed as a hormone-sensing 
entity acting through paracrine mechanisms on basal and 
luminal ERα-negative cells, whereas the ERα-negative lin-
eage is largely committed to milk secretion [3, 131, 147]. 
Interestingly, recent data have shown that under regenera-
tive conditions and upon oncogene expression, adult basal 
cells can reactivate a multipotency program that is restricted 
in situ by luminal cells through secretion of tumor necrosis 
factor [148].

Characteristics of the ERα luminal cell 
lineage

Distribution of ERα + luminal cells 
within the developing mammary epithelium

Immunohistochemical (IHC) studies have shown that ERα is 
expressed in the nuclei of both mammary epithelial and stro-
mal cells [9]. The presence of epithelial but not stromal ERα 
turned to be essential for mammary morphogenesis [12].

Throughout development, nuclear ERα is absent from the 
basal myoepithelial cells and confined to the luminal layer. 
Interestingly, the proportion of ERα+ cells in the luminal 
compartment varies according to the developmental stage 
of the gland [145, 149–151]. Absent at birth, ERα was 
detected in about half of luminal cells at post-natal day 7, 
a proportion maintained during the pubertal growth [138, 
145]. During puberty, ERα is present in ductal luminal cells 
and in luminal body cells of TEBs [149, 150] (Fig. 4B). 
In post-pubertal virgin mice, ducts still comprise at least 
50% of ERα+ luminal cells. This percentage decreases to 
about 5% at the end of pregnancy, the remaining positive 
cells being primarily located in ducts. During lactation, the 

luminal layer of the functional alveoli consists of ERα nega-
tive secretory cells [145, 150] (Fig. 4A).

Interestingly, detection of ERα transcripts in situ using 
RNAscope indicated that the status of ERα expression in 
luminal cells seems more complex than that observed by 
IHC [138]. This approach highlighted the existence of three 
luminal subsets in the mammary epithelium of pubertal 
females: 20% of luminal cells were found negative for both 
ERα mRNA and protein, 40% positive for ERα mRNA but 
negative for the protein (termed ERαlow) and 40% positive 
for both ERα mRNA and protein (termed ERαhigh). Whether 
ERαhigh and ERαlow cells represent mature and progenitor 
cells or reflect a continuous gradient in ERα expression 
levels remains to be determined. Another open question is 
whether ERαlow cells express membrane ERα and consti-
tute a particular subset of estrogen-sensing cells. Indeed, in 
endothelial cells, ERα acts at the cell membrane level but 
cannot be visualized in the nucleus by immunostaining [21].

ERα + luminal cells as hormone‑sensing cells

PGR is an established estrogen-target gene encoding the 
nuclear receptor isoforms, PR-A and PR-B [131, 152, 
153]. Both isoforms (hereafter referred to as PR) have been 
detected in the mouse mammary epithelium, but only PR-B 
is required for a proper mammary development [154, 155].

Consistent with the role of estrogens in inducing PGR, 
most luminal cells staining positive for ERα + by IHC display 
a nuclear expression of PR, in mouse as well as in human 
mammary epithelium [156–158]. Moreover, the luminal 
cells from ERα knock-out mice completely lack nuclear PR 
expression [138, 159–161]. Interestingly, analysis of trans-
genic mice lacking either AF-1 or AF-2 domain of ERα 
revealed that PR expression in mammary luminal cells is 
primarily AF-2 dependent, i.e., ligand-dependent [138]. This 
study also indicated that PR is preferentially expressed by 
the ERαhigh luminal subset.

Mammary luminal cells co-expressing ERα and PR 
(ERα + PR +) are perceived as the main targets of the ovar-
ian steroid hormones and consequently are termed hormone-
receptor positive, hormone-sensing or sensor cells [4, 131, 
162]. Of note, several gene expression profiles of mouse 
mammary epithelial cells have shown that the luminal cell 
population expressing Esr1 and Pgr also contain high levels 
of Prlr transcripts, indicating that it responds to prolactin 
stimulation, in addition to estrogens and progesterone [7, 
162–166]. However, the lack of reliable antibodies against 
PRLR has hampered the precise localization of this recep-
tor in situ.
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Enrichment of ERα + luminal cells by flow cytometry

The use of a panel of cell surface markers for flow cytom-
etry has allowed a clear separation of the mammary basal, 
luminal and stromal cell populations and, in addition, ena-
bled the enrichment the ERα + PR + and ERα-PR- luminal 
cell subsets. The most commonly used markers are sum-
marized in Table 1. A large fraction of them are adhesion 
molecules, such as EpCAM, CD24, ICAM-1 and the inte-
grin chains α2, α6, β1 and β3.

In the human mammary epithelium, ERα + PR + luminal 
cells are characterized by a lower α6 (CD49f) integrin 
expression than ERα- PR- cells and CD49f separates quite 
nicely the two populations [168].

In mouse, ERα+PR+ luminal cells have been enriched 
using differential expression of Sca-1, Prominin-1 
(CD133), c-Kit, CD14, ICAM-1 and the α2- (CD49b) 
and β3 (CD61) integrin chains [141, 163, 164, 169–172] 
(Table 1). None of these markers perfectly discriminate the 
two luminal populations. However, some of them (Sca-1, 
Prominin-1 and ICAM-1) display a robust expression in 
various mouse genetic backgrounds, at protein and mRNA 
levels [141, 162, 163, 166, 172, 174, 175].

Most ERα + PR + luminal cells are positive for Sca-1 and 
Prominin-1 (Table 1). So that the use of these markers 
enables a convenient enrichment of the hormone-sensing 
population [141, 144, 163, 175]. This was confirmed by 

purifying the ERα-positive lineage following its tracing by 
YFP expressed under the control of ERα promoter [145]. 
Although ICAM-1 and CD49b largely mark the ERα-PR- 
luminal cell population (Table 1), they are expressed by a 
minor subset positive for Sca-1 and enriched in ERα+PR+ 
cells. This Sca-1 + ICAM-1 + (or Sca-1 + CD49b +) subset 
has a colony-forming potential, attributed to ERα + luminal 
progenitors [164, 172].

