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Abstract Various multicriteria sorting methods have been proposed in the
literature to assign the feasible alternatives into predefined categories. We con-
sider here problems involving a set of totally ordered categories representing
different achievement levels in the satisfaction of criteria. As in many exist-
ing methods, the assignment rule of an alternative to a category is based on
the comparison of its performance vector to reference profiles defining lower
bounds of the categories. Within this standard setting we address a new prob-
lem that consists in finding how to modify a given solution, within a combi-
natorial set of alternatives, to upgrade it in the upper category (or higher) at
minimum cost. We also consider the problem of identifying the sequence of
solutions that minimize the total cost while satisfying some budget constraint
at every step, and the problem of determining how to modify the current so-
lution to save money while staying in the same category. We first propose a
general approach based on mixed integer (linear or quadratic) programming to
solve these problems. Then, we implement this approach on various multiob-
jective combinatorial problems, such as multi-agent assignment problems and
multiobjective knapsack problems. Numerical tests are provided to establish
the feasibility of the approach on instances of different sizes.
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1 Introduction

In the field of multicriteria decision making, it is usual to distinguish different
types of decision problems according to the nature of the recommendation
sought, see e.g., [39]. Besides choice and ranking problems that are very fre-
quent in practice and that motivate a large number of contributions in the
field of multicriteria decision aid, there are other problems known as sorting
problems where the goal is to assign the alternatives to predefined categories
(ordered or not). One major difference with choice and ranking problems lies
in the aim of defining an absolute evaluation system. In sorting problems, we
are not merely interested in the relative value of the alternatives but also in
their instrinsic qualities. What really matters is how alternatives compare to
norms defining the categories. Very often, the categories are totally ordered
and in this case the norms can be represented by different reference levels on
an overall utility scale (see the UTADIS method [25]) or by different reference
vectors in the space of criteria (different achievement levels in the satisfaction
of criteria, as in the ELECTRE TRI method [32, 42]). In other cases, cate-
gories are not ordered (or only partially ordered) and represent different types
of alternatives characterized by specific combinations of features [16,24,27].

Multicriteria sorting methods are useful for decision support because they pro-
vide intrinsic evaluations of the alternatives (objects, projects, candidates).
They allow to partition the set of alternatives into specific classes correspond-
ing to different types of values and norms, that may receive different treatments
or lead to different decisions. Moreover, the assignment of an alternative to
a category is easily explainable because it is based on the comparison of the
alternative to reference norms. These norms can be explicited as well as the
criteria and the rule used to make the comparisons, and can be used as a
support to explain the final decisions.

The multicriteria sorting problem has motivated various contributions in dif-
ferent directions. Different versions of the initial ELECTRE TRI method have
been proposed and studied, see e.g., [1, 6, 10, 15, 28]. In addition, other multi-
criteria sorting procedures relying on similar principles have been proposed,
offering new variants and some sophistications [11,22,30,31,44]. Moreover, the
sorting problem has been extended to the case of fuzzy categories and some
multicriteria filtering procedures based on the comparison of alternatives to
reference points have been proposed to define the membership of any alterna-
tive to any category [2, 16, 21, 36]. Then the axiomatic fundations of sorting
methods have been studied, especially in the case of non-compensatory com-
parison methods based on a weighted majority principle [4, 5, 40]. Another
stream of research on sorting methods concerns the supervised learning of
preference parameters used in such methods, typically the weights of criteria,
the preference thresholds and/or the reference levels or reference points used to
define the categories. Various methods have been proposed for the automatic
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learning or the interactive elicitation of these parameters from assignment
examples, e.g., [3, 23,28,41,43].

Beyond these works that are still very active, other questions of interest con-
cern post-assignment analysis aiming at investigating the possibility of pre-
serving or improving the level of performance of a given solution or to find the
best possible modifications leading to achieve a target level. These questions
that have much importance in practice have recently led to various interesting
proposals. Let us mention the post-factum analysis [9, 26] aiming to highlight
the minimal improvements that would warrant the feasibility of a currently
impossible outcome or the maximal deteriorations that alternatives can afford
to maintain a target result. A similar concern is present in the literature on
stepwise benchmarking [14, 17, 37, 38] that deals with finding an optimal im-
provement path for objects, units or entities and to provide recommendations
for stepwise improvement.

In this paper, we focus on similar issues for multi-criteria evaluation problems
in which the overall value of a solution is defined by its assignment to a category
using a sorting procedure (each category representing a clearly identified level
of performance). More precisely, we consider the following questions:

1. The Min Cost Improvement problem: given a feasible solution of a multi-
objective optimization problem, assigned to a given category by a sorting
procedure, find the min cost modifications of this solution that will lead
to a new feasible solution belonging to an upper category targeted by the
decision maker.

2. The Max Gain Stability problem: given a feasible solution of a multiob-
jective optimization problem, assigned to a given category by a sorting
procedure, find a new solution in the same category allowing the maximal
gain (or cost saving).

3. The Min Cost Improving Sequence problem: given a feasible solution x0 of
a multiobjective optimization problem, and a fixed number of steps h, find
the sequence of solutions (x0, . . . , xh) that minimizes the total cost among
those with xh belonging to the category targeted by the decision maker.

These questions which correspond to very natural practical concerns lead to
new optimization problems that must be formulated and solved. The closest
work we know on such questions is a recent work on the “Inverse Multicriteria
Sorting Problem (IMSP)” [33] but the framework is a bit different. Starting
from a given alternative, it is assumed in the IMSP that various possible
actions can modify the performance of this alternative and the aim is to find
the combination of actions that will allow a min cost improvement, or a max
improvement for a given cost. Hence, the admissible modifications of solutions
are not imposed by the structure of the set of alternatives but by external
actions that could directly modify the criterion values of the alternative under
consideration.
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As far as we know, very few contributions on this subject address these ques-
tions on combinatorial domains. However such questions may also appear in
multiobjective combinatorial optimization problems [12, 13], for example to
improve the overall quality of a solution to a multiobjective transportation
problem aimed at supplying stores from factory warehouses, to increase the
efficiency or satisfaction of a team by modifying the assignment of tasks in-
cumbent on each individual, or to improve the value of a group of objects or
individuals selected from a set of potential candidates under a budget con-
straint (multiobjective knapsack problem). When the list of feasible solutions
is not explicit, it is much harder to explore the possible solutions that be-
long to the target category, and this makes the search of the most adequate
improvements much more complex. In particular, when the set of feasible al-
ternatives has a combinatorial structure, finding optimal improvements from
a given solution leads to combinatorial optimization problems that must be
formulated and solved. This paper aims to address these problems.

This is why, in this paper, we consider the case of a multiobjective combinato-
rial optimization problem where the value of every feasible solution is defined
by a multicriteria sorting procedure involving a list of pre-defined ordered cat-
egories. Any modification of a solution may generate losses or gains and is
limited by feasibility constraints defining the set of admissible solutions. Un-
der these assumptions, we want to propose computational models to answer
the two above mentioned questions.

The paper is organized as follows: first, we present the multicriteria sorting
method studied in the paper (Section 2). Then, we introduce the min cost
improvement, max gain stability and the min cost improving sequence prob-
lems, and provide mixed integer (linear/quadratic) formulations to efficiently
solve these problems (Section 3). Finally, we provide numerical results for
three multicriteria sorting problems on combinatorial domains (transporta-
tion, assignment, and knapsack problems) showing the practical efficiency of
our approach (Section 4).

2 The Multicriteria Sorting Method

In this paper, we consider sorting problems where alternatives/solutions are
evaluated with respect to n criteria to be maximized. The set of alternatives
can be implicitly defined as the set of all feasible solutions of a multi-objective
combinatorial optimization problem, as defined here below:

max f(x) = Wx

s.t.

