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Abstract

Background: In addition to their multilineage potential, mesenchymal stem cells (MSCs) have a broad range of
functions from tissue regeneration to immunomodulation. MSCs have the ability to modulate the immune
response and change the progression of different inflammatory and autoimmune disorders. However, there are still
many challenges to overcome before their widespread clinical administration including the mechanisms behind
their immunoregulatory function. MSCs inhibit effector T cells and other immune cells, while inducing regulatory T
cells (T regs), thus, reducing directly and indirectly the production of pro-inflammatory cytokines. TNF/TNFR
signaling plays a dual role: while the interaction of TNFa with TNFRT mediates pro-inflammatory effects and cell
death, its interaction with TNFR2 mediates anti-inflammatory effects and cell survival. Many immunosuppressive
cells like T regs, regulatory B cells (B regs), endothelial progenitor cells (EPCs), and myeloid-derived suppressor cells
(MDSCs) express TNFR2, and this is directly related to their immunosuppression efficiency. In this article, we investigated
the role of the TNFa/TNFR2 immune checkpoint signaling pathway in the immunomodulatory capacities of MSCs.

Methods: Co-cultures of MSCs from wild-type (WT) and TNFR2 knocked-out (TNFR2 KO) mice with T cells (WT and TNFa
KO) were performed under various experimental conditions.
Results: We demonstrate that TNFR2 is a key regulatory molecule which is strongly involved in the immunomodulatory

properties of MSCs. This includes their ability to suppress T cell proliferation, activation, and pro-inflammatory cytokine
production, in addition to their capacity to induce active T regs.

Conclusions: Our results reveal for the first time the importance of the TNFa/TNFR2 axis as an active immune checkpoint
regulating MSC immunological functions.

Keywords: Mesenchymal stem cells, Immune regulation, Tolerance induction, Regulatory T cells, TNFa/TNFR2 signaling
pathway, Immune checkpoint
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Background

MSCs represent heterogeneous population of non-
hematopoietic [1], fibroblast-like multipotent stem cells
[2-4]. Unlike many other stem cells that are tissue-
specificc MSCs are present in various tissues, including
bone marrow (BM), adipose tissue, amniotic fluid, endo-
metrium, dental tissues, umbilical cord [2], and many
others [5] in different species from mice to human [6].

MSCs are self-renewable, easily accessible, spindle-
shaped cells that are expandable in vitro and show ex-
ceptional genomic stability [2, 7]. Their “stemness” is ex-
emplified by their ability to differentiate, under certain
physiological and experimental conditions [8], into mul-
tiple mesoderm cell types, including osteocytes, chon-
drocytes, adipocytes, and smooth muscle cells [9-11].
They can also differentiate into cell types of other germ
layers, like neurons (ectoderm) and hepatocytes (endo-
derm) [9, 12, 13].

To identify MSCs in a mixed population of cells, the
International Society for Cellular Therapy has proposed
minimum criteria: adherence to plastic; expression of
CD73, CD90, and CD105 markers; and the absence of
the expression of CD14, CD34, CD45, HLA-DR mono-
cyte, and hematopoietic markers [3, 6, 14, 15]. Moreover,
they can express CD44 [1] and Scal (murine MSCs)
markers [15]. Indeed, there are some interspecies differ-
ences regarding the expression of different mentioned
markers. For example, CD105 and CD90 are strongly
expressed on the majority of species including murine
MSCs but are low on goat and sheep MSCs [16]. Finally,
they must be able to differentiate in vitro into mesoderm
cell types [17].

During the last decade, MSCs have drawn much atten-
tion for their application in regenerative medicine [18, 19].
This is mainly due to the fact that, among multipotent
stem cells, uniquely MSCs can differentiate into different
cell types from the three germ layers, to produce soluble
growth factors and cytokines [20] and to maintain tissues
homeostasis by replacing dead or dysfunctional cells [21].
Furthermore, some studies revealed that MSCs can stimu-
late resident cells and promote tissue regeneration [22].

Likewise, MSCs have generated considerable interest for
exerting immunomodulatory functions. Several in vitro and
in vivo studies indicated that MSCs strongly suppress im-
mune cells in innate and adaptive immune systems [23, 24].
MSCs inhibit effector T cell proliferation and function in
both autologous and allogenic conditions while activating
and inducing T regs [25-27]. Consequently, they reduce
pro-inflammatory cytokine production, including tumor
necrosis factor alpha (TNFa) [8].