Mammary gland function and ERα expression are 
not altered in Prominin-1 knockout females, suggesting 
that this glycoprotein is not an essential regulator of the 
ERα + PR + lineage [176]. Similarly, loss of ICAM-1 and 
CD49b does not result in a deleterious mammary pheno-
type [42, 172].

Main molecular features of ERα + luminal cells

Global transcriptomic profiles of the ERα + PR + and 
ERα- PR- luminal cell populations enriched by flow cytom-
etry have been established in human and mouse mammary 
tissues [7, 163, 164, 166, 174]. More recently, comprehen-
sive and unbiased gene expression analyses across different 
stages of mammary development were performed using sin-
gle cell RNA-seq [162, 177–179]. Apart from Esr1 and Pgr, 
a few genes encoding transcription factors and coregulators 
(Foxa1, Tbx3, Msx2, Myb and Cited1) have been reported as 
specifically expressed in the hormone-sensing cell popula-
tion of the adult gland [7, 162–164]. Of note, the hormone-
sensing cell population is devoid of Elf5, a key transcription 
factor controlling the alveolar cell fate [7, 144, 163, 166, 
180]. Elf5 specifically signs the ERα- PR- luminal cell subset 
together with milk protein genes, such as β-casein and WAP 
(whey acidic protein).

In agreement with the gene expression data, IHC stud-
ies have shown that the vast majority of ERα + luminal cells 
co-expresses FOXA1, an inducer of ERα expression that 
controls its transcriptional activity [98, 150, 181]. Consist-
ently, GATA3, a transcription factor regulating both ERα 
and FOXA1 mRNA expression, is present in ERα + lumi-
nal cells [158, 182–184]. A correlation was also observed 
between the presence of ERα and TBX3, a transcriptional 
repressor involved in the generation of the hormone-sensing 
cell population [185]. CITED1, a transcriptional coactiva-
tor of ERα, has been detected in a subset of ductal and TEB 
luminal cells (most probably ERα+) during puberty [181, 
186].

Transcriptomic profiles and gene expression analysis by 
qRT-PCR also revealed that the ERα+PR+cell population 
highly expresses several genes encoding secreted factors, 
such as Areg (encoding amphiregulin), Tnfsf11 (encoding 
RANKL) and Wnt4 [7, 162, 163, 166]. WNT4 and RANKL 
are effectors of progesterone signaling. They play a major 
role in ductal side branching and alveologenesis during 

Table 1   Major surface markers used to separate mouse mammary 
basal and luminal cells and enrich ERα-positive and ERα-negative 
luminal cell populations by flow cytometry after exclusion of 
endothelial and hemopoietic cells by CD31 and CD45 surface stain-
ing

Surface marker Basal Luminal ERα+ Luminal ERα− References

Used to separate basal from luminal cells
 CD24  +   +  +   +  +  [173]
 EpCAM  +   +  +   +  +  [164]
 CD29 (β1-Itg)  +  +   +   +  [139]
 CD49f 

(α6-Itg)
 +  +   +   +  [140]

 Podoplanin  +  +  – – [167]
Used to enrich ERα+ and ERα− luminal cells
 CD61 (β3-Itg)  +  +  –  +  [169]
 CD49b 

(α2-Itg)
 +  +  –  +  [164]

 c-Kit – –  +  [171]
 CD14 – –  +  [163]
 ICAM-1  +  +  –  +  [172]
 Sca-1 –  +  – [141]
 CD133 (Prom-

inin-1)
–  +  – [141]
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pregnancy by inducing the expansion of basal and ERα- PR- 
luminal cells through paracrine mechanisms downstream of 
PR activation [152, 187–189].

Areg is an established ERα-target gene strongly induced 
in the mammary glands of ovariectomized females stimu-
lated by E2 and restricted to luminal cells expressing Esr1 
and Pgr, as seen by single-cell RNA-seq analysis [190, 191]. 
Areg transcripts have been detected in situ in a subset of 
luminal cells expressing PR that most probably belong to 
the ERαhigh population [138, 190]. The role of AREG down-
stream of ERα signaling in the mammary epithelium will be 
described in the section dedicated to the transgenic mouse 
models.

A recent single cell RNA-seq analysis comparing 
mammary glands from young (3–4 month-old) and aged 
(13–14 month-old) virgin mice revealed age-dependent 
alterations in cell type composition and gene expression 
that potentially reflect age-associated hormonal changes 
[192]. The proportion of hormone-sensing cells decreases 
with age and their transcriptomic profile is characterized by 
the up-regulated expression of Tph1 (encoding tryptophan 
hydroxylase 1) and Arg1 (encoding arginase 1). In line with 
previous works [162, 177], this study also identified a rare 
luminal population that co-expressed hormone-sensing and 
secretory-alveolar lineage specific genes, suggesting a dual 
differentiation potential. Transcriptional data were further 
supported by in situ detection of luminal cells co-expressing 
ERα, PR and milk-related markers (MFGE8, LTF). Notably, 
the abundance of this population whose precise in vivo func-
tion remains to be determined strongly decreases with aging.

ERα + unipotent stem cells

Early observations on tissue sections revealed that unlike 
ER- PR- luminal cells, ER + PR + cells rarely display prolif-
eration markers [156, 161]. Hormone-sensing cells were, 
therefore, for long time, considered as mature luminal cells 
with poor growth ability. In addition, it has been suggested 
that ERα expression is lost before the proliferative response, 
as stimulation with E2 led to undetectable ERα expression 
within 4 h that reappeared by 24 h [134]. Nonetheless, later 
on, several studies using nucleotide analog incorporation 
assays indicated that ERα + PR + luminal cells substantially 
proliferate in particular during puberty, during the estrus 
stage and at the beginning of gestation [149, 151, 174, 193]. 
Moreover, in vitro colony-formation assays on isolated cells 
showed that although less clonogenic than ERα- PR- cells, 
the ERα + PR + luminal cell subset defined by the double 
expression of Sca-1 and ICAM-1 (or CD49b) harbored 
colony-forming cells, considered as expanding progenitors 
[141, 164, 172].