{
Ax ≤ b
x ∈ Nm

where xT = (x1, . . . , xm) ∈ Nm is a solution vector, W ∈ Zn×m is a matrix
allowing the definition of performance vectors from solution vectors, f(x)T =



Min Cost Improvement and Max Gain Stability 5

(f1(x), . . . , fn(x)) ∈ Zn is the performance vector giving the evaluation of x
with respect to every criterion i ∈ N = {1, . . . , n}, and A ∈ Zd×m and b ∈ Zd

are matrices that jointly impose d ∈ N feasibility constraints on solutions. The
set of all feasible solutions will be denoted by X in the sequel.

In sorting problems, alternatives are to be assigned to categories based on
their performance vector. Here we consider a set of q categories denoted by
K = {K1, . . . ,Kq}, where K1 is the best category and Kq is the worst one. The
bounds of categories are defined using a setR of multicriteria reference profiles
R = {r0, r1, . . . , rq}, where r` = (r`1, . . . , r

`
n) ∈ Rn defines the lower boundary

of category K`, ` ∈ {1, . . . , q}, and r0 ∈ Rn represents a top performance
profile chosen to bound above all criterion values. These reference profiles are
defined in such a way that r` � r`+1 for all ` ∈ {0, . . . , q− 1}, where � is the
strict Pareto dominance relation defined as follows: a� b if and only if ai > bi
for all i ∈ N . At some point, we will also consider the weak Pareto dominance
(i.e. a � b if and only if ai ≥ bi for all i ∈ N) and the Pareto dominance (i.e.
a � b if and only if ai ≥ bi for all i ∈ N and ai > bi for some i ∈ N).

In this context, the general principle of preference-based assignment methods
is to assign alternatives to categories according to the following rule:

Assignment Rule (∗): Alternative x ∈ X is assigned to category K` if and
only if x is preferred to profile r` and x is not preferred to profile r`−1.

We focus here on the assignment method introduced in [36] which is a soft
implementation of this principle using valued preference relations and fuzzy
membership to categories. This sorting method is based on the following pref-
erence indices:

Monocriterion preference index: For any criterion i ∈ N , the preference
index Pi(x, r

`) of any alternative x ∈ X with respect to any reference profile
r` ∈ R is defined by:

Pi(x, r
`) =


1 if fi(x)− r`i > γ+i
fi(x)− r`i − γ

−
i

γ+i − γ
−
i

if γ−i < fi(x)− r`i ≤ γ
+
i

0 if fi(x)− r`i ≤ γ
−
i

(2)

This index measures the credibility of the statement “alternative x is better
than profile r` with respect to criterion i”. The variation of Pi(x, r

`) as the
performance difference fi(x)−r`i increases is represented in Figure 1. This pref-
erence index is maximal (i.e. equals 1) when the difference fi(x)− r`i is larger
than γ+i the preference threshold representing the minimal performance dif-
ference compatible with a strict preference. This index is minimal (i.e. equals
0) when the difference fi(x) − r`i is below γ−i the indifference threshold rep-
resenting the maximal performance difference compatible with an indifference
(absence of preference). Between these two thresholds, there is an area where
the decision maker may hesitate between strict preference and indifference; in
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fi(x)− r`i

Pi(x, r
`)

1−

0 |

γ−i

|

γ+i

Fig. 1: Preference index Pi(x, r
`) as a function of fi(x)− r`i .

this area, the monocriterion preference index grows linearly with the differ-
ence fi(x)−r`i (see Figure 1). We assume here that preference and indifference
thresholds are part of the definition of the criterion scale and they are defined
in such a way that γ+i > γ−i holds.

These monocriterion indices are then aggregated into an overall preference
index P (x, r`) using an aggregation function ψθ parameterized by θ:

Overall preference index: The overall preference index P (x, r`) of any so-
lution x ∈ X with respect to any reference profile r` ∈ K is defined by:

P (x, r`) = ψθ(P1(x, r`), . . . , Pn(x, r`)) (3)

This overall index represents the strength of arguments supporting the state-
ment “alternative x is better than profile r`”. A standard choice for ψθ is a
compromise operator, i.e. an aggregation function that verifies mini∈N{ai} ≤
ψθ(a) ≤ maxi∈N{ai} for all a = (a1, . . . , an) ∈ Rn. When considering such
an operator, P (x, r`) necessary belongs to [0, 1]. It is equal to 1 when the
criteria are unanimously in favor of strict preference, and equals 0 when they
are unanimously against preference. Moreover, ψθ is assumed to be compat-
ible with weak Pareto-dominance, i.e. ψθ(a) ≥ ψθ(b) for all a, b ∈ Rn such
that a � b. In this paper, a special focus will be placed on the discrete Cho-
quet integral, which is a family of (non-linear) aggregation functions that is
very popular in multicriteria decision making as it enables to model possible
synergies between criteria [18, 20]. These aggregation functions are specified
by a capacity function θ : 2N → [0, 1] such that θ(∅) = 0, θ(N) = 1 and
θ(A) ≤ θ(B) for all A ⊂ B ⊆ N , which defines the weight attached to any
coalition of criteria [19]. The discrete Choquet integral assigns to any perfor-
mance vector a = (a1, . . . , an) ∈ Rn the following value:

ψθ(a) =

n∑
i=1

(
a(i) − a(i−1)

)
θ(A(i)) with a(0) = 0,

where (·) is a permutation such that a(i−1) ≤ a(i) for all i ∈ N (sorting the
components of vector a in increasing order) and A(i) = {(i), . . . , (n)} is the
set of criteria with respect to which alternative a has a performance greater or
equal to a(i). For illustration purposes, let us consider the capacity function
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∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
θ 0 0.2 0.1 0.3 0.4 0.7 0.6 1

Table 1: An example of capacity function.

given in Table 1. For a = (3, 2, 5), we have ψθ(a) = (2− 0)× θ({1, 2, 3}) + (3−
2)× θ({1, 3}) + (5− 3)× θ({3}) = 2× 1 + 1× 0.7 + 2× 0.3 = 3.3.

The family of Choquet integrals includes the weighted sums (when θ is addi-
tive, i.e. θ(A∪B) = θ(A)+θ(B)) and OWA aggregators (when θ is symmetric,
i.e. θ(A) = θ(B) for all A,B s.t. |A| = |B|) as a special case. Moreover, using
a convex capacity enables to model preferences for well-balanced preference
profiles (see e.g., [8]). Moreover, these subclasses are very interesting from a
computational perspective since efficient linearization techniques have been
proposed for these functions [7, 29,34,35].

Finally, the membership indices and the assignment rule are defined as follows:

Membership index: The membership index c`(x) of any alternative x ∈ X
to any category K` ∈ K is defined by:

c`(x) = min
{
P (x, r`), 1− P (x, r`−1)

}
(4)

This index measures the membership of any alternative x to any category K`

on the [0, 1] scale. Equation (4) is a translation in multi-valued logic of the
assignment rule (∗): in this equation, 1 − P (x, r`−1) is used for the negation
and the min t-norm for the conjunction. For any fixed alternative x, c`(x) seen
as a function of ` is unimodal, with a maximum at least equal to 1/2 (for more
details see [36]).

Assignment rule (∗∗): Alternative x ∈ X is assigned to category K` if and
only if ` is the smallest index such that c`(x)= max

`′∈{1,...,q}
c`′(x).

In the sequel, c(x) will denote the index of the category in which x is assigned.