TNFa binds to two structurally distinct receptors,
TNFR1 and TNFR2. TNFRI1 is expressed ubiquitously,
and its interaction with TNFa leads to apoptosis and cell
death. Inversely, TNFR2 is expressed on limited cells,
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namely immune cells, endothelial cells, neural cells, and
MSCs. Its interaction with TNFa leads to cell survival
and proliferation [9, 28, 29]. Previous studies revealed
that the TNFa/TNFR2 signaling in MSCs supports pro-
angiogenic and protective mechanisms, and inversely,
the TNFa/TNFRI1 axis is involved in deleterious mecha-
nisms. For example, murine TNFR2 KO bone marrow
MSCs (BM-MSCs) showed less or no myocardial func-
tional recovery in a rat model of acute ischemia accom-
panied by increased production of pro-inflammatory
factors and reduced level of VEGF in the myocardium
[30, 31]. This is consistent with other studies demon-
strating that the production of VEGF, insulin-like
growth factor 1 (IGF-1), and hepatocyte growth factor
(HGF) by TNF-primed human BM-MSCs is TNFR2-
dependent [32, 33]. Furthermore, the overexpression of
the soluble form of TNFR2 (sTNFR2) or the membrane
form of TNFR2 in human or rat BM-MSCs enhanced
their therapeutic effects in murine models of RA [34, 35]
and cardiac ischemia [36, 37], which was associated with
reduced TNF, IL-1f, and IL-6 secretion.

Interestingly, many immunosuppressive cells like T
regs, MDSCs, B regs, and EPCs express TNFR2 which is
directly related to their immunosuppressive efficiency
mostly through modulating the secretion of anti-
inflammatory cytokines [38—41]. MSCs are susceptible
to environmental changes, and their immunosuppressive
function can be regulated when exposed to an inflamma-
tory microenvironment [42]. The presence of TNFa and
other pro-inflammatory cytokines prime MSCs towards
more immunosuppressive functions [43-47].

To investigate the involvement of the TNFa/TNFR2
signaling pathway in the immunoregulatory effect of
MSCs, we considered the following facts: (1) MSCs are
among the rare population of TNFR2" cells, and TNF« is
important for their activation and immunomodulatory ef-
fect. (2) Many immunosuppressive cells express TNFR2
which is directly related to their immunosuppressive effi-
ciency. Thus, we investigated if the expression of TNFR2
by MSCs is related to their proper immunoregulatory ac-
tivities. We harvested BM-MSCs from TNFR2 KO mice
and compared them with WT-MSCs expressing normal
levels of TNFR2. Our results demonstrate for the first
time that the TNFa/ TNFR2 signaling pathway plays a crit-
ical role in the immunomodulatory effect of MSCs directly
through higher suppression of T cells and indirectly via in-
duction of more phenotypically active Foxp3™T regs.

Methods

MSC isolation, expansion, and characterization

BM-MSCs were isolated from the femurs and tibias of 6- to
8-week-old C57BL/6 WT mice (Charles River and Envigo)
and C57BL/6 TNFR2 KO (B6.129S2-Tnfrsflb™ ™M ™/,
The Jackson Laboratory). Mice were housed under
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pathogen-free conditions. Cells were cultured in 25-cm®
flasks in MEMa medium (Gibco) containing low glucose,
1% GlutaMAX, 10% FBS, and 1% penicillin/streptomycin/
neomycin (P/S/N) (Gibco). Cells were incubated at 37 °C in
a 5% CO,. Non-adherent cells were removed every 8h;
pure MSCs were obtained after 4—5 weeks. Cells were sub-
cultured prior to confluency. In all experiments, WT and
TNFR2 KO MSCs were used in passages 2 to 4.

For the identification of MSCs, 10° cells/well WT and
TNFR2-MSCs were seeded in Falcon 96-well round-
bottom plates. They were then immunostained with
CD44-PeCy7, Scal-APC, CD105-FITC, CD73-PE, CD45-
VIOBLUE, CD34-Biotin or FITC, CD90-Biotin or PE and
anti-biotin-PE or VIOBLUE (Miltenyi), and streptavidin-
PeCY5/CY7 (eBioscience). Unstained cells and isotypes
were used as controls. Flow cytometric analysis was per-
formed using the LSRFORTESSA flow cytometer (BD-
Biosciences) and analyzed using the FlowJo software v10
(FlowJo-LLC).

MSC differentiation assay

WT and TNFR2 KO-MSCs were tested for their ability
to differentiate into adipocytes and osteoblasts. Adipo-
genic differentiation was induced by culturing cells in a
specific differentiation homemade medium for 21 days
as already described [48]. Cells were then stained with
Oil Red for 5min. For osteocyte differentiation, MSCs
were cultured in differentiation medium (StemXVIVO
Osteogenic/Adipogenic Base Media supplemented with
P/S/N at 1:100 dilution + StemXVIVO Mouse/Rat
Osteogenic Supplement 20x) (R&D Systems) for 17 days
and stained 3 min with 2% Alizarin Red.

T cell isolation and culture

Pan T cell isolation kit II (Miltenyi) was used to isolate
total CD3"T cells from pooled spleens and lymph nodes
of 6- to 12-weeks-old female WT C57BL/6 mice (Envigo
and Charles River) and TNFa KO mice (B6.129S-
Tnf™ Y], The Jackson Laboratory). CD25" cells were de-
pleted from the CD3"T cell population using an anti-CD25
biotin-conjugated antibody (7D4, BD-biosciences), followed
by staining with anti-biotin microbeads (Miltenyi). Subse-
quently, cells were isolated using magnetic-activated cell
sorting (MACS). The resulting CD3"CD25™ T cells, >92%
pure, were cultured in the presence of WT and TNFR2
KO-MSCs.

