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In this paper, we present new results on the fair and efficient allocation of indivisible goods to agents whose

preferences correspond to matroid rank functions. This is a versatile valuation class with several desirable

properties (such as monotonicity and submodularity), which naturally lends itself to a number of real-world

domains. We use these properties to our advantage; first, we show that when agent valuations are matroid rank

functions, a socially optimal (i.e. utilitarian social welfare-maximizing) allocation that achieves envy-freeness

up to one item (EF1) exists and is computationally tractable. We also prove that the Nash welfare-maximizing

and the leximin allocations both exhibit this fairness/efficiency combination, by showing that they can be

achieved by minimizing any symmetric strictly convex function over utilitarian optimal outcomes. To the best

of our knowledge, this is the first valuation function class not subsumed by additive valuations for which it

has been established that an allocation maximizing Nash welfare is EF1. Moreover, for a subclass of these

valuation functions based on maximum (unweighted) bipartite matching, we show that a leximin allocation

can be computed in polynomial time. Additionally, we explore possible extensions of our results to fairness

criteria other than EF1 as well as to generalizations of the above valuation classes.

ACM Reference Format:
Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. 2021. Finding Fair and Efficient

Allocations for Matroid Rank Valuations. ACM Transactions on Economics and Computation 37, 4, Article 111

(August 2021), 43 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Suppose that we are interested in allocating seats in courses to prospective students. How should

this be done? On the one hand, courses offer limited seats and have scheduling conflicts; on the

other, students have preferences over the classes that they take, which must be accounted for. In

addition, students might have exogenous constraints, such as a hard limit on the number of classes

they may take. Course allocation can be thought of as a problem of allocating a set of indivisible
goods (course slots) to agents (students). One thing that immediately stands out is that the problem

of assigning courses to students is very well-structured: students are either willing or unwilling to

sign up for a class; this can be thought of as having either a value of 1 or of 0 for being assigned

a class — it makes no sense to assign a student to a class they did not sign up for. In addition, if

we assign a set of classes 𝑆 to a student, and they are able to take it, then they would be able to
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take any subset of 𝑆 as well. Finally (this is not trivial to prove, but is indeed true), given two sets

of feasible course assignments 𝑆,𝑇 such that |𝑆 | < |𝑇 |, we can find some class 𝑜 ∈ 𝑇 such that

𝑆 ∪ {𝑜} is also a feasible course assignment. Such “well-behaved” structures are also known as

matroids. How should we divide goods among agents with subjective valuations? Can we find a

“good” allocation in polynomial time? Can we exploit the structure of certain problems to efficiently

find good allocations?

These questions have been the focus of intense study in the CS/Econ community in recent years;

several justice criteria, as well as methods for computing allocations that satisfy them have been

investigated. Generally speaking, justice criteria fall into two categories: efficiency and fairness.
Efficiency criteria are chiefly concerned with lowering some form of waste, maximizing some notion

of item utilization, or agent utilities. For instance, Pareto optimality (PO) is a popular efficiency

concept which ensures that the value realized by no agent can be improved without diminishing

that of another agent. Fairness criteria require that agents do not perceive the resulting allocation

as mistreating them compared to others; for example, one might want to ensure that no agent

prefers another agent’s assigned bundle (i.e. subset of goods) to her own bundle – this criterion is

known as envy-freeness (EF) [Foley 1967]. However, envy-freeness is not always achievable when

items are indivisible: consider a stylized setting, where there is just one course with one seat for

which two students are competing; any student receiving this slot would be envied by the other. A

simple solution ensuring envy-freeness would be to withhold the seat altogether, not assigning it

to either student. Withholding items, however, violates most efficiency criteria.
1

As illustrated above and also observed by Budish [2011], envy-freeness is not always achievable,

even under completeness, a very weak efficiency criterion requiring that each item is allocated to

some agent. However, a less stringent fairness notion — envy-freeness up to one good (EF1) — can be

attained. An allocation is EF1 if for any two agents 𝑖 and 𝑗 , there is some item in 𝑗 ’s bundle whose

removal results in 𝑖 not envying 𝑗 . Complete, EF1 allocations always exist for monotone valuations,

and in fact, can be found in polynomial time, thanks to the now-classic envy graph algorithm due

to Lipton et al. [2004].

It is already challenging to individually achieve strong allocative justice criteria; hence, computa-

tionally efficient methods that produce allocations satisfying multiple such criteria simultaneously

are of particular interest. Caragiannis et al. [2019b] show that when agent valuations are additive
— i.e. every agent 𝑖 values its allocated bundle as the sum of values of individual items — there

exist allocations that are both PO and EF1. Specifically, these are allocations that maximize the

product of agents’ utilities — also known as the Nash welfare (MNW). Further work [Barman et al.

2018a] shows that such allocations can be found in pseudo-polynomial time. While encouraging,

these results are limited to agents with additive valuations. In particular, they do not apply to

settings such as the course allocation problem described above (e.g. being assigned two courses

with conflicting schedules will not result in additive gain), or other settings we describe later on. In

fact, Caragiannis et al. [2019b] left it open whether their result extends to other natural classes of

valuation functions, such as the class of submodular valutions.
2
At present, little is known about

other classes of valuation functions — this is where our work comes in.

1.1 Our Contributions
We focus on monotone submodular valuations with binary (or dichotomous) marginal gains,

which are also known as matroid rank valuations [Oxley 2011]. In this setting, the added benefit

1
One of the coauthors applied this solution when his children were fighting over a single toy; the method was ultimately

deemed unsuccessful.

2
Caragiannis et al. [2019b] do provide an instance of two agents with monotone supermodular/subadditive valuations

where no allocation is PO and EF1.

ACM Transactions on Economics and Computation, Vol. 37, No. 4, Article 111. Publication date: August 2021.



Finding Fair and Efficient Allocations for Matroid Rank Valuations 111:3

of receiving another item is binary and obeys the law of diminishing marginal returns. This is

equivalent to the class of valuations that can be captured by matroid constraints. Matroids are

mathematical structures that generalize the concept of linear independence beyond vector spaces;

we refer the interested reader to [Oxley 2011] for further details. Matroids have proven to be a

versatile framework for describing a variety of problem domains. In our fair allocation domain,

each agent has a different matroid constraint over the collection of items, and her value for a bundle

is determined by the size of a maximum independent set included in the bundle.

Matroid rank valuations naturally arise in many practical applications, beyond the course alloca-

tion problem described above (where students are limited to either approving/disapproving a class).

For example, suppose that a government body wishes to fairly allocate public goods to individuals

of different minority groups (say, in accordance with a diversity-promoting policy). This could apply

to the assignment of kindergarten slots to children from different neighborhoods/socioeconomic

classes
3
or of flats in public housing estates to applicants of different ethnicities [Benabbou et al.

2019, 2020]. A possible way of achieving group fairness in this setting is to model each minority

group as an agent consisting of many individuals: each agent’s valuation function is based on

optimally matching items to its constituent individuals; envy naturally captures the notion that

no group should believe that other groups were offered better bundles (this is the fairness no-

tion studied by Benabbou et al. [2019]). Such assignment/matching-based valuations (known as

OXS valuations [Leme 2017]) are non-additive in general, and constitute an important subclass of

submodular valuations.

Matroid rank functions correspond to submodular functions with binary (i.e. {0, 1}) marginal

gains. The binary marginal gains assumption is best understood in context of matching-based

valuations described above — in this scenario, it simply means that individuals either approve or

disapprove of items, and do not distinguish between items they approve (we call OXS functions

with binary individual preferences (0, 1)-OXS valuations). This is a reasonable assumption in

kindergarten slot allocation (all approved/available slots are identical), and is implicitly made

in some public housing mechanisms; for instance, Singapore housing applicants are required to

effectively approve a subset of flats by selecting a block, and are precluded from expressing a more

refined preference model. A similar assumption is made in student course selection, where students

de-facto approve certain classes by signing up for them (and are thus precluded from expressing

more refined preferences).

What if we further assume that there are exogenous capacity constraints? This is the case in

course selection (students may only approve at most a fixed number of classes), and in housing

allocation (ethnic minorities in Singapore may only receive a fixed number of flats [Benabbou et al.

2020]). In addition, imposing certain constraints on the underlying matching problem retains the

submodularity of the agents’ induced valuation functions: if there is a hard limit due to a budget
or an exogenous quota (e.g. ethnicity-based quotas in Singapore public housing [Benabbou et al.

2020; Chua 1991; Deng et al. 2013; Parliament of Singapore. Parliament Debates: Official Report

1989; Phang and Kim 2013; Sim et al. 2003; Wong 2014]; socioeconomic status-based quotas in

certain U.S. public school admission systems such as Chicago Public Schools [Benabbou et al. 2020;

Chicago Public Schools 2017; Quick 2016; U.S. Department of Education, Office of Elementary

and Secondary Education 2017] on the number of items each group is able or allowed to receive,

then agents’ valuations are truncated matching-based valuations. Such valuation functions are not

OXS, but are still matroid rank functions (i.e. submodularity is preserved). Since agents still have

binary/dichotomous preferences over items even with the quotas in place, our results apply to this

broader class as well.

3
see, e.g. https://www.ed.gov/diversity-opportunity.
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Valuation class MNW Leximin max-USW+EF1
(0, 1)-OXS poly (Th. 4.1) poly (Th. 4.1) poly (Th. 3.4)

matroid rank poly (BEF20) poly (BEF20) poly (Th. 3.4; BEF20)

Table 1. Summary of our computational complexity results: “poly" denotes polynomial; BEF20 refers to
Babaioff et al. [2021]

Monotone

BM

Submodular

OXS

Additive

MR

(0,1)-OXS

BA

(a)

max-USW ≡ PO

MNW
≡

Leximin

EF1

(b)

Fig. 1. (a) Subsumption relations and intersections among the various valuation function classes defined in
this paper: BM denotes the class of valuation functions with binary marginal gains, MR the matroid rank
valuation function class (shaded) — the class of main interest to us, and BA denotes the class of binary additive
valuations. (b) Equivalences and intersections among properties of clean allocations under the matroid rank
valuation class. For both (a) and (b), sizes of blocks have no significance.

Using the matroid framework, we obtain a variety of positive existential and algorithmic results

on the compatibility of (approximate) envy-freeness with welfare-based allocation concepts. The

following is a summary of our main results (see also Figure 1 and Table 1):

(a) For matroid rank valuations, we show that an EF1 allocation that also maximizes the utili-
tarian social welfare or USW (hence is Pareto optimal) always exists and can be computed in

polynomial time by a simple greedy algorithm.

(b) For matroid rank valuations, we show that leximin
4
and MNW allocations both possess the

EF1 property.

(c) For matroid rank valuations, we provide a characterization of the leximin allocations; we

show that they are identical to the minimizers of any symmetric strictly convex function

over utilitarian optimal allocations (equivalently, the maximizers of any symmetric strictly

concave function over utilitarian optimal allocations). We obtain the same characterization

for MNW allocations.

(d) For (0, 1)-OXS valuations, we show that both leximin and MNW allocations can be computed

efficiently.

Result (a) is remarkably positive: the EF1 and utilitarian welfare objectives are incompatible in

general, even for additive valuations, as shown by Example A.1 in Appendix A. In fact, maximizing

the utilitarian social welfare among all EF1 allocations is NP-hard for general valuations [Barman

et al. 2019].

Result (b) is reminiscent of the Theorem 3.2 in Caragiannis et al. [2019b], showing that any

MNW allocation is PO and EF1 under additive valuations; they also showed that a PO and EF1

4
Roughly speaking, a leximin allocation is one that maximizes the realized valuation of the worst-off agent and, subject to

that, maximizes that of the second worst-off agent, and so on.
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allocation may not exist under subadditive/supermodular valuations (Theorem 3.3) and MNW does

not imply EF1 for arbitrary, real-valued submodular functions (Appendix C Example C.3) but left

the PO+EF1 existence question open for the submodular class. The open questions in this paper

have received substantial attention in recent literature (for instance, progress has been made on

EFX or envy-freeness up to the least valued item, see e.g. [Plaut and Roughgarden 2018]) but the

PO+EF1 existence issue beyond additive valuations is yet to be settled. To our knowledge, the

class of matroid rank valuations is the first valuation class not subsumed by additive valuations

for which the EF1 property of the MNW allocation and multiple alternative ways of achieving the

PO+EF1 combination have been established. The other properties of the MNW principle that we

have uncovered for this valuation class (results (b) and (c)) may be of independent interest (see the

discussion in Section 5).

Our computational tractability results (d) are significant since we know that for arbitrary real

valuations, it is NP-hard to compute the following types of allocations: PO+EF even for the seemingly

simple class of binary additive valuations which is subsumed by our matroid rank class (Bouveret

and Lang [2008] Proposition 21); leximin [Bezáková and Dani 2005]; and MNW [Nguyen et al.

2014]. Moreover, although previous work on binary additive valuations established the polynomial

time-solvability of MNW (and thus finding a PO and EF1 allocation) via a clever algorithm based

on a subtle running time analysis [Barman et al. 2018b], we extend this result to the strictly larger

(0, 1)-OXS class by uncovering connections to the rich literature on combinatorial optimization. For

example, the result (d) will exploit the network flow technique, drawing the equivalence between

leximin allocations and balanced network flows [Frank and Murota 2018].

Our analysis makes extensive use of tools and concepts from matroid theory [Oxley 2011]. While

some papers have explored the application of matroid theory to the fair division problem [Biswas

and Barman 2018; Gourvès and Monnot 2017], we believe that ours is the first to provide with

fairness and efficiency guarantees for a matroid-based valuation function class.

In addition to the above main results (a)–(d), we present in the appendices a discussion on

non-envy-based fairness criteria for matroid rank valuations as well as our attempts at generalizing

our results beyond this valuation class:

• In Appendix B, we show that for the more general submodular valuations with subjective
binary marginal gains (for which adding an item to an agent’s bundle increases her valuation

either by zero or by an item-invariant but agent-specific constant), MNW and leximin

allocations no longer coincide – in particular, an MNW allocation retains the EF1 property

whereas leximin allocations do not.

• In Appendix C, we formulate a heuristic extension of the fair allocation algorithm from

Result (a) above that applies to general assignment (OXS) valuations and evaluate its efficiency

in experiments based on a real-world data set MovieLens-ml-1m [Harper and Konstan 2015].

• In Appendix D, we explore (approximate) proportionality, equitability, and the maximin share

guarantee for matroid rank valuations in particular and submodular valuations in general.

1.2 Related Work
1.2.1 Fair Division with General Valuations. There is a vast and growing literature on fairness

and efficiency issues in resource allocation. Early work on divisible resource allocation provides an

elegant result: an allocation that satisfies envy-freeness and Pareto optimality always exists under

mild assumptions on valuations [Varian 1974], and can be computed via the convex programming

of Eisenberg and Gale [1959] for additive valuations. In the domain of the allocation of indivisible

goods (see Bouveret et al. [2016]; Markakis [2017] for an overview), Budish [2011] was the first to

formalize the notion of EF1 as an approximation to envy-freeness; but, it implicitly appears in Lipton

ACM Transactions on Economics and Computation, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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et al. [2004]. More recently, Caragiannis et al. [2019b] prove the discrete analogue of Eisenberg and

Gale [1959]: MNW allocation satisfies EF1 and Pareto optimality for additive valuations. Barman

et al. [2018a] provide a pseudo-polynomial-time algorithm for computing allocations satisfying

EF1 and PO.

Closely related to ours is the work of Biswas and Barman [2018] who consider fair division under

matroid constraints. In Section 6 of Biswas and Barman [2018], the authors consider a specific

setting where agents have identical additive valuations, and the aim is to find a fair allocation

under the same matroid constraint. They show that if a feasible allocation satisfying the matroid

constraint exists, it can be transformed into an EF1 complete feasible allocation. Although our

setting is different from theirs, the proof of Theorem 3.4 in our work uses a similar technique to the

one used in Theorem 3 of Biswas and Barman [2018] in order to transfer an item from the envious

bundle to the envied one.

In this paper, we admit allocations that may be incomplete (i.e. not all items are allocated to the

agents under consideration) but satisfy strong fairness and efficiency guarantees. This brings us

close to recent work on fairness with “charity" by Caragiannis et al. [2019a] and Chaudhury et al.

[2020].

1.2.2 Binary Additive Valuations. Under binary preferences, agents either approve or disapprove
of each good. Due to the advantage of simple elicitation, the use of binary preferences is widespread

in social choice literature [Lackner and Skowron 2020]. In the context of fair division, there has

been recent progress on the study of fair and efficient allocations in this domain.

In particular, several positive computational results have been obtained for binary additive

valuations. Darmann and Schauer [2015] and Barman et al. [2018b] show that the maximum

Nash welfare can be computed efficiently for binary additive valuations while computing MNW

allocations of indivisible items is hard in general. The work of Barman et al. [2018b] further develops

an efficient greedy algorithm to find an MNW allocation when the valuation of each agent is a

concave function that depends on the number of items approved by her. We note that this class of

valuations does not subsume the class of (0, 1)-OXS valuations since bundles of the same number

of approved items may have different values under the latter class;
5
hence the polynomial-time

complexity result of Barman et al. [2018a] does not imply our Theorem 4.1.

Independently of our work, Aziz and Rey [2020] show the equivalence between leximin and

MNW in the context of binary additive valuations (Lemma 4 of Aziz and Rey [2020]), which is a

special case of our result (c).

Halpern et al. [2020] show that for binary additive valuations, there is a group strategy-proof

mechanism that returns an allocation satisfying utilitarian optimality and EF1 (Theorem 1 of

Halpern et al. [2020]); dropping strategy-proofness, we generalize this result to the class of matroid

rank valuations.

1.2.3 Matroid Rank Valuations. Babaioff et al. [2021] independently present a set of results similar

to our own; moreover, they explore strategy-proof deterministic and randomized mechanisms for

matroid rank valuations, showing that such mechanisms exist. Below, we compare our results with

theirs in greater detail.

• Babaioff et al. [2021] show that a mechanism returning a special MNW allocation (called

Prioritized Egalitarian mechanism, or PE mechanism for short) achieves strategy-proofness,

5
Consider 3 items, 𝑜1, 𝑜2, 𝑜3, and a group of members 𝑆 = {1, 2, 3} with member 1 assigning weight 1 to items 𝑜1 and 𝑜3,

and members 2 and 3 assigning weight 1 to item 𝑜2 only. The value of a maximum matching between {𝑜1, 𝑜2 } and 𝑆 is 2

while the value of a maximum matching between {𝑜1, 𝑜3 } and 𝑆 is 1.
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EFX0

6
, and maximizes the social welfare for matroid rank valuations. In addition, their

mechanism runs in polynomial time (Theorem 1 of Babaioff et al. [2021]). In this work, we

present a simple algorithm that finds a social welfare-maximizing allocation satisfying EF1;

however, the returned allocation may not be MNW or EFX0 (see Examples 3.9 and A.5). In

addition, we provide a polynomial-time algorithm returning a MNW allocation for (0, 1)-OXS
valuations.

• Babaioff et al. [2021] show that for binary additive valuations, the PE mechanism achieves

MMS (Proposition 5 of Babaioff et al. [2021]). They further prove that for general matroid rank

functions, although PE mechanism may not satisfy full MMS, it achieves
1

2
MMS (Proposition

6 of Babaioff et al. [2021]). We also show that for binary additive valuations, PO and EF1

allocation is MMS (Proposition D.7). In addition, we show that there is an instance with

(0, 1)-OXS valuations such that no PO and EF1 allocation is MMS.

• Babaioff et al. [2021] show that for matroid rank functions, PE mechanism minimizes the

sum of squares. In this work, we prove a more general statement: for general matroid rank

functions, any MNW/leximin minimizes a symmetric convex function of agents’ valuations.

• While Babaioff et al. [2021] do not show the equivalence between MNW and leximin (as we

do), they prove a lemma (Lemma 17 of Babaioff et al. [2021]) that corresponds to Lemma 3.12

of this work, which is crucial in establishing the equivalence.

• Babaioff et al. [2021] study the setting where the desirable items are allowed to take an

arbitrary value in the range [1, 1 + 𝜖] (called 𝜖-leveled valuations), aiming to generalize the

positive existence result of a fair and strategy-proof mechanism. Note that the marginal can

vary over items so the class of 𝜖-leveled valuations strictly generalizes the class of submodular

functions with subjective binary marginal gains we study in Appendix B. However, there is

little overlap with respect to this domain.We showMNW still satisfies EF1 but the equivalence

between MNW and leximin is lost for the class of submodular functions with subjective

binary marginal gains, which has not been addressed in Babaioff et al. [2021].

To conclude, our work was developed independently, and is conceptually different from Babaioff

et al. [2021] in that the main focus of ours is on the fairness and efficiency compatibility and the

properties of such allocations.