This preference-based sorting method is typical of the “compare then aggre-
gate” approach: to determine the category of any alternative x ∈ X , we first
compare x to all reference profiles r` ∈ R by considering each criterion sep-
arately, leading to monocriterion indices Pi(x, r

`), i ∈ N . These indices are
then aggregated using (3) to define P (x, r`) and the membership of x to any
category K` by (4). The advantage of this approach lies in the use of reference
vectors r` instead of scalar thresholds on aggregated values, which allows a
finer control in the definition of category boundaries: two alternatives having
the same “average” performance but different performance vectors may be
assigned to different categories, as shown in the following example:

Example 1 Consider a sorting problem with 3 criteria f1, f2, f3 and 3 refer-
ence profiles r0, r1, r2 (given in Table 2) allowing the definition of two cate-
gories K1 and K2. We use the same preference threshold γ+i = 1 and indif-
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f1 f2 f3
r0 30 30 30
r1 11 10 12
r2 0 0 0

Table 2: Multicriteria reference profiles defining categories in Example 1.

ference threshold γ−i = 0 for all criteria i ∈ N = {1, 2, 3}. We aggregate the
preference indices using a Choquet Integral ψθ with the capacity θ defined as
follows (Table 3):

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
θ 0 0.2 0.1 0.3 0.4 0.7 0.6 1

Table 3: Capacity θ used in Example 1.

Consider 2 alternatives x, y with the following performance vectors: f(x) =
(6, 11, 16) and f(y) = (7, 6, 20). Note that alternatives x and y would be indis-
cernible after using ψθ as a direct scalarization function since they have the
same aggregated value: ψθ(f(x)) = 6 + (11− 6)× 0.6 + (16− 11)× 0.3 = 10.5
and ψθ(f(y)) = 6+(7−6)×0.6+(20−7)×0.3 = 10.5. Let us compare x and y
indirectly using reference profiles r1, r2 and r3. Using Equations (3) and (4),
we obtain the following overall preference indices and membership values:

P (·, r0) P (·, r1) P (·, r2) c1(·) c2(·)
x 0 0.6 1 0.6 0.4
y 0 0.3 1 0.3 0.7

Table 4: Overall preference indices and membership values in Example 1.

For example, using Equation (3), P (x, r1) is obtained as follows: P1(x, r1) = 0
(since f1(x) − r11 = 6 − 11 ≤ 0 = γ−1 ), P2(x, r1) = 1 and P3(x, r1) = 1, and
P (x, r1) = ψθ(0, 1, 1) = 0 + (1 − 0)× θ({2, 3}) + (1− 1)× θ({3}) = 0.6. Fur-
thermore, using Equation (4), we have c1(x) = min{P (x, r1), 1− P (x, r0)} =
min{0.6, 1−0} = 0.6. Thus x is assigned to category K1 (i.e. c(x) = 1) whereas
y is assigned to category K2 (i.e. c(y) = 2); thus x obtains a better position
than y in this example. Moreover, it can easily be checked that y remains in K2

when y1 increases from 20 to 30, although its aggregated value ψθ(y) increases:
there is no point in improving y1 since it already exceeds r11 while the weak-
nesses of y on criteria 2 and 3 remain. This illustrates the non-compensatory
nature of this sorting procedure, where the difference of performances does not
play any role beyond a given threshold.
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3 Optimization Problems and Integer Linear Formulations

In this section, we study three optimization problems in which the decision
maker wants to move from a given solution to another feasible solution of a
given multi-objective optimization problem in order to achieve a target level
efficiently, namely the Min Cost Improvement, Max Gain Stability and the
Min Cost Improving Sequence problems.

3.1 The Min Cost Improvement Problem

Given a solution x ∈ X , we consider the problem of moving from x to another
solution y ∈ X in order to enter into a higher category at a minimal cost. This
optimization problem, called Min Cost Improvement (MCI) problem, can be
formulated as follows:

min g(x, y)

(PMCI) : s.t.

{
c(y) ≤ c(x)− 1

Ay ≤ b
(5a)

(5b)

y ∈ Nm (5c)

where g : X ×X → R is a real-valued function giving the cost of moving from
a given solution x ∈ X to any another solution y ∈ X , Equation (5a) ensures
that y is assigned to a strictly higher category than x, and Equations (5b-5c)
are the feasibility constraints. Given any solution x ∈ X , the optimal solution
y∗ of problem PMCI is the solution that improves x at a minimal cost. When
the decision maker does not only wish to enter into a higher category but
targets a given category K` with ` < c(x)−1, Equation (5a) must be replaced
by the constraint c(y) ≤ `. For illustration purposes, an instance of the MCI
problem is given below.

Example 2 Consider a knapsack problem where the set O = {o1, o2, o3} of
objects/items is evaluated with respect to 2 additive criteria f1, f2 as follows1:

f1 f2
o1 2 2
o2 4 1
o3 1 3

Table 5: The performance vectors attached to objects in Example 2.

Any solution can be represented by a binary vector x = (x1, x2, x3) where xi =
1 if and only if object oi is selected, and the knapsack constraint only imposes

1 Additive means that the value of a set of objects is the sum of the values of its elements.
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that no more than 2 objects are selected. Moreover, for any two solutions x, y,
let us assume that the cost g(x, y) of moving from x to y is defined by:

g(x, y) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|

penalizing solutions that are far from x in the decision space. Now consider
the multicriteria reference profiles given in Table 2. These reference profiles

f1 f2
r0 6 6
r1 3 2
r2 -1 -1

Table 6: The multicriteria reference profiles used in Example 2.

allow the definition of two categories for this problem. Finally, assume that the
preference and indifference thresholds are respectively given by γ+1 = γ+2 = 1
and γ−1 = γ−2 = 0, and that the overall indices are obtained by aggregating
monocriterion preference indices using the weighted sum ψθ defined by ψθ =
θf1(x)+(1−θ)f2(x) with θ = 2/3. In this problem, there are only seven feasible
solutions, denoted by xj, j ∈ {0, . . . , 6}, with the following overall preference
indices and membership values:

f1 f2 P (·, r0) P (·, r1) P (·, r2) c1(·) c2(·) c(·)
x0 = (0, 0, 0) 0 0 0 0 1 0 1 2
x1 = (1, 0, 0) 2 2 0 0 1 0 1 2
x2 = (0, 1, 0) 4 1 0 2/3 1 2/3 1/3 1
x3 = (0, 0, 1) 1 3 0 1/3 1 1/3 2/3 2
x4 = (1, 1, 0) 6 3 0 1 1 1 0 1
x5 = (1, 0, 1) 3 5 0 1/3 1 1/3 2/3 2
x6 = (0, 1, 1) 5 4 0 1 1 1 0 1

Table 7: Overall preference indices and membership values attached to the
feasible solutions in Example 2.

Thus x0, x1, x3 and x5 belong to K2 (the worst category) whereas x2, x4 and
x6 belong to K1 (the best category). If x1 is the current solution, then x4 is the
unique optimal solution of the MCI problem (since we have g(x1, x4) = 1 <
g(x1, x2) = 2 < (x1, x6) = 3). If instead x3 is the current solution, then x6 is
the unique optimal solution (as g(x3, x6) = 1 < g(x3, x2) = 2 < g(x3, x4) = 3).
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3.2 The Max Gain Stability Problem

Similarly, in a context where any solution has a cost, we consider the problem
of reducing the cost while staying in the same category. This amounts to
maximizing the gain or cost saving to pass from the current solution x to
another solution y ∈ X . This problem named Max Gain Stability (MGS) can
be formulated as follows for any x ∈ X :

max g(x, y)

(PMGS) : s.t.

{
c(y) ≤ c(x)

Ay ≤ b
(6a)

(6b)

y ∈ Nm (6c)

where g : X ×X → R is a real-valued function defining the gains and Equation
(6a) ensures that y is at least as good as x. When the decision maker is not
against reaching a given lower K` (with ` > c(x)) to maximize her gain, then
Equation (6a) must be replaced by the constraint c(y) ≥ `. Note that the
formulation of the MGS problem is very similar to that of the MCI problem
and therefore can be solved using the same tools. An instance of the MGS
problem is given below.