MSC/T cell co-culture

WT or TNFR2 KO-MSCs were seeded into 6-well or
12-well plates and incubated for 24 h in MEMa contain-
ing low glucose, 1% GlutaMAX, 10% FBS, and 1% P/S/N
(Gibco). CD3"CD257T cells were then added in different
ratios, depending on experimental conditions, in RPMI
medium containing 10% FBS, 1% P/S/N, 1% HEPES, and
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0.1% PB-mercaptoethanol. All co-cultures were performed
in 50% MEMa-50% RMPI media. T cells were collected
after 3 days by gentle aspiration. The isolation of T cells
from co-culture is based on MSCs’ ability to adhere to
plastic; however, T cells stay in suspension.

T lymphocyte proliferation assay

5x 10* WT or TNFR2 KO-MSCs were co-cultured in 6-
well plates with increasing numbers of mice WT-
CD3"CD257T cells (responder cells) in a total volume of
3 ml. The ratios of MSCs to T cells were 1/1, 1/2, 1/4, 1/
6, 1/8, and 1/10. 2x 10° WT CD3'CD25 T cells were
used as control T cells alone. Cells were labeled with
carboxy fluorescein succinimidyl ester (CFSE) (Thermo
Fisher) and stimulated by Dynabeads Mouse T-Activator
CD3/CD28 (Gibco) according to the supplier’s protocol.
After 3days, T cells were collected and immunostained
with CD4-VIOBLUE and CD8a-PeCy7 (Miltenyi). To
eliminate the possibility of a non-specific effect of media
on T cell proliferation, T cells were cultured in 50%
RPMI-50% MEMa and compared to growth in 100%
RPMIL

T lymphocytes activation quantification

3x10* WT or TNFR2 KO-MSCs were co-cultured in
12-well plates with 1.5x 10° (1/5 ratio) of mice WT-
CD3*CD257T cells in a total volume of 2 ml. We used
this intermediate fixed ratio since we observed 50% im-
munosuppressive activity by MSCs. WT-CD3"CD25™T
cells were stimulated by Dynabeads Mouse T-Activator
CD3/CD28 (Gibco). 2x10° freshly isolated WT-
CD3*CD25°T cells were used as control T cells alone.
After 3days, WT-CD3"CD25 T cells were harvested
and immunostained with CD4-VIOBLUE and CD8a-
PeCy5 or CD8a-FITC, ICOS-PeCy7, GITR-PE, CD25-
PeCy7 or PE, and TNFR2-APC (Miltenyi). Intracellular
Foxp3 staining was performed according to the manu-
facturer’s instructions, using the Foxp3 staining buffer
set kit (eBioscience).

T lymphocyte cytokine quantification

3x10* WT or TNFR2 KO-MSCs were co-cultured in
12-well plates with 1.5 x 10° (1/5 ratio) of fresh mice
WT CD3"CD257T cells in a total volume of 2 ml. After
3days, WT-CD3"CD25°T cells were harvested. Cells
were then stimulated with 1 pg/ml PMA and 0.5 pg/ml
ionomycin for 4h and 30 min (Sigma), in the presence
of 1 pl/ml GolgiPlug for the last hour (BD Biosciences).
They were then immunostained with CD4-VIOBLUE,
CD8a- Pe-Cy7, IFNy-APC, TNFa-FITC, IL-10-APC, IL-
17-PE, IL-2-FITC (Miltenyi), and anti-TGEFB-PE
(Biolegend).
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T reg induction assay

3x10* WT or TNFR2 KO-MSCs were co-cultured in
12-well plates with increasing numbers of mice WT-
CD3*CD257T cells in a total volume of 2 ml. The ratios
of MSCs to T cells were 1/1, 1/2, 1/4, 1/6, 1/8, and 1/10.
2x10° WT-CD3"CD25 T cells were used as control T
cells alone. T cells were stimulated with Dynabeads
Mouse T-Activator CD3/CD28 (Gibco). For the condi-
tion using T cells from TNFa KO mice, 3 x 10° TNF«
KO CD3"CD25°T cells were activated with Dynabeads
Mouse T-Activator CD3/CD28 and co-cultured with
3 x 10* WT-MSCs (1/10 ratio MSCs/T cells). After 3
days, T cells were collected and immunostained using
the following Abs: CD4-VIOBLUE, CD8a-FITC, CD25-
PE-Cy7, CTLA4-PE, TNFR2-APC (Miltenyi), and
Foxp3-PE-Cy5 (eBioscience).