1.2.4 Other related work. One motivation for this paper is recent work by Benabbou et al. [2019]

on promoting diversity in assignment problems through efficient, EF1 allocations of bundles to

attribute-based groups in the population. Similar works study quota-based fairness/diversity [Aziz

et al. 2019; Benabbou et al. 2020; Suzuki et al. 2018, and references therein], or by the optimization

of carefully constructed functions [Ahmed et al. 2017; Dickerson et al. 2019; Lang and Skowron

2016, and references therein] in allocation/subset selection.

2 MODEL AND DEFINITIONS
Throughout the paper, given a positive integer 𝑟 , let [𝑟 ] denote the set {1, 2, . . . , 𝑟 }. We are given

a set 𝑁 = [𝑛] of agents, and a set 𝑂 = {𝑜1, . . . , 𝑜𝑚} of items or goods. Subsets of 𝑂 are referred

to as bundles, and each agent 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 2
𝑂 → R+ over bundles where

𝑣𝑖 (∅) = 0.We further assume polynomial-time oracle access to the valuation 𝑣𝑖 of all agents. Given a

valuation function 𝑣𝑖 : 2
𝑂 → R, we define the marginal gain of an item 𝑜 ∈ 𝑂 w.r.t. a bundle 𝑆 ⊆ 𝑂 ,

as Δ𝑖 (𝑆 ;𝑜) ≜ 𝑣𝑖 (𝑆 ∪ {𝑜}) − 𝑣𝑖 (𝑆). A valuation function 𝑣𝑖 is monotone if 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 ) whenever
𝑆 ⊆ 𝑇 .

6
We provide the definition of EFX0 in Remark 2 in Section 3.
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An allocation 𝐴 of items to agents is a collection of 𝑛 disjoint bundles 𝐴1, . . . , 𝐴𝑛 , such that⋃
𝑖∈𝑁 𝐴𝑖 ⊆ 𝑂 ; the bundle 𝐴𝑖 is allocated to agent 𝑖 . Given an allocation 𝐴, we denote by 𝐴0 the set

of unallocated items, also referred to as withheld items. We may refer to agent 𝑖’s valuation of its

bundle 𝑣𝑖 (𝐴𝑖 ) under the allocation 𝐴 as its realized valuation under 𝐴. An allocation is complete
if every item is allocated to some agent, i.e. 𝐴0 = ∅. We admit incomplete, but clean allocations: a

bundle 𝑆 ⊆ 𝑂 is clean for 𝑖 ∈ 𝑁 if it contains no item 𝑜 ∈ 𝑆 for which agent 𝑖 has zero marginal

gain (i.e., Δ𝑖 (𝑆 \ {𝑜};𝑜) = 0); allocation 𝐴 is clean if each allocated bundle 𝐴𝑖 is clean for the agent

𝑖 that receives it. It is easy to ‘clean’ any allocation without changing any realized valuation by

iteratively revoking items of zero marginal gain from respective agents and placing them in 𝐴0. For

example, if for agent 𝑖 , 𝑣𝑖 ({1}) = 𝑣𝑖 ({2}) = 𝑣𝑖 ({1, 2}) = 1, then the bundle 𝐴𝑖 = {1, 2} is not clean
for agent 𝑖 (and neither is any allocation where 𝑖 receives items 1 and 2) but it can be cleaned by

moving item 1 (or item 2 but not both) to 𝐴0.

2.1 Fairness and Efficiency Criteria
Our fairness criteria are based on the concept of envy. Agent 𝑖 envies agent 𝑗 under an allocation

𝐴 if 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ). An allocation 𝐴 is envy-free (EF) if no agent envies another. We will use the

following relaxation of the EF property due to Budish [2011]: we say that𝐴 is envy-free up to one good
(EF1) if, for every 𝑖, 𝑗 ∈ 𝑁 , 𝑖 does not envy 𝑗 or there exists 𝑜 in 𝐴 𝑗 such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}).

The efficiency concept that we are primarily interested in is Pareto optimality. An allocation𝐴′ is
said to Pareto dominate the allocation 𝐴 if 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all agents 𝑖 ∈ 𝑁 and 𝑣 𝑗 (𝐴′𝑗 ) > 𝑣 𝑗 (𝐴 𝑗 )
for some agent 𝑗 ∈ 𝑁 . An allocation is Pareto optimal (or PO for short) if it is not Pareto dominated

by any other allocation.

Closely related to the concept of efficiency is the welfare of an allocation which can be measured

in several ways [Sen 1970]. Specifically, given an allocation 𝐴,

• its utilitarian social welfare is USW(𝐴) ≜ ∑𝑛
𝑖=1

𝑣𝑖 (𝐴𝑖 );
• its egalitarian social welfare is ESW(𝐴) ≜ min𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 );
• its Nash welfare is NW(𝐴) ≜ ∏

𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ).
An allocation 𝐴 is said to be utilitarian optimal (respectively, egalitarian optimal) if it maximizes

USW(𝐴) (respectively, ESW(𝐴)) among all allocations.

Since it is possible that the maximum attainable Nash welfare is 0 (e.g. if there are fewer items

than agents, then one agent must have an empty bundle), we use the following refinement of the

maximum Nash social welfare (MNW) criterion used in [Caragiannis et al. 2019b]: we find a largest

subset of agents, say 𝑁max ⊆ 𝑁 , to which we can allocate bundles of positive values, and compute

an allocation to agents in 𝑁max that maximizes the product of their realized valuations. If 𝑁max is

not unique, we choose the one that results in the highest product of realized valuations.

The leximin welfare is a lexicographic refinement of the maximin welfare concept, i.e. egalitarian

optimality. Formally, for real 𝑛-dimensional vectors 𝒙 and 𝒚, 𝒙 is lexicographically greater than
or equal to 𝒚 (denoted by 𝒙 ≥𝐿 𝒚) if and only if 𝒙 = 𝒚, or 𝒙 ≠ 𝒚 and for the minimum index 𝑗

such that 𝑥 𝑗 ≠ 𝑦 𝑗 we have 𝑥 𝑗 > 𝑦 𝑗 . For each allocation 𝐴, we denote by 𝒔 (𝐴) the vector of the
components 𝑣𝑖 (𝐴𝑖 ) (𝑖 ∈ 𝑁 ) arranged in non-decreasing order. A leximin allocation𝐴 is an allocation

that maximizes the egalitarian welfare in a lexicographic sense, i.e., 𝒔 (𝐴) ≥𝐿 𝒔 (𝐴′) for any other

allocation 𝐴′.

2.2 Submodular Valuations
In this paper, agents’ valuation functions are not necessarily additive but submodular. A valuation

function 𝑣𝑖 is submodular if each single item contributes more to a smaller set than to a larger one,

namely, for all 𝑆 ⊆ 𝑇 ⊆ 𝑂 and all 𝑜 ∈ 𝑂 \𝑇 , Δ𝑖 (𝑆 ;𝑜) ≥ Δ𝑖 (𝑇 ;𝑜).
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One important sub-class of submodular valuations is the class of assignment valuations. This class
of valuations was introduced by Shapley [1962] and is synonymous with the OXS valuation class

[Balcan et al. 2012; Lehmann et al. 2006; Leme 2017]. Fair allocation in this setting was explored by

Benabbou et al. [2019]. Here, each agent ℎ ∈ 𝑁 represents a group of individuals 𝑁ℎ (such as ethnic

groups and genders), each individual 𝑖 ∈ 𝑁ℎ (also called a member) having a fixed non-negative

weight𝑢𝑖,𝑜 for each item 𝑜 . An agentℎ values a bundle 𝑆 via amatching of the items to its individuals

(i.e. each item is assigned to at most one member and vice versa) that maximizes the sum of weights

[Munkres 1957]; namely,

𝑣ℎ (𝑆) = max{
∑
𝑖∈𝑁ℎ

𝑢𝑖,𝜋 (𝑖) | 𝜋 ∈ Π(𝑁ℎ, 𝑆) },

where Π(𝑁ℎ, 𝑆) is the set of matchings 𝜋 : 𝑁ℎ → 𝑆 in the complete bipartite graph with bipartition

(𝑁ℎ, 𝑆).
Our particular focus is on submodular functions with binary marginal gains. We say that 𝑣𝑖 has

binary marginal gains if Δ𝑖 (𝑆 ;𝑜) ∈ {0, 1} for all 𝑆 ⊆ 𝑂 and 𝑜 ∈ 𝑂 \ 𝑆 . The class of submodular

valuations with binary marginal gains includes the classes of binary additive valuations [Barman

et al. 2018b] and of assignment valuations where the weight is binary [Benabbou et al. 2019]. We

say that 𝑣𝑖 is a matroid rank valuation if it is a submodular function with binary marginal gains

(these are equivalent definitions [Oxley 2011]), and (0, 1)-OXS if it is an assignment valuation with

binary marginal gains.
7
The constrained assignment valuations discussed in the fourth paragraph

of Section 1.1 are examples of matroid rank valuations that are not (0, 1)-OXS.

3 MATROID RANK VALUATIONS
The main theme of all results in this section is that, when all agents have matroid rank valuations,

fairness (EF1) and efficiency (PO) properties are compatible with each other and also with all three

optimal welfare criteria we consider. Lemma 3.1 below shows that Pareto optimality of optimal

welfare is unsurprising; but, it is non-trivial to prove the EF1 property in each case (the proof is

available in Appendix A).

Lemma 3.1. For monotone valuations, every utilitarian optimal, leximin, and MNW allocation is
Pareto optimal.

We start the analysis of matroid rank valuations by introducing the basics of matroid theory.

Formally, a matroid is an ordered pair (𝐸,I), where 𝐸 is some finite set and I is a family of its

subsets (referred to as the independent sets of the matroid), which satisfies the following three

axioms:

(I1) ∅ ∈ I,
(I2) if 𝑌 ∈ I and 𝑋 ⊆ 𝑌 , then 𝑋 ∈ I, and
(I3) if 𝑋,𝑌 ∈ I and |𝑋 | > |𝑌 |, then there exists 𝑥 ∈ 𝑋 \ 𝑌 such that 𝑌 ∪ {𝑥} ∈ I.

The rank function 𝑟 : 2
𝐸 → Z of a matroid returns the rank of each set 𝑋 , i.e. the maximum size

of an independent subset of 𝑋 . Another equivalent way to define a matroid is to use the axiom

systems for a rank function. We require that (R1) 𝑟 (𝑋 ) ≤ |𝑋 |, (R2) 𝑟 is monotone, and (R3) 𝑟 is

submodular. Then, the pair (𝐸,I) where I = {𝑋 ⊆ 𝐸 | 𝑟 (𝑋 ) = |𝑋 | } is a matroid [Oxley 2011]. In

other words, if 𝑟 satisfies properties (R1)–(R3) then it induces a matroid.

Within the fair allocation context, if an agent has a matroid rank valuation, then the set of clean
bundles forms the set of independent sets of a matroid. The following are useful properties of

matroid rank valuations (the proofs are in Appendix A).

7 (0, 1)-OXS valuations coincide with rank functions of transversal matroids [Balcan et al. 2012].
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Proposition 3.2. A valuation function 𝑣𝑖 with binary marginal gains is monotone and takes values
in [|𝑆 |] for any bundle 𝑆 (hence 𝑣𝑖 (𝑆) ≤ |𝑆 |).
This property leads us to the following equivalence between the size and realized valuation of

every clean allocated bundle for the matroid rank valuation class — a crucial component of all our

proofs. Note that cleaning any optimal-welfare allocation leaves the welfare unaltered and ensures

that each resulting withheld item is of zero marginal gain to each agent; hence it preserves the PO

condition.

Proposition 3.3. For matroid rank valuations, 𝐴 is a clean allocation if and only if 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 |
for each 𝑖 ∈ 𝑁 .

Example A.3 in Appendix A.5 shows that Lipton et al. [2004]’s classic envy graph algorithm

does not guarantee a Pareto optimal allocation under matroid rank valautions (although the

output allocation is complete and EF1), and thus underscores the difficulty of finding the PO+EF1

combination under this valuation class. Moreover, note that in the simple example of one good and

two agents each valuing the good at 1, both agents’ valuation functions belong to the class under

consideration — this shows that an envy-free and Pareto optimal allocation may not exist even

under this class, and further justifies our quest for EF1 and Pareto-optimal allocations.

3.1 Finding a Utilitarian Optimal and EF1 Allocation
We will now establish that the existence of a PO+EF1 allocation, proved for additive valuations by

Caragiannis et al. [2019b], extends to the class of matroid rank valuations. In fact, we provide a

stronger — and surprisingly strong — relation between efficiency and fairness: utilitarian optimality

(stronger than Pareto optimality) and EF1 turn out to be mutually compatible under this valuation

class. Moreover, such an allocation can be computed in polynomial time!

Theorem 3.4. For matroid rank valuations, a utilitarian optimal allocation that is also EF1 exists
and can be computed in polynomial time.

Our result is constructive: we provide a way of computing the above allocation in Algorithm 1.

The proof of Theorem 3.4 and those of the latter theorems utilize Lemmas 3.5 and 3.6 which shed

light on the interesting interaction between envy and matroid rank valuations.

Lemma 3.5 (Transferability property). For monotone submodular valuation functions, if agent
𝑖 envies agent 𝑗 under an allocation 𝐴, then there is an item 𝑜 ∈ 𝐴 𝑗 for which 𝑖 has a positive marginal
gain with respect to 𝐴𝑖 .

Proof. Assume that agent 𝑖 envies agent 𝑗 under an allocation 𝐴, i.e. 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ), but no
item 𝑜 ∈ 𝐴 𝑗 has a positive marginal gain, i.e., Δ𝑖 (𝐴𝑖 ;𝑜) = 0 for each 𝑜 ∈ 𝐴 𝑗 . Let𝐴 𝑗 = {𝑜1, 𝑜2, . . . , 𝑜𝑟 }.
As in the proof of Proposition 3.2, if we define 𝑆0 = ∅ and 𝑆𝑡 = {𝑜1, 𝑜2, . . . , 𝑜𝑡 } for each 𝑡 ∈ [𝑟 ], we
can write the following telescoping series:

𝑣𝑖 (𝐴𝑖 ∪𝐴 𝑗 ) − 𝑣𝑖 (𝐴𝑖 ) =
𝑟∑

𝑡=1

Δ𝑖 (𝐴𝑖 ∪ 𝑆𝑡−1;𝑜𝑡 ).

However, submodularity implies that for each 𝑡 ∈ [𝑟 ], Δ𝑖 (𝐴𝑖 ∪ 𝑆𝑡−1;𝑜𝑡 ) ≤ Δ𝑖 (𝐴𝑖 ;𝑜𝑡 ) = 0, meaning

that

𝑣𝑖 (𝐴𝑖 ∪𝐴 𝑗 ) − 𝑣𝑖 (𝐴𝑖 ) =
𝑟∑

𝑡=1

Δ𝑖 (𝐴𝑖 ∪ 𝑆𝑡−1;𝑜𝑡 ) = 0.

Together with monotonicity, this yields 𝑣𝑖 (𝐴 𝑗 ) ≤ 𝑣𝑖 (𝐴𝑖∪𝐴 𝑗 ) = 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ), a contradiction. □
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Note that Lemma 3.5 holds for submodular functions with arbitrary real-valued marginal gains,

and is trivially true for (non-negative) additive valuations. However, there exist non-submodular

valuation functions that violate the transferability property, even when they have binary marginal

gains — see Example A.4 in Appendix A.6.

Below, we show that if 𝑖’s envy towards 𝑗 under a clean allocation cannot be eliminated by

removing one item from the latter’s bundle, then the two agents’ valuations for their respective

bundles differ by at least two (in fact, we establish a stronger version of the result that does not

require the envious agent 𝑖’s bundle to be clean). Formally, we say that agent 𝑖 envies 𝑗 up to more

than 1 item if 𝐴 𝑗 ≠ ∅ and 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) for every 𝑜 ∈ 𝐴 𝑗 .

Lemma 3.6. For submodular functions with binary marginal gains, if agent 𝑖 envies agent 𝑗 up to
more than 1 item under an allocation 𝐴 and 𝑗 ’s bundle 𝐴 𝑗 is clean, then 𝑣 𝑗 (𝐴 𝑗 ) ≥ 𝑣𝑖 (𝐴𝑖 ) + 2.

Proof. From definition: 𝐴 𝑗 ≠ ∅ and 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) for every 𝑜 ∈ 𝐴 𝑗 . Consider one such

𝑜 . From Proposition 3.2, 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) ≤ |𝐴 𝑗 \ {𝑜}| = |𝐴 𝑗 | − 1. Since 𝐴 𝑗 is a clean bundle for 𝑗 ,

Proposition 3.3 implies that 𝑣 𝑗 (𝐴 𝑗 ) = |𝐴 𝑗 |. Combining these, we get

𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) ≤ |𝐴 𝑗 | − 1 = 𝑣 𝑗 (𝐴 𝑗 ) − 1 ⇒ 𝑣 𝑗 (𝐴 𝑗 ) > 𝑣𝑖 (𝐴𝑖 ) + 1,

which proves the theorem statement since all valuations are integers. □

Next, we show that under matroid rank valuations, utilitarian social welfare maximization is

polynomial-time solvable (3.7).

Theorem 3.7. If all agents have submodular functions with binary marginal gains, one can compute
a clean utilitarian optimal allocation in polynomial time.

Proof. We prove the claim by a reduction to the matroid intersection problem. Let 𝐸 be the set

of pairs of items and agents, i.e., 𝐸 = { {𝑜, 𝑖} | 𝑜 ∈ 𝑂 ∧ 𝑖 ∈ 𝑁 }. For each 𝑖 ∈ 𝑁 and 𝑋 ⊆ 𝐸, we define

𝑋𝑖 to be the set of edges incident to 𝑖 , i.e., 𝑋𝑖 = { {𝑜, 𝑖} ∈ 𝑋 | 𝑜 ∈ 𝑂 }. Note that taking 𝐸 = 𝑋 , 𝐸𝑖 is

the set of all edges in 𝐸 incident to 𝑖 ∈ 𝑁 . For each 𝑖 ∈ 𝑁 and for each 𝑋 ⊆ 𝐸, we define 𝑟𝑖 (𝑋 ) to be

the valuation of 𝑖 , under function 𝑣𝑖 (·), for the items 𝑜 ∈ 𝑂 such that {𝑜, 𝑖} ∈ 𝑋𝑖 ; namely,

𝑟𝑖 (𝑋 ) = 𝑣𝑖 ({ 𝑜 ∈ 𝑂 | {𝑜, 𝑖} ∈ 𝑋𝑖 }) .

Clearly, 𝑟𝑖 is also a submodular functionwith binarymarginal gains; combining this with Proposition

3.2 and the fact that 𝑟𝑖 (∅) = 0, it is easy to see that each 𝑟𝑖 is a rank function of a matroid. Thus,

the set of clean bundles for 𝑖 , i.e I𝑖 = {𝑋 ⊆ 𝐸 | 𝑟𝑖 (𝑋 ) = |𝑋 | }, is the set of independent sets of a
matroid. Taking the union I = I1 ∪ · · · ∪ I𝑛 , the pair (𝐸,I) is known to form a matroid [Korte and

Vygen 2006], often referred to as a union matroid. By definition, I = {⋃𝑖∈𝑁 𝑋𝑖 | 𝑋𝑖 ∈ I𝑖 ∧ 𝑖 ∈ 𝑁 },
so any independent set in I corresponds to a union of clean bundles for each 𝑖 ∈ 𝑁 and vice versa.

To ensure that each item is assigned at most once (i.e. bundles are disjoint), we will define another

matroid (𝐸,O) where the set of independent sets is given by

O = {𝑋 ⊆ 𝐸 | |𝑋 ∩ 𝐸𝑜 | ≤ 1,∀𝑜 ∈ 𝑂 }.

Here, 𝐸𝑜 = { 𝑒 = {𝑜, 𝑖} | 𝑖 ∈ 𝑁 } for 𝑜 ∈ 𝑂 . The pair (𝐸,O) is known as a partition matroid [Korte
and Vygen 2006].