Example 3 Let us come back to Example 2 and assume that every object
ok ∈ O has a market price πk ∈ R+ so that the gain g(x, y) obtained when
moving from a given solution x to another solution y is simply defined by:

g(x, y) = π1(x1 − y1) + π2(x2 − y2) + π3(x3 − y3)

In that case, for any current solution x ∈ K1, the unique optimal solution of
the MGS problem is x2 = (0, 1, 0), and for any current solution x ∈ K2, the
unique optimal solution is trivially x0 = (0, 0, 0).

3.3 The Min Cost Improving Sequence Problem

In some situations, a large improvement of the current solution may be un-
feasible in one step due to various reasons, for instance because it requires a
prohibitive amount of resources in a short period of time or because it induces
too important changes that may have significant reconfiguration costs. In or-
der to cope with such situations, we now consider problems where the decision
maker wishes to reach a given higher category in possibly several steps at a
minimal cost. The aim is therefore to determine which are the proper steps to
reach the targeted category optimally. More formally, we are given:

– x0: solution at time 0 (current solution)

– `∗: index of the target category
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– h: number of periods allowed to achieve the goal (horizon)

– β1, . . . , βh: available budget for each period

A feasible solution to the Min Cost Improving Sequence Problem (MCIS) is a
sequence (x1, . . . , xh) that satisfies the following constraints:

– Axt ≤ b for all t ∈ {1, . . . , h} (i.e. xt ∈ X )

– c(xh) ≤ `∗ (the last element in the sequence belongs to the targeted cate-
gory or some higher category)

– g(xt−1, xt) ≤ βt for all t ∈ {1, . . . , h} where g : X ×X → R is the cost func-
tion of the problem (modifications in the sequence are under a budgetary
constraint which depends on the period of time)

The goal is to identify a feasible solution (x1, . . . , xh) that minimizes the total
cost which is simply defined by:

h∑
t=1

g(xt−1, xt)

The MCIS problem can therefore be formulated as follows:

min

h∑
t=1

g(xt−1, xt)

(PMCIS) : s.t.


c(xh) ≤ `∗

g(xt−1, xt) ≤ βt, ∀t ∈ {1, . . . , h}
Axt ≤ b, ∀t ∈ {1, . . . , h}

xt ∈ Nm, ∀t ∈ {1, . . . , h}

Note that we deliberately omitted monotonicity constraints of type c(xt) ≤
c(xt−1) for t ∈ {1, . . . , h} because they are not necessary as soon as the fol-
lowing triangular inequality holds: g(x, y) ≤ g(x, z) + g(z, y). This is the case
for all functions g considered here (e.g., when g(x, y) is a linear function of
x − y, or when g is a distance defined from a norm by g(x, y) = ‖x − y‖).
This makes impossible to find 3 solutions x, y, z with c(y) < c(x) (y improves
x) and such that the cost of a two step path x → z → y is lower than the
cost of the direct path x→ y. Hence, whenever z belongs to a category worse
than that of x (i.e., c(z) > c(x)), there is no benefit in moving first from x
to z and then from z to y compared to directly moving from x to y since
g(x, z) + g(z, y) ≥ g(x, y). Moreover, if reaching level ` or better must be
achieved in the sequence of moves at some intermediary step t, one can easily
insert the following constraint c(xt) ≤ ` in program PMCIS .

We now give an instance of the MCIS problem below.
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Example 4 Let us come back to Example 2. Consider the multicriteria refer-
ence profiles (given in Table 8) which allow the definition of three categories
for this problem.

f1 f2
r0 6 6
r1 4 4
r2 2 2
r3 -1 -1

Table 8: The multicriteria reference profiles in Example 2.

Here there are only seven feasible solutions, denoted by xj, j ∈ {0, . . . , 6}, and
their overall preference indices and membership values are given in Table 9.
From this table, we conclude that solutions x4 and x6 enter into category K1

f1 f2 P (·, r0) P (·, r1) P (·, r2) P (·, r3) c1(·) c2(·) c3(·) c(·)
x0 =(0, 0, 0) 0 0 0 0 0 1 0 0 1 3
x1 =(1, 0, 0) 2 2 0 0 0 1 0 0 1 3
x2 =(0, 1, 0) 4 1 0 0 2/3 1 0 2/3 1/3 2
x3 =(0, 0, 1) 1 3 0 0 1/3 1 0 1/3 2/3 3
x4 =(1, 1, 0) 6 3 0 2/3 1 1 2/3 1/3 0 1
x5 =(1, 0, 1) 3 5 0 1/3 1 1 1/3 2/3 0 2
x6 =(0, 1, 1) 5 4 0 2/3 1 1 2/3 1/3 0 1

Table 9: Overall preference indices and membership values attached to the
feasible solutions in Example 4.

(the best category), solutions x2 and x5 enter into category K2 (the second best
category) while x0, x1 and x3 enter to category K3 (the worst category).

Assume that the current solution is x0 (belonging to K3), and that we want
to reach category K1 in at most two steps. The graph depicted in Figure 2
represents all feasible sequences of solutions, i.e. the sequences that start from
x0 and end with a solution in K1 in at most two steps.

In Figure 2, any arrow of type (xi, xj) is labelled by g(xi, xj) the cost of moving
from solution xi to solution xj . Without any budgetary constraint, we know
that we can focus the search on paths of size 1 as g satisfies the triangular
inequality. In particular, sequence (x0, x4), which consists in moving from x0

to x4 in one step, is an optimal solution of the MCIS problem, with a total
cost of 2.

Now assume that the cost of each step must not exceed 1 (i.e. we set β1 =
β2 = 1). In that case, sequence (x0, x4) is not feasible anymore, and now
sequences (x0, x2, x6) and (x0, x2, x4) are the unique optimal solutions of the
MCIS problem, with a total cost of 1 + 1 = 2.
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x0

x1

x3

x2
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x4

1

1

3

1

1

3

1

2

2

2 1

1

2

2

Category K3 Category K2 Category K1

Fig. 2: Feasible sequences of solutions in Example 4.

3.4 Integer Linear Formulations

In the previous subsections, we have introduced three optimization problems,
namely the MCI, MGS and MCIS problems, and they have been solved on very
small instances of knapsack problems by enumerating all the feasible solutions
(see Examples 2, 3 and 4). For bigger instances, it is not possible to enumerate
all the feasible solutions as they are too numerous, and therefore there is a
need for tools to solve these optimization problems efficiently.

In this subsection, we propose solving methods based on mixed-integer (linear
or quadratic) programming. For simplicity of presentation, we now focus on
the MCI problem as these three optimization problems are very similar.

In order to obtain a general mixed-integer formulation of problem PMCI , we
now introduce two technical propositions, the proofs of which are given in the
Appendix (see Section 6).

Proposition 1 For any solution y ∈ X and any category K` ∈ K:

c(y) ≤ ` ⇐⇒ P (y, r`) ≥ 1/2.
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When setting ` = c(x) − 1, we see that constraint c(y) ≤ c(x) − 1, which
corresponds to Equation (5a) in PMCI , holds if and only if P (y, rc(x)−1) ≥ 1/2.
As a consequence solving PMCI amounts to solving the following optimization
problem, denoted by P ′MCI :

min g(x, y)

(P ′MCI) : s.t.

{
P (y, rc(x)−1) ≥ 1/2

Ay ≤ b
(8a)

(8b)

y ∈ Nm (8c)

Now in order to solve P ′MCI , we propose to use the following program:

min g(x, y)

(P ′′MCI) : s.t.