Statistical analysis

Prism (GraphPad) was used for statistical analysis.
Shapiro-Wilk normality test was performed to assess the
normal distribution of data. Then, Student ¢ test or 1-
way ANOVA with post hoc analysis was performed de-
pending on the number of comparatives. For cytometry
analysis, we have normalized the MFI values with T cell
alone control group. Then, we used unpaired, 2-tailed
Student ¢ tests or 1-way ANOVA for P value generation.

Results

MSC characterization

First, we assessed if BM-MSCs harvested from WT and
TNFR2 KO mice are pure cells with normal physio-
logical functions. Both were able to adhere to plastic
plates and proliferate until late passages. While WT-
MSCs showed normal morphological appearance,
TNFR2 KO-MSCs were more heterogeneous with lower
proliferation rate at passages 0 and 1 (Fig. 1a). The pro-
liferation rate became equivalent to that of WT-MSCs in
latter passages (data not shown). Moreover, both WT
and TNFR2 KO-MSCs were positive for murine MSC
markers such as CD44, CD105, CD73, CD90, and Sca-1
and negative for CD34 and CD45 markers (Fig. 1b). In
addition, we demonstrated their capacity to differentiate
into osteocytes and adipocytes under appropriate condi-
tions (Fig. 1c, d).

The MSC suppressive effect is decreased in the absence
of the TNFa/TNFR2 signaling pathway

MSC:s inhibit T cell proliferation in response to mitogenic
stimuli and CD3/CD28 stimulation. Here, we investigated
the role of the TNFa/TNFR2 axis in the ability of MSCs
to suppress T cell proliferation. WT and TNFR2 KO-
MSCs were co-cultured with CFSE'CD3*CD257T cells in
6 different ratios. CD25'T cells were depleted from the
primary population of T cells to eliminate activated T cells
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and non-specific immunosuppression by T regs. After 3
days, T cells were collected and the proliferation capacity
of CD4" and CD8*populations was quantified. Since two
different culture media were used for T cells and MSCs
(RPMI and MEMa, respectively), we used a 1:1 mix in co-
culture conditions. No difference was observed between T
cells cultured in 100% RPMI or in 50% MEMa-50% RPMI
(Fig. 2a, b). In all the ratios, CD4"CD25  (Fig. 2a) and
CD8*CD25™ (Fig. 2b) responder T cells in co-culture with
WT or TNFR2 KO-MSCs proliferated less than anti-CD3/
CD28-activated T cells alone (T cells + B RPMI). Interest-
ingly, we observed that WT-MSCs were significantly more
immunosuppressive than TNFR2 KO-MSCs for both CD4
and CD8 T cell proliferation (Fig. 2a—c). A significant dif-
ference in immunosuppressive effect between WT and
TNFR2 KO-MSCs was observed starting from 1/4 ratio
for CD4'T cells (22.91% and 49.60% of proliferation, re-
spectively) and also for CD8" T cells (33.56% and 62.41%
of proliferation, respectively). This difference was obvious
until 1/10 ratio for CD4*T cells (55.28% and 75.31% of
proliferation, respectively) and for CD8'T cells (63.13%
and 84.63% of proliferation, respectively). This is the first
evidence of a significant dose-dependent immunosuppres-
sive effect of MSCs on T cells that is more accentuated in
WT-MSCs than in TNFR2 KO-MSCs. However, the ab-
sence of TNFR2 did not entirely abolish the MSC im-
munosuppressive potential.

Expression of TNFR2 on MSCs is correlated to increased
CD4" conventional T cell immunomodulation

We next investigated if the ability of MSCs to modulate the
activation profile of CD4"T cells is also TNFR2 dependent.
WT and TNFR2 KO-MSCs were co-cultured for 3 days
with anti-CD3/CD28-activated WT-CD3"CD25 T cells at
a fixed 1/5 ratio (MSCs/T cells). T cells were then collected
and analyzed for the percentage of expression and the
mean fluorescence intensity (MFI) of different activation
markers for conventional CD4'Foxp3™T cells (CD4 T
convs). We first measured the expression of CD25; the o-
chain of the IL-2 receptor constitutively expressed on the
surface of T reg and activated T convs [46, 48]. After 3 days,
we observed a dramatic decrease in the percentage of
CD25" cells and CD25 expression level in CD4"T convs
when co-cultured with WT or TNFR2 KO-MSCs (Fig. 3).
However, this decrease was significantly higher for WT
than TNFR2 KO-MSCs. We also evaluated the expression
of two members of the TNFa receptor superfamily, GITR
(TNFRSF18) and TNFR2 (TNFRSF1B), both important in
T cell biology and expressed by activated T cells [49, 50].
Three days after, we observed a decrease in the percentage
of GITR" cells and MFI of GITR on CD4'T convs com-
pared to T cells alone. No significant difference was ob-
served between WT and TNFR2 KO-MSCs (Fig. 3). For
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Fig. 1 MSC WT and TNFR2 KO characterization. a MSCs WT showed normal spindle-shaped fibroblast-like appearance (passage 3) (x 4) while
MSCs TNFR2 KO exhibited a more heterogeneous morphology (passage 3) (x 4). b Flow cytometry analyses of the surface expression of CD45,
CD34, CD44, CD105, CD73, CD90, and SCAT in MSCs WT and TNFR2 KO (passage 3). Both MSC populations were negative for CD45 and CD34
and positive for the rest of the markers studied. The dark gray histograms represent isotype controls. Data are representative of n=6in 3
independent experiments. ¢ Osteogenic differentiation: both MSCs WT and TNFR KO (passage 3) were incubated in osteogenic differentiation
medium for 17 days followed by Alizarin Red S staining (x 4). d Adipogenic differentiation: both MSCs WT and TNFR2 KO (passage 3) were
incubated in adipogenic differentiation medium for 21 days followed by Oil Red O staining (x 4)