Now, observe that a common independent set of the two matroids 𝑋 ∈ O ∩ I corresponds to a

clean allocation 𝐴 of our original instance where each agent 𝑖 receives the items 𝑜 with {𝑜, 𝑖} ∈ 𝑋 ;

indeed, each item 𝑜 is allocated at most once because |𝐸𝑜 ∩ 𝑋 | ≤ 1, and each 𝐴𝑖 is clean because

the realized valuation of agent 𝑖 under 𝐴 is exactly the size of the allocated bundle. Conversely, any

clean allocation 𝐴 of our instance corresponds to an independent set 𝑋 =
⋃

𝑖∈𝑁 𝑋𝑖 ∈ I ∩ O, where
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𝑋𝑖 = { {𝑜, 𝑖} | 𝑜 ∈ 𝐴𝑖 }: for each 𝑖 ∈ 𝑁 , 𝑟𝑖 (𝑋𝑖 ) = |𝑋𝑖 | by Proposition 3.3, and hence 𝑋𝑖 ∈ I𝑖 , which
implies that 𝑋 ∈ I; also, |𝑋 ∩ 𝐸𝑜 | ≤ 1 as 𝐴 is an allocation, and hence 𝑋 ∈ O.
Thus, the maximum utilitarian social welfare is the same as the size of a maximum common

independent set in I ∩ O. It is well known that one can find a largest common independent set

in two matroids in time 𝑂 ( |𝐸 |3𝛾) where 𝛾 is the maximum complexity of the two independence

oracles [Edmonds 1979]. Since the maximum complexity of checking independence in two matroids

(𝐸,O) and (𝐸,I) is bounded by 𝑂 (𝑚𝑛𝐹 ) where 𝐹 is the maximum complexity of the value query

oracle, we can find a set 𝑋 ∈ I ∩ O with maximum |𝑋 | in time 𝑂 ( |𝐸 |3𝑚𝑛𝐹 ). □

Finally, we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Consider Algorithm 1. This algorithm maintains optimal USW as an

invariant and terminates on an EF1 allocation. Specifically, we first compute a clean allocation that

maximizes the utilitarian social welfare. The EIT subroutine in the algorithm iteratively diminishes

envy by transferring an item from the envied bundle to the envious agent; Lemma 3.5 ensures that

there is always an item in the envied bundle for which the envious agent has a positive marginal

gain.

Algorithm 1: Algorithm for finding utilitarian optimal EF1 allocation

1 Compute a clean, utilitarian optimal allocation 𝐴.

2 /*Envy-Induced Transfers (EIT)*/
3 while there are two agents 𝑖, 𝑗 such that 𝑖 envies 𝑗 more than 1 item do
4 Find item 𝑜 ∈ 𝐴 𝑗 with Δ𝑖 (𝐴𝑖 ;𝑜) = 1.

5 𝐴 𝑗 ← 𝐴 𝑗 \ {𝑜}; 𝐴𝑖 ← 𝐴𝑖 ∪ {𝑜}.
6 end

Correctness: Each EIT step maintains the optimal utilitarian social welfare as well as cleanness:

an envied agent’s valuation diminishes exactly by 1 while that of the envious agent increases by

exactly 1. Specifically, recall that for matroid rank valuations, an allocation 𝐴 is clean if and only if

𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | for all 𝑖 ∈ 𝑁 by Proposition 3.3. This means that if the previous allocation 𝐴 is clean,

then we have 𝑣𝑖 (𝐴𝑖 ∪ {𝑜}) = |𝐴𝑖 ∪ {𝑜}|, and 𝑣 𝑗 (𝐴 𝑗 \ {𝑜}) = |𝐴 𝑗 \ {𝑜}|. Hence the new allocation

after each EIT step remains clean. Thus, if the algorithm terminates, the EIT subroutine retains the

initial (optimal) USW and, by the stopping criterion, induces the EF1 property.

To show that the algorithm terminates (in polynomial time), we define the potential function

Φ(𝐴) ≜ ∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2. At each step of the algorithm, Φ(𝐴) strictly decreases by 2 or a larger integer.

To see this, let 𝐴′ denote the resulting allocation after reallocation of item 𝑜 from agent 𝑗 to 𝑖 .

Since 𝐴 is clean, we have 𝑣𝑖 (𝐴′𝑖 ) = 𝑣𝑖 (𝐴𝑖 ) + 1 and 𝑣 𝑗 (𝐴′𝑗 ) = 𝑣 𝑗 (𝐴 𝑗 ) − 1; since all other bundles are

untouched, 𝑣𝑘 (𝐴′𝑘 ) = 𝑣𝑘 (𝐴𝑘 ) for every 𝑘 ∈ 𝑁 \ {𝑖, 𝑗}. Also, since 𝑖 envies 𝑗 up to more than one

item under allocation 𝐴, 𝑣𝑖 (𝐴𝑖 ) + 2 ≤ 𝑣 𝑗 (𝐴 𝑗 ) by Lemma 3.6. Combining these, we get

Φ(𝐴′) − Φ(𝐴) = (𝑣𝑖 (𝐴𝑖 ) + 1)2 + (𝑣 𝑗 (𝐴 𝑗 ) − 1)2 − 𝑣𝑖 (𝐴𝑖 )2 − 𝑣 𝑗 (𝐴 𝑗 )2

= 2(1 + 𝑣𝑖 (𝐴𝑖 ) − 𝑣 𝑗 (𝐴 𝑗 ))
≤ 2(1 − 2) = −2.

Complexity: By Theorem 3.7, a clean utilitarian optimal allocation can be computed in poly-

nomial time. The value of the non-negative potential function has a polynomial upper bound:∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2 ≤ (

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ))2 ≤ 𝑚2

. Thus, Algorithm 1 terminates in polynomial time. □

ACM Transactions on Economics and Computation, Vol. 37, No. 4, Article 111. Publication date: August 2021.



Finding Fair and Efficient Allocations for Matroid Rank Valuations 111:13

An interesting implication of the above analysis is that a utilitarian optimal allocation that

minimizes

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2 is always EF1.

Corollary 3.8. For matroid rank valuations, any clean, utilitarian optimal allocation 𝐴 that
minimizes

Φ(𝐴) ≜
∑
𝑖∈𝑁

𝑣𝑖 (𝐴𝑖 )2

among all utilitarian optimal allocations is EF1.

Remark 1 (Choice of the potential function). In the proof of Theorem 3.4, we used the sum

of squared valuations as the potential function to prove termination in polynomial time mainly for

ease of exposition. Additionally, it shows that the EIT subroutine terminates after𝑂 (𝑚2) iterations.
However, any symmetric, strictly convex,8 polynomial function Φ of the realized valuations strictly

decreases with each EIT step and, as such, it is sufficient to use any such function as our potential

function if we just wish to establish termination in a polynomial number of iterations. Moreover,

Corollary 3.8 holds for any such function Φ as well — we elaborate on this theme in Section 3.2. ♦

Despite its simplicity, Algorithm 1 significantly generalizes that of Benabbou et al. [2019]’s

Theorem 4 (which ensures the existence of a non-wasteful EF1 allocation for (0, 1)-OXS valuations)
to matroid rank valuations. We note, however, that the resulting allocation may be neither MNW

nor leximin even when agents have (0, 1)-OXS valuations: Example 3.9 below illustrates this and

also shows that the converse of Corollary 3.8 does not hold.

Example 3.9. The instance we use is identical to Example 1 in Benabbou et al. [2019]. There are

two groups (i.e. agents with (0, 1)-OXS valuations) and six items 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6. The first group

𝑁1 (identical to agent 1) contains four members 𝑎1, 𝑎2, 𝑎3, 𝑎4 and the second group 𝑁2 (identical to

agent 2) contains four members 𝑏1, 𝑏2, 𝑏3, 𝑏4; each individual has utility (weight) 1 for an item 𝑜 if

and only if she is adjacent to 𝑜 in the graph depicted in Figure 2:

𝑎1

𝑎2

𝑎3

𝑎4

𝑜1

𝑜2

𝑜3

𝑜4

𝑜5

𝑜6

𝑏1

𝑏2

𝑏3

𝑏4

Fig. 2. An instance where Algorithm 1 produces an allocation that is not MNW or leximin.

The valuation function of each group for any bundle 𝑋 is defined as the value (equivalently,

the size) of a maximum-size matching of 𝑋 to the group’s members. The algorithm may initially

compute a utilitarian optimal allocation 𝐴 that assigns items 𝑜1, 𝑜2, 𝑜3, 𝑜5 to the group 𝑁1 (with

these items assigned to 𝑎1, 𝑎2, 𝑎3, 𝑎4 respectively), and the remaining items to group 𝑁2 (with 𝑜4, 𝑜6

8
See Section 3.2 for the definition of a symmetric, strictly convex function. For the proof of Theorem 3.4, it suffices for the

function to be strictly convex only over the non-negative orthant since valuations are always non-negative.
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assigned to 𝑏2, 𝑏4 respectively). Then, 𝑣1 (𝐴1) = 4 > 2 = 𝑣1 (𝐴2) and 𝑣2 (𝐴2) = 2 = 𝑣2 (𝐴1), hence
the allocation 𝐴 is EF1 — in fact, envy-free! So, the EIT subroutine will not be invoked and the

output of Algorithm 1 will be 𝐴. However, the (unique) leximin and MNW allocation assigns items

𝑜1, 𝑜2, 𝑜3 to the first group, and the remaining items to the second group – this is also the (unique)

utilitarian optimal allocation with the minimum sum of squares of the agents’ valuations. ■

Remark 2 (EFX allocation). It is worthwhile at this point to comment on the implications

of our results for a stronger version of the EF1 property that has received considerable attention

in recent literature: envy-freeness up to any item, often called the EFX condition. There are two

definitions in the literature:

(1) Caragiannis et al. [2019b] who introduced this concept (for additive valuations) called it

envy-freeness up to the least (positively) valued good; we can naturally extend their definition

to general valuations as follows: an allocation 𝐴 is EFX if, for every pair of agents 𝑖, 𝑗 ∈ 𝑁
such that 𝑖 envies 𝑗 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) for every item 𝑜 ∈ 𝐴 𝑗 satisfying Δ𝑖 (𝐴 𝑗 \ {𝑜}) > 0.

We will call this property EFX+ for clarity (see Remark 4 in Appendix A.9 for issues with

defining EFX+ beyond additive valuations).

(2) Plaut and Roughgarden [2018] defined an allocation𝐴 to be EFX if, for every pair of agents 𝑖, 𝑗 ,

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) ∀𝑜 ∈ 𝐴 𝑗 or equivalently 𝑣𝑖 (𝐴𝑖 ) ≥ max𝑜∈𝐴 𝑗
𝑣𝑖 (𝐴 𝑗 \ {𝑜}) — this stronger

definition favors allocations where more agents are envy-free of others since 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) =
𝑣𝑖 (𝐴 𝑗 ) whenever 𝑜 is of zero marginal value to agent 𝑖 with respect to the bundle 𝐴 𝑗 : the

authors show that under this definition, no EFX allocation can be Pareto optimal even for

two agents with additive valuations or general but identical valuations.
9
Caragiannis et al.

[2019a] and Chaudhury et al. [2020] use this definition as well. Following Kyropoulou et al.

[2020], who studied both the (above) weaker and (this) stronger variants of approximate

envy-freeness under a different valuation model, we call this stronger property EFX0.

For matroid rank valuations, all items with non-zero marginal values for an agent are also valued

identically at 1, hence EF1 trivially implies EFX+; Theorem 3.4 and Corollary 3.8 further guarantee

the existence of an EFX+ and PO allocation for any instance under this valuation class. However,

we demonstrate with Example A.5 with (0, 1)-OXS valuations in Appendix A.8 that even an EF1

and utilitarian optimal (hence PO) allocation may not satisfy the EFX0 condition. ♦

Also, see Remark 5 in Appendix A.10 for connections to fair allocation “with charity" [Caragiannis

et al. 2019a; Chaudhury et al. 2020].

3.2 MNW and Leximin Allocations
We saw in Section 3.1 that under matroid rank valuations, a simple iterative procedure allows us to

reach an EF1 allocation while preserving utilitarian optimality. However, as we previously noted,

such allocations are not necessarily leximin or MNW. In this subsection, we characterize the set

of leximin and MNW allocations under matroid rank valuations. We start by showing that Pareto

optimal allocations coincide with utilitarian optimal allocations when agents have matroid rank

valuations. Intuitively, if an allocation is not utilitarian optimal, one can always find an ‘augmenting’

path that makes at least one agent happier but no other agent worse off.

In the subsequent proof, we will use the following notions and results from matroid theory:

Given a matroid (𝐸,I), the sets in 2
𝐸 \ I are called dependent, and a minimal dependent set of a

matroid is called a circuit. The following is a crucial property of circuits.

9
However, both their examples establishing negative results for these sets of conditions on the valuation functions involve

eliminating items with zero marginal value; their second example (for identical valuations) uses a non-submodular valuation

function.
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Lemma 3.10 (Korte and Vygen [2006]). Let (𝐸,I) be a matroid, 𝑋 ∈ I, and 𝑦 ∈ 𝐸 \ 𝑋 such that
𝑋 ∪ {𝑦} ∉ I. Then the set 𝑋 ∪ {𝑦} contains a unique circuit.

Given a matroid (𝐸,I), we denote by 𝐶 (I, 𝑋,𝑦) the unique circuit contained in 𝑋 ∪ {𝑦} for any
𝑋 ∈ I and 𝑦 ∈ 𝐸 \ 𝑋 such that 𝑋 ∪ {𝑦} ∉ I.

Theorem 3.11. For matroid rank valuations, any Pareto optimal allocation is utilitarian optimal.

Proof. Define 𝐸,𝑋𝑖 , 𝐸𝑖 ,I𝑖 for 𝑖 ∈ 𝑁 ,I, andO as in the proof of Theorem 3.7.We first observe that

for each 𝑋 ∈ I and each 𝑦 ∈ 𝐸 \ 𝑋 , if 𝑋 ∪ {𝑦} ∉ I, then there is agent 𝑖 ∈ 𝑁 whose corresponding

items in 𝑋𝑖 together with 𝑦 is not clean, i.e., 𝑋𝑖 ∪ {𝑦} ∉ I𝑖 , which by Lemma 3.10 implies that the

circuit 𝐶 (I, 𝑋,𝑦) is contained in 𝐸𝑖 , i.e.,

𝐶 (I, 𝑋,𝑦) = 𝐶 (I𝑖 , 𝑋,𝑦). (1)

Now to prove the claim, let 𝐴 be a Pareto optimal allocation. Without loss of generality, we

assume that 𝐴 is clean. Then, as we have seen before, 𝐴 corresponds to a common independent set

𝑋 ∗ in I ∩ O given by

𝑋 ∗ =
⋃
𝑖∈𝑁
{ 𝑒 = {𝑜, 𝑖} ∈ 𝐸 | 𝑜 ∈ 𝐴𝑖 }.

Suppose towards a contradiction that𝐴 does not maximize the utilitarian social welfare. This means

that 𝑋 ∗ is not a largest common independent set of I and O. It is known that given two matroids

and their common independent set, if it is not a maximum-size common independent set, then

there is an ‘augmenting’ path [Edmonds 1979].

To formally define an augmenting path, we define an auxiliary graph 𝐺𝑋 ∗ = (𝐸, 𝐵 (1)𝑋 ∗ ∪ 𝐵
(2)
𝑋 ∗ )

where the set of arcs is given by

𝐵
(1)
𝑋 ∗ = { (𝑥,𝑦) | 𝑦 ∈ 𝐸 \ 𝑋

∗ ∧ 𝑥 ∈ 𝐶 (O, 𝑋 ∗, 𝑦) \ {𝑦} },

𝐵
(2)
𝑋 ∗ = { (𝑦, 𝑥) | 𝑦 ∈ 𝐸 \ 𝑋

∗ ∧ 𝑥 ∈ 𝐶 (I, 𝑋 ∗, 𝑦) \ {𝑦} }.
Since 𝑋 ∗ is not a maximum common independent set of O and I, the set 𝑋 ∗ admits an augmenting
path, which is an alternating path 𝑃 = (𝑦0, 𝑥1, 𝑦1, . . . , 𝑥𝑠 , 𝑦𝑠 ) in 𝐺𝑋 ∗ with 𝑦0, 𝑦1, . . . , 𝑦𝑠 ∉ 𝑋 ∗ and
𝑥1, 𝑥2, . . . , 𝑥𝑠 ∈ 𝑋 ∗, where 𝑋 ∗ can be augmented by one element along the path, i.e.,

𝑋 ′ = (𝑋 ∗ \ {𝑥1, 𝑥2, . . . , 𝑥𝑠 }) ∪ {𝑦0, 𝑦1, . . . , 𝑦𝑠 } ∈ I ∩ O .
Now let’s write the pairs of agents and items that correspond to 𝑦𝑡 and 𝑥𝑡 as follows:

• 𝑦𝑡 = {𝑖 (𝑦𝑡 ), 𝑜 (𝑦𝑡 )} where 𝑖 (𝑦𝑡 ) ∈ 𝑁 and 𝑜 (𝑦𝑡 ) ∈ 𝑂 for 𝑡 = 0, 1, . . . , 𝑠; and

• 𝑥𝑡 = {𝑖 (𝑥𝑡 ), 𝑜 (𝑥𝑡 )} where 𝑖 (𝑥𝑡 ) ∈ 𝑁 and 𝑜 (𝑥𝑡 ) ∈ 𝑂 for 𝑡 = 1, 2, . . . , 𝑠 .

Since each 𝑥𝑡 (𝑡 ∈ [𝑠]) belongs to the unique circuit𝐶 (I, 𝑋 ∗, 𝑦𝑡−1), which is contained in the set of

edges incident to 𝑖 (𝑦𝑡−1) by the observation made in (1), we have 𝑖 (𝑥𝑡 ) = 𝑖 (𝑦𝑡−1) for each 𝑡 ∈ [𝑠].
This means that along the augmenting path 𝑃 , each agent 𝑖 (𝑥𝑡 ) receives a new item 𝑜 (𝑦𝑡−1) and
discards the old item 𝑜 (𝑥𝑡 ).

Now consider the reallocation corresponding to𝑋 ′ where agent 𝑖 (𝑥𝑡 ) receives a new item 𝑜 (𝑦𝑡−1)
but loses the item 𝑜 (𝑥𝑡 ) for each 𝑡 = 1, 2, . . . , 𝑠 , and agent 𝑖 (𝑦𝑠 ) receives the item 𝑜 (𝑦𝑠 ). Such a

reallocation increases the valuation of agent 𝑖 (𝑦𝑠 ) by 1, while it does not decrease the valuations of

all the intermediate agents, 𝑖 (𝑥1), 𝑖 (𝑥2), . . . , 𝑖 (𝑥𝑠 ), as well as the other agents whose agents do not

appear on 𝑃 . We thus conclude that𝐴 is Pareto dominated by the new allocation, a contradiction. □

Theorem 3.11 above, along with Lemma 3.1, implies that both leximin and MNW allocations are

utilitarian optimal. Next, we show that for the class of matroid rank valuations, leximin and MNW

allocations are identical to each other; further, they can be characterized as the minimizers of any

symmetric strictly convex function among all utilitarian optimal allocations.
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A function Φ : Z𝑛 → R is symmetric if for any permutation 𝜋 : [𝑛] → [𝑛],
Φ(𝑧1, 𝑧2, . . . , 𝑧𝑛) = Φ(𝑧𝜋 (1) , 𝑧𝜋 (2) , . . . , 𝑧𝜋 (𝑛) ),

and is strictly convex if for any 𝒙,𝒚 ∈ Z𝑛 with 𝒙 ≠ 𝒚 and 𝜆 ∈ (0, 1) where 𝜆𝒙 + (1−𝜆)𝒚 is an integral

vector,

𝜆Φ(𝒙) + (1 − 𝜆)Φ(𝒚) > Φ(𝜆𝒙 + (1 − 𝜆)𝒚).
A function Ψ : Z𝑛 → R is strictly concave if for any 𝒙,𝒚 ∈ Z𝑛 with 𝒙 ≠ 𝒚 and 𝜆 ∈ (0, 1) where
𝜆𝒙 + (1 − 𝜆)𝒚 is an integral vector,

𝜆Ψ(𝒙) + (1 − 𝜆)Ψ(𝒚) < Ψ(𝜆𝒙 + (1 − 𝜆)𝒚).
It is not difficult to see that Φ : Z𝑛 → R is strictly convex if and only if −Φ is strictly concave.

Examples of symmetric, strictly convex functions are the following:

Φ(𝑧1, 𝑧2, . . . , 𝑧𝑛) ≜
𝑛∑
𝑖=1

𝑧2

𝑖 for 𝑧𝑖 ∈ Z ∀𝑖 ∈ [𝑛];

Φ(𝑧1, 𝑧2, . . . , 𝑧𝑛) ≜
𝑛∑
𝑖=1

𝑧𝑖 ln 𝑧𝑖 for 𝑧𝑖 ∈ Z≥0 ∀𝑖 ∈ [𝑛].