Two recent studies using Prominin-1 or ERα expression 
to map ERα + cell fate in situ confirmed that ERα + luminal 

cells expand during mammary development and in addition 
showed that these cells exclusively generate an ERα + lumi-
nal progeny [145, 175]. Specifically, by tracing ERα-positive 
luminal cells with YFP in transgenic mice, Van Keymeulen 
et al. reported that lineage-restricted ERα + luminal stem/
progenitor cells ensure the expansion of ERα + luminal cells 
during puberty and sustain their long-term renewal during 
repeated cycles of pregnancy and lactation [145]. It is not 
clear yet whether the construct selected in this study allowed 
the tracing of both ERαhigh and ERαlow cells or preferentially 
that of ERαhigh cells, which would impact the interpretation 
of the data.

ERα + luminal stem/progenitor cells remain to be fully 
characterized. RNA-seq analysis of single mammary epi-
thelial cells isolated from adult mouse indicated that high 
levels of Aldh1a3, Lypd3, Kit and Cd14 could discriminate 
ERα + luminal stem/progenitor cells from their differenti-
ated progeny [162]. However, these genes are also highly 
expressed in ERα-negative luminal stem/progenitor cells. 
The analysis of three independent RNA-seq data sets sug-
gests the existence of a common ALDH1A3 + ERα- luminal 
stem/progenitor cell for both ERα + and ERα- cell lineages 
[162, 178, 179].

The molecular mechanisms and signals from the niche 
that control the ERα + luminal cell lineage remains to be 
explored in detail. Notch1 has been identified as a master 
determinant of the mammary luminal cell differentiation. 
Its activation represses the basal-specific transcription fac-
tor ∆Np63 [194] and can reprogram basal cells into ERα-
negative luminal cells in vivo [195]. Notably, ERα and 
Notch1 expression in post-natal luminal cells is mutually 
exclusive [144], suggesting a negative cross-talk between 
Notch and ERα signaling. Consistently, former studies per-
formed with breast cancer cell lines showed that stimulation 
by E2 inhibited Notch1 activity [196].

A recent work reports that R-spondin 1 (RSPO1), a niche 
factor secreted by the ERα-negative luminal cells, regu-
lates ERα expression through paracrine mechanisms [197]. 
RSPO1 is known to bind LGR receptors and synergize with 
WNT4 to enhance Wnt/βcat signaling in mammary basal 
cells. Using a luminal cell-specific Rspo1-deficient trans-
genic mouse model, the authors found that loss of RSPO1 
resulted in reduced mammary side branching in adult virgin 
females, with a decreased ERα expression and signaling 
activity in luminal cells. RSPO1 activated G-protein cou-
pled cAMP signaling in ERα + luminal cells through LGR4, 
independently of the Wnt/βcat axis.
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Mammary phenotype of transgenic mouse 
models impacting ERα signaling

Mouse models mutated for ERα

The transgenic mouse models used to dissect the role of 
ERα signaling in mammary development and function are 
presented in Table 2.

The first studies were conducted using two distinct 
knockout mice termed ERαNeoKO [11, 198] and ERα-KO 
[199]. The mammary epithelial tree of these mice was nor-
mally developed at the prepubertal stage indicating that the 
early stages of mammary morphogenesis are independent 
of ERα signaling. In contrast, TEB formation and ductal 
growth were abrogated in the pubescent mutant females 
[11, 12]. Of note, the ERα-KO mouse completely lacks ERα 
transcript expression, whereas the ERαNeoKO was found 
later to retain a substantial ERα function, by producing a 
spliced mRNA that gives rise to a receptor lacking part of 
the ligand-independent AF-1 domain, a form reminiscent of 
that from the ERα-AF1° deficient mice [62, 200].

As ERα-KO mice presented endocrine abnormalities that 
could indirectly impact their mammary phenotype, ortho-
topic transplantation assays were performed. This strategy 
allows to compare the development of wild-type (WT) and 
mutant mammary epithelial fragments grafted into cleared 
contralateral mammary fat pads of a WT recipient mouse 
and thereby reveal mammary epithelium intrinsic phenotype 
[3]. Unlike WT, ERα-KO ducts grafted into a WT stroma 
completely failed to develop, even after a hormonal stimula-
tion of the host mouse mimicking pregnancy, demonstrating 
that ERα expression in epithelial cells is essential for ductal 
and alveolar development [12].

The importance of epithelial ERα expression for pubertal 
mammary gland development was further confirmed using 
a Cre-Lox-based conditional knockout model (MMTV-Cre-
ERαfl/fl) targeting all luminal cells [201]. This work also 
included the analysis of the mammary phenotype of WAP-
Cre-ERαfl/fl females, a model in which ERα was deleted 
from luminal cells at late pregnancy and during lactation. 
Although nuclear ERα is absent from WAP-expressing 
milk secretory cells, lobuloalveolar development and milk 
production were perturbed in the WAP-Cre-ERαfl/fl females 
upon successive pregnancies. Conceivably, the maintenance 
of early alveolar progenitors, potentially analogous to the 
so-called parity-identified mammary epithelial cells that 
express WAP and survive involution might be affected by 
ERα loss either directly or indirectly [202].

Importantly, transplantation assays using a mix of WT 
and ERα-KO epithelial cells indicated that ERα in epithe-
lial cells acts in a paracrine manner on neighbor cells [12]. 
Activation of ERα by E2 was found to induce, in addition 
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to PR expression, the secretion of amphiregulin (AREG) in 
the epithelium [190]. AREG was the most abundant EGF-
like growth factor in the pubertal mammary gland, with a 
maximum expression 12 h after E2 stimulation in ovariecto-
mized mice. Analysis of AREG-KO and mix WT-KO mam-
mary grafts showed that AREG acts as an essential paracrine 
mediator of ERα signaling and is required for the massive 
epithelial cell proliferation, TEB formation and ductal elon-
gation during puberty. Nonetheless, AREG-KO mammary 
grafts, although poorly developed, expressed PR and con-
sistently could undergo side branching and alveologenesis 
in a pregnant host, whereas ERα-KO were unable to do so 
[12, 190].