ψθ(p1, . . . , pn) ≥ 1/2

pi ≤
fi(y)− rc(x)−1i − γ−i

γ+i − γ
−
i

+ (1− vi)M, ∀i ∈ N

pi ≤Mvi, ∀i ∈ N
Ay ≤ b

(9a)

(9b)

(9c)

(9d)

y ∈ Nm

p = (p1, . . . , pn) ∈ [0,1]n, v = (v1, . . . , vn) ∈ {0, 1}n (9e)

where M is a constant greater than one allowing the introduction of boolean
variables vi, i ∈ N , that ensure that all variables pi satisfy pi ≤ Pi(y, rc(x)−1)
(see Lemma 1 in the Appendix).

Interestingly, program P ′′MCI can be used to solve P ′MCI due to the following
proposition:

Proposition 2 For any feasible solution y ∈ Nm of problem P ′MCI , the fol-
lowing two properties are equivalent:

1. Solution y is optimal for problem P ′MCI .

2. There exist p ∈ [0, 1]n and v ∈ {0, 1}n such that (y, p, v) is a feasible
optimal solution of problem P ′′MCI .

Note that P ′′MCI is a mixed-integer linear program when the cost function is
linear. When g is not linear but linearizable or when g is a quadratic function,
problem P ′′MCI can still be solved efficiently using a state-of-the-art solver, as
shown in Section 4.

Using similar arguments, one can easily prove that the MGS problem can be
solved using the following program:
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max g(x, y)

(P ′′MGS) : s.t.



ψθ(p1, . . . , pn) ≥ 1/2

pi ≤
fi(y)− rc(x)i − γ−i

γ+i − γ
−
i

+ (1− vi)M, ∀i ∈ N

pi ≤Mvi, ∀i ∈ N
Ay ≤ b

y ∈ Nm

p = (p1, . . . , pn) ∈ [0, 1]n, v = (v1, . . . , vn) ∈ {0, 1}n

and the same applies to the MCIS problem:

min

h∑
t=1

g(xt−1, xt)

(P ′′MCIS) : s.t.



ψθ(p1, . . . , pn) ≥ 1/2

pi ≤
fi(x

h)− r`∗i − γ
−
i

γ+i − γ
−
i

+ (1− vi)M, ∀i ∈ N

pi ≤Mvi, ∀i ∈ N
g(xt−1, xt) ≤ βt, ∀t ∈ {1, . . . , h}
Axt ≤ b, ∀t ∈ {1, . . . , h}

(11a)

xt ∈ Nm, ∀t ∈ {1, . . . , h}
p = (p1, . . . , pn) ∈ [0, 1]n, v = (v1, . . . , vn) ∈ {0, 1}n

4 Some Applications

Depending on the decision problem, function g giving the cost/gain of moving
from a given solution to another solution can take different forms. For illus-
trative purposes, we now study three realistic instances of the MCI problem
on combinatorial domains with different cost functions to be minimized2.

2 Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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4.1 A Transportation Problem

Consider a transportation problem dealing with the distribution of prod-
ucts from a set of m factories F = {F1, . . . , Fm} to a set of n clients C =
{C1, . . . , Cn}, each factory Fj having a limited number of units to supply. We
are given a cost matrix g = (gij)n×m so that gij ∈ R+ is the cost of trans-
porting one unit of products from factory Fj to client Ci for all i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. In this problem, a feasible solution can be represented
by a matrix X = (xij)n×m where xij ∈ R+ is the number of units ship-
ping from Fj to Ci for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, and the cor-
responding cost is given by T (x) =

∑n
i=1

∑m
j=1 xijgij . Thus, the cost g(x, y)

of moving from a given solution x to another solution y is simply given by
g(x, y) = T (y)− T (x) =

∑n
i=1

∑m
j=1(yijgij − xijgij) in this problem.

Now suppose that every client Ci, i ∈ {1, . . . , n}, provides 3 values α1
i , α

2
i , α

3
i

representing the minimum number of units required to be very satisfied, satis-
fied, and slightly satisfied respectively. These thresholds lead to 4 satisfaction
categories K1 (very satisfied), K2 (satisfied), K3 (slightly satisfied) and K4

(not satisfied), which are characterized by the set R = {r0, r1, r2, r3, r4} of
multicriteria reference profiles defined as follows:

– r` = (α`1, . . . , α
`
n) for all ` ∈ {1, 2, 3},

– r4 = (−1, . . . ,−1),

– and r0 = (M, . . . ,M) with M large enough to bound above all admissible
values (e.g., the total number of products).

By definition, the quality of a given solution x only depends on the number of
units shipped to the different clients. Hence the performance vector attached
to solution x is simply defined by f(x) = (f1(x), . . . , fn(x)) where fi(x) =∑m
j=1 xij for all i ∈ {1, . . . , n}.

Monocriterion preference indices are here aggregated using a Choquet integral
ψθ with a 2-additive convex capacity θ so as to model possible interactions
between any two criteria (e.g., clients who have the same parent company,
business partners, or clients located in the same country/city).

Using Proposition 2, we know that solving this MCI problem can be done by
solving the following optimization problem:

min g(x, y) =

n∑
i=1

m∑
j=1

(
yijgij − xijgij

)

s.t.


Equations (9a), (9b), (9c) and (9e)
n∑
i=1

yij ≤ bj ,∀j ∈ {1, . . . ,m} (12a)

yij ∈ N,∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m} (12b)
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where bj is the capacity of factory Fj so that Equation (12a) corresponds to
Equation (5b) the feasibility constraints of the problem.

We now present an explicit example of this transportation problem.

Example 5 Consider an instance of this transportation problem with n = 3
three clients (i.e. C = {C1, C2, C3}) and m = 3 factories (i.e. F = {F1, F2, F3})
with the following capacities: b1 = 20, b2 = 18 and b3 = 10. For all i, j ∈
{1, 2, 3}, the cost gij of transporting one unit of product from factory Fj to
client Ci is given below:

gij F1 F2 F3

C1 6 7 7
C2 5 1 3
C3 5 3 1

Table 10: Delivery costs (given in ke).

C1 C2 C3

r0 50 50 50
r1 17 22 19
r2 16 14 12
r3 5 6 6
r4 -1 -1 -1

Table 11: Multicriteria reference profiles used in the sorting method.

Here the satisfaction of clients only depends on the quantity they receive, and is
represented by the reference profiles given in Table 11. These reference profiles
define 4 categories: “Very satisfied” (K1), “Satisfied” (K2), “Slightly satisfied”
(K3) and “Not satisfied” (K4). To aggregate monocriterion preference indices,
we use the Choquet integral ψθ with capacity θ defined as follows:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
θ 0 0.2 0.1 0.3 0.4 0.7 0.6 1

Table 12: Capacity θ used in the sorting method.

Let us assume that the current solution x0 implemented by the decision maker
(the delivery company) consists in providing 4 units to C1 from factory F1, 7
units to C2 from factory F2 and 7 units to C3 from factory F3 (as shown in Fig-
ure 3(a)). Its performance vector is f(x0) = (4, 7, 7), and therefore the result-
ing preference indices are: P (x0, r0) = P (x0, r1) = P (x0, r2) = 0, P (x0, r3) =
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0.6, and P (x0, r4) = 1. Hence the membership values are: c1(x0) = c2(x0) = 0,
c3(x0) = 0.6 and c4(x0) = 0.4. As a consequence, solution x0 enters into cat-
egory K3 (“Slightly satisfied”).

Assume first that the decision maker wants to know how much savings could
be realized while remaining in the same category. To answer this question, we
solve the MGS problem with solution x = x0. We obtain the solution that only
differs from x0 by transporting 3 units from F1 to C1 (instead of 4), allowing
to save 6 ke.