For an allocation 𝐴, we define Φ(𝐴) ≜ Φ(𝑣1 (𝐴1), 𝑣2 (𝐴2), . . . , 𝑣𝑛 (𝐴𝑛)).
We start by showing that given a non-leximin socially optimal allocation 𝐴, there exists an

adjacent socially optimal allocation 𝐴′ which is the result of transferring one item from a ‘happy’

agent 𝑗 to a less ‘happy’ agent 𝑖 . The underlying submodularity guarantees the existence of such

allocation. We denote by 𝜒𝑖 the 𝑛-dimensional incidence vector where the 𝑗-th component of 𝜒𝑖 is

1 if 𝑗 = 𝑖 , and it is 0 otherwise.

Lemma 3.12. Suppose that agents have matroid rank valuations. Let 𝐴 be a utilitarian optimal
allocation. If 𝐴 is not a leximin allocation, then there is another utilitarian optimal allocation 𝐴′ such
that

𝒔 (𝐴′) = 𝒔 (𝐴) + 𝜒𝑖 − 𝜒 𝑗 ,

for 𝑖, 𝑗 ∈ [𝑛] with 𝒔 (𝐴)𝑗 ≥ 𝒔 (𝐴)𝑖 + 2.

Proof. Let 𝐴 be an arbitrary utilitarian optimal allocation which is not leximin, and let 𝐴∗ be a
leximin allocation. Recall that 𝐴∗ is utilitarian optimal by Theorem 3.11. Without loss of generality,

we assume that both 𝐴 and 𝐴∗ are clean allocations. Now take a clean allocation 𝐴′ that minimizes

the symmetric difference

∑
𝑖∈𝑁 |𝐴′𝑖△𝐴∗𝑖 | over all clean allocations with 𝒔 (𝐴′) = 𝒔 (𝐴). Assume also

w.l.o.g. that 𝑣1 (𝐴′1) ≤ 𝑣2 (𝐴′2) ≤ · · · ≤ 𝑣𝑛 (𝐴′𝑛). We let 𝑣 𝑗1 (𝐴∗𝑗1 ) ≤ 𝑣 𝑗2 (𝐴∗𝑗2 ) ≤ · · · ≤ 𝑣 𝑗𝑛 (𝐴∗𝑗𝑛 ). Since 𝐴
∗

lexicographically dominates 𝐴′, for the minimum index 𝑘 with 𝑣𝑘 (𝐴′𝑘 ) ≠ 𝑣 𝑗𝑘 (𝐴∗𝑗𝑘 ),
𝑣𝑘 (𝐴′𝑘 ) < 𝑣 𝑗𝑘 (𝐴∗𝑗𝑘 ). (2)

We note that 𝑣ℎ (𝐴′ℎ) = 𝑣 𝑗ℎ (𝐴∗𝑗ℎ ) for all 1 ≤ ℎ ≤ 𝑘 − 1. By (2), there exists 𝑖 ∈ [𝑘] with
𝑣𝑖 (𝐴′𝑖 ) < 𝑣𝑖 (𝐴∗𝑖 ). (3)

Indeed, if for all 𝑖 ∈ [𝑘], 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴∗𝑖 ), the 𝑘-th smallest value of realized valuations under 𝐴′ is
at least 𝑣 𝑗𝑘 (𝐴∗𝑗𝑘 ), contradicting with (2). Take the minimum index 𝑖 satisfying (3). Since both 𝐴′ and
𝐴∗ are clean allocations, we have

|𝐴′𝑖 | = 𝑣𝑖 (𝐴′𝑖 ) < 𝑣𝑖 (𝐴∗𝑖 ) = |𝐴∗𝑖 |. (4)

By minimality, for all ℎ ∈ [𝑖 − 1], 𝑣ℎ (𝐴′ℎ) ≥ 𝑣ℎ (𝐴∗ℎ). In fact, the equality

𝑣ℎ (𝐴′ℎ) = 𝑣ℎ (𝐴∗ℎ) (5)
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holds for all ℎ ∈ [𝑖 − 1]. Indeed if 𝑣ℎ (𝐴′ℎ) > 𝑣ℎ (𝐴∗ℎ) for some ℎ ∈ [𝑖 − 1], then ℎ-th smallest

value of the realized valuations under 𝐴′ would be strictly greater than that under 𝐴∗, yielding
𝒔 (𝐴′) >𝐿 𝒔 (𝐴∗), a contradiction.

Now, recall that the family of clean bundles Iℎ = { 𝑆 ⊆ 𝑂 | 𝑣ℎ (𝑆) = |𝑆 | } for ℎ ∈ 𝑁 forms a family

of independent sets of amatroid. By (I3) of the independent-set matroid axioms and by the inequality

(4), there exists an item 𝑜1 ∈ 𝐴∗𝑖 \𝐴′𝑖 with positive contribution to 𝐴′𝑖 , i.e., 𝑣𝑖 (𝐴′𝑖 ∪ {𝑜1}) = 𝑣𝑖 (𝐴′𝑖 ) + 1.

By utilitarian optimality of 𝐴′, 𝑜1 is allocated to some agent, i.e., 𝑜1 ∈ 𝐴′𝑖1 for some 𝑖1 ≠ 𝑖 . Consider

the following three cases:

• Suppose 𝑣𝑖1 (𝐴′𝑖1 ) ≥ 𝑣𝑖 (𝐴′𝑖 ) + 2. Then, we obtain a desired allocation by transferring 𝑜1 from 𝑖1
to 𝑖 .

• Suppose 𝑣𝑖1 (𝐴′𝑖1 ) = 𝑣𝑖 (𝐴′𝑖 ) + 1. Then by transferring 𝑜1 from 𝑖1 to 𝑖 , we get another utilitarian

optimal allocation with the same vector as 𝒔 (𝐴′), which has a smaller symmetric difference

than

∑
𝑖∈𝑁 |𝐴′𝑖△𝐴∗𝑖 |, a contradiction.

• Suppose 𝑣𝑖1 (𝐴′𝑖1 ) ≤ 𝑣𝑖 (𝐴′𝑖 ). We will first show that 𝑣𝑖1 (𝐴′𝑖1 ) ≤ 𝑣𝑖1 (𝐴∗𝑖1 ). By (5), this clearly

holds if 𝑖1 ≤ 𝑖 . Also, when 𝑖1 > 𝑖 , this means that 𝑣𝑖1 (𝐴′𝑖1 ) = 𝑣𝑖 (𝐴′𝑖 ); thus 𝑣𝑖1 (𝐴′𝑖1 ) ≤ 𝑣𝑖1 (𝐴∗𝑖1 ),
as otherwise the 𝑖-th smallest value of realized valuations under 𝐴′ would be greater than

that under 𝐴∗, contradicting that 𝐴∗ is leximin. Further by the facts that |𝐴′𝑖1 \ {𝑜1}| < |𝐴∗𝑖1 |
and that both 𝐴′𝑖1 \ {𝑜1} and 𝐴∗𝑖1 are clean (i.e., independent sets of a matroid), there exists an

item 𝑜2 ∈ 𝐴∗𝑖1 \𝐴
′
𝑖1
such that 𝑣𝑖1 (𝐴′𝑖1 ∪ {𝑜2} \ {𝑜1}) = 𝑣𝑖 (𝐴′𝑖1 ). Again by utilitarian optimality

of 𝐴′, 𝑜2 is allocated to some agent, i.e., 𝑜2 ∈ 𝐴′𝑖2 for some 𝑖2 ≠ 𝑖1.

Repeating the same argument and letting 𝑖0 = 𝑖 , we obtain a sequence of items and agents

(𝑖0, 𝑜1, 𝑖1, 𝑜2, 𝑖2, . . . , 𝑜𝑡 , 𝑖𝑡 ) such that

• 𝑣𝑖ℎ (𝐴′𝑖ℎ ) = 𝑣𝑖ℎ (𝐴′𝑖ℎ ∪ {𝑜ℎ+1} \ {𝑜ℎ}) for all 1 ≤ ℎ ≤ 𝑡 − 1; and

• 𝑜ℎ ∈ 𝐴∗𝑖ℎ−1

\𝐴′𝑖ℎ for all 1 ≤ ℎ ≤ 𝑡 .

See Figure 3 for an illustration of the sequence. If the same agent appears again, i.e., 𝑖ℎ = 𝑖ℎ′ for some

ℎ < ℎ′ ≤ 𝑡 , then by transferring items along the cycle, we can decrease the symmetric difference

with 𝐴∗, a contradiction. Thus, the sequence must terminate when we reach the agent 𝑖𝑡 with

𝑣𝑖𝑡 (𝐴′𝑖𝑡 ) ≥ 𝑣𝑖 (𝐴′𝑖 ) + 2. Exchanging items along the path, we get a desired allocation. □

𝑜1 𝑜2 · · · 𝑜𝑡

𝐴𝑖0 𝐴𝑖1 𝐴𝑖2 𝐴𝑖𝑡

Fig. 3. The path (𝑖0, 𝑜1, 𝑖1, 𝑜2, 𝑖2, . . . , 𝑜𝑡 , 𝑖𝑡 )

We further observe that such adjacent allocation decreases the value of any symmetric strictly

convex function (equivalently, increases the value of any symmetric strictly concave function). The

proof is similar to that of Proposition 6.1 in Frank and Murota [2018], which shows the analogous

equivalence over the integral base-polyhedron.

Lemma 3.13. Let Φ : Z𝑛 → Z be a symmetric strictly convex function and Ψ : Z𝑛 → Z be
a symmetric strictly concave function. Let 𝐴 be a utilitarian optimal allocation. Let 𝐴′ be another
utilitarian optimal allocation such that 𝒔 (𝐴′) = 𝒔 (𝐴)+𝜒𝑖−𝜒 𝑗 for some 𝑖, 𝑗 ∈ [𝑛] with 𝒔 (𝐴)𝑗 ≥ 𝒔 (𝐴)𝑖+2.
Then, Φ(𝐴) > Φ(𝐴′) and Ψ(𝐴) < Ψ(𝐴′).

ACM Transactions on Economics and Computation, Vol. 37, No. 4, Article 111. Publication date: August 2021.



111:18 Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick

Proof. Let 𝛽 = 𝒔 (𝐴)𝑗 − 𝒔 (𝐴)𝑖 ≥ 2, and𝒚 = 𝒔 (𝐴) + 𝛽 (𝜒𝑖 − 𝜒 𝑗 ). Thus Φ(𝒔 (𝐴)) = Φ(𝒚) by symmetry

of Φ. Define 𝜆 = 1 − 1

𝛽
. We have 0 < 𝜆 < 1 since 𝛽 ≥ 2. Observe that

𝜆𝒔 (𝐴) + (1 − 𝜆)𝒚 = (1 − 1

𝛽
)𝒔 (𝐴) + 1

𝛽
(𝒔 (𝐴) + 𝛽 (𝜒𝑖 − 𝜒 𝑗 ))

= 𝒔 (𝐴) + 𝜒𝑖 − 𝜒 𝑗 = 𝒔 (𝐴′),
which gives us the following inequality (from the strict convexity of Φ): Φ(𝒔 (𝐴)) = 𝜆Φ(𝒔 (𝐴)) +
(1 − 𝜆)Φ(𝒔 (𝐴)) > Φ(𝒔 (𝐴′)) . Since −Ψ is symmetric strictly convex, the analogous proof shows

Ψ(𝐴) < Ψ(𝐴′). □

Now we are ready to prove the following.

Theorem 3.14. Let Φ : Z𝑛 → R be a symmetric strictly convex function, and Ψ : Z𝑛 → R be
a symmetric strictly concave function. Let 𝐴 be some allocation. For matroid rank valuations, the
following statements are equivalent:
(1) 𝐴 is a minimizer of Φ over all the utilitarian optimal allocations; and
(2) 𝐴 is a maximizer of Ψ over all the utilitarian optimal allocations; and
(3) 𝐴 is a leximin allocation; and
(4) 𝐴 maximizes Nash welfare.

Proof. To prove 1 ⇔ 2, let 𝐴 be a leximin allocation, and let 𝐴′ be a minimizer of Φ over all

the utilitarian optimal allocations. We will show that 𝒔 (𝐴′) is the same as 𝒔 (𝐴), which, by the

uniqueness of the leximin valuation vector and symmetry of Φ, proves the theorem statement.

Assume towards a contradiction that 𝒔 (𝐴) ≠ 𝒔 (𝐴′). By Theorem 3.11, we have USW(𝐴) = USW(𝐴′).
By Lemma 3.12, we can obtain another utilitarian optimal allocation 𝐴′′ that is a lexicographic
improvement of 𝐴′ by decreasing the value of the 𝑗-th element of 𝒔 (𝐴′) by 1 and increasing the

value of the 𝑖-th element of 𝒔 (𝐴′) by 1, where 𝒔 (𝐴′)𝑗 ≥ 𝒔 (𝐴′)𝑖 + 2. Applying Lemma 3.13, we get

Φ(𝒔 (𝐴′)) > Φ(𝒔 (𝐴′′)), which gives us the desired contradiction.

The equivalence 2⇔ 3 immediately holds by the fact that −Ψ is a symmetric strictly convex

function.

To prove 3⇔ 4, let 𝐴 be a leximin allocation, and let 𝐴′ be an MNW allocation. Again, we will

show that 𝒔 (𝐴′) is the same as 𝒔 (𝐴), which by the uniqueness of the leximin valuation vector and

symmetry of NW, proves the theorem statement. Let 𝑁>0 (𝐴) (respectively, 𝑁>0 (𝐴′)) be the agent
subset to which we allocate bundles of positive values under leximin allocation 𝐴 (respectively,

MNW allocation 𝐴′). By definition, the number 𝑛′ of agents who get positive values under leximin

allocation𝐴 is the same as that of MNW allocation𝐴′. Now we denote by 𝒔 (𝐴) (respectively, 𝒔 (𝐴′))
the vector of the non-zero components 𝑣𝑖 (𝐴𝑖 ) (respectively, 𝑣𝑖 (𝐴′𝑖 )) arranged in non-decreasing

order. Assume towards a contradiction that 𝒔 (𝐴) >𝐿 𝒔 (𝐴′). Since 𝐴′ maximizes the product

NW(𝐴′) when focusing on 𝑁>0 (𝐴′) only, the value
∑

𝑖∈𝑁>0 (𝐴′) log 𝑣𝑖 (𝐴′𝑖 ) is maximized. However,

Ψ(𝒙) = ∑𝑛′
𝑖=1

log𝑥𝑖 is a symmetric concave function for 𝒙 ∈ Z𝑛 with each 𝑥𝑖 > 0. Thus, by a similar

argument as before, one can show that Ψ(𝒔 (𝐴′)) > Ψ(𝒔 (𝐴)), a contradiction. This completes the

proof. □

Remark 3 (The Pigou-Dalton principle). Maximizing any symmetric strictly concave function

(equivalently, minimizing any symmetric strictly convex function) of valuations among all utilitarian

optimal allocations is consistent with the well-known Pigou-Dalton transfer principle (see, e.g.,
Moulin [2004]) of welfare economics in a strong sense, and the proof is similar to that of Lemma 3.12.

We formalize this notion in Appendix A.11.
10 ♦

10
We thank an anonymous reviewer for pointing out this connection.
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The above theorem does not generalize to the non-binary case: Example 3.15 represents an

instance where neither leximin nor MNW allocation is utilitarian optimal.

Example 3.15. Consider an instance with assignment valuations given as follows. Suppose there

are three groups, each of which contains a single agent, Alice, Bob, and Charlie, respectively, and

three items with weights given in Table 2. The unique leximin and MNW allocation is the allocation

1 2 3

Alice: 2 1 0

Bob: 2 1 0

Charlie: 0 2.9 0.1

Table 2. An instance where neither leximin nor MNW allocation is utilitarian optimal.

that assigns Alice to the first item, Bob to the second item, and Charlie to the third item; each

agent has positive utility at the allocation and the total utilitarian social welfare is 3.1. However,

the utilitarian optimal allocation assigns Alice to nothing, Bob to the first item, and Charlie to the

second item, which yields the total utilitarian social welfare 4.9. ■

Combining the above characterization with the results of Section 3.1, we get the following

fairness-efficiency guarantee for matroid rank valuations.

Corollary 3.16. For matroid rank valuations, any clean leximin or MNW allocation is EF1.

Proof. Since both leximin and MNW allocations are Pareto-optimal, they maximize the utili-

tarian social welfare, by Theorem 3.11. By Theorem 3.14 and the fact that the function Φ(𝐴) ≜∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2 is a symmetric strictly convex function, any leximin or MNW allocation is a utilitarian

optimal allocation that minimizes Φ(𝐴) among all utilitarian optimal allocations; hence, if such an

allocation is clean, it must be EF1 by Corollary 3.8. □

4 ASSIGNMENT VALUATIONS WITH BINARY GAINS
We now consider the special but practically important case when valuations come from maximum

matchings. For this class of valuations, we show that invoking Theorem 3.11, one can find a leximin

or MNW allocation in polynomial time, by a reduction to the network flow problem.

Theorem 4.1. For assignment valuations with binary marginal gains, one can find a leximin or
MNW allocation in polynomial time.

Proof. The problem of finding a leximin allocation under the (0, 1)-OXS valuation class can be

reduced to that of finding an integral balanced flow (or increasingly-maximal integer-valued flow)

in a network, which has been recently shown to be polynomial-time solvable [Frank and Murota

2019].

Specifically, for a network 𝐷 = (𝑉 ,𝐴) with source 𝑠 , sink 𝑡 , and a capacity function 𝑐 : 𝐴→ Z,
a balanced flow is a maximum integral feasible flow where the out-flow vector from the source

𝑠 to the adjacent vertices ℎ is lexicographically maximized among all maximum integral feasible

flows; that is, the smallest flow-value on the edges (𝑠, ℎ) is as large as possible, the second smallest

flow-value on the edges (𝑠, ℎ) is as large as possible, and so on. Frank and Murota [2019] show

that one can find a balanced flow in strongly polynomial time (see Section 7 in Frank and Murota

[2019]).
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Now, given an instance of assignment valuations with binary marginal gains, we build the

following instance (𝑉 ,𝐴) of a network flow problem. Let 𝑁ℎ denote the set of members in each

group ℎ. We first create a source 𝑠 and a sink 𝑡 . We create a vertex ℎ for each group ℎ, a vertex 𝑖

for each member 𝑖 of some group, and a vertex 𝑜 for each item 𝑜 . We construct the edges of the

network as follows:

• for each group ℎ, create an edge (𝑠, ℎ) with capacity𝑚; and

• for each group ℎ and member 𝑖 in group ℎ, create an edge (ℎ, 𝑖) with unit capacity; and

• for each member 𝑖 of some group and item 𝑜 for which 𝑖 has positive weight 𝑢𝑖𝑜 (i.e. 𝑢𝑖𝑜 = 1),

create an edge (𝑖, 𝑜) with unit capacity; and

• for each item 𝑜 , create an edge (𝑜, 𝑡) with unit capacity.

𝑠

Groups Members Items

ℎ

𝑚

𝑚

𝑚
𝑖 𝑗 𝑡

Fig. 4. An illustrative network flow instance constructed in the proof of Theorem 4.1: each edge is either
labeled with its capacity or has unit capacity.

See Figure 4 for an illustration of the network. We will show that an integral balanced flow

𝑓 : 𝐴→ Z of the constructed network corresponds to a leximin allocation. Consider an allocation

𝐴𝑓
where each group receives the items 𝑜 for which some member 𝑖 of the group has positive flow

𝑓 (𝑖, 𝑜) > 0.

It is easy to see that the allocation 𝐴𝑓
maximizes the utilitarian social welfare since the flow 𝑓 is

a maximum integral feasible flow. Thus, by Theorem 3.11,𝐴𝑓
has the same utilitarian social welfare

as any leximin allocation. To see balancedness, observe that the amount of flow from the source 𝑠

to each group ℎ is the valuation of ℎ for bundle 𝐴
𝑓

ℎ
, i.e., 𝑓 (𝑠, ℎ) = ∑

𝑖∈𝑁ℎ
𝑓 (ℎ, 𝑖) = 𝑣ℎ (𝐴𝑓

ℎ
). Indeed if

𝑣ℎ (𝐴𝑓

ℎ
) > 𝑓 (𝑠, ℎ), then it would contradict the optimality of the flow 𝑓 ; and if 𝑣ℎ (𝐴𝑓

ℎ
) < 𝑓 (𝑠, ℎ), it

would contradict the fact that 𝑣ℎ (𝐴𝑓

ℎ
) is the value of a maximum-size matching between 𝐴

𝑓

ℎ
and

𝑁ℎ . Thus, among all utilitarian optimal allocations, 𝐴𝑓
lexicographically maximizes the valuation

of each group, and hence 𝐴𝑓 is a leximin allocation. By Theorem 3.14, the leximin allocation 𝐴𝑓 is

also MNW. □

In contrast with assignment valuations with binary marginal gains, the problem of computing a

leximin or MNW allocation becomes intractable for weighted assignment valuations even when

there are only two agents, the following theorem shows (the proof is in Appendix A.12).