Additional studies showed that the transmembrane form 
of AREG is cleaved into a mature peptide by metalloprotein-
ase domain containing protein 17 (ADAM17) and promotes 
signaling in stromal cells through binding to EGFR [203]. 
EGFR activation induces expression of growth factors in 
stromal cells, in particular members of the FGF family that 
regulate mammary epithelial growth in a paracrine fashion 
[130]. ERα, AREG and EGFR knockout mice display simi-
lar mammary phenotypes, characterized by a lack of ductal 
development [204–206].

A rudimentary mammary gland similar to the one 
observed in ERα-KO mice was observed in the ERα-AF2KI 
mice, in which L543A and L544A point mutations in helix 
12 were introduced, deleting the AF2 function [207]. More 
recently, the roles of AF1 and AF2 transactivation func-
tions of ERα have been explored independently, using the 
ERα-AF1° and the ERα-AF2° mice generated by P. Cham-
bon and colleagues, respectively [62, 138, 208]. This second 
ERα-AF2° mouse model was obtained by deleting the ami-
noacids 543 to 549 in the helix 12 [208]. The data showed 
that deletion of AF-1 or AF-2 blocks pubertal ductal growth 
and alveologenesis and by means of grafting assays, revealed 
an unexpected complexity of ERα signaling, linked to cell-
population-specific functions of AF1 and AF2. ERαhigh 
luminal cells were found to require both AF-1 and AF-2 to 
transcribe crucial downstream effector genes such as Areg, 
Pgr, Prlr and Wnt4. On the other hand, ERαlow luminal cells 
appeared essential for ductal development during puberty 
but growth inhibitory during pregnancy. This population 
depends on the AF2 transcriptional response that also con-
trols transcript levels of genes linked to cell motility, adhe-
sion and plasticity [138].

Two mouse models have been mutated into the DNA-
binding domain to dissect DNA-binding-dependent vs. 
ERE-independent transcriptional regulation elicited by 
ERα: first, the ERα-EAAE (ENERKI) mouse harboring four 
aminoacid exchange (Y201E, K210A, K214A, R215E) on 
DNA-binding domain (DBD) [209], and second, the NERKI 
mouse mutated into the P box of the first zinc finger of the 
DBD (E207A/G208A)[210]. While results observed with 

the NERKI mouse bred onto the ERα-KO mice can be ques-
tioned due to an unclear figure even in WT, the ERα-EAAE 
clearly shows a rudimentary mammary gland development 
[209] similar to that observed in ERα-KO, demonstrating the 
importance of the DNA-binding nuclear response.

In another model, a specific point mutation (G525L) 
was introduced on the ERα ligand-binding domain (LBD) 
to distinguish ligand-induced and ligand-independent ERα 
actions. This model confirmed that estrogen-induced activa-
tion of ERα is crucial for the development of female repro-
ductive tract and mammary gland [211].

As detailed in Sect.  1.2 (Fig.  2), ERα outside the 
nucleus can activate rapid/non-genomic/membrane-ini-
tiated steroid signals (MISS). To analyze the potential 
implication of MISS in tissue development, two groups 
have generated similar knock-in mouse models mutated 
for the palmitoylation site (theoretically the same point 
mutation), i.e., the ERα-C451A [114] and the NOER 
mice [115]. In contrast to mice deleted for nuclear effects 
of ERα, NOER and ERα-C451A mice have a developed 
mammary gland that completely filled the fat pad but 
showed diminished ductal side branching and decreased 
number of blunted duct termini [115, 212].

The specific mechanisms that control the ability of 
basal and luminal cells to respond to membrane ERα 
signaling have been investigated in details using the ERα-
C451A mouse model and grafting assays [212]. The data 
demonstrated that mutation of the palmitoylation site of 
ERα was necessary in promoting intercellular communica-
tions essential for mammary gland development. In fact, 
absence of the membrane ERα impairs the expansion of 
ERα positive luminal cells that further alters the required 
paracrine signaling and the final ductal outgrowth. Tran-
scriptional analysis also points the requirement of Greb-
1 gene expression. Greb-1 is well-known as an early 
response gene in the ERα-regulated pathway and was 
shown to be a chromatin-bound ER coactivator essential 
for ER-mediated transcription that stabilizes interactions 
between ER and additional cofactors [89, 213]. Impor-
tantly, loss of membrane signaling in luminal cells also 
altered Jak2 and Stat5a gene expression, a pathway found 
at the crossroad of hormonal and growth factor signaling 
which uncovers an important role of membrane ERα as a 
key regulator of growth factor response [212].

A transgenic mouse deprived of both nuclear and cyto-
plasmic functions of ERα was also developed by expressing 
only a functional E domain of ERα at the plasma membrane 
in an ERα-KO background to study the specific mem-
brane actions of ERα [214]. This MOER mouse harbors a 
rudimentary mammary gland development similar to the 
ERα-KO mice. The absence of pubertal mammary ductal 
growth following activation of only membrane actions of 
ERα was also confirmed using a pharmacological tool, the 



	 M. Rusidzé et al.

1 3

“pathway preferential estrogens” (PaPEs). These ligands 
were synthesized to preserve their essential chemical and 
physical features to bind ERα with an affinity that allowed 
preferential induction of the extranuclear-initiated signaling/
MISS pathway. PaPEs did not stimulate mammary gland fat 
pad filling nor breast cancer cells growth [119].

Finally, to investigate the potential function of the short 
ERα-36 isoform, only present in humans, a MMTV-ERα36 
transgenic mouse strain was generated allowing specific 
expression of ERα36 cDNA in mammary epithelial cells. 
The mammary epithelium of the mutant females normally 
invaded the fat pad but significant defects were observed, 
such as duct dilation, stromal thickening, epithelium thin-
ning and leakage [215].