Assume now that the decision maker wants to know what is the price to pay
to improve clients’ satisfaction. To answer this question, we solve the MCI
problem with solution x = x0 and we obtain solution x1 depicted in Fig-
ure 3(b), whose performance vector is f(x1) = (3, 15, 13). This solution belongs
to category K2 (“Satisfied”), as can be derived from its preference indices and
membership values: P (x1, r0) = P (x1, r1), P (x1, r2) = 0.6, P (x1, r3) = 0.6,
P (x1, r4) = 1, c1(x1) = 0, c2(x1) = 0.6, c3(x1) = 0.4 and c4(x0) = 0.4. The
cost of moving from x0 to x1 is equal to g(x0, x1) = 52− 38 = 14 ke.

The decision maker realizes that moving up one level (i.e. to the “Satisfied”
category) is not very expensive. Therefore she now wants to know what is the
price to pay to move straight to category K1 (“Very satisfied”). When solving
the MCI problem with x = x0 and constraint c(y) ≤ 1 (instead of Equa-
tion (5a)), we obtain solution x2 depicted in Figure 3(c) whose performance
vector is f(x2) = (3, 23, 20). The cost of moving from x0 to x2 is equal to
g(x0, x2) = 121− 38 = 83 ke.

For the decision maker, paying 83 ke in one shot is not possible but is willing to
delay the objective to the next period. More precisely, she is willing to accept
a solution in two steps (one per year), provided that the cost of each step
does not exceed 50 ke. Remark that it is not possible for her to first move
from solution x0 to x1 and then move from solution x1 to x2 as the cost
g(x1, x2) = 121 − 52 = 69 > 50 ke. Therefore we want to know whether it is
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(d) Solution x′1.

Fig. 3: Solutions found during the interactions with the decision maker.
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possible to reach K1 in two steps, taking into account her budgetary constraints.
To answer this question, we solve the MCIS problem with `∗ = 1 (the target
category), h = 2 (at most 2 steps), and β1 = β2 = 5 (the available budgets). We
obtain the sequence (x′0, x1, x2) where x′1 is the solution belonging to category
K2 (“Satisfied”) which is depicted in Figure 3(d). The total cost is g(x0, x′1)+
g(x′1, x2) = 33 + 50 = 83 ke.

Numerical results. We implemented the presented model using the Gurobi
8.1.1 solver on a computer with 12GB of RAM and an Intel(R) Core(TM) i7
CPU 950 @ 3.07GHz processor. Instances, mathematical programs and ini-
tialization algorithms were implemented using python 3.7.5. This model was
tested on randomly generated transportation instances where the cost gij is
uniformly drawn in [0, 1] for every client-factory pair (Ci, Fj), and the capac-
ity bj is uniformly drawn in [[1, 100]] for every factory Fj . The preference and
indifference thresholds are respectively set to 1 and 0 for every criterion, and
monocriterion preferences indices are aggregated using randomly generated
Choquet integrals with a 2-additive convex capacity and rely on the computa-
tional model presented in [29]. Multicriteria reference profiles were chosen to
evenly divide the objective space.

In our experiments, we vary n the number of clients (i.e. the number of crite-
ria), m the number of factories and q the number of categories, and the current
solution x is generated by solving the transportation problem with smaller ca-
pacities. Computation times (in seconds) obtained by averaging over 20 runs
are given in Table 13. The results show that the proposed linear formula-
tion enables to efficiently solve instances with a large number of clients and
factories.

n
m

50 75 100

50 0.95 1.05 1.27
75 2.30 5.63 7.12
100 4.71 22.11 23.53

(a) 4 categories

n
m

50 75 100

50 0.55 1.02 1.47
75 1.27 2.68 5.57
100 0.60 4.82 14.13

(b) 9 categories

Table 13: Computation times in the transportation problem.

4.2 An Assignment Problem

Consider an assignment problem where a set of m tasks T = {t1, . . . , tm} has
to be performed by a set of m agents A = {a1, . . . , am} in such a way that each
agent is assigned to a different task. A feasible solution can be represented by a
binary matrix x = (xjk)m×m where xjk = 1 if and only if agent aj is assigned
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to task tk for all j, k ∈ {1, . . . ,m}. In this problem, the agents’ preferences

over tasks are represented by utility vectors of type ujk = (ujk1 , . . . , u
jk
n ) ∈ Rn+

where ujki is the utility of agent aj ∈ A for task tk ∈ T with respect to
criterion i ∈ {1, . . . , n} (e.g., duration, arduousness, repetitiveness, intellectual
stimulation), and the overall performance of a given solution x is simply given

by f(x) = (f1(x), . . . , fn(x)) with fi(x) =
∑m
j=1

∑n
k=1 xjku

jk
i for all criteria

i ∈ {1, . . . , n}.

Assume that the team leader cares about how happy the agents are with
respect to the different criteria, and therefore defines two positive values α1

i and
α2
i for each criterion i ∈ {1, . . . , n} representing the minimum average utility

required to be satisfied and slightly satisfied respectively. These values define
three categories K1 (satisfied), K2 (slightly satisfied), and K3 (not satisfied),
which are characterized by the set R = {r0, r1, r2, r3} of reference profiles
defined as follows:

– r` = (α`1, . . . , α
`
n) for ` ∈ {1, 2},

– r3 = (−1, . . . ,−1),

– and r0 = (M1, . . . ,Mn) withMi large enough to bound above all admissible

utility values on criterion i ∈ {1, . . . , n} (e.g., Mi = maxj,k∈{1,...,m} u
jk
i ).

Then overall preference indices are defined using a Choquet integral ψθ with
a 2-additive convex capacity to model interactions between some criteria such
as duration and arduousness.

Now assume that the team leader wishes to change the current solution in
order to obtain a better solution at a minimal cost. Here the cost is defined as
follows: for any agent aj ∈ A, we are given a cost vector gj = (gj1, . . . , g

j
m) ∈ Rn+

where gjk is the cost incurred when agent aj is asked to perform task tk instead
of its current assigned task. Then, for any agent aj ∈ A, the cost gj(x, y) of
moving from a given solution x = (xjk)m×m to another solution y = (yjk)m×m
can be formally defined by:

gj(x, y) =

m∑
k=1

gjk ×max{yjk − xjk, 0}

since max{yjk − xjk, 0} is equal to 1 when yjk = 1 and xjk = 0, and is equal
to 0 otherwise. Finally the total cost g(x, y) is given by:

g(x, y) =

m∑
j=1

gj(x, y)

=

m∑
j=1

m∑
k=1

gjk ×max{yjk − xjk, 0}

Using Proposition 2 and a standard linearization of the max aggregator, we
obtain the following mixed-integer linear formulation:
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min g(x, y) =

m∑
j=1

gjkzjk

s.t.



Equations (9a), (9b), (9c) and (9e)
m∑
j=1

yjk = 1, ∀k ∈ {1, . . . ,m}

m∑
k=1

yjk = 1, ∀j ∈ {1, . . . ,m}

zjk ≥ yjk − xjk, ∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . ,m}
zjk ≥ 0, ∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . ,m}

(13a)

(13b)

(13c)

(13d)

yjk ∈ {0, 1},∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . ,m} (13e)

where Equations (13a) and (13b) correspond to Equation (5b) (the feasibil-
ity constraints) while Equations (13c) and (13d) are added so that zjk =
max{yjk − xjk, 0} (linearization).