Theorem 4.2. For two agents with general assignment valuations, it is NP-hard to compute a
leximin or MNW allocation.
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5 DISCUSSION
We studied allocations of indivisible goods under submodular valuations with binary marginal gains

in terms of the interplay among envy, efficiency, and various welfare concepts. We showed that

three seemingly disjoint outcomes — minimizers of arbitrary symmetric strictly convex functions

among utilitarian optimal allocations, the leximin allocation, and the MNW allocation — coincide

in this class of valuations. Since the class of matroid rank functions is rather broad, our results can

be applied to settings where agents’ valuations are induced by a matroid structure. Beyond the

domains described in this work, these include several others. For example, partition matroids model

instances where agents’ have access to different item types, but can only hold a limited number of

each type (their utility is the total number of items they hold); a variety of other domains, such as

spanning trees, independent sets of vectors, coverage problems and more admit a matroid structure

(see Oxley [2011] for an overview). Indeed, a well-known result in combinatorial optimization states

that any agent valuation structure where the greedy algorithm can be used to find the (weighted)

optimal bundle, is induced by some matroid [Oxley 2011, Theorem 1.8.5].

We will conclude with additional implications of this work, some work in progress, and directions

for further research.

Complete vs clean EF1, PO allocations. In Section 3.1, we showed that focusing on clean allocations
helps us design an elegantly simple and polynomial-time algorithm (Algorithm 1) that computes an

EF1 and utilitarian optimal (but potentially incomplete) allocation under matroid rank valuations —

in other words, cleaning followed by further processing of a utilitarian optimal allocation is sufficient
for achieving the EF1+PO combination. It is still an interesting open problem whether cleaning

(and hence withholding some items) is necessary for achieving the desired fairness-efficiency

combination. Intuitively, a complete, utilitarian optimal allocation may induce avoidable envy
levels among agents

11
— agent 𝑗 ’s bundle 𝐴 𝑗 might include a subset 𝑆 that contributes nothing to

the overall welfare, i.e. 𝑣 𝑗 (𝐴 𝑗 \ 𝑆) = 𝑣 𝑗 (𝐴 𝑗 ), but makes another agent 𝑖 envious of 𝑗 up to more

than 1 items, i.e. 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) for every 𝑜 ∈ 𝐴 𝑗 but 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ (𝑆 ∪ {𝑜 ′})) for some

𝑜 ′ ∈ 𝐴 𝑗 \ 𝑆 . However, an instance that admits no complete, EF1, utilitarian optimal allocation (thus

proving the necessity of cleaning in general) remains elusive. Please refer to Appendix A.4 for

further comments on the interplay between cleanness and completeness.

More general valuation functions. An imperative line of future work is investigating which of our

findings extend to more general valuation functions. There are several known extensions to matroid

structures, with deep connections to submodular optimization [Oxley 2011, Chapter 11]. Matroid

rank functions are submodular functions with binary marginal gains; however, general submodular

functions (i.e. those with non-negative real marginal gains) admit some matroid structure which

may potentially be used to extend our results to more general settings.

An obvious generalization of the matroid rank valuation function class is the class of submodular

valuation functions with subjective binary marginal gains, i.e. Δ𝑖 (𝑆 ;𝑜) ∈ {0, 𝜆𝑖 } for some agent-

specific constant 𝜆𝑖 > 0, for every 𝑖 ∈ 𝑁 . For this valuations class that we call (0, 𝜆𝑖 )-SUB, we can
show that any clean, MNW allocation is still EF1 (clean bundles being defined the same way as for

matroid rank valuations) but the leximin and MNW allocations no longer coincide and leximin no

longer implies EF1 (the details are in Appendix B).

For general assignment valuations (i.e. members have positive real weights for items), we have

no theoretical guarantees yet. However, we ran experiments on a real-world data set, comparing

11
The observation that retaining items with zero marginal gain in an agent’s bundle can make other agents envious is also a

barrier to extending our results to a setting without free disposal, i.e. a setting where an agent incurs a cost for having an

item removed from her bundle.
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the performance of a heuristic extension of Algorithm 1 (Section 3.1) to real-valued individual-item

utilities (weights) with Lipton et al. [2004]’s envy graph algorithm in terms of the number of items

wasted (left unassigned or assigned to individuals with zero utility for it although another agent

has positive utility for the item). These experiments, described in detail in Appendix C, suggest that

approximate envy-freeness can often be achieved in practice simultaneously with good efficiency

guarantees even for this larger valuation class.

It is important to note that the class of rank functions of matroids is a subclass of the well-known

gross substitutes (GS) valuations [Gul and Stacchetti 1999; Kelso and Crawford 1982]. A promising

research direction is to investigate PO+EF1 existence for GS valuations.

Other fairness criteria. The fairness concept we consider here is (approximate) envy-freeness. An

obvious next step is to explore other criteria such as proportionality (each agent gets at least 1/𝑛 of
her valuation of the full collection of goods 𝑂), the maximin share guarantee or MMS (each agent

gets at least as much value as she would realize if allowed to partition 𝑂 completely among all

agents knowing that she would receive her least favorite part), equitability (all agents have equal

realized valuations), etc. (see, e.g. Caragiannis et al. [2019b]; Freeman et al. [2019] and references

therein for further details) for matroid rank valuations. We present our results from a preliminary

exploration of these questions in Appendix D. It is worthwhile to summarize here one of these

results that extends a recent paper by Freeman et al. [2019]. This paper shows that an allocation

that is equitable up to one item or EQ1 (a relaxation of equitability in the same spirit as EF1) and

PO may not exist even for binary additive valuations; however, for this valuation class, it can be

verified in polynomial time whether an EQ1, EF1 and PO allocation exists and, whenever it does

exist, it can also be computed in polynomial time (for the time complexity result, they show that

such an allocation is MNW). We can generalize this result to (0, 1)-OXS valuations: we first show
that any EQ1 and PO allocation under the matroid rank valuation class, if it exists, is leximin, then

invoke Corollary 3.16 to conclude that it must be EF1, and finally Theorem 4.1 to establish its

polynomial-time complexity for the (0, 1)-OXS class (the full proof is in Appendix D.3).

Implications for diversity. Finally, the analysis of submodular valuations ties in with existing

works on diversity in various fields from biology to machine learning (see, e.g. Celis et al. [2016,

2018]; Jost [2006]). A popular measurement for how diverse a solution is is to apply one of several

concave functions called diversity indices to the proportions of the different entities/attributes

(with respect to which we wish to be diverse) in the solution, e.g. the Shannon entropy and the

Gini-Simpson index: if we denote the maximum USW of one of the problem instances studied in

this paper by𝑈 ∗ and agent 𝑖’s realized valuation in a utilitarian optimal allocation as 𝑢𝑖 , then the

above two indices can be expressed as −∑𝑖∈𝑁 (𝑢𝑖/𝑈 ∗) ln(𝑢𝑖/𝑈 ∗) and 1 −∑𝑖∈𝑁 (𝑢𝑖/𝑈 ∗)2 respectively
such that

∑
𝑖∈𝑁 𝑢𝑖 = 𝑈 ∗. Thus, Theorem 3.14 also shows that, for matroid rank valuations, the

MNW or leximin principle maximizes among all utilitarian optimal allocations commonly used

diversity indices applied to shares of the agents in the optimal USW. It will be interesting to explore

potential connections of this interpretation to recent work on soft diversity framed as convex

function optimization [Ahmed et al. 2017].
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APPENDICES
A OMITTED PROOFS, EXAMPLES, AND REMARKS
A.1 Example where no EF1 allocation is utilitarian optimal
Example A.1. Consider an instance with three items and two agents Alice and Bob having

additive valuations as described in Table 3. The unique allocation maximizing USW is the one which

1 2 3

Alice: 1/4 3/8 3/8
Bob: 0 1/2 1/2

Table 3. An instance where no EF1 allocation is utilitarian optimal.

gives item 1 to Alice and items 2 and 3 to Bob for respective valuations 1/4 and 1. However, even if

either 2 or 3 were dropped from Bob’s bundle, Alice would value it at 3/8 > 1/4; hence, the unique
utilitarian optimal allocation is not EF1 and so no EF1 allocation can be utilitarian optimal. ■

A.2 Proof of Lemma 3.1
Statement. For monotone valuations, every utilitarian optimal, leximin, and MNW allocation is
Pareto optimal.

Proof. If an allocation 𝐴 were not Pareto optimal, then there would be an allocation 𝐴′ with
𝑣𝑖 (𝐴′𝑖 ) > 𝑣𝑖 (𝐴𝑖 ) for at least one agent 𝑖 ∈ 𝑁 and 𝑣 𝑗 (𝐴′𝑗 ) ≥ 𝑣 𝑗 (𝐴 𝑗 ) for every other agent 𝑗 ∈ 𝑁 \ {𝑖}.
This implies that USW(𝐴′) > USW(𝐴) so that 𝐴 cannot be utilitarian optimal. Moreover, the vector

of realized valuations under 𝐴′ arranged in non-decreasing order must also be lexicographically

strictly greater than that of𝐴 (since the vectors must differ at the coordinate corresponding to agent

𝑖 , if not earlier), hence 𝐴 cannot be leximin either. Finally, suppose that 𝐴 is an MNW allocation if

possible, 𝑁max being the subset of agents with strictly positive realized valuations: if 𝑖 ∈ 𝑁max, then∏
𝑖∈𝑁max

𝑣𝑖 (𝐴′𝑖 ) >
∏

𝑖∈𝑁max

𝑣𝑖 (𝐴𝑖 ), contradicting the optimality of NW(𝐴), and if 𝑖 ∈ 𝑁 \ 𝑁max, that

would contradict the maximality of 𝑁max. □

A.3 Proof of Proposition 3.2
Statement. A valuation function 𝑣𝑖 with binary marginal gains is monotone and takes values in
[|𝑆 |] for any bundle 𝑆 (hence 𝑣𝑖 (𝑆) ≤ |𝑆 |).

Proof. Consider subsets of items 𝑇 ⊂ 𝑆 ⊆ 𝑂 such that 𝑆 \𝑇 = {𝑜1, 𝑜2, . . . , 𝑜𝑟 } where 𝑟 = |𝑆 \𝑇 |.
Define 𝑆0 = ∅ and 𝑆𝑡 = {𝑜1, 𝑜2, . . . , 𝑜𝑡 } for each 𝑡 ∈ [𝑟 ]. This gives us the following telescoping

series:

𝑣𝑖 (𝑆) − 𝑣𝑖 (𝑇 ) =
𝑟∑

𝑡=1

(𝑣𝑖 (𝑇 ∪ 𝑆𝑡 ) − 𝑣𝑖 (𝑇 ∪ 𝑆𝑡−1))

=

𝑟∑
𝑡=1

(𝑣𝑖 (𝑇 ∪ 𝑆𝑡−1 ∪ {𝑜𝑡 }) − 𝑣𝑖 (𝑇 ∪ 𝑆𝑡−1))

=

𝑟∑
𝑡=1

Δ𝑖 (𝑇 ∪ 𝑆𝑡−1;𝑜𝑡 ).
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Since all marginal gains are binary, Δ𝑖 (𝑇 ∪ 𝑆𝑡−1;𝑜𝑡 ) ≥ 0 for every 𝑡 ∈ [𝑟 ], hence the above identity
implies 𝑣𝑖 (𝑆) − 𝑣𝑖 (𝑇 ) ≥ 0 for 𝑆 ⊃ 𝑇 , i.e. 𝑣𝑖 is monotone.

Moreover, by setting 𝑇 = ∅ and noting that Δ𝑖 (𝑇 ∪ 𝑆𝑡−1;𝑜𝑡 ) ≤ 1 for every 𝑡 ∈ [𝑟 ], we get

𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (∅) + 𝑟 = 0 + |𝑆 \ ∅| = |𝑆 |. □

A.4 Proof of Proposition 3.3
Statement. For matroid rank valuations, 𝐴 is a clean allocation if and only if 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | for each
𝑖 ∈ 𝑁 .

Proof. The “if” part: Suppose, there is an item 𝑜 ∈ 𝑆 such that Δ𝑖 (𝑆 \ {𝑜};𝑜) = 0. Now, by

Proposition 3.2, 𝑣𝑖 (𝑆 \ {𝑜}) ≤ |𝑆 \ {𝑜}| = |𝑆 | − 1 since 𝑜 ∈ 𝑆 . This implies that 𝑣𝑖 (𝑆) = 𝑣𝑖 (𝑆 \ {𝑜}) +
Δ𝑖 (𝑆 \ {𝑜};𝑜) < |𝑆 |. Thus, by contraposition, if 𝑣𝑖 (𝑆) = |𝑆 |, then Δ𝑖 (𝑆 \ {𝑜};𝑜) = 1 ∀𝑜 ∈ 𝑆 since the

marginal gain can be either 0 or 1, i.e. 𝑆 is a clean bundle for 𝑖 .

The “only if” part: As in the proof of Proposition 3.2, let 𝑆 = {𝑜1, 𝑜2, . . . , 𝑜𝑟 }; define 𝑆0 = ∅ and
𝑆𝑡 = {𝑜1, 𝑜2, . . . , 𝑜𝑡 } for each 𝑡 ∈ [𝑟 ]. By the definition of cleanness, Δ𝑖 (𝑆 \ {𝑜𝑡 };𝑜𝑡 ) = 1 ∀𝑡 ∈ [𝑟 ].
Since 𝑆𝑡−1 ⊆ 𝑆 \ {𝑜𝑡 } for every 𝑡 ∈ [𝑟 ], Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) ≥ Δ𝑖 (𝑆 \ {𝑜𝑡 };𝑜𝑡 ) = 1; moreover due to marginal

gains in {0, 1}, we must have Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) = 1 for every 𝑡 ∈ [𝑟 ]. Hence, 𝑣𝑖 (𝑆) =
∑𝑟

𝑡=1
Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) =

𝑟 = |𝑆 |. □

At this point, it is worthwhile to discuss the interplay between cleanness and completeness. It is

obvious that every instance admits a utilitarian optimal allocation that is complete (since, given

any incomplete utilitarian optimal allocation, we can add withheld items to arbitrary bundles until

completeness is reached, keeping the utilitarian social welfare unchanged) and also one that is clean

(for analogous reasons). But, it may not be possible to achieve these two properties simultaneously

under optimal utilitarian social welfare, as the next result shows.

Corollary A.2. For an instance where all agents have matroid rank valuations, every utilitarian
optimal allocation is clean as well as complete if and only if the maximum utilitarian social welfare
for the instance under consideration is equal to the number of items.

Proof. Since

∑
𝑖∈𝑁 |𝐴𝑖 | ≤ 𝑚 for any allocation 𝐴, it follows readily from Proposition 3.2 that

the maximum utilitarian social welfare of any instance cannot exceed the total number of items𝑚

under binary marginal gains.

If an instance admits a utilitarian optimal allocation 𝐴∗ that is incomplete, i.e. |𝐴0 | > 0, then

USW(𝐴∗) = ∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ) ≤

∑
𝑖∈𝑁 |𝐴𝑖 | < 𝑚. Likewise, if there is an 𝐴∗ that is complete but not

clean, then there is at least one agent 𝑖 and one item 𝑜 ∈ 𝐴∗𝑖 such that Δ𝑖 (𝐴∗𝑖 \ {𝑜};𝑜) = 0; hence,

𝑣𝑖 (𝐴∗𝑖 ) = 𝑣𝑖 (𝐴∗𝑖 \ {𝑜}) ≤ |𝐴∗𝑖 \ {𝑜}| = |𝐴∗𝑖 | −1. Thus, USW(𝐴∗) ≤ |𝐴∗𝑖 | −1+∑𝑗 ∈𝑁 \{𝑖 } |𝐴∗𝑗 | ≤ 𝑚−1 < 𝑚.

Taking the contraposition proves the “if” part.

For the “only if” part, note that if an allocation 𝐴 is complete, then

∑
𝑖∈𝑁 |𝐴𝑖 | = 𝑚, and if it is

clean under matroid rank valuations, then 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | for every 𝑖 ∈ 𝑁 by Proposition 3.3. So, if

a clean, complete allocation exists under matroid rank valuations, then USW(𝐴) =𝑚 which is the

highest feasible utilitarian social welfare regardless of the specific valuation functions. Hence, 𝐴

must be utilitarian optimal with a USW of𝑚. □

A simple example where each utilitarian optimal allocation is either not complete or not clean:

𝑁 = {1, 2}; 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4}; 𝑣1 (𝑆) = 1 and 𝑣2 (𝑆) = max{2, |𝑆 |} for every 𝑆 ∈ 2
𝑂 \ ∅. It is easy to

see that both 𝑣1 and 𝑣2 are both matroid rank valuations, and the USW cannot exceed 1 + 2 = 3 < 4.

In any utilitarian optimal allocation, any one item goes to agent 1 for a valuation of 1, any two

of the remaining items go to agent 2 for a valuation of 2, and the final item may be arbitrarily

allocated to either agent (not clean) or withheld (incomplete).
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A.5 Example showing that Lipton et al. [2004]’s algorithm may not produce a Pareto
optimal allocation under matroid rank valuations

The algorithm under consideration works as follows: in each iteration, a new item is allocated

to an arbitrary agent not currently envied by any other agent; the envy graph is constructed by

drawing a directed edge from an agent to every agent it envies; if a cycle forms in the graph, it is

eliminated by transferring bundles from envied to envious agent on the (reverse) cycle, starting

with the smallest cycle in case of overlapping cycles. We can augment the first step of the above

algorithm with a natural heuristic: allocate the item under consideration to an agent that has the

maximum marginal gain from it, breaking ties arbitrarily — for valuations with binary marginal

gains, this is equivalent to giving the item to an agent whose marginal gain for it (given its current

bundle) is 1, and to an arbitrary agent if none has non-zero marginal gain for it.

Example A.3. Consider 2 agents and 2 items such that 𝑣1 (𝑜1) = 𝑣1 (𝑜2) = 𝑣1 (𝑜1, 𝑜2) = 1, 𝑣2 (𝑜1) =
𝑣2 (𝑜1, 𝑜2) = 1 and 𝑣2 (𝑜2) = 0. Lipton et al. [2004]’s algorithm may assign 𝑜1 to agent 1; then 𝑜2

will be arbitrarily allocated, resulting in an allocation 𝐴 with 𝑣1 (𝐴1) = 1 and 𝑣1 (𝐴2) = 0. This is

Pareto dominated by𝐴′
1
= {𝑜2},𝐴′2 = {𝑜1} where each agent realizes a valuation of 1. The myopic

12
,

sequential nature of the algorithm results in this undesirable outcome. ■

A.6 Example of a non-submodular valuation function that violates the transferability
property

Example A.4. Agent 1 wants to have a pair of matching shoes; her current allocated bundle is a

single red shoe, whereas agent 2 has a matching pair of blue shoes. Agent 1 clearly envies agent 2,

but cannot increase the value of her bundle by taking any one of agent 2’s items. More formally,

suppose 𝑁 = [2] and𝑂 = {𝑟𝐿, 𝑏𝐿, 𝑏𝑅}; agent 1’s valuation function is: 𝑣1 (𝑆) = 1 only if {𝑏𝐿, 𝑏𝑅} ⊆ 𝑆 ,

𝑣1 (𝑆) = 0 otherwise. Under the allocation 𝐴1 = {𝑟𝐿} and 𝐴2 = {𝑏𝐿, 𝑏𝑅}, 𝑣1 (𝐴1) < 𝑣1 (𝐴2) but
Δ1 (𝐴1;𝑜) = 0 for all 𝑜 ∈ 𝐴2. ■

A.7 Proof of Corollary 3.8
Statement. For matroid rank valuations, any clean, utilitarian optimal allocation 𝐴 that minimizes
𝜙 (𝐴) ≜ ∑

𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2 among all utilitarian optimal allocations is EF1.