Collectively, the data obtained from mouse models 
revealed the complex status of ERα expression in the mam-
mary epithelium and the multiple implications of ERα sign-
aling in the control of mammary development. Genomic 
actions include induction of crucial paracrine effectors such 
as AREG required for ductal growth and of PR expression 
necessary for the expansion of the secretory tissue. Both 
AF-1 and AF-2 genomic actions of ERα are crucial for a 
normal mammary development during puberty and preg-
nancy. In addition, non-genomic effects of ERα signaling 
that modulate intercellular communications participate in 
the regulation of mammary morphogenesis. It is possible 
that the levels of circulating estrogens, lower in puberty 
than during pregnancy, direct and trigger differential ERα 
responses in estrogen-sensing cells.

Mouse models mutated for pioneer factors 
and coregulators of ERα

As previously mentioned, the transcriptional activity of ERα 
depends on its interaction with coregulators. Consistently, 
several of these coregulators appeared to be critical for TEB 
formation, ductal branching and alveologenesis during mam-
mary gland development (reviewed in [181]).

FOXA1 was the first pioneer factor identified for ERα, 
specifically required for ERα induced transcription of cyclin 
D1 [216]. Co-expression of FOXA1 and ERα was observed 
not only in the pubertal gland [150] but also in luminal 
breast cancers and cell lines [217–219]. The crucial role of 
FOXA1 in mammary morphogenesis was confirmed using 
orthotopic and renal capsule transplantation of mammary 
anlagen from Foxa1 KO mice [150]. These assays revealed 
that ductal elongation and TEB formation were severely 
impaired in the absence of FOXA1, whereas alveologenesis, 
although limited, could occur in pregnant hosts. IHC studies 
showed that FOXA1-deficient luminal cells lacked ERα and 
PR expression, whereas FOXA1 was expressed in ERα-KO 
mammary gland, indicating that FOXA1 acts upstream of 
ERα and controls its expression and signaling.

Similar to ERα and FOXA1, GATA3 is required for TEB 
formation and ductal growth during puberty. Accordingly, 
the targeted loss of GATA3 in the mammary epithelium 
leads to a defective generation of ductal ERα-expressing 
cells, an accumulation of ERα-negative luminal progeni-
tors and a block in differentiation, revealing a pivotal role 
for GATA3 in the maintenance of the luminal compartment 
[182, 220, 221].

Collectively, these studies revealed a complex interplay 
between ERα, GATA3 and FOXA1 [181]. GATA3 regulates 
FOXA1, which in turn regulates ERα, while GATA-3 and 
ERα regulate each other positively. Furthermore, these fac-
tors colocalize at transcription sites upon E2 stimulation and 
form a tripartite complex that ensures optimal transcriptional 
activation [183, 222–224]. ERα also upregulates FOXM1, 
another forkhead transcription factor that down-regulates 
GATA3 expression and may balance ERα and GATA3 
interaction during mammary gland development. FOXM1 
was found to promote luminal cell proliferation as opposed 
to GATA3 that mediated luminal differentiation [225]. The 
chromatin complex formed by ESR1, GATA3, and FOXA1 
thus coordinately orchestrates mammary luminal lineage 
commitment and estrogen response.

More recently, ten–eleven translocation (TET2), a chro-
matin modifier which mediates DNA demethylation, was 
found highly expressed in mammary luminal cells [226]. 
Targeted deletion of TET2 in the mammary epithelium 
through MMTV-Cre showed that loss of TET2 increased 
ductal branching and TEB numbers in pubescent females 
but impaired alveolar development at pregnancy. FACS 
analysis of the mutant glands revealed an increased pro-
portion of mammary basal cells with stem cell activity, a 
diminished subset of ERα + luminal cells and an aberrant 
commitment of luminal cells towards a mixed basal/luminal 
phenotype. TET2 was found to interact with the transcription 
factor FOXP1 and forms a chromatin complex that medi-
ates demethylation of Esr1, FoxA1 and Gata3. TET2 loss 
led to a decreased expression of ERα, FOXA1 and GATA3 
expression both at protein and mRNA levels that profoundly 
perturbed the luminal lineage commitment and the balance 
between the basal and the luminal lineages and thereby 
altered mammary development.

Among the main co-activators of ERα are also members 
of the p160 family (SRC-1, SRC-2 and SRC-3), as men-
tioned in Sect. 1. SRC-1 disruption in vivo showed decreased 
mammary ductal branching and also decreased number and 
size of alveoli during pregnancy, even though milk produc-
tion was normal [227]. In contrast, SRC-2 is not required for 
early post-natal mammary gland development, in both virgin 
and pregnant mice [228]. However, work from Mukherjee 
and colleagues [229] reported that SRC-2 may be important 
for progesterone-induced signaling. As SRC-2, SRC-3 is not 
essential for E2-stimulated ductal growth in virgin mice, 
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but is required for progesterone-stimulated cellular prolifera-
tion and glandular differentiation during pregnancy [230]. 
In summary, SRC-1 is an important coregulator of ERα for 
ductal branching at puberty and SRC-3 is probably the pri-
mary coactivator for PR in breast [231].

CITED 1 (Cbp/p300-interacting transactivator with Glu/
Asp-rich carboxy-terminal domain) was identified as another 
important coregulator of ERα controlling the pubertal mam-
mary ductal morphogenesis, as shown by the analysis of 
CITED1 homozygous null mice [186].

Among the main corepressors, the role of REA in mam-
mary gland development during puberty or pregnancy was, 
respectively, studied using conditional tissue-specific dele-
tion of one or both alleles of REA under the control of Pgr 
or Wap promoter, respectively [232]. Interestingly, at both 
puberty and pregnancy, opposite effects were observed 
depending of the homozygous or heterozygous deletion, 
demonstrating that the REA is crucial for mammary gland 
development at all stages, puberty, pregnancy and lacta-
tion, with crucial gene dosage-dependent actions. Rip140-
deficient mice and transgenic Rip140 overexpressing mice 
have also been generated [233]. The Rip140 KO mice dis-
played minimal ductal branching at maturity. In contrast, 
the ductal network of the Rip140 overexpressing mice was 
more branched, exhibited hyperplasic growth and devel-
oped denser alveolar structures. In fact, RIP140 expression 
is essential in both the epithelium and the stroma and acts as 
a rate-limiting factor required for ductal development in the 
mammary epithelium. RIP140 acts as a coregulator of ERα 
and is recruited to a number of its target gene promoters/
enhancers, such as Areg, Pgr, Ccnd1 and Stat5a.