TNEFR2 expression, we noticed a significant decrease in the
percentage of TNFR2" cells among CD4"T convs when co-
cultured with WT or TNFR2 KO-MSCs compared to T
cells alone (Fig. 3). This decrease was more important for
WT than for TNFR2 KO-MSCs. However, for MFI of
TNFR2 on CD4*T convs, we noticed a decrease when co-
cultured with WT but an increase with TNFR2 KO-MSCs.
Finally, we studied the expression of ICOS among

CD4"T convs. ICOS co-stimulatory receptor is essen-
tial for T cell activation and proliferation [51]. After
3 days of co-culture, we observed a significant reduc-
tion in the percentage of ICOS" cells and ICOS ex-
pression level among CD4"T convs when co-cultured
with WT or TNFR2 KO-MSCs (Fig. 3). This decrease
was significantly more important for T cells co-
cultured with WT than with TNFR2 KO-MSCs.
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performed to generate P values. ns, non-significant; *P < .05, **P < .01, ***P < 00

1, ¥***P < 0001. b Anti-CD3 and anti-CD28 activation beads

Expression of TNFR2 on MSCs is correlated to increased
CD8" conventional T cell immunomodulation

To investigate the role of TNFR2 expression by MSCs
on the cytotoxic T cell activation profile, WT and
TNFR2 KO-MSCs were co-cultured for 3 days with anti-
CD3/CD28 activated WT-CD3"CD25™ T cells at a 1/5
ratio (MSCs/T cells). T cells were then collected and an-
alyzed for the percentage of expression and MFI of dif-
ferent activation markers of conventional CD8 Foxp3™ T

cells (CD8 T convs). We observed a dramatic decrease
in the percentage of CD25" cells and CD25 expression
level in CD8'T convs when co-cultured with WT or
TNFR2 KO-MSCs (Fig. 4). However, this effect was
more accentuated in the presence of WT-MSCs versus
TNFR2 KO-MSCs. Furthermore, analysis of GITR
showed a decrease in the percentage of GITR" cells and
MFI of GITR on CD8'T convs. This decrease was sig-
nificantly more important for WT than TNFR2 KO-
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Fig. 3 The expression of TNFR2 on MSCs is directly correlated to their higher immunomodulation of CD4" T convs. Activated CD3™ effector T
cells were co-cultured with MSCs WT or TNFR2 KO in a fixed 1/5 ratio. After 3 days, T cells were collected and different activation markers were
studied. Cells were gated on oxp3~ T conventional cells. For each marker, the strategy of gating is indicated on the left (y-axis) and below
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(x-axis) the figure. The x-axis represents each activation marker, and the y-axis represents the CD4 population. Left dot plots represent the
Fluorescence Minus One (FMO) controls, and right dot plots represent the main samples. Each dot represents a measured value (n = 6) collected
from 2 different experiments. For each group of values, horizontal lines represent the mean value and standard error of the mean. MFI values
have been normalized with the T cells alone control group. One-way ANOVA analysis was performed to generate P values. ns, non-significant;
*P <05, **P < .01, ***P < 001, ¥***P <0001

MSCs. For TNFR2, we observed a decrease in the per- TNFR2 KO-MSCs. We found no decrease in MFI of
centage of TNFR2" cells in CD8'T convs co-cultured TNFR2 but a significant increase when co-cultured with
with WT or TNFR2 KO-MSCs (Fig. 4). Once again, this TNFR2 KO-MSCs. Finally, we studied the expression of
decrease was more significant for WT-MSCs versus ICOS on CD8'T conv. There was a notable decrease in
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Fig. 4 The expression of TNFR2 on MSCs is directly correlated to their higher immunomodulation of CD8" T convs. Activated CD3" effector T
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the percentage of ICOS™ cells, when co-cultured with  significant decrease in MFI of ICOS on CD8'T convs
WT or TNFR2 KO-MSCs. This decrease was more im- was observed only when co-cultured with WT-MSCs
portant with WT-MSCs than TNFR2 KO-MSCs. A  (Fig. 4).