Numerical results. We now present some experimental results obtained for
the assignment problem presented in this subsection; the experimental envi-
ronment is the same as that of the transportation problem, so as the generation
methods for thresholds, reference profiles and aggregation functions. The tests
were performed on randomly generated instances, where utility vector ujk was
uniformly drawn in [[1, 100]]n for every agent-task pair (aj , tk), and cost gjk was
uniformly drawn in [0, 1]. Then, following a previously fixed permutation of
agents, each one has its worst object assigned among the ones remaining. We
vary n the number of criteria, m the number of agents (or tasks), and q the
number of categories. The results obtained by averaging over 20 runs are given
in Table 14 (in seconds); for every run, x is generated by solving the assign-
ment problem obtained by simply aggregating the multi-objective valuations
into a single value using a randomly generated weighted sum. We observe that
our model is able to solve instances with a large number of tasks, agents and
criteria.

n
m

75 100 150

3 0.80 1.85 6.74
5 0.91 2.20 8.14
7 3.96 3.99 6.82
10 22.67 70.05 277.35

(a) 4 categories

n
m

75 100 150

3 0.79 1.76 6.47
5 1.14 2.10 7.03
7 1.70 3.61 10.73
10 1.79 4.40 13.17

(b) 9 categories

Table 14: Computation times in the assignment problem.
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4.3 A Knapsack Problem

Consider a knapsack problem consisting in the selection of W team members
from a pool A = {a1, . . . , am} of candidates (e.g., football teams). Any fea-
sible solution can be represented by a binary vector x = (x1, . . . , xm) such
that

∑m
j=1 xj = W , where xj = 1 if and only if candidate aj is selected.

In this selection problem, every candidate aj ∈ A is valued by a vector

uj = (uj1, . . . , u
j
n) ∈ Rn+ giving the performance of aj with respect to different

criteria (e.g., physical fitness, technique, proper mindset, game intelligence),
which are assumed to be additive over the candidates. Hence the performance
vector attached to a given team x is simply defined by f(x) =

∑n
j=1 xju

j .

Assume that the recruiter defines two thresholds α1
i and α2

i for every criterion
i ∈ {1, . . . , n} representing the minimum level of performance required to be
considered as a high-level and middle-level team respectively. These thresholds
define three categories K1 (high-level), K2 (middle-level) and K3 (low-level)
which are characterized by the set R = {r0, r1, r2, r3} of reference profiles
defined as follows:

– r` = (α`1, . . . , α
`
n) for ` ∈ {1, 2},

– r3 = (−1, . . . ,−1),

– and r0 = (M1, . . . ,Mn) withMi large enough to bound above all admissible
performances on criterion i ∈ {1, . . . , n} (e.g., Mi =

∑
j∈{1,...,m} u

j
i ).

Then overall preference indices are defined using a Choquet integral ψθ with
a 2-additive convex capacity to model interactions between pairs of criteria
(e.g., technique and game intelligence have a positive interaction). Finally,
every candidate aj ∈ A is assumed to have a market price gj ∈ R+ so that the
cost g(x, y) of moving from a given team x to another team y can be defined
by g(x, y) =

∑m
j=1 gj(yj − xj). Thus, the MCI problem can be solved using

the following mixed-integer linear program:

min
y

g(x, y) =
m∑
j=1

gj(yj − xj)

s.t.


Equations (9a), (9b), (9c) and (9e)
m∑
j=1

yj = K,∀j ∈ {1, . . . ,m} (14a)

yj ∈ {0, 1},∀j ∈ {1, . . . ,m}

where Equation (14a) correspond to Equation (5b) (the feasibility constraints).
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Numerical results. We implemented the presented model in the same experi-
mental environment as before, with the same generation methods for thresh-
olds, reference profiles and aggregation functions. The tests were performed on
randomly generated knapsack instances with performance vectors uj uniformly
drawn in [[1, 100]]n and the knapsack capacity W was set to m/2. Solution x
is generated by picking objects aj in increasing order according to the overall
utility

∑n
i=1 uji, until the knapsack capacity is reached. We vary n the number

of criteria, m the number of objects, and q the number of categories. We re-
port the computation times (in seconds) obtained by averaging over 20 runs in
Table 15. The results show that the proposed mixed-integer linear formulation
enables to solve very large instances of the MCI problem specialized for the
multicriteria knapsack problem.

n
m

100 250 500

3 0.01 0.01 0.03
5 0.02 0.04 0.06
7 0.03 0.04 0.12
10 0.03 0.10 0.17

(a) 4 categories

n
m

100 250 500

3 0.004 0.01 0.01
5 0.005 0.01 0.02
7 0.001 0.01 0.02
10 0.007 0.01 0.03

(b) 9 categories

Table 15: Computation times in the knapsack problem.

We conclude this section by considering a particular instance of the multiobjec-
tive Knapsack problem in order to illustrate the potential of model P ′′MCIS , see
Equation (11a), to generate recommendations in terms of min-cost improving
sequences reaching the target category.

Example 6 We consider a multicriteria knapsack problem involving a set of
10 objects O = {o1, . . . , o10} evaluated according to 4 criteria assumed to be
additive (i.e., the utility of a subset is defined as the sum of the utilities of
its elements). The maximal weight for an admissible solution to the knapsack
problem is set to 221. The utilities f1(ok), f2(ok), f3(ok), f4(ok) and the weight
wk of object ok, with k ∈ {1, . . . , 10}, are given in the following table:

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
f1 75 56 36 68 15 79 74 65 86 31
f2 41 60 56 96 13 2 78 22 1 92
f3 89 4 11 38 90 28 71 15 9 55
f4 26 20 54 28 90 58 77 98 93 37
wk 14 90 56 44 67 23 5 13 61 69

In order to sort the solutions, we consider 6 categories K = {K1, . . . ,K6}
delimited by constant reference profiles R = {r0, . . . , r6} such that fi(r

0) =
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375, fi(r
1) = 313, fi(r

2) = 250, fi(r
3) = 187, fi(r

4) = 124, fi(r
5) = 62,

fi(r
6) = −1 for all i ∈ {1, . . . , 4}.

The aggregation function used to aggregate preference indices is a Choquet
integral ψθ where capacity θ is compactly defined by θ(A) =

∑
B⊆Am(B) with

m(B) = 0 for all B except the following focal sets:

B {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
m(B) 0.174 0.002 0.035 0.159 0.174 0.066 0.098 0.014 0.124 0.154

Assume that the current solution is subset X0 = {o2, o3, o10} of utility vector
f(X0) = (123, 208, 70, 111). Given the profiles and the assignment rule, one
can easily check that X0 belongs to category K5. In this problem, the deci-
sion maker wants to reach category K1 in at most 3 years under some budget
constraints which limit the number of changes (insertion or deletion) per year.

The above example can easily be solved by mathematical programming using
P ′′MCIS . For illustration purposes, we now give three optimal sequences for
three scenarios of constraints limiting the number of changes per year.

– Scenario 1: at most 5 changes are allowed per year. The optimal solution
is a direct move from X0 to X1 where X1 = {o3, o4, o6, o7, o8, o10} and
f(X1) = (353, 346, 218, 352), a utility vector belonging to K1.

– Scenario 2: at most 3 changes are allowed per year. The optimal solu-
tion is the sequence (X0, X

′
1, X

′
2) where X ′1 = {o3, o7, o10} and X ′2 =

{o1, o3, o4, o7, o8, o10} whose utility vectors are f(X ′1) = (141, 226, 137, 168)
and f(X ′2) = (349, 286, 279, 320) respectively. This sequence allows the de-
cision maker to move first from K5 to K4 and then from K4 to K1 while
satisfying the budget constraints and minimizing the total cost.

– Scenario 3: at most 2 changes are allowed per year. The optimal solution
is a sequence of solutions (X0, X

′′
1 , X

′′
2 , X

′′
3 ) leading to three moves. The

first step is a move from K5 to K3 with solution X ′′1 = {o2, o3, o7, o10}
of utility vector f(X ′′1 ) = (197, 286, 141, 188). Then the second step is
a move within category K3 (substitution of o2 by o1) leading to solu-
tion X ′′2 = {o1, o3, o7, o10} of utility vector f(X ′′2 ) = (216, 267, 226, 194).
Finally the third step is a move from K3 to K1 with solution X ′′3 =
{o1, o3, o4, o7, o8, o10} of utility vector f(X ′′3 ) = (349, 385, 279, 320).