Estrogens acts in concert with other growth factors

Numerous data have demonstrated that estrogens act in 
concert with growth factors and the cooperation between 
estrogens and growth hormone (GH) in governing pubertal 
development has been particularly studied. The main down-
stream effector of pituitary-derived GH signaling is IGF-1 
(insulin growth factor 1) primarily produced by liver but also 
locally by mammary stromal cells [3, 130]. The Igf1-KO 
mice have an impairment of mammary development and lack 
TEBs, a phenotype that cannot be restored by the injection 
of estrogen while the injection of IGF-1 alone for 5 days 
improves development [234, 235]. The receptor involved 
in this signaling was investigated using embryonic IGF-IR 
mammary gland transplantation into WT stroma, because 
null mice die at birth. These data directly demonstrated that 
IGF-IR expressed by TEB cells is necessary for proliferation 
and ductal morphogenesis [236]. In contrast, these defects 
are corrected during pregnancy, indicating that exposure to 
signals from pregnancy is able to compensate for the loss 

of otherwise important mammary signaling pathways. This 
restoration during pregnancy may also result from changes 
in mammary cell sensitivity to insulin-like signals medi-
ated by the Insulin receptors (IR). Indeed, there is genetic 
evidence that the IR can mediate the growth promoting func-
tion of IGF-2 [237], that was also confirmed by showing that 
IGF-2 was a downstream mediator of prolactin-induced alve-
ologenesis and an upstream regulator of cyclin D1 expres-
sion [238]. IGF-1 may play a crucial role during post-natal 
development in concert with ERα while IGF-2 might drive 
the prolactin effect during alveologenesis. Moreover, over-
expression of IGF1R in epithelial cells in mice leads to 
abnormal development of the ducts (hyperplasia) and tumor 
formation in vivo [239].

Tian and colleagues have particularly studied ERα/IGF1R 
co-signaling using a mouse model overexpressing human 
IGF1 in the mammary gland under the control of the basal-
specific bK5 promoter [240]. This ectopic IGF-1 expres-
sion in myoepithelial cells induced paracrine effects on 
adjacent epithelial cells. Interestingly, this study shows that 
ectopic IGF-1 is able to activate different signaling pathways 
dependent on the pubertal status of mice. Indeed, the results 
show an increase in p-Akt associated with the activation of 
mTOR in the prepubertal transgenic glands whereas in the 
post-pubescent transgenic glands, the activated pathways 
are related to the Ras/Raf/MAPK signaling cascade. These 
observations can be correlated with the change in the expres-
sion of ERα in the mammary gland. ERα is more expressed 
in the pubescent gland than in the post-pubescent gland, 
which corresponds to negative feedback by the E2 ligand. 
It is then proposed that IGF1/IGF1R/ERα signaling may 
activate different cytoplasmic effectors depending on the 
proliferative state of the mammary gland.

Estrogens and breast cancers

ERα‑positive luminal breast cancers

Considerable interest has focused on luminal cells in the 
context of mammary gland development and tumorigenesis, 
as most breast cancers are thought to originate from deregu-
lated luminal cells, either negative or positive for ERα [4, 
241]. ERα-positive tumors account for 70–80% of all breast 
cancers and belong to the two luminal molecular subtypes, 
A and B, characterized by a low and high proliferation index, 
respectively [13–15]. The most frequent special histological 
subtype is the invasive lobular carcinoma (ILC) that clusters 
with luminal A and B subtypes and is characterized by a loss 
of E-cadherin expression [15].

Most ERα-positive breast cancers depend on estro-
gen for their growth and ERα expression is predictive for 
responsiveness to endocrine therapies targeting the E2/ERα 
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pathway. It is important to mention that histologically, ERα-
positive tumors are defined as having at least 1% of tumor 
cells exhibiting a nuclear ERα staining as assessed by IHC, 
without a clear consensus of the used antibodies [14, 15]. 
Hence, ERα-positive tumors are highly heterogeneous with 
a broad range of ERα expression spanning from 1% to nearly 
100%. In addition, they display an important intratumoral 
heterogeneity, as highlighted by a recent work using imaging 
mass cytometry at the single cell level [242, 243].

Blockade of E2/ERα activity by administration of tamox-
ifen and aromatase inhibitors have major antitumor effects 
on ERα-positive breast cancers and already benefited to mil-
lions of women [244]. This benefit is still observed when 
only a small fraction of breast cancer cells expresses ERα, 
demonstrating the importance of blocking the expansion of 
this cell subset and its potential paracrine action. Nonethe-
less, late relapses at distant sites are often observed, compro-
mising the long-term outcome of patients with ERα-positive 
breast cancers. In addition, an important proportion of the 
patients do not respond to endocrine therapies and up to 50% 
acquire resistance under treatment [245].

Exposure to estrogens and breast cancers

The impact of estrogens on breast cancer was first dem-
onstrated more than a century ago by the British surgeon 
George Beatson who observed regression of a breast tumor 
following ovariectomy [246]. Nowadays, early and pro-
longed exposure to endogenous or exogenous estrogens 
during a woman’s life is recognized as being a factor of 
major risk in developing a breast cancer, in particular an 
ERα-positive subtype [247, 248]. Early menarche, late 
menopause, nulliparity or late first pregnancy are viewed as 
risk factors while breast feeding is considered as a protec-
tive factor [247, 249, 250]. The timing of hormone exposure 
appeared as an important parameter since aberrant hormonal 
exposure prior to puberty or in early life has a more signifi-
cant effect on breast cancer risk than late menopause, sug-
gesting a particular susceptibility of the immature mammary 
gland to tumorigenesis [247].