Beldi et al. Stem Cell Research & Therapy (2020) 11:281 Page 9 of 15

MSCs modulate the capacity of T cells to produce pro- A B
and anti-inflammatory cytokines via the TNFa/TNFR2 Gated on Foxps- PR —— —
signaling pathway P B '_"_;_
After activation, T cells produce pro- or anti-inflammatory g M 8 %j R Pl o
cytokines. We examined whether blocking the TNFa/ £ £
TNER? signaling pathway in MSCs modifies T cell cytokine Y R & e é_@*"é e
production. We focused on principle cytokines secreted by & &.«f & **&
the four main subpopulations of T helper cells (Th1, Th2, atedon Fo. Q . * m
Th17, and T reg) and cytotoxic T cells (Tcl, Tc2, Tcl7, ‘ g - e
and T reg). WT and TNFR2 KO-MSCs were co-cultured g F ‘ g ‘ i VR e P e
with WT-CD3"CD257T cells. After 3 days, T cells were col- g - £ ol
lected and analyzed for their cytokine production capacity. TNFa ™2 Ay : s
At first, we investigated the capacity of T cells to produce & f & f«”@
different pro-inflammatory cytokines. Interestingly, we ob- ) i~ -
served a significant reduction in CD4"T convs producing Sateclon forp3: ; S g
IFNy, TNFa, IL-2, and IL-17 when co-cultured with WT or 3 L‘ ] m E : Ed o P R
TNER2 KO-MSCs, compared to control T cells. This de- A S
crease was more significant for WT-MSCs compared to -2 2w S A
TNFR2 KO-MSCs (Fig. 5a). In CD8'T convs, we did not v &
observe a significant decrease in IFNy-producing T cells . - . ”
while co-cultured with WT-MSCs; however, there was a crelonfoRt g ke e e
notable increase in IFNy-producing CD8'T cells while co- g ﬂj g ﬂ :’ “| - E’ " . :
cultured with TNFR2 KO-MSCs (Fig. 5b). Regarding TNFa ¢ TR e T
and IL-17, a reduced production capacity was noticed IL-17 w2 & P &
merely by CD8'T convs co-cultured with WT-MSCs and v er &
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the WT-MSCs group (Fig. 5d). T cells were co-cultured with MSCs WT or TNFR2 KO in a fixed 1/5
ratio. After 3 days, T cells were collected, activated with PMA/
Expression of TNFR2 by MSCs is correlated to their higher ionomycin, and then blocked with GolgiPlug (a protein transport
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eliminate the unspecific expansion of natural T regs. After
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3 days of co-culture, T cells were collected and analyzed
for Foxp3 expression. In all conditions, both CD4" (Fig. 6a)
and CD8'T cells (Fig. 6b) in co-culture with WT or
TNFR2 KO-MSCs expressed more Foxp3 than in the con-
trol T cells alone in a dose-dependent manner. In the
CD4" population, 1.89% of the T cells expressed Foxp3 at
day 0, ie., immediately after the elimination of CD25"
subpopulation (T cells alone). This value significantly in-
creased after co-culturing with WT or TNFR2 KO-MSCs,
reaching to 13.43% and 8.45%, respectively, in 1/1 ratio
and kept rising until 42.93% and 24.07%, respectively, in
1/10 ratio (Fig. 6a). In the CD8" population, 1.22% of the
T cells expressed Foxp3 at day 0, after the elimination of
CD25" subpopulation. This value significantly increased
after co-culturing with WT or TNFR2 KO-MSCs, reach-
ing to 6.38% and 2.66%, respectively, in 1/1 ratio and kept
rising until 19.30% and 9%, respectively, in 1/10 ratio
(Fig. 6b).

To reinforce our results, we disrupted this signaling
pathway via blocking the TNFa production by T cells. In
this context, MSCs express TNFR2 but receive no sig-
nals from T cells. WT-MSCs were co-cultured with
anti-CD3/CD28-activated CD3"CD25™ T cells harvested
from WT or TNFa KO mice in a fixed ratio (1/10
MSCs/T cells, ie., the most efficient ratio to induce
Foxp3 expression) for 3 days. As expected, the percent-
age of Foxp3'T regs among CD4'T convs was signifi-
cantly less in TNFa KO-T cells compared to WT T cells
(35.86% and 63.2%, respectively) (Fig. 6¢). Thus, two dif-
ferent approaches confirm the critical role of the TNFa/
TNEFR?2 signaling pathway in T reg induction by MSCs.

Expression of TNFR2 on MSCs leads to induction of T regs
with a more active phenotype

To characterize the activation profile of CD4"Foxp3'i-
Tregs, we quantified different activation markers, such as
CD25, CTLA4, and TNFR2. The percentage of CD25"
cells and the CD25 expression level on CD4"Foxp3'iTregs
was significantly higher after co-culture with WT-MSCs
than with TNFR2 KO-MSCs (Fig. 7). The same results
were observed for the CTLA4 expression (Fig. 7). We and
others have shown that one of the most important regula-
tors of T reg activity is TNFR2 which is directly related to
their activation and immunosuppressive function [38, 52].
We found that the percentage of TNFR2'iTregs from co-
culture with WT-MSCs was significantly higher than
TNFR2 KO-MSCs (Fig. 7). No significant difference was
observed for MFI of TNFR2 in different conditions. Thus,
TNFR2"MSCs were able to induce more active Foxp3*T
regs compared to TNFR2™ MSCs.