Proof. Let 𝐴 be a clean utilitarian optimal allocation that minimizes the sum of squares of the

realized valuations among all utilitarian optimal allocations. We will show that 𝐴 is EF1. Assume

towards a contradiction that 𝐴 is not EF1. Then, there is a pair of agents 𝑖, 𝑗 such that 𝑖 envies 𝑗 up

to more than 1 item. By Lemma 3.5, there is an item 𝑜 ∈ 𝐴 𝑗 such that Δ𝑖 (𝐴𝑖 ;𝑜) = 1. Let 𝐴∗ be the
allocation achieved by transferring 𝑜 from 𝑗 to 𝑖 , everything else remaining the same. By Lemma

3.6 and the fact that 𝐴 𝑗 is clean, we have

𝑣𝑖 (𝐴𝑖 ) + 2 ≤ 𝑣 𝑗 (𝐴 𝑗 ),
which implies

∑
𝑖∈𝑁 𝑣𝑖 (𝐴∗𝑖 )2 <

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )2 proceeding exactly as in the proof of Theorem 3.4 —

another contradiction. Hence, 𝐴 must be EF1. □

A.8 Example of an EF1 and utilitarian optimal allocation violating EFX0

Example A.5. There are two groups and four items 𝑜1, 𝑜2, 𝑜3, 𝑜4. The first group 𝑁1 has two

members 𝑎1, 𝑎2 and the second group 𝑁2 has three 𝑏1, 𝑏2, 𝑏3; each individual has utility 1 for an

item if and only if she is adjacent to it in the graph in Figure 5:

12
The algorithm is myopic in the sense that the allocation of a new item in each iteration does not take into account its

downstream impact on efficiency and is only geared towards maintaining the EF1 invariant.
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𝑎1

𝑎2

𝑜1

𝑜2

𝑜3

𝑜4

𝑏1

𝑏2

𝑏3

Fig. 5. An instance that admits an EF1, utilitarian optimal allocation that is not EFX0

The (0, 1)-OXS valuation functions of groups𝑁1 and𝑁2 are denoted by 𝑣1 (·) and 𝑣2 (·) respectively.
The allocation 𝐴 where 𝐴1 = {𝑜1} and 𝐴2 = {𝑜2, 𝑜3, 𝑜4} is utilitarian optimal; it is also EF1 since

𝑣1 (𝐴1) = 1 = 𝑣1 (𝐴2 \ {𝑜}) for 𝑜 ∈ {𝑜2, 𝑜3}, with Δ1 (𝐴2 \ {𝑜4};𝑜4) = 0, and 𝑣2 (𝐴2) = 3 > 0 = 𝑣2 (𝐴1).
𝐴 could be the output of Algorithm 1 and is clean and complete. However, 𝐴 is not EFX0 since

𝑣1 (𝐴2 \ {𝑜4}) = 2 > 1 = 𝑣1 (𝐴1). ■

A.9 Remark on the definition of EFX+ for general valuations
Remark 4 (EFX+ allocation). In this remark, we will point out an issue with extending the

definition of envy-freeness up to the least positively valued good to settings with general (possibly

non-additive) valuation functions. Recall that in Remark 2 in Section 3, we defined an allocation 𝐴

of indivisible items to be EFX+ if for every pair of agents 𝑖 , 𝑗 such that 𝑖 envies 𝑗 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣 𝑗 (𝐴 𝑗 \𝑜)
for every 𝑜 ∈ 𝐴 𝑗 such 𝑖’s marginal valuation of 𝑜 given 𝐴 𝑗 is strictly positive, i.e. Δ𝑖 (𝐴 𝑗 \ {𝑜}) > 0.

This definition can make certain non-EF1 allocations trivially EFX+, even under matroid rank

valuations, if there is no single item in the envied agent’s bundle for which the envious agent has

positive marginal valuation. Consider two agents with matroid rank valuations, 𝑣1 (𝑆) = min{|𝑆 |, 2}
and 𝑣2 (𝑆) = |𝑆 |, and any allocation 𝐴 where agent 1 gets one item and agent 2 three items. Agent 2

does not envy agent 1 but 𝑣1 (𝐴2 \ {𝑜}) = 2 > 1 = 𝑣1 (𝐴1) for every 𝑜 ∈ 𝐴2, hence the allocation is

not EF1. However, the condition for EFX+ is vacuously satisfied since Δ𝑖 (𝐴 𝑗 \ {𝑜}) = 0 for every

𝑜 ∈ 𝐴2. This is inconsistent with the property that EFX is stronger than (i.e. implies) EF1, which

holds for additive valuations. Note that, as we argued in Remark 2, EF1 implies EFX+ under matroid

rank valuations; we just showed with the above example that the converse is not true, implying

that EF1 is a stronger property than EFX+ for this valuation class. This is problematic since the

EFX property was originally introduced as a strengthening of EF1 and it is reasonable to want to

retain this relation beyond additive valuations!

A possible way of fixing this issue is by requiring that, for an allocation 𝐴 to be EFX+ under
general valuations, it must first be EF1, i.e. if 𝑖 is envious of 𝑗 under 𝐴, then 𝑖 must be EF1 of 𝑗 and

additionally the envy of 𝑖 towards 𝑗 can be eliminated by removing 𝑖’s least positively marginally

valued item from 𝑗 ’s bundle. However, more fundamentally, this issue calls into question the

applicability of EFX+ as a fairness concept for non-additive valuations.
On the other hand, EFX0 is stronger than EF1 for any monotone valuation 𝑣 (·) with 𝑣 (∅) = 0.

Example A.5 in Appendix A.8 already demonstrates that an EF1 allocation may not be EFX0 even

under (0, 1)-OXS valuations. Conversely, if an allocation 𝐴 is EFX0, then for any pair of agents 𝑖

and 𝑗 , there is always an item 𝑜 ∈ 𝐴 𝑗 regardless of Δ𝑖 (𝐴 𝑗 \ {𝑜}) such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}), i.e.
EFX0 always implies EF1. ♦
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A.10 Remark on cleanness and fair allocation “with charity"
Remark 5 (The withheld set). A remark about the withheld set is in order. The output 𝐴 of

Algorithm 1 is clean by construction and hence may be incomplete (Corollary A.2), leaving us with

a non-empty withheld set 𝐴0. If completeness is not a requirement (i.e. there is free disposal and/or

no stipulation of the form "All items must go!"), we can view the withheld set as “surplus” that can

be set aside for future use or “charity.” This is similar in spirit to recent work on EFX-with-charity
[Caragiannis et al. 2019a] and EFX-with-bounded-charity [Chaudhury et al. 2020].

For additive valuations, Caragiannis et al. [2019a] design an algorithm that computes an EFX0,

partial allocation with at least half the optimal Nash welfare, running in polynomial time if it

has oracle access to an MNW allocation; Chaudhury et al. [2020] consider general valuations and

provide a way to set aside a charity bundle of size strictly less than the number of agents such

that the allocation of the remaining items to the agents is EFX0 and every agent weakly prefers

her own bundle to the charity bundle — this allocation retains the high Nash welfare guarantee of

Caragiannis et al. [2019a] for additive valuations.

It is easy to identify similar desirable properties in the output 𝐴 of Algorithm 1: the (potentially

partial) allocation to agents has optimal utilitarian social welfare and is EF1 (although not necessarily

EFX0); utilitarian optimality further dictates that every agent 𝑖 ∈ 𝑁 weakly prefers its allocated

bundle to the withheld set, i.e. 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴0), and also has zero marginal value for any subset of

withheld items given its bundle, i.e. 𝑣𝑖 (𝐴𝑖 ∪ 𝑆) = 𝑣𝑖 (𝐴𝑖 ) ∀𝑆 ⊆ 𝐴0; |𝐴0 | =𝑚 −𝑈 ∗, where 𝑈 ∗ is the
optimal social welfare which is equal to the number of items allocated under any clean, utilitarian

optimal allocation (by Proposition 3.3) .

Although we did not start with the problem of withholding items to satisfy desiderata, this

outcome emerged from our search for EF1+PO allocations beyond additive valuations. ♦

A.11 Connections between Theorem 3.14 and the Pigou-Dalton principle
Here, we will elaborate on Remark 3 from Section 3.2. We begin with an introduction to the

Pigou-Dalton principle (PDP). Consider a fair allocation instance — where agents have arbitrary

valuation functions — which admits two allocations 𝐴 and 𝐴′ with the following properties:

𝑣1 (𝐴1) + 𝑣2 (𝐴2) = 𝑣1 (𝐴′1) + 𝑣2 (𝐴′2); 𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴′𝑖 ) ∀𝑖 ∈ 𝑁 \ {1, 2}; 𝑣1 (𝐴1) < 𝑣1 (𝐴′1) < 𝑣2 (𝐴2), the
first and last conditions implying 𝑣1 (𝐴1) < 𝑣2 (𝐴′2) < 𝑣2 (𝐴2) as well. In other words, 𝐴′ can be

obtained from 𝐴 by transferring some utility from the “richer" agent 2 to the “poorer” agent 1,

everything else (including the utilitarian social welfare) remaining the same and without making

agent 2 poorer under 𝐴′ than agent 1 was under 𝐴. Then, PDP stipulates an ordering that (strictly)

prefers 𝐴′, which reduces the inequality between agents 1 and 2 to 𝐴 (the choice of agents is

w.l.o.g.).

We know that the utilitarian social welfare function itself satisfies PDP weakly. We will now

show that, if there are multiple utilitarian optimal allocations, one that is preferred to another by

PDP also has a strictly higher value of an arbitrary symmetric, strictly concave function Ψ : Z𝑛 → R
applied to agents’ utilities.

Proposition A.6. Let Ψ : Z𝑛 → R be an arbitrary symmetric, strictly concave function applied
to agents’ valuations. If an instance where all agents have arbitrary monotone valuation functions
admits two utilitarian optimal allocations 𝐴 and 𝐴′ with respective valuation vectors r(𝐴) and r(𝐴′)
such that 𝑣1 (𝐴1) < 𝑣1 (𝐴′1) < 𝑣2 (𝐴2) and 𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴′𝑖 ) ∀𝑖 ∈ 𝑁 \ {1, 2}, then Ψ(r(𝐴′)) > Ψ(r(𝐴)).
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Proof. Since both allocations have the same (optimal) utilian social welfare, it is obvious that

𝑣1 (𝐴1) + 𝑣2 (𝐴2) = 𝑣1 (𝐴′1) + 𝑣2 (𝐴′2)
⇒ 𝑣1 (𝐴′1) − 𝑣1 (𝐴1) = 𝑣2 (𝐴2) − 𝑣2 (𝐴′2). (6)

By definition, PDP prefers 𝐴′ to 𝐴. Moreover,

𝑣1 (𝐴1) < 𝑣1 (𝐴′1) < 𝑣2 (𝐴2)
⇒ 0 < 𝑣1 (𝐴′1) − 𝑣1 (𝐴1) < 𝑣2 (𝐴2) − 𝑣1 (𝐴1). (7)

Let 𝛼 ≜ 𝑣1 (𝐴′1) − 𝑣1 (𝐴1) = 𝑣2 (𝐴2) − 𝑣2 (𝐴′2) by (6); 𝛽 ≜ 𝑣2 (𝐴2) − 𝑣1 (𝐴1). By (7), 0 < 𝛼
𝛽
< 1.

Since the vector r(𝐴′) can be obtained from the vector r(𝐴) by increasing the first entry by

𝑣1 (𝐴′1) −𝑣1 (𝐴1) and reducing the second by 𝑣2 (𝐴2) −𝑣2 (𝐴′2), we can write r(𝐴′) = r(𝐴) +𝛼 (𝜒1− 𝜒2)
where 𝜒𝑖 the 𝑛-dimensional incidence vector whose 𝑗-th component 1 if 𝑗 = 𝑖 , and 0 otherwise, as

in Section 3.2.

Let us further define a vector y ≜ r(𝐴) + 𝛽 (𝜒1 − 𝜒2). It is easy to see that y is a permutation of

r(𝐴) with entries 1 and 2 swapped, hence Ψ(r(𝐴)) = Ψ(y) due to the symmetry of Ψ.
Finally, let 𝜆 ≜ 1− 𝛼

𝛽
∈ (0, 1). Simple algebra shows that 𝜆r(𝐴) + (1− 𝜆)y = r(𝐴′). Hence, by the

strict concavity of Ψ, we get Ψ(r(𝐴′)) > 𝜆Ψ(r(𝐴)) + (1 − 𝜆)Ψ(y) = 𝜆Ψ(r(𝐴)) + (1 − 𝜆)Ψ(r(𝐴) =
Ψ(r(𝐴)). □

A.12 Proof of Theorem 4.2
Statement. For two agents with general assignment valuations, it is NP-hard to compute a leximin
or MNW allocation.

Proof. The reduction is similar to the hardness reduction for two agents with identical addi-

tive valuations [Nguyen et al. 2013; Ramezani and Endriss 2010]. We give a Turing reduction

from Partition. Recall that an instance of Partition is given by a set of positive integers

𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑚}; it is a ‘yes’-instance if and only if it can be partitioned into two sub-

sets 𝑆1 and 𝑆2 of𝑊 such that the sum of the numbers in 𝑆1 equals the sum of the numbers in

𝑆2.

Consider an instance of Partition𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑚}. We create𝑚 items 1, 2, . . . ,𝑚, two

groups 1 and 2, and𝑚 individuals for each group where every individual has a weight𝑤 𝑗 for item

𝑗 . Observe that for each group, the value of each bundle 𝑋 is the sum

∑
𝑤𝑗 ∈𝑋 𝑤 𝑗 : the number of

members in the group exceeds the number of items in 𝑋 , and thus one can fully assign each item

to each member of the group.

Supposewe had an algorithmwhich finds a leximin allocation. Run the algorithm on the allocation

problem constructed above to obtain a leximin allocation𝐴. It can be easily verified that the instance

of Partition has a solution if and only if 𝑣1 (𝐴1) = 𝑣2 (𝐴2). Similarly, suppose we had an algorithm

which finds an MNW allocation, and run the algorithm to find an MNW allocation 𝐴′. Since the
valuations are identical, the utilitarian social welfare of the MNW allocation is the sum

∑
𝑤𝑗 ∈𝑊 𝑤 𝑗 ,

which means that the product of the valuations is maximized when both groups have the same

realized valuation. Thus, the instance of Partition has a solution if and only if 𝑣1 (𝐴′1) = 𝑣2 (𝐴′2). □

B SUBMODULARITY WITH SUBJECTIVE BINARY GAINS
An obvious generalization of the matroid rank valuation function class is the class of submodular

valuation functions with subjective binary marginal gains: agent 𝑖’s bundle-valuation function 𝑣𝑖 (·)
is said to have subjective binary marginal gains if Δ𝑖 (𝑆 ;𝑜) ∈ {0, 𝜆𝑖 } for some agent-specific constant
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𝜆𝑖 > 0, for every 𝑖 ∈ 𝑁 . We define clean bundles and clean allocations for this function class exactly

as we did for matroid rank valuations in Section 2.

Understandably, most of the properties of allocations under matroid rank valuations do not

extend to this more general setting. It is obvious that Pareto optimality does not imply utilitarian

optimality (e.g. consider an instance with two agents and one item which the agents value at 1

and 2 respectively: assigning the item to agent 1 is PO but not utilitarian optimal). Moreover, the

leximin allocation may not be EF1, as shown by the following example where both agents have

additive valuations.

Example B.1. Suppose 𝑁 = [2]; 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4}; the valuations are additive with 𝑣1 ({𝑜4}) = 0,

𝑣1 ({𝑜}) = 1 ∀𝑜 ∈ 𝑂 \ {𝑜1}, and 𝑣2 ({𝑜}) = 3 ∀𝑜 ∈ 𝑂 . It is straightforward to check that the unique

leximin allocation is𝐴1 = {𝑜1, 𝑜2, 𝑜3},𝐴2 = {𝑜4}. Under this allocation, 𝑣2 (𝐴1\{𝑜}) = 6 > 3 = 𝑣2 (𝐴2)
for every 𝑜 ∈ 𝐴1 — in fact, at least two (any two) items must be removed from 𝐴1 for agent 2 to

stop envying agent 1. ■

Note another difference of this valuation class from the class of matroid rank valuations that

is also evidenced by Example B.1: the leximin and MNW allocations may not coincide. In this

example, any allocation 𝐴 that gives two of the items {𝑜2, 𝑜3, 𝑜4} to agent 1 and the rest to agent 2

is MNW, with 𝑣1 (𝐴1) = 2 and 𝑣2 (𝐴2) = 6, so that NW(𝐴) = 12; such an allocation is also EF1 (in fact,

envy-free) since 𝑣1 (𝐴2) = 1 < 2 = 𝑣1 (𝐴1) and 𝑣2 (𝐴1) = 6 = 𝑣2 (𝐴2). This is not an accident, as the

following theorem shows.

Theorem B.2. For agents having submodular valuation functions with subjective binary marginal
gains, any clean, MNW allocation is EF1.

Since our valuation functions are still submodular, the transferability property (Lemma 3.5) still

holds. Two other components of the proof of Theorem B.2 are natural extensions of Propositions 3.3

and Lemma 3.6 — Proposition B.3 and Lemma B.4 below, respectively:

Proposition B.3. For submodular valuations with subjective binary marginal gains defined by
agent-specific positive constants 𝜆𝑖 ∀𝑖 ∈ 𝑁 , 𝐴 is a clean allocation if and only if 𝑣𝑖 (𝐴𝑖 ) = 𝜆𝑖 |𝐴𝑖 | for
each 𝑖 ∈ 𝑁 .

Proof. Consider an arbitrary bundle 𝑆 ⊆ 𝑂 such that 𝑆 = {𝑜1, 𝑜2, . . . , 𝑜𝑟 } for some 𝑟 ∈ [𝑚]
w.l.o.g. Let 𝑆0 = ∅ and 𝑆𝑡 = 𝑆𝑡−1 ∪ {𝑜𝑡 } for every 𝑡 ∈ [𝑟 ]. Then, an arbitrary agent 𝑖’s valuation of

bundle 𝑆 under marginal gains in {0, 𝜆𝑖 } is

𝑣𝑖 (𝑆) =
𝑟∑

𝑡=1

Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) ≤
𝑟∑

𝑡=1

𝜆𝑖 = 𝜆𝑖𝑟 = 𝜆𝑖 |𝑆 |. (8)

Now, if agent 𝑖’s allocated bundle under an allocation 𝐴 has a valuation 𝑣𝑖 (𝐴𝑖 ) = 𝜆𝑖 |𝐴𝑖 |, then her

marginal gain for any item in 𝑜 ∈ 𝐴𝑖 is given by

𝑣𝑖 (𝐴𝑖 ) − 𝑣𝑖 (𝐴𝑖 \ {𝑜}) = 𝜆𝑖 |𝐴𝑖 | − 𝑣𝑖 (𝐴𝑖 \ {𝑜})
≥ 𝜆𝑖 |𝐴𝑖 | − 𝜆𝑖 ( |𝐴𝑖 | − 1)
= 𝜆𝑖 > 0,

where the first inequality follows from Inequality (8) and the fact that |𝐴𝑖 \ {𝑜}| = |𝐴𝑖 | − 1. This

means that the bundle 𝐴𝑖 is clean and, since this holds for every 𝑖 , the allocation is clean. This

completes the proof of the “if" part.

If allocation𝐴 is clean, then we must have Δ𝑖 (𝐴𝑖 \{𝑜};𝑜) > 0 for every 𝑜 ∈ 𝐴𝑖 for every 𝑖 ∈ 𝑁 . Let

us define an arbitrary agent 𝑖’s bundle 𝐴𝑖 as 𝑆 above, so that |𝐴𝑖 | = 𝑟 . Then, since 𝑆𝑡−1 ⊆ 𝐴𝑖 \ {𝑜𝑡 }
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for every 𝑡 ∈ [𝑟 ], submodularity dictates that

Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) ≥ Δ𝑖 (𝐴𝑖 \ {𝑜𝑡 };𝑜𝑡 ) > 0 ∀𝑡 ∈ [𝑟 ] .

Since Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) ∈ {0, 𝜆𝑖 } with 𝜆𝑖 > 0, the above inequality implies that Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) = 𝜆𝑖 ∀𝑡 ∈ [𝑟 ].
Hence,

𝑣𝑖 (𝐴𝑖 ) =
𝑟∑

𝑡=1

Δ𝑖 (𝑆𝑡−1;𝑜𝑡 ) =
𝑟∑

𝑡=1

𝜆𝑖 = 𝜆𝑖𝑟 = 𝜆𝑖 |𝐴𝑖 |.

This completes the proof of the “only if" part. □

Lemma B.4. For submodular functions with subjective binary marginal gains, if agent 𝑖 envies agent
𝑗 up to more than 1 item under clean allocation 𝐴, then |𝐴 𝑗 | ≥ |𝐴𝑖 | + 2.

Proof. Since 𝑖 envies 𝑗 under 𝐴 up to more than 1 item, we must have 𝐴 𝑗 ≠ ∅ and 𝑣𝑖 (𝐴𝑖 ) <
𝑣𝑖 (𝐴 𝑗 \{𝑜}) for every 𝑜 ∈ 𝐴 𝑗 . Consider one such 𝑜 . From Inequality (8) in the proof of Proposition B.3,

𝑣𝑖 (𝐴 𝑗 \ {𝑜}) ≤ 𝜆𝑖 |𝐴 𝑗 \ {𝑜}| = 𝜆𝑖 ( |𝐴 𝑗 | − 1). Since𝐴 is clean, 𝑣𝑖 (𝐴𝑖 ) = 𝜆𝑖 |𝐴𝑖 |. Combining these, we get

𝜆𝑖 |𝐴𝑖 | = 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) ≤ 𝜆𝑖 ( |𝐴 𝑗 | − 1) .