The risk of breast cancer also increases among women 
who currently or recently used contemporary hormonal 
contraceptives as compared to non-users. This absolute 
increase in risk remains low but rises with longer durations 
of use [248, 251]. According to the big prospective Women 
Heath’s Initiative (WHI) trial that evaluated risks of hor-
monal replacement therapy, the combination of conjugated 
equine estrogens plus medroxyprogesterone acetate led to 
an increased risk of breast cancer whereas hysterectomized 
women treated with estrogens alone (equine conjugates, 
without progestin) developed, quite unexpectedly, less breast 
cancer than women receiving a placebo [252, 253]. More 
recent analyses have shown that the levels of risks varied 

between types of hormonal replacement therapies, with 
higher risks when progestins were used in the combination 
with estrogens (as compared to the natural progesterone), 
and again, for longer duration of use [254]. The identifica-
tion of safer estrogenic compounds is, therefore, necessary 
to improve the benefit / risk balance in patients on hormonal 
replacement therapies and contraception.

Mutations of ESR1 in human breast tumors

The most frequent mutated genes in ERα-positive breast 
cancers are PIK3CA, GATA3, MAP3K1, KMT2C and TP53. 
Mutation of CDH1 (encoding E-cadherin) or loss of alleles 
are common in the lobular subtype (reviewed in [15, 255]). 
In contrast, ESR1 mutations are rare (less < 1%) in primary 
ERα-positive breast cancers [256] but between 20 and 40% 
of ESR1 mutations are observed in metastatic breast can-
cer and influence response to hormone therapy (reviewed in 
[256–260]). In fact, these mutations emerge under the pres-
sure of chemotherapy and successive anti-hormonal treat-
ments, often after aromatase inhibitor (AI) treatment. They 
include highly recurrent ESR1 mutations encoding Y537C/
S/N with a prevalence reaching 60% of mutations detected 
in metastatic breast cancers [261, 262]. Another mutation 
in the LBD is the D538G, at a high frequency of 20% [260]. 
This mutated tyrosine Y537 has been particularly involved 
in the growth of mammary cancer cells and xenografts fol-
lowing phosphorylation by Src tyrosine kinases (p56lck and 
p60c−src) [263–267]. In addition, mammary MCF7 cancer 
cell lines stably expressing the ERα-Y537S/N and D538G 
present higher proliferation than wild-type expressing cells. 
Moreover, these mutations not only confer constitutive, hor-
mone-independent activity of ERα but also lead to change 
in transcriptional responses that mediate cancer progression 
and confer anti-estrogen resistance by altering the conforma-
tion of the ligand-binding domain of ERα, which leads to a 
stabilized agonist state and an altered antagonist state [268, 
269]. Expression of the ESR1Y537S mutation also induced 
an epithelial–mesenchymal transition (EMT) in cells and 
exhibited enhanced migration [270]. Other mutations, such 
as K303R, E380Q, S463P, V534E, Y535S, L536R were also 
found with different frequencies [271–275]. A summary of 
the characteristics of all these ERα mutants in breast cancers 
have been recently reviewed in [276].

More recently, genomic rearrangement events producing 
ESR1 fusion genes have been reported in endocrine therapy 
resistance [277]. These events include in-frame fusions such 
as inter-chromosomal ESR1 translocations with the YAP1 
gene (ESR1-e6 > YAP1), the protocadherin 11 X-linked 
gene, PCDH11X (ESR1-e6 > PCDH11X) and the nucleolar 
protein 2 homolog gene, NOP2 (ESR1-e6 > NOP2), and 2 
intra-chromosomal translocations with the A-kinase anchor-
ing protein 12 gene, AKAP12 (ESR1-e6 > AKAP12) and 
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the DNA polymerase eta gene, POLH (ESR1-e7 > POLH). 
These ESR1 fusion genes not only led to endocrine resist-
ance but also induced epithelial–mesenchymal transition 
(EMT) leading to metastasis.

Finally, there are also numerous changes in the chromatin 
landscape and epigenetic mechanisms regulating the biology 
of ERα-positive breast cancer that can orchestrate the resist-
ance to breast cancer treatments (reviewed in [278]).

Models of ERα‑positive breast cancers

Establishing in vivo models mimicking the complex biol-
ogy of ERα-positive breast cancers remains an active field 
of research (reviewed in [279]. Since the 1980s, different 
approaches have been used including chemically induced 
carcinomas in rats, genetically engineered mouse models 
(GEMMs), human cell line xenografts and patient derived 
xenografts (PDX), each having their own advantages and 
limitations.

GEMMs have contributed significantly to the field of 
breast cancer research and translational oncology, how-
ever, most of them develop ERα-negative mammary 
tumors [280]. Nonetheless, the broadly used MMTV-
PyMT mouse model that expresses polyoma middle T 
(PyMT) oncogenic protein in the mammary epithelium 
recapitulates some aspects of ERα-positive breast cancers. 
This model rapidly develops spontaneous luminal-like 
ERα-positive premalignant mammary lesions, sensitive to 
tamoxifen, which further progress to ERα-negative mam-
mary carcinoma forming lung metastases [281, 282]. In 
MMTV-PyMT females, ERα signaling favors tumor onset, 
tumor growth and pulmonary metastasis [282]. Loss of 
TET2 that profoundly alters ERα signaling and mammary 
development was recently found to promote the growth of 
invasive MMTV-PyMT tumors and confer resistance to 
tamoxifen in vivo [226].

A conditional tetracycline-responsive transgenic mouse 
model overexpressing ERα in mammary epithelial cells was 
generated that developed proliferative lesions such as atypi-
cal ductal and lobular hyperplasia and ERα + PR + ductal car-
cinoma in situ by 4 weeks of age [283]. Moreover, a trans-
genic mouse expressing the mutation found in human tumors 
was created by expressing the HA tagged K303R-ERα under 
the control of the MMTV promoter [284]. Although more 
alveolar budding was observed in 4-month-old mutant 
K303R-ERα transgenic mice as compared to WT-ERα-
MMTV mice, no hyperplasia was observed in older mice.