Discussion
Since MSCs display wound healing [53], immunomodu-
latory, and anti-inflammatory effects [25-27], they are
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ideal choices for cell therapy applications. First clinical
trials were performed with autologous MSCs, but those
treatments were patient-specific, inefficient, and expen-
sive [54]. Then, converging evidences showed that allo-
genic MSCs have comparable efficacy, without immune
rejection issues [55]. This established interesting per-
spectives for broader administration of MSCs in clinics
using banks of allogenic MSCs from different tissue ori-
gins. Therefore, it is crucial to understand the mecha-
nisms behind MSC immunoregulatory activity.

Here, we performed co-cultures of MSCs (WT and
TNFR2 KO) and T cells (WT and TNFa KO) to in-
vestigate the effects of the TNFa/TNFR2 axis on
MSC-T cell interaction. We have previously assessed
and reported the viability of MSCs and T cells upon
co-culturing in different conditions. The viability of
cells was between 77 and 98% depending on the co-
culture condition [25-27].

Co-culture of activated CD4"Foxp3~ and CD8"Foxp3™ T
cells with MSCs remarkably reduced their proliferation in
a dose-dependent manner. Interestingly, this immunosup-
pressive effect was significantly decreased when TNFR2
KO-MSCs were used. Our data point that the TNFa/
TNEFR2 axis is an important but not the only regulator of
MSC immunosuppressive function since TNFR2 KO-
MSCs were also immunosuppressive but less efficiently.
We then measured the ability of MSCs to modify T conv
activation profile by quantifying the expression of CD25,
GITR, ICOS, and TNFR2 markers. While both MSCs
were able to down-modulate CD4'Foxp3~ and
CD8'Foxp3 T cell activation, this immunomodulatory ef-
fect was stronger with WT than TNFR2 KO-MSCs. Thus,
we report a direct correlation between the TNFR2 expres-
sion and the MSC immunomodulatory effect. Among dif-
ferent T cell activation markers, we targeted two TNFa
receptor superfamily members, GITR and TNFR2, and
demonstrated a more significant decrease in their expres-
sion while T cells were co-cultured with WT-MSCs. This
reflects a complex modulation of TNFa signaling in T
cells in the presence of TNFR2*MSCs. Accordingly, other
studies showed when TNFR?2 is decreased on T cells, they
will be more efficiently suppressed by T regs [50] and here
by MSCs. Furthermore, this downregulation was accom-
panied by a modification in T cell cytokine production.
WT-MSCs decreased T cell pro-inflammatory cytokines
like IFNy, TNFq, IL-2, and IL-17 and increased the anti-
inflammatory cytokines like IL-10 and TGEp. This effect
was less or even totally hindered with TNFR2 KO-MSCs,
pointing out the critical role of TNFR2 expression by
MSCs. This is in agreement with studies reporting, upon
TNFa activation, MSCs produce a higher level of im-
munosuppressive molecules such PGE2, TSG6, IL-8,
CXCL5, CXCL6, and other growth factors like HGEF,
IGF1, and VEGF [9, 56, 57].
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Fig. 6 Expression of TNFR2 by MSCs is directly correlated to their higher Foxp3 T reg induction capacity. Activated CD4" or CD8" effector T cells
were co-cultured with MSCs WT or TNFR2 KO in different ratios (n =9). After 3 days, the expression of Foxp3 among CD4" T cells (a) and CD8* T
cells (b) was measured by flow cytometry. Cells were gated on CD4*CD25"Foxp3*or CD8*CD25*Foxp3™ T cells. The gating strategy is indicated
on the left and under the figures. The first black bar represents the percentage of Foxp3-expressing cells among total effector T cells used in co-
cultures at day 0 (n =9) while the second bar represents the percentage of Foxp3-expressing T cells alone after 3 days of culture (n=9). (c) CD4"
T cells collected from the spleen of WT or TNFa deficient mice were co-cultured with MSCs WT. Cells were gated on CD4"CD25"Foxp3*. Data are
represented as the mean value + SEM collected from 3 different experiments. One-way ANOVA or unpaired Student t test analysis was performed

Thereafter, we quantified the involvement of the
TNFa/TNER2 signaling pathway in the ability of MSCs
to convert T convs to CD4"Foxp3* and CD8 Foxp3*T
regs. Expectedly, this effect was more preeminent with
TNFR2"MSCs than with TNFR2 KO-MSCs. These re-
sults are encouraging, since CD8'T regs are naturally
rare population compared to their CD4" counterparts.
However, after co-culturing with TNFR2"MSCs, 20% of