Since 𝜆𝑖 > 0, we have |𝐴𝑖 | < |𝐴 𝑗 | − 1, i.e. |𝐴𝑖 | ≤ |𝐴 𝑗 | − 2 because |𝐴𝑖 | and |𝐴 𝑗 | are integers. □

We are now ready to prove Theorem B.2.

Proof of Theorem B.2. Our proof non-trivially extends that of Theorem 3.2 of Caragiannis

et al. [2019b]. We will first address the case when it is possible to allocate items in such a way that

each agent has a positive realized valuation for its bundle, i.e. 𝑁max = 𝑁 in the definition of an

MNW allocation, and then tackle the scenario 𝑁max ⊊ 𝑁 .

Consider a pair of agents 1, 2 ∈ 𝑁 w.l.o.g. such that 1 envies 2 up to two or more items, if possible,

under an MNW allocation 𝐴. Since every agent has a positive realized valuation under 𝐴, we have

𝑣𝑖 (𝐴𝑖 ) = 𝜆𝑖 |𝐴𝑖 | > 0, i.e. |𝐴𝑖 | > 0 for each 𝑖 ∈ {1, 2}. From Lemma 3.5, we know that there is an

item in 𝐴2 for which agent 1 has positive marginal utility – consider any one such item 𝑜 ∈ 𝐴2.

Thus, Δ1 (𝐴1;𝑜) > 0, i.e. Δ1 (𝐴1;𝑜) = 𝜆1; also, since 𝐴2 is a clean bundle, Δ2 (𝐴2 \ {𝑜};𝑜) > 0, i.e.

Δ2 (𝐴2 \ {𝑜};𝑜) = 𝜆2.

Let us convert 𝐴 to a new allocation 𝐴′ by only transferring this item 𝑜 from agent 2 to agent 1.

Hence, 𝑣1 (𝐴′1) = 𝑣1 (𝐴1) + Δ1 (𝐴1;𝑜) = 𝑣1 (𝐴1) + 𝜆1, 𝑣2 (𝐴′2) = 𝑣2 (𝐴2) − Δ2 (𝐴2 \ {𝑜};𝑜) = 𝑣2 (𝐴2) − 𝜆2,
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𝑣𝑖 (𝐴′𝑖 ) = 𝑣𝑖 (𝐴𝑖 ) for each 𝑖 ∈ 𝑁 \ {1, 2}. NW(𝐴) is positive since 𝐴 is MNW and 𝑁max = 𝑁 . Hence,

NW(𝐴′)
NW(𝐴) =

[
𝑣1 (𝐴1) + 𝜆1

𝑣1 (𝐴1)

] [
𝑣2 (𝐴2) − 𝜆2

𝑣2 (𝐴2)

]
=

[
1 + 𝜆1

𝑣1 (𝐴1)

] [
1 − 𝜆2

𝑣2 (𝐴2))

]
=

[
1 + 𝜆1

𝜆1 |𝐴1 |

] [
1 − 𝜆2

𝜆2 |𝐴2 |

]
=

[
1 + 1

|𝐴1 |

] [
1 − 1

|𝐴2 |

]
= 1 + |𝐴2 | − |𝐴1 | − 1

|𝐴1 | |𝐴2 |
,

≥ 1 + (|𝐴1 | + 2) − |𝐴1 | − 1

|𝐴1 | |𝐴2 |
,

≥ 1 + 1

|𝐴1 | |𝐴2 |
,

> 1.

Here, the third equality comes from Proposition B.3 since 𝐴 is clean, and the first inequality from

Lemma B.4 due to our assumption. But NW(𝐴′) > NW(𝐴) contradicts the optimality of 𝐴, implying

that any agent can envy another up to at most 1 item under 𝐴.

This completes the proof for the 𝑁max = 𝑁 case. The rest of the proof mirrors the corresponding

part of the proof of Caragiannis et al. [2019b]’s Theorem 3.2. If 𝑁max ⊊ 𝑁 , it is easy to see that

there can be no envy towards any 𝑖 ∉ 𝑁max: this is because we must have 𝑣𝑖 (𝐴𝑖 ) = 0 for any such 𝑖

from the definition of 𝑁max, which in turn implies that𝐴𝑖 = ∅ since𝐴 is clean; hence, 𝑣 𝑗 (𝐴𝑖 ) = 0 for

every 𝑗 ∈ 𝑁 . Also, for any 𝑖, 𝑗 ∈ 𝑁max, we can show exactly as in the proof for the 𝑁max = 𝑁 case

above that there cannot be envy up to more than one item between them, since 𝐴 maximizes the

Nash welfare over this subset of agents 𝑁max. Suppose for contradiction that an agent 𝑖 ∈ 𝑁 \𝑁max

envies some 𝑗 ∈ 𝑁max up to more than one item under 𝐴. Then, from Lemma 3.5, there is one item

𝑜1 ∈ 𝐴 𝑗 w.l.o.g. such that 𝑣𝑖 ({𝑜1}) = Δ𝑖 (∅;𝑜1) = Δ𝑖 (𝐴𝑖 ;𝑜1) > 0. Moreover, since 𝐴 is clean,

𝑣 𝑗 (𝐴 𝑗 \ {𝑜1}) = 𝑣 𝑗 (𝐴 𝑗 ) − Δ 𝑗 (𝐴 𝑗 \ {𝑜1};𝑜1)
= 𝜆 𝑗 |𝐴 𝑗 | − 𝜆 𝑗
= 𝜆 𝑗 ( |𝐴 𝑗 | − 1)
≥ 𝜆 𝑗 ( |𝐴𝑖 | + 1)
= 𝜆 𝑗 > 0,

where the first inequality comes from Lemma B.4. Thus, if we transfer 𝑜1 from 𝑗 to 𝑖 and leave all

other bundles unchanged, then every agent in 𝑁max ∪ {𝑖} will have a positive valuation under the

new allocation. This contradicts the maximality of 𝑁max. Hence, any 𝑖 ∈ 𝑁 \𝑁max must be envy-free

up to one item towards any 𝑗 ∈ 𝑁max. □

C GENERAL ASSIGNMENT VALUATIONS
In this section, we address the fair and efficient allocation of items to agents who have general

assignment or OXS valuations, as defined in Section 2.2. Recall that an agent with such a valuation

function is equivalent to a group with multiple members each having an arbitrary non-negative

weight for each item. As such, we will henceforth use the terms “group" and “agent" interchangeably.
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We know that, for arbitrary non-negative monotone valuations, the classic envy graph algorithm
due to Lipton et al. [2004] produces a complete, EF1 allocation that does not, however, come with

any efficiency guarantee (except completeness, of course). The trick is to iterate over the items and

allocate each to an agent that is currently not envied by any other agent (the existence of such an

unenvied agent can be guaranteed by de-cycling, if necessary, the graph induced by a directed edge

from every envious agent to every agent that it envies: see Lipton et al. [2004] for details).

Benabbou et al. [2019] focus on fair allocation to types that are, in fact, agents/groups with OXS

valuations; they use a natural extension of this procedure that they denote by Algorithm H. In an

iteration of Algorithm H, we do not give an arbitrary unallocated item to an arbitrary unenvied

agent; instead, we find an item-agent pair having the maximummarginal utility among all currently

unenvied agents and all unallocated items (breaking further ties uniformly at random, say), and

allocate that item to that agent. Although this modification should, intuitively, improve efficiency,

Benabbou et al. [2019] provide no formal guarantee in this regard; they evaluate the performance

of AlgorithmH in experiments where all agents have OXS valuations in terms of waste which they

define as follows: under a complete allocation 𝐴, an item 𝑜 is said to be wasted if it has positive

marginal utility for some group ℎ under 𝐴 (i.e. 𝑣ℎ (𝐴ℎ ∪ {𝑜}) > 𝑣ℎ (𝐴ℎ)) but is allocated to another

group ℎ′ (i.e. 𝑜 ∈ 𝐴ℎ′) where it is either unassigned or assigned to a member 𝑖 ∈ 𝑁ℎ′ with zero

weight for it (i.e. 𝑢𝑖,𝑜 = 0), under the particular optimal matching of 𝐴ℎ′ to 𝑁ℎ′ . The waste of a run

of Algorithm H is defined as the percentage of the total number of items that are wasted under the

complete allocation produced by Algorithm H.

Here, we ask whether the concept of envy-induced transfers (EIT) presented in Algorithm 1 for

matroid rank valuations (Section 3.1) can be used to compute fair and efficient allocations (perhaps

in some approximate sense) under more general monotone submodular valuation functions. This is

motivated in part by the fact that the transferability property (Lemma 3.5), on which the EIT concept
relies, characterizes any monotone submodular function and not just matroid rank valuations.

In Algorithm 2, we delineate our work in progress in this vein: a heuristic scheme that extends

Algorithm 1 to general OXS valuations.

Algorithm 2 retains the general principle of starting with a(n arbitrary) clean, utilitarian optimal

allocation
13

and iteratively eliminating envy by transferring an item from an envied bundle to

an envious agent. For matroid rank valuations, the “donor" and the recipient of the transferred

item have their valuations decreased and increased respectively by exactly 1 for any envy-induced

transfer; this is no longer the case when we remove the binary marginal utilities restriction. Hence,

such a transfer does not, in general, keep the utilitarian social welfare unchanged; the welfare is

only constrained to never exceed its starting (optimal) value computed in line 1. As an approach to

minimizing the loss in welfare/efficiency due to such transfers, we employ various heuristics in

Algorithm 2:

• First, in each EIT step, we transfer the item that induces the minimal decrease in — or,

equivalently, the maximal increase — in the welfare (see lines 3-6).

• Next, as the donor agent loses one of its items, it may develop a positive marginal utility for

a currently withheld item; in that case, the item in 𝐴0 for which it has maximal marginal

utility is given to it (see lines 6-8).

13
Maximizing the utilitarian social welfare is NP-hard when agents have general monotone submodular valuations but

can be accomplished in polynomial time under the subclass gross substitutes valuations, assuming oracle access to each

valuation function [Lehmann et al. 2006]. In particular, under OXS valuations (assuming that such a valuation function is

specified in terms of the weights of each member of the group for all items), computing a utilitarian optimal allocation

reduces to the polynomial-time solvable assignment problem or maximum sum-of-weights matching on a bipartite graph

[Munkres 1957]; the result is automatically clean if we make sure that no item is assigned to an individual with zero weight

for it.
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Algorithm 2: Envy-Induced Transfers for general OXS valuations

1 Compute a clean, utilitarian optimal allocation.

2 /*Envy-Induced Transfers (EIT)*/
3 while ∃𝑖, 𝑗 ∈ 𝑁 such that 𝑖 envies 𝑗 up to more than 1 item do
4 Pick 𝑖 , 𝑗 , 𝑜 maximizing Δ𝑖 (𝐴𝑖 ;𝑜) + Δ(𝐴 𝑗 \ {𝑜};𝑜) over all 𝑖, 𝑗 ∈ 𝑁 and all 𝑜 ∈ 𝑂 such that 𝑖 envies 𝑗

more than 1 item and Δ𝑖 (𝐴𝑖 ;𝑜) > 0.

5 𝐴 𝑗 ← 𝐴 𝑗\{𝑜}; 𝐴𝑖 ← 𝐴𝑖 ∪ {𝑜}.
6 if ∃𝑜 ∈ 𝐴0 such that Δ 𝑗 (𝐴 𝑗 ;𝑜) > 0 then
7 Pick 𝑜 ∈ 𝐴0 that maximizes Δ 𝑗 (𝐴 𝑗 ;𝑜).
8 𝐴 𝑗 ← 𝐴 𝑗 ∪ {𝑜}.
9 end

10 if ∃𝑜∗ ∈ 𝐴𝑖 that is unused then
11 𝐴𝑖 ← 𝐴𝑖\{𝑜∗}; revoked = true.
12 while revoked = true and ∃𝑘 s.t. Δ(𝐴𝑘 ;𝑜∗)>0 do
13 Allocate 𝑜∗ to agent 𝑘 maximizing Δ(𝐴𝑘 ;𝑜∗).
14 if ∃𝑜 ∈ 𝐴𝑘 that is unused then
15 𝐴𝑘 ← 𝐴𝑘\{𝑜}; 𝑜∗ ← 𝑜 .

16 else revoked = false.
17 end
18 if revoked = true then 𝐴0 ← 𝐴0 ∪ {𝑜∗}.
19 end
20 end

• Finally, if an agent (group) 𝑖 acquires a new item 𝑜 due to an envy-induced transfer, at most

one of its previous items, say 𝑜∗, may become unused, i.e. it is no longer assigned to a member

of the group under the new matching. This happens, for example, if 𝑖’s positive marginal

utility for 𝑜 with its previous bundle𝐴𝑖 was due to the fact that the member who was assigned

item 𝑜∗ has a higher weight for 𝑜 than for 𝑜∗ and no other member prefers 𝑜∗ to its assigned

item. In such a case, item 𝑜∗ is revoked from agent 𝑖 and allocated to the agent with maximal

and strictly positive marginal utility for it (see lines 10-13). If this creates another unused

item, we repeat the process until there are no unused items or the unused item has zero

marginal utility for all agents – in the latter case, the unused item is added to the withheld

set (see lines 14-18).

We do not yet have theoretical guarantees for Algorithm 2; but, if the EIT subroutine terminates,

then the final allocation is EF1 and has zero waste (as defined above) by construction. To estimate

the efficiency properties of our scheme, we ran numerical tests with it on a set of fair allocation

instances based on a real-world data set.

In our experiments, we measure and compare the performances of Algorithm 2 and the procedure

H as described above in terms of waste (as defined above) as well as the price of fairness (PoF)
which we formally define as follows

PoF(𝑃) = max{USW(𝐴) | 𝐴 is an allocation}
USW(𝐴(𝑃))

where 𝐴(𝑃) is the allocation returned by a given procedure 𝑃 (Algorithm 2 or Algorithm H) on a

problem instance. Obviously, the PoF is bounded below by 1 for any instance and lower values are

better.
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The data set we use isMovieLens-ml-1m [Harper and Konstan 2015] which contains approximately

1,000,000 ratings (from 0 to 5) of 4,000 movies made by 6,000 users. To generate an instance of

our allocation problem, we select 200 movies uniformly at random (|𝑂 | = 200) and then we only

consider the users that rated at least one of these movies. Each such sample of 200 movies defines

one run of our experiments. The users are our group-members and the movies our items. We

generate agents/groups by partitioning users based on a demographic attribute; in fact, we use two

attributes recorded in the data set, giving us two sets of allocation problem instances for each run:

• Gender: 2 agents (male or female, as recorded in the data set);

• Age: 7 agents representing the 7 age-groups recognized in the data set.

Moreover, for each such set (with 2 and 7 agents respectively), we adopt two models for the member-

item weights or, equivalently, agents’ valuation functions (raw and normalized ratings), giving us a

2 × 2 experimental design:

• Ratings:

𝑣ℎ (𝑆) = max

{ ∑
𝑢∈𝑁ℎ

𝑟𝑢,𝜋 (𝑢) | 𝜋 ∈ Π(𝑁ℎ, 𝑆)
}

where 𝑟𝑢𝑜 is the user 𝑢’s rating of movie 𝑜 ;

• Norm: 𝑣 ′
ℎ
(𝑆) = 𝑣ℎ (𝑆)/𝑣ℎ (𝑂),

for every agent ℎ (group 𝑁ℎ) and for any bundle of movies 𝑆 ⊆ 𝑂 . We provide the results, averaged

over 50 runs, in Table 4.

H [Benabbou et al. 2019; Lipton et al. 2004] Algorithm 2

Attribute (#groups) Ratings Norm Ratings Norm

PoF

Age (7)

1.01 1.15 1.05 1.19

Waste 1.25% 0.20% 0% 0%

PoF

Gender (2)

1.00 1.02 1.00 1.03

Waste 0.00% 0.00% 0% 0%

Table 4. Experimental assessment of allocation procedures under OXS valuations.

We observe that Algorithm H has no guarantees on waste but, in practice, has negligible waste;

and the waste appears to be lower for a lower number of agents in our experiments. In comparison,

Algorithm 2 (which always terminated on its own for all our instances) is waste-free by design but

has at least as much average PoF as Algorithm H in all our experiments.

D OTHER FAIRNESS CRITERIA UNDER MATROID RANK VALUATIONS
In the main paper, we have focused on Pareto optimal and EF1 allocations for the matroid rank

valuation class. However, many other concepts have been defined and studied in the literature that

formalize different intuitive ideas for what it means for an allocation of indivisible goods to be fair.

In this appendix, we will investigate the implications of our results from the main paper for some

alternative fairness notions.

D.1 Marginal envy-freeness up to one item
Caragiannis et al. [2019b] define an allocation 𝐴 to be marginally envy-free up to one item or MEF1

if for every pair of agents 𝑖, 𝑗 ∈ 𝑁 such that 𝑖 envies 𝑗 , there is an item 𝑜 ∈ 𝐴 𝑗 such that

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ∪𝐴 𝑗 \ {𝑜}) − 𝑣𝑖 (𝐴𝑖 ).
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Clearly, MEF1 is in general a relaxation of EF1: it coincides with EF1 for additive valuations and is

implied by EF1 for submodular valuations, as Proposition D.1 below shows. Thus, our main results

trivially prove the existence (and computational tractability) of MEF1 allocations with optimal

welfare guarantees (hence Pareto optimality) for matroid rank valuations. However, Caragiannis

et al. [2019b] already established the more general existence result that, for submodular valuations,

every MNW allocation is MEF1.

Proposition D.1. For submodular valuation functions, an EF1 allocation is always MEF1 but the
converse is not true, even if the functions have binary marginal gains.

Proof. Consider an EF1 allocation 𝐴, and pick an arbitrary pair of envious and envied agents

𝑖, 𝑗 ∈ 𝑁 . Let 𝑜 ∈ 𝐴 𝑗 be an item for which 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}). Then, since 𝐴𝑖 and 𝐴 𝑗 are disjoint,

submodularity implies

𝑣𝑖 (𝐴𝑖 ∪𝐴 𝑗\{𝑜}) − 𝑣𝑖 (𝐴𝑖 ) ≤
[
𝑣𝑖 (𝐴𝑖 ) + 𝑣𝑖 (𝐴 𝑗\{𝑜})

]
− 𝑣𝑖 (𝐴𝑖 )

= 𝑣𝑖 (𝐴 𝑗\{𝑜})
≤ 𝑣𝑖 (𝐴𝑖 ).

Thus, 𝐴 satisfies the definition of an MEF1 allocation.

The following is a counterexample to the converse. Suppose, 𝑁 = [2], 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4}, and
the valuation functions of the agents are

𝑣1 (𝑆) =
{
|𝑆 | − 1 whenever 𝑜1 ∈ 𝑆 and |𝑆 | ≥ 2;

|𝑆 | otherwise.

𝑣2 (𝑆) = |𝑆 | ∀𝑆 ⊆ 𝑂.