Among recent GEMMs of interest are the Stat1-null and 
the BlgCre; KiRas(G12V) mice. Stat1-null females spontane-
ously develop mammary adenocarcinomas of luminal ori-
gin that comprise more than 90% ERα+ and PR+ cells and 
depend on estrogen for tumor engraftment and progression. 
Although accelerated by parity, the tumor latency of about 

10 months hampers an easy use of this model [285]. Con-
ditional expression of the mutated human KiRas under the 
control of the Blg promoter, active during pregnancy and 
lactation, leads to the development of invasive ductal car-
cinomas within 3–9 months after induction. These tumors, 
positive for ERα and PR but negative for HER2, mimic the 
luminal A subtype and respond to anti-estrogen treatment 
[286].

As PI3KCA mutations are commonly found in luminal 
breast cancer subtypes, two groups used inducible GEMMs 
to investigate the impact of an oncogenic PI3KCA mutant 
targeted either in basal or luminal cells and analyze its con-
tribution to tumor heterogeneity [287, 288]. Interestingly, 
PI3KCA mutant expression in basal cells induced the for-
mation of luminal ERα + PR + mammary tumors while its 
expression in the whole luminal population gave rise to 
luminal ERα + mammary tumors and basal-like ERα- PR- 
tumors. Thus, the same mutation can induce plasticity in 
normally lineage-restricted cell types and result in different 
tumor phenotypes, reinforcing the importance of the cell of 
origin in breast cancer development [4]. The use of specific 
promoters for addressing pertinent oncogenic mutations in 
the ERα + luminal cell lineage should lead to the design of 
novel GEMMs, providing further insights into initiation and 
progression of the ERα + luminal breast cancers.

Finally, many PDX models have been successfully estab-
lished for pre-clinical breast cancer research, however, the 
take rates of ERα-positive tumor samples transplanted in 
the mammary fat pad of immunocompromised mice were 
noticeably low [289, 290]. Recently, intraductal graft-
ing has enabled the establishment of ERα-positive PDX 
derived from fresh human tumor biopsies with significantly 
improved take rates [291, 292]. These PDX models that 
recapitulate early developmental stages of ERα-positive 
luminal breast cancers should be of great help to evaluate 
aggressiveness and responsiveness to endocrine therapy. 
The same strategy was further used to design a model of 
ERα-positive ILC and test novel therapeutic approaches 
[293]. Gene expression analysis of the ILC-derived samples 
revealed an ECM remodeling signature with an enrichment 
in LOXL1, a targetable member of the lysyl oxidase family. 
LOXL1 inhibition through a pan LOX inhibitor was found to 
reduce tumor growth and metastasis by human lobular cell 
lines injected intraductally.

Conclusion

Since the cloning of ESR1 in 1986, the field has made con-
siderable advances in deciphering the molecular mecha-
nisms of ERα signaling through genomic and non-genomic 
actions and in addition, piecing together the role of ERα 
in luminal cells and in mammary gland development and 
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function. These advances largely rely on the recent tech-
nological developments, including sophisticated transgenic 
mouse models, high-throughput sequencing and advanced 
confocal microscopy.

Analysis of the mammary phenotype from multi-
ple transgenic mouse models, targeting ERα or its main 
coregulators, has clearly shown that ERα signaling does 
not play a role before puberty, whereas it is essential for 
pubertal ductal growth and subsequent alveologenesis. In 
the last decade, the ERα-expressing luminal cell lineage 
has been better characterized in terms of ERα transcript 
and protein levels, molecular profiles, stem/progenitor cell 
content, proliferation ability and differentiation potential. 
The crucial role of ERα-expressing luminal cells in sens-
ing hormonal stimuli and sending paracrine signals to their 
neighbors, the basal and ERα-negative luminal cells, has 
been confirmed and refined. These signals control the 
amplification of the ductal cells during puberty and the 
expansion of the secretory tissue during gestation.

At the mechanistic level, significant progresses have 
been made in deciphering the role of ligand-independent 
and ligand-dependent activation functions of ERα. In par-
ticular, it has been shown that AF1 and AF2 domains have 
cell population-specific functions but are both required 
for a proper expression of paracrine mediators [138]. The 
target cells of the non-genomic membrane actions of ERα 
signaling within the mammary epithelium remain to be 
precisely identified. However, data from transgenic mouse 
models revealed that this non-classical mode of action, 
active for example in endothelial cells, participates in the 
control of mammary development by regulating intercel-
lular communication [212]. Similarly, classical and non-
classical progesterone signaling pathways through nuclear 
and membrane receptors have been identified in mammary 
epithelial and cancer cells [153].

Genomic and non-genomic ERα signaling likely act in 
concert according to the developmental stage of the mam-
mary gland, its hormonal context and the differential levels 
of circulating estrogens. Undoubtedly, a better understand-
ing of this complex interplay will shed more light on the 
control of the mammary basal and luminal cell lineages 
and their deregulation during the tumorigenic process.

The upstream regulation of ERα + expression in the 
mammary epithelium is less understood than its action. 
An important direction for future research is to further 
define the niche of ERα + luminal cells and identify niche 
signals regulating the development and homeostasis of this 
lineage. In the mammary ducts, luminal ERα-positive cells 
directly interact with luminal ERα-negative and basal cells 
that display-specific cell–cell contacts and secrete multiple 
growth factors able to specifically impact ERα + cell func-
tion in a juxtacrine or paracrine manner. In addition, lumi-
nal ERα + cells can interact with resident intra-epithelial 

macrophages, a population lying between the luminal and 
basal cell layers that was recently revealed using high-
resolution imaging [294].

Deciphering the complexity of the mammary stroma 
(fibroblasts, adipocytes, immune cells) and analyzing 
its interplay with the epithelial compartment during 
normal development and tumorigenesis also define a 
broad research area [243]. Numerous mammary stromal 
cells express ERα and, therefore, respond to estrogen 
stimulation.

Finally, it is worth mentioning that several emerging top-
ics could not be developed in the present review, such as 
chromatin landscape, epigenetic regulation and non-coding 
RNAs. They all are actively investigated in the context of 
normal mammary development and breast cancers [4, 5]. 
Collectively, these efforts should provide a better under-
standing on how the normal mammary tissue develops and 
evolves in the course of a woman life, and how the develop-
mental programming is lost during breast cancer initiation.
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