CDS8"T cells expressed Foxp3 which is double compared
to TNFR2 KO-MSCs. To reinforce our results, we ham-
pered the TNFa/TNFR2 axis by co-culturing WT-MSCs
and TNFa KO-T convs that are incapable of TNFa pro-
duction. Again, in the absence of TNFa, the ability of T
convs to differentiate into T regs was significantly de-
creased. Accordingly, it was demonstrated that pre-
treatment of MSCs with TNFa is crucial for the
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Fig. 7 The expression of TNFR2 on MSCs is leading to the induction of T regs with a more activated phenotype. The activation status of the T
regs that were induced after the co-culture of CD4" conventional T cells with MSCs WT or TNFR2 KO was evaluated. Cells were gated on
CD4*Foxp3™T cells. For each marker, the strategy of gating is indicated on the left and under the figure. Each dot represents a measured value
(n=4) collected from 2 different experiments. For each group of values, horizontal lines represent the mean value and standard error of the
mean. Unpaired Student t test analysis was performed to generate P values. ns, non-significant; **P < .01, ***P < .001. iTregs, induced T reg cells

polarization of macrophages towards more anti-
inflammatory M2 and less pro-inflammatory M1 sub-
population [57] and increased T reg repertory [58].

As demonstrated in the results, even TNFR2 KO-
MSCs show some level of immunoregulatory features;
however, these effects are significantly less than WT-
MSCs. We believe that the presence of TNFR2 guaran-
tees higher survival and less apoptosis rate. The expres-
sion of TNFR2 has been already correlated to increased
IL-10 and TGEP production [40, 59]. As we have also
shown, WT-MSCs are able to produce more of those
anti-inflammatory cytokines, exerting more immunosup-
pressive effect. The absences of TNFR2 can negatively
affect signaling through TNFR1 not only by decreasing
functional cells but also by increasing the pro-
inflammatory profile of surviving cells. It has been

demonstrated that TNFR1 signaling promotes inflamma-
tion due to increased production of pro-inflammatory
factors including TNF, IL-1B, and IL-6 [60]. However,
observing a certain level of immunoregulation by TNFR2
KO-MSCs reveals some form of crosstalk between the
two receptors. Due to the absence of the death domain
(DD) in the TNFR2 signaling pathway; TNFR1 and
TNEFR2 have two distinct functionalities. Nevertheless,
both receptors (predominantly TNFR2) can activate the
NF-«B signaling pathway via the involvement of TNF
receptor-associated factors (TRAFs) [61]. It has been
demonstrated that TNFR family co-stimulation increases
regulatory T cell activation and function via NF-«B [62].
Moreover, it was shown that the NF-«B RelA subunit
(p65) transcription factor is critical for T reg activation
and stability [63]. This could explain why TNFR2 KO-
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MSCs maintain a certain level of immunoregulation and
are still able to induce T regs.

TNEFR?2 is expressed by most of the known immuno-
suppressive cells. Our results are the first evidence prov-
ing TNFR2 as an active immune checkpoint for MSCs,
enabling regulation of their immunological features. It
was shown that TNFR2'T regs are the most homoge-
neous population with the highest immunosuppressive
function [64, 65]. MSCs are very heterogeneous stem
cells, and this effects their functionality. It will be inter-
esting to sort TNFR2™MSCs to have the purest and the
most immunosuppressive population.

In case of cancer, MSCs help tumor cells to evade im-
mune attack, while promoting tumor angiogenesis [66].
They participate in many crucial steps from invasion
and metastasis, including stimulating the epithelial-
mesenchymal transition and induction of stem-like
properties that allow cancer stem cells to increase their
survivability [67, 68]. Using anti-TNFR2 treatment could
be an efficient way to simultaneously hamper immuno-
suppression by T regs [38, 69] and other immunosup-
pressive cells present in the tumor microenvironment
[70], to directly eliminate TNFR2 expressing tumor cell
[71, 72], to interrupt angiogenesis [73], and to decrease
MSC survival and function.

Conclusions

Our results reveal another mechanism that MSCs use to
regulate immune response. Using different in vitro ex-
perimental approaches, we have demonstrated for the
first time that the TNFa/TNFR2 signaling pathway is in
control of the immunomodulatory properties of MSCs.
Signaling through this immune checkpoint axis can
modulate MSC ability to suppress T cell proliferation,
activation, cytokine production, and their capacity to in-
duce active T regs.

This work brings us one step closer to this conclusion
that targeting TNFR2 using its proper antagonist is an
effective way to direct immunoregulatory responses. Not
only will it efficiently control immunosuppression by
MSCs and other TNFR2" immunosuppressive cells but
also angiogenesis and cell survival, highlighting its import-
ant therapeutic potential in cases like cancer treatment. In-
versely, boosting through TNFR2 via administration of its
agonist could potentially elevate MSC immunoregulatory
function favoring the cases such as transplantations in
which increased anti-inflammatory responses are especially
required.
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