It is easy to see that both 𝑣1 and 𝑣2 are matroid rank functions. Under an allocation with bundles

𝐴1 = {𝑜1} and 𝐴2 = {𝑜2, 𝑜3, 𝑜4}, 𝑣1 (𝐴1) = 1 and 𝑣2 (𝐴2) = 3. Moreover, 𝑣2 (𝐴2 ∪ 𝐴1) − 𝑣2 (𝐴2) =
4 − 3 = 1 < 3 = 𝑣2 (𝐴2) and 𝑣1 (𝐴1 ∪ 𝐴2\{2}) − 𝑣1 (𝐴1) = 𝑣1 ({1, 3, 4}) − 1 = 2 − 1 = 1 = 𝑣1 (𝐴1). So,
the allocation is also MEF1. Agent 2 does not envy agent 1 since 𝑣2 (𝐴1) = 1 < 3 = 𝑣2 (𝐴2); but,
𝑣1 (𝐴2\{𝑜}) = 2 > 1 = 𝑣1 (𝐴1) for every 𝑜 ∈ 𝐴2 so that agent 1 envies agent 2 up to more than 1

item. Thus, the allocation is not EF1. □ □

D.2 Approximate proportionality
An allocation 𝐴 of indivisible items 𝑂 to agents 𝑁 is said to be proportional if 𝑣𝑖 (𝐴𝑖 ) ≥ 1

𝑛
𝑣𝑖 (𝑂) for

every agent 𝑖 ∈ 𝑁 . Since such an allocation may not be achievable in general,
14
a relaxation is

defined along the same lines as EF1: proportionality up to one item. Under additive valuations, i.e.

when Δ𝑖 (𝑆 ;𝑜) = 𝑣𝑖 ({𝑜}) for every 𝑖 ∈ 𝑁 , every item 𝑜 , and every bundle 𝑆 ⊆ 𝑂 \ {𝑜}, an allocation

𝐴 is defined to be proportional up to one item or PROP1 if, for every agent 𝑖 ∈ 𝑁 , there is at

least one item not allocated to 𝑖 , i.e. 𝑜 ∈ 𝑂 \𝐴𝑖 , such that 𝑣𝑖 (𝐴𝑖 ) ≥ 1

𝑛
𝑣𝑖 (𝑂) − 𝑣𝑖 ({𝑜}). For general

non-additive valuations, it is debatable what the (subtractive) relaxation term on the right-hand

side should be. For submodular valuations, we know that Δ𝑖 (𝑂 \ {𝑜};𝑜) ≤ Δ𝑖 (𝑆 ;𝑜) ≤ 𝑣𝑖 ({𝑜})
for every agent 𝑖 ∈ 𝑁 , every item 𝑜 ∈ 𝑂 , and every bundle 𝑆 ⊆ 𝑂 \ {𝑜}; as such, we could pick

either Δ𝑖 (𝑂 \𝐴𝑖 \ {𝑜};𝑜) or 𝑣𝑖 ({𝑜}) as the relaxation term for the strongest and weakest possible

definition of PROP1 respectively. It is easy to see that, for general submodular valuations, any

PO and EF1 allocation — if it exists — satisfies the weakest definition of proportionality up to 1

14
This non-existence can be demonstrated even for matroid rank (in fact, binary additive) valuations by the following simple

example: there are two agents and one item which each agent values at 1. Hence, 𝑣1 (𝑂) = 𝑣2 (𝑂) = 1, so that each agent

must realize a value of at least 1/2 for the allocation to be proportional. But in any allocation, at least one agent gets no item

and hence realizes zero value.
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item (Proposition D.3 below); the implications of the PO+EF1 property for stronger definitions of

approximate proportionality are not clear yet, even for matroid rank valuations.

Definition D.2. For general valuation functions, an allocation 𝐴 is called weakly proportional up

to one item or WPROP1 if, for every agent 𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝐴𝑖 ) ≥
1

𝑛
𝑣𝑖 (𝑂) − max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜}) .

Proposition D.3. If an instance of fair allocation with indivisible goods under general submodular
valuations admits a Pareto optimal and EF1 allocation, then such an allocation is also WPROP1.

Proof. Consider a PO, EF1 allocation 𝐴 admitted by an instance with submodular valuations.

Hence, for any agent 𝑖 ,

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑜}) for every 𝑗 ∈ 𝑁 \ {𝑖}, for some 𝑜 ∈ 𝐴 𝑗

= 𝑣𝑖 (𝐴 𝑗 ) − Δ𝑖 (𝐴 𝑗 \ {𝑜};𝑜)
≥ 𝑣𝑖 (𝐴 𝑗 ) − 𝑣𝑖 ({𝑜}) since Δ𝑖 (𝐴 𝑗 \ {𝑜};𝑜) ≤ 𝑣𝑖 ({𝑜}) due to the submodularity of 𝑣𝑖 (·).

For every 𝑗 ∈ 𝐴 𝑗 , consider an arbitrary such item 𝑜 𝑗 satisfying the above inequality. Since 𝑜 𝑗 ∈
𝐴 𝑗 ⊆ 𝑂 \ 𝐴𝑖 , we have 𝑣𝑖 ({𝑜 𝑗 }) ≤ max𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜}). Moreover, if 𝐴0 ≠ ∅, we must also have

𝑣𝑖 (𝐴𝑖 ∪𝐴0) = 𝑣𝑖 (𝐴𝑖 ), otherwise we could augment agent 𝑖’s bundle 𝐴𝑖 with the withheld set 𝐴0 and

thereby increase her realized valuation without diminishing that of any other agent, contradicting

the Pareto optimality of 𝐴. Thus, combining the above 𝑛 − 1 inequalities together with this equality,

we get

𝑛𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ∪𝐴0) +
∑

𝑗 ∈𝑁 \{𝑖 }
𝑣𝑖 (𝐴 𝑗 ) − (𝑛 − 1) × max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜})

≥ 𝑣𝑖 (∪𝑛𝑖=0
𝐴𝑖 ) − (𝑛 − 1) × max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜}) due to the submodularity, hence subadditivity, of 𝑣𝑖 (·)

= 𝑣𝑖 (𝑂) − (𝑛 − 1) × max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜})

≥ 𝑣𝑖 (𝑂) − 𝑛 × max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜}) since max

𝑜∈𝑂\𝐴𝑖

𝑣𝑖 ({𝑜}) ≥ 0.

Dividing both sides by 𝑛, we conclude that 𝐴 is WPROP1. □

Since a PO+EF1 allocation always exists and can be efficiently computed under matroid rank

valuations (Theorem 3.4), the existence and computational tractability of a WPROP1 allocation for

this function class immediately follows from Proposition D.3.

D.3 Approximate equitability
An allocation 𝐴 is said to be equitable or EQ if the realized valuations of all agents are equal under

it, i.e. for every pair of agents 𝑖, 𝑗 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) = 𝑣 𝑗 (𝐴 𝑗 ); an allocation 𝐴 is equitable up to one item
or EQ1 if, for every pair of agents 𝑖, 𝑗 ∈ 𝑁 such that 𝐴 𝑗 ≠ ∅, there exists some item 𝑜 ∈ 𝐴 𝑗 such

that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣 𝑗 (𝐴 𝑗 \ {𝑜}) [Freeman et al. 2019].
15
We can further relax the equitability criterion

up to an arbitrary number of items: an allocation 𝐴 is said to be equitable up to 𝑐 items or EQ𝑐 if,
for every pair of agents 𝑖, 𝑗 ∈ 𝑁 such that |𝐴 𝑗 | > 𝑐 , there exists some subset 𝑆 ∈ 𝐴 𝑗 of size |𝑆 | = 𝑐

such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣 𝑗 (𝐴 𝑗 \ 𝑆).16

15
Note that if 𝐴𝑗 = ∅ for some 𝑗 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑗 (𝐴𝑗 ) trivially. Hence the ordered pair (𝑖, 𝑗) for any 𝑖 ∈ 𝑁 \ { 𝑗 } could never

prevent the allocation from being EQ1.

16
Again, if |𝐴𝑗 | ≤ 𝑐 for some 𝑗 , no ordered pair (𝑖, 𝑗) for any 𝑖 ∈ 𝑁 \ { 𝑗 } could get in the way of the allocation being EQ𝑐 .
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Freeman et al. [2019] show
17
that, even for binary additive valuations (which is a subclass of

the (0, 1)-OXS valuation class), an allocation that is both EQ1 and PO may not exist; however, in

Theorem 4, they establish that it can be verified in polynomial time whether an EQ1, EF1 and

PO allocation exists and, whenever it does exist, it can also be computed in polynomial time —

under binary additive valuations. We will show that the above positive result about computational

tractability extends to the (0, 1)-OXS valuation class. We will begin by proving that under matroid

rank valuations, an EQ1 and PO allocation, if it exists, is also EF1 — we achieve this by combining

Theorem D.4 below with Corollary 3.8. This simplifies the problem of finding an EQ1, EF1 and PO

allocation to that of finding an EQ1 and PO allocation.

Theorem D.4. For submodular valuations with binary marginal gains, any EQ1 and PO allocation,
if it exists, is a leximin allocation.

Hence, from Theorem 3.14, we further obtain that if an EQ1 and PO allocation exists under

matroid rank valuations, it is also MNW and a minimizer of any symmetric strictly convex function

of agents’ realized valuations among all utilitarian optimal allocations. Moreover, Theorem D.4,

together with Corollary 3.16, implies that if an EQ1 and PO allocation exists under matroid rank

valuations, it must be EF1.

Proof. Let the optimal USW for a problem instance under this valuation class be𝑈 ∗; also, suppose
this instance admits an EQ1 and PO allocation 𝐴. The EQ1 property implies that for every pair of

agents 𝑖, 𝑗 ∈ 𝑁 such that 𝐴 𝑗 ≠ ∅,
𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣 𝑗 (𝐴 𝑗 \ {𝑜}) for some 𝑜 ∈ 𝐴 𝑗

= 𝑣 𝑗 (𝐴 𝑗 ) − Δ 𝑗 (𝐴 𝑗 \ {𝑜};𝑜)
≥ 𝑣 𝑗 (𝐴 𝑗 ) − 1, since Δ 𝑗 (𝐴 𝑗 \ {𝑜};𝑜) ∈ {0, 1}.

This inequality holds trivially and strictly if 𝐴 𝑗 = ∅. Thus, max𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ) ≤ min𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ) + 1. In

other words, there exist a non-negative integer 𝛼 ≤ 𝑈 ∗ and a positive integer 𝑛0 ∈ [𝑛] such that 𝑛0

agents have valuations 𝛼 each and the remaining agents, if any, have valuations 𝛼 + 1 each under

allocation 𝐴, with 𝑈 ∗ = 𝑛0𝛼 + (𝑛 − 𝑛0) (𝛼 + 1) = 𝑛𝛼 + 𝑛 − 𝑛0. We can write the agents’ realized

valuations under 𝐴 (with arbitrary tie-breaking) as the 𝑛-dimensional vector

𝒔 (𝐴) =
©«𝛼, 𝛼, . . . , 𝛼︸      ︷︷      ︸

𝑛0 entries

, 𝛼 + 1, 𝛼 + 1, . . . , 𝛼 + 1︸                     ︷︷                     ︸
𝑛 − 𝑛0 entries

ª®®¬ .
If 𝐴 were not leximin, there would be another allocation 𝐴′ for which the corresponding valuation

vector 𝒔 (𝐴′) would have an entry strictly higher than that of 𝐴 at the same position, say 𝑛′ ∈ [𝑛].
If 𝑛′ ≤ 𝑛0, then every entry of 𝒔 (𝐴′) from position 𝑛′ is at least 𝛼 + 1, so the USW under 𝐴′ is

𝑈 ′ ≥ (𝑛′ − 1)𝛼 + (𝑛 − 𝑛′ + 1) (𝛼 + 1)
= 𝑛𝛼 + 𝑛 − 𝑛′ + 1

≥ 𝑛𝛼 + 𝑛 − 𝑛0 + 1

= 𝑈 ∗ + 1.

17
Freeman et al. [2019] use an example with 3 agents having binary additive valuations (Example 1). But it is easy to

construct a fair allocation instance with only two agents having binary additive valuations that does not admit an EQ1 and

PO allocation: 𝑁 = [2];𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4 }; 𝑣1 (𝑜) = 1 for every 𝑜 ∈ 𝑂 ; 𝑣2 (𝑜1) = 1 and 𝑣2 (𝑜) = 𝑜 for every 𝑜 ∈ 𝑂 \ {𝑜1 }.
Obviously, any PO allocation must give {𝑜2, 𝑜3, 𝑜4 } to agent 1 so that this agent’s realized valuation is at least 2 even after

dropping one of its items; even if agent 2 receives 𝑜1, her realized valuation of 1 will always be less than the above.
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If 𝑛0 < 𝑛′ ≤ 𝑛, then similarly,

𝑈 ′ ≥ 𝑛0𝛼 + (𝑛′ − 𝑛0 − 1) (𝛼 + 1) + (𝑛 − 𝑛′ + 1) (𝛼 + 2)
= 𝑛𝛼 + 2𝑛 − 𝑛′ − 𝑛0 + 1

≥ 𝑛𝛼 + 2𝑛 − 𝑛 − 𝑛0 + 1

= 𝑛𝛼 + 𝑛 − 𝑛0 + 1

= 𝑈 ∗ + 1.

In either case, we have a contradiction since 𝑈 ∗ is the optimal utilitarian social welfare for this

instance. Hence, 𝐴 must be leximin. □

We conjecture that a stronger result holds: under matroid rank valuations, the leximin allocation

is optimally EQ𝑐 for 𝑐 ∈ {0, 1, . . . ,𝑚} among all PO allocations. A proof or a counterexample

remains elusive. We present this more formally as follows:

Conjecture D.5. For a problem instance where all agents have submodular valuations with binary
marginal gains, if 𝑐∗ is the smallest 𝑐 ∈ [𝑚] for which a leximin allocation is EQ𝑐 , then the instance
admits no PO allocation that is EQ𝑐 for any 𝑐 < 𝑐∗.

D.4 The MMS guarantee
Let Π(𝑂) denote the collection of all 𝑛-partitions of the set of items 𝑂 . Then, the maximin share of
agent 𝑖 is defined as:

MMS𝑖 ≜ max

(𝐴1,𝐴2,...,𝐴𝑛) ∈Π (𝑂)
min

𝑗 ∈𝑁
𝑣𝑖 (𝐴 𝑗 ).

An allocation 𝐴 is called MMS if 𝑣𝑖 (𝐴𝑖 ) ≥ MMS𝑖 for every 𝑖 ∈ 𝑁 ; for any approximation ratio

𝛼 ∈ (0, 1], 𝐴 is called 𝛼-MMS if 𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼 · MMS𝑖 for every 𝑖 ∈ 𝑁 .

Ghodsi et al. [2018] showed that for agents with (general) submodular valuations, a 1/3-MMS

allocation always exists and can be computed in polynomial time; it is not yet clear what the

connections of theMMS guarantee with PO+EF1 allocations are, even for the subclass of submodular

valuations with binary marginal gains, and whether a better approximation ratio can be achieved

for this subclass.

In general, a PO and EF1 allocation may not be MMS even for (0, 1)-OXS valuations, which we

show by an example below:

Proposition D.6. For assignment valuations (hence submodular valuations) with binary marginal
gains, a Pareto optimal and EF1 allocation may not be MMS.

Proof. Consider an augmentation to Example 3.9 from Section 3.1: we now have eight items

and two groups 𝑁1 = {𝑎1, 𝑎2, . . . , 𝑎6} and 𝑁2 = {𝑏1, 𝑏2, 𝑏3, 𝑏4} with (0, 1)-OXS valuations; an agent’s

utility for an item is 1 if there is an edge between the nodes representing them in Figure 6, otherwise

it is 0. The maximin share of group/agent 𝑁2 is MMS2 = 3 corresponding to the partition {𝐴1, 𝐴2}
where 𝐴1 ⊇ {𝑜3, 𝑜4, 𝑜5}, 𝐴2 ⊇ {𝑜6, 𝑜7, 𝑜8}, and each of 𝑜1, 𝑜2 is arbitrarily included in either 𝐴1 or

𝐴2: with 𝐴1 (resp. 𝐴2) allocated to 𝑁2, the members 𝑏1, 𝑏2, 𝑏3 (resp. 𝑏1, 𝑏3, 𝑏4) are assigned items

𝑜3, 𝑜4, 𝑜5 (resp. 𝑜7, 𝑜8, 𝑜6) respectively.

However, take the allocation 𝐴′ with bundles 𝐴′
2
= {𝑜4, 𝑜6} and 𝐴′

1
= 𝑂 \ 𝐴′

2
: 𝑣1 (𝐴′1) = 6 with

𝑜1, 𝑜2, 𝑜3, 𝑜5, 𝑜7, 𝑜8 assigned to 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 respectively; 𝑣2 (𝐴′2) = 2 with 𝑜4, 𝑜6 assigned to

𝑏2, 𝑏4 respectively; 𝑣1 (𝐴′2) = 2 with 𝑜4, 𝑜6 assigned to 𝑎2, 𝑎1 respectively; 𝑣2 (𝐴′1) = 2 with 𝑜1, 𝑜2

unassigned, either 𝑜3 or 𝑜7 assigned to 𝑏1, and either 𝑜5 or 𝑜8 assigned to 𝑏3 respectively. Since

𝑣1 (𝐴1) + 𝑣2 (𝐴2) = 8 = |𝑂 |, the allocation is utilitarian optimal (hence PO); it is also envy-free since

𝑣1 (𝐴′1) > 𝑣1 (𝐴′2) and 𝑣2 (𝐴′2) = 𝑣2 (𝐴′1). But 𝑣2 (𝐴′2) < MMS2. □
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Fig. 6. Problem instance used in the proof of Proposition D.6.

There are a few follow-up questions that are yet to be settled:

• Does an MNW/leximin allocation under matroid rank valuations (Theorem 3.14 and Corol-

lary 3.16) have the MMS guarantee?
18

• Is a PO and EF1 allocation under matroid rank valuations guaranteed to provide a constant

approximation to the MMS guarantee, and if so, what is a tight bound on this approximation

ratio?

We conclude with a positive existential result on a subclass of (0, 1)-OXS valuations: binary additive
valuations, i.e. for every 𝑖 ∈ 𝑁 , we have 𝑣𝑖 ({𝑜}) ∈ {0, 1} for every 𝑜 ∈ 𝑂 , and 𝑣𝑖 (𝑆) =

∑
𝑜∈𝑆 𝑣𝑖 ({𝑜})

for every 𝑆 ⊆ 𝑂 . For this valuation subclass, we can safely assume that there are no redundant
items in 𝑂 , i.e. there is no 𝑜 ∈ 𝑂 , such that 𝑣𝑖 ({𝑜}) = 0 for every 𝑖 ∈ 𝑁 .

19

Proposition D.7. If all agents have binary additive valuations, any Pareto optimal, EF1 allocation
is also MMS.

Proof. It is easy to see that a PO allocation must be complete for this valuation class: if not, we

would have an item 𝑜∗ ∈ 𝐴0 and, by our non-redundancy assumption, an agent 𝑖∗ with 𝑣𝑖∗ ({𝑜}) = 1,

hence we could improve agent 𝑖∗’s valuation at no cost to the other agents by allocating the item

𝑜∗ to agent 𝑖∗. We will prove the required result by contraposition. Let 𝐴 be an allocation that is PO

but not MMS for an instance where all agents have binary additive valuations. Then, there is an

agent 𝑖 such that 𝑣𝑖 (𝐴𝑖 ) < 𝜇 where 𝜇 = MMS𝑖 . Since valuations are integers, 𝑣𝑖 (𝐴𝑖 ) ≤ 𝜇 − 1.

If 𝑣𝑖 (𝐴 𝑗 ) ≤ 𝜇 for every other agent 𝑗 ∈ 𝑁 \ {𝑖}, then due to additivity and the emptiness of 𝐴0,

𝑣𝑖 (𝑂) = 𝑣𝑖 (𝐴𝑖 ) +
∑

𝑗 ∈𝑁 \{𝑖 }
𝑣𝑖 (𝐴 𝑗 ) = 𝑣𝑖 (𝐴𝑖 ) +

∑
𝑗 ∈𝑁 \{𝑖 }

𝑣𝑖 (𝐴 𝑗 ) < 𝜇 + (𝑛 − 1)𝜇 = 𝑛𝜇.

18
Notice that, in Example 3.9, 𝐴1 = {𝑜1, 𝑜2, 𝑜3 } and 𝐴2 = {𝑜4, 𝑜5, 𝑜6 } constitute the unique MNW/leximin allocation that is

also MMS.

19
Proposition D.7 also follows from Segal-Halevi and Suksompong [2019] who extend many of the fairness notions we study

in this paper to a setting where agents are partitioned in 𝑘 groups (ours is a special case with 𝑘 = 𝑛 since each agent can

be viewed as constituting its own group): their Lemmas 2.3 and 2.7(c) jointly imply that under binary additive valuations,

every complete, EF1 allocation is MMS. We thank an anonymous reviewer for pointing us to this connection.
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But, from the definition of the maximin share, there must exist a complete allocation 𝐴′ such
that 𝑣𝑖 (𝐴′𝑗 ) ≥ 𝑣𝑖 (𝐴′𝑖 ) = 𝜇 for every 𝑗 ∈ 𝑁 \ {𝑖}. This, together with additivity, implies that

𝑣𝑖 (𝑂) =
∑
𝑗 ∈𝑁

𝑣𝑖 (𝐴′𝑗 ) ≥ 𝑛𝜇,

a contradiction. Hence, under the allocation 𝐴, there must be at least one agent, say 𝑘 ∈ 𝑁 \ {𝑖},
such that 𝑣𝑖 (𝐴𝑘 ) > 𝜇.

Thus, for any item 𝑜 ∈ 𝐴𝑘 , we have

𝑣𝑖 (𝐴𝑘 \ {𝑜}) = 𝑣𝑖 (𝐴𝑘 ) − 𝑣𝑖 ({𝑜}) ≥ 𝑣𝑖 (𝐴𝑘 ) − 1 > 𝜇 − 1 > 𝑣𝑖 (𝐴𝑖 ).
In other words, agent 𝑖 is not envy-free of agent 𝑘 up to 1 item, i.e. 𝐴 cannot be EF1.

Hence, any PO and EF1 allocation must also be MMS. □
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