In all scenarios, solving the MCIS problem yields a sequence reaching the target
category at minimal cost under the given constraints. This example provides
a good illustration of the possibilities offered by the approach developed in
the paper to plan the improvement of a current solution in a multiobjective
combinatorial optimization setting.
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5 Conclusion

In this paper, we have studied three optimization problems in multicriteria
sorting methods on combinatorial domains, namely the min cost improvement,
max gain stability and min cost improving sequence problems. We have pro-
posed general mixed-integer (linear or quadratic) formulations, illustrated on
the transportation, assignment and knapsack problems. The tests have shown
that our approach is very effective in practice in terms of computation times.
Note that the proposed approach also applies to continuous sets of alterna-
tives defined by linear constraints leading to simpler problems with even better
computation times.

A first direct continuation of this work is to extend the approach to more
complex multicriteria sorting methods (e.g., based on assignment rules includ-
ing veto thresholds, or multiple reference profiles to bound a category). We
could also address other combinatorial domains by considering other problems
(e.g., the traveling salesman problem). A second direction concerns the devel-
opment of solution methods when multicriteria reference profiles and/or the
aggregation function are imprecisely known and defined by linear constraints.

6 Appendix

Proof of Proposition 1

(=⇒) Let y ∈ X be such that c(y) ≤ `. Since c`(y) is unimodal when y is fixed,
with a maximum at least equal to 1/2 (see [36]), we know that c(y) ≤ ` implies
that there exists `′ ≤ ` such that c`′(y) ≥ 1/2. Assume that P (y, r`) < 1/2.
We now prove that c`′(y) < 1/2 for all `′ ≤ ` yielding a contradiction.

Consider an index `′ such that `′ < `. Since r`
′ � r` by definition, we have

Pi(y, r
`′) ≤ Pi(y, r

`) for all criteria i ∈ N . Hence (P1(y, r`), . . . , Pn(y, r`)) �
(P1(y, r`

′
), . . . , Pn(y, r`

′
)). Then, since ψθ is compatible with Pareto-dominance,

we have P (y, r`)=ψθ(P1(y, r`), . . . , Pn(y, r`))≥ψθ(P1(y, r`
′
), . . . , Pn(y, r`

′
))=

P (y, r`
′
). Thus, for all `′ ≤ `, we have:

c`′(y) = min{P (y, r`
′
), 1− P (y, r`

′−1)} by definition of membership indices

≤ min{P (y, r`), 1− P (y, r`
′−1)} since we have P (y, r`) ≥ P (y, r`

′
)

< min{1/2, 1− P (y, r`−1)} since P (y, r`) < 1/2 by hypothesis

≤ 1/2

(⇐=) Let y∈X be such that P (y, r`)≥1/2. Assume that `∗ = c(y) > `. Since
c`(y) is unimodal with a maximum at least equal to 1/2, two cases may occur:
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• c`∗(y) > 1/2. In that case, we necessarily have:

1/2 > P (y, r`
∗−1) since c`∗(y) = min{P (y, r`

∗
), 1− P (y, r`

∗−1)}
≥ P (y, r`) since `∗ − 1 ≥ ` (and therefore r`

∗−1 � r`)

≥ 1/2 since P (y, r`) ≥ 1/2 by hypothesis

yielding a contradiction.

• c`∗(y) = 1/2. Here we necessarily have P (y, r`
∗−1) ≤ 1/2 since c`∗(y) =

min{P (y, r`
∗
), 1− P (y, r`

∗−1)} by definition. Thus we obtain:

c`(y) = min{P (y, r`), 1− P (y, r`−1)} by definition

≥ min{1/2, 1− P (y, r`−1)} since P (y, r`) ≥ 1/2 by hypothesis

≥ min{1/2, 1− P (y, r`
∗−1)} since `∗ − 1 ≥ `− 1

≥ min{1/2, 1/2} since P (y, r`
∗−1) ≤ 1/2

= 1/2

= c`∗(y)

Hence we have c`∗(y) = c`(y) and `∗ > ` which contradicts our assignment
rule (∗∗). ut

Proof of Proposition 2

In order to establish Proposition 2, we first establish the following Lemma:

Lemma 1 For any feasible solution of problem (P ′′MCI), we have:

∀i ∈ N, pi ≤ Pi(y, rc(x)−1)

Proof of Lemma 1. Let (y, p, v) be a feasible solution of problem (P ′′MCI). For
all i ∈ N , only three cases may occur:

• fi(y) − r
c(x)−1
i > γ+i : In that case, we trivially have pi ≤ Pi(y, r

c(x)−1)
since Pi(y, r

c(x)−1) = 1 (see Equation (2)) and pi ≤ 1 (see Equation (9e)).

• γ−i ≤ fi(y)− rc(x)−1i ≤ γ+i : Here we have Pi(y, r
c(x)−1) =

fi(y)−rc(x)−1
i −γ−i

γ+
i −γ

−
i

by definition (see Equation (2)). If vi = 1, then we derive pi ≤ Pi(y, rc(x)−1)
from constraint (9b). Otherwise, pi is necessarily equal to 0 due to con-
straint (9c) and therefore pi = 0 ≤ Pi(y, rc(x)−1) trivially holds.

• fi(y)−rc(x)−1i < γ−i : In that case, Pi(y, r
c(x)−1) = 0 holds by definition (see

Equation (2)). Note that variable vi must be set to 0 to satisfy constraint

(9b) since fi(y)− rc(x)−1i − γ−i < 0. As a consequence, we necessarily have
pi = 0 due to constraint (9c), and therefore pi ≤ Pi(y, rc(x)−1) also holds.

ut
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Using this lemma, we can now establish Proposition 2.

Proof of Proposition 2. (⇐=) Let (y, p, v) be a feasible optimal solution of
problem (P ′′MCI). Assume that y is not optimal for (P ′MCI). In that case,
there exists y′ ∈ {0, 1}m such that Ay′ = b and g(x, y′) < g(x, y). Consider
T (y′) = (y′, p′, v′) defined as follows:

• v′i = 0 if Pi(y
′, rc(x)−1) = 0 and v′1 = 1 otherwise.

• p′i = Pi(y
′, rc(x)−1).

It is easy to check that solution T (y′) satisfies constraints (9b-9e). More-
over, since y′ is a feasible solution of (P ′MCI), we know that P (y′, rc(x)−1) =
ψθ(P1(y′, rc(x)−1), . . . , Pn(y′, rc(x)−1)) = ψθ(p

′
1, . . . , p

′
2) ≥ 1/2 due to con-

straint (8a). Hence T (y′) is a feasible solution of (P ′′MCI) with g(x, y′) <
g(x, y), which contradicts the fact that (y, p, v) is optimal for (P ′′MCI).

(=⇒) Let y ∈ {0, 1}m be a feasible optimal solution of problem (P ′MCI).
Assume that no solution of type (y, p, v) with p ∈ [0, 1]n and v ∈ {0, 1}n is
optimal for (P ′′MCI). Consider solution T (y) = (y, p, v) as defined above. Since
T (y) is not optimal (by hypothesis), there exists a feasible solution (y′, p′, v′)
such that g(x, y′) < g(x, y). Moreover, we know that p′i ≤ Pi(y

′, rc(x)−1) for
all i ∈ N (see Lemma 1). As a consequence, constraint (9a) implies constraint
(8a), and therefore y′ is a feasible solution of (P ′MCI) with g(x, y′) < g(x, y),
which yields a contradiction since y ∈ X is optimal for (P ′MCI). ut
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