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Abstract
We introduce a mathematical description of the impact of the number of daily con-
tacts in the spread of infectious diseases by integrating an epidemiological dynamics
with a kinetic modeling of population-based contacts. The kinetic description leads
to study the evolution over time of Boltzmann-type equations describing the number
densities of social contacts of susceptible, infected and recovered individuals, whose
proportions are driven by a classical SIR-type compartmental model in epidemiology.
Explicit calculations show that the spread of the disease is closely related to moments
of the contact distribution. Furthermore, the kinetic model allows to clarify how a
selective control can be assumed to achieve a minimal lockdown strategy by only
reducing individuals undergoing a very large number of daily contacts. We conduct
numerical simulations which confirm the ability of themodel to describe different phe-
nomena characteristic of the rapid spread of an epidemic. Motivated by the COVID-19
pandemic, a last part is dedicated to fit numerical solutions of the proposed model with
infection data coming from different European countries.
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1 Introduction

The SARS-CoV-2 pandemic led in many countries to heavy lockdown measures
assumed by the governments with the aim to control and limit its spreading. In this
context, an essential role is played by themathematicalmodeling of infectious diseases
since it allows direct validationwith real data, unlike other classical phenomenological
approaches. This consequently permits evaluation of control and prevention strategies
by comparing their costwith effectiveness and to give support to public health decisions
(Ferguson 2006; Riley 2003). On this subject, most of the models present in literature
make assumptions on transmission parameters (Brauer et al. 2019; Diekmann and
Heesterbeek 2000) which are considered the only responsible of the spread of the
infection. However, special attention was recently paid by the scientific community
to the role and the estimate of the distribution of contacts between individuals as also
a relevant cause of the potential pathogen transmission (cf. (Béraud 2015; Dolbeault
and Turinici 2020; Fumanelli 2012; Mossong 2008) and the references therein).

In this direction, the results reported in (Béraud 2015) can be of great help when
designing partial lockdown strategies. In fact, an optimal control of the pathogen trans-
mission of the epidemic could be achieved through a direct limitation of the number
of daily contacts among people. On this subject, the detailed analysis performed in
(Béraud 2015) put into evidence that the number of social contacts in the population is
in general well-fitted by a Gamma distribution, even if this distribution is not uniform
with respect to age, sex and wealth. Gamma distributions belong to the wide class
of generalized Gamma distributions (Lienhard and Meyer 1967; Stacy 1962), which
have been recently connected to the statistical study of social phenomena (Kehoe
2012; Rehm 2010), and fruitfully described as steady states of kinetic models aim-
ing to describe the formation of these profiles in consequence of repeated elementary
interactions (Dimarco and Toscani 2019; Toscani 2020).

Starting from the above consideration and inspired by the recent development
concerning kinetic models describing human behavior (Dimarco and Toscani 2019;
Toscani 2020), in this paper we develop a mathematical framework to connect the
distribution of social contacts with the spreading of a disease in a multiagent system.
The result is obtained by integrating an epidemiological dynamics given by a classical
compartmental model (Brauer et al. 2019; Diekmann and Heesterbeek 2000; Hethcote
2000) with a statistical part based on kinetic equations determining the formation of
social contacts.

The study of the kinetic compartmental system allows to compare the results with
that obtained by studying the spread of the epidemic by means of social networks,
where contacts between individuals in a given population can be captured by assuming
that nodes represent individuals and the edges represent the connections between them
(Hernandez-Vargas et al. 2019). In connection with this subject, by following a similar
approach it was possible to understand how diseases spread in highly heterogeneous
social networks (Barthélemy et al. 2005). Also, it was recently shown that a strategic
social network-based reduction of contact strongly enhances the effectiveness of social
distancing measures while keeping risks lower (Block 2020), and that overdispersed
diseases such as COVID-19 are very sensitive to social network size and clustering
(Nielsen et al. 2021).

123



Kinetic models for epidemic... Page 3 of 32     4 

In this paper we concentrate on the classical SIR dynamics. However, we stress
that the ideas here described are clearly not reduced to this model which can be
intended as an example. Instead, the methodology here discussed can be extended to
incorporate more realistic epidemiological dynamics, like for instance the classical
endemic models discussed in (Brauer et al. 2019; Diekmann and Heesterbeek 2000;
Hethcote 2000). In particular, the extension of the present approach to age-dependent
compartmental models could be of great interest to produce realistic scenarios.

Other aspects, which certainly have a stronger impact on how a virus spreads, are
related to the presence of asymptomatic individuals (Gaeta 2021) as well as to a time
delay between contacts and outbreak of the disease (Cooke et al. 1999) which helps in
the diffusion of the illness. These possible modeling improvements are the subject of
future investigations and they will not be treated in this work. In fact, we stress that the
principal scope of this work is to introduce a new class of models which is capable to
incorporate information on the social heterogeneity of a population which we believe
to be a crucial aspect in the spread of contagious diseases. Besides these simplifying
assumptions, we will show that the basic features considered and detailed in the rest
of the article are sufficient in many cases to construct a new class of models which
well fits with the experimental data. Precise quantitative estimates are postponed to
future investigations.

An easy way to understand epidemiology models is that, given a population com-
posed of agents, they prescribe movements of individuals between different states
based on some matching functions or laws of motion. According to the classical SIR
models (Hethcote 2000), agents in the system are split into three classes, the sus-
ceptible, who can contract the disease, the infected, who have already contracted the
disease and can transmit it, and the recovered who are healed, immune or isolated.
Inspired by the model considered in (Dimarco and Toscani 2019) for describing a
social attitude and making use of classical epidemiological dynamics, we present here
a model composed by a system of three kinetic equations, each one describing the time
evolution of the distribution of the number of contacts for the subpopulation belonging
to a given epidemiological class. These three equations are further coupled by taking
into account the movements of agents from one class to the other as a consequence
of the infection, with an intensity proportional to the product of the average contact
frequencies, rather than the product of population fractions.

The interactions which describe the social contacts of individuals are based on few
rules and can be easily adapted to take into account the behavior of agents in the
different classes in presence of the infectious disease. Our joint framework is con-
sequently based on two models which can be considered classical in the respective
fields. From the side of multi-agent systems in statistical mechanics, the linear kinetic
model introduced in (Dimarco and Toscani 2019; Toscani 2020) has been shown to be
flexible and able to describe, with suitable modifications, different problems in which
human behavior plays an essential role, like the formation of social contacts. Once the
statistical distribution of social contacts has been properly identified as equilibrium
density of the underlying kinetic model, this information is used to close the hierar-
chy of equations describing the evolution of moments (Bobylev 1988; Dimarco et al.
2020; Cercignani 1988). In this way, we obtain a coupled system of equations, iden-
tifying a new epidemiological model which takes into account at best the statistical
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details about the contact distribution of a population. The model connects the measure
of the heterogeneity of the population, i.e. the variance of the contact distribution,
with the epidemic trajectory. This is in agreement with a well-know finding in the
epidemiological literature, see e.g. (Anderson and May 1985; Barthélemy et al. 2005;
Bonaccorsi et al. 2020; Diekmann et al. 1990; Flaxman et al. 2020; Novozhilov 2008;
Van den Driessche and Watmough 2002). A recent research showing the influence of
population heterogeneity on herd immunity to COVID-19 infection is due to Britton
et al. (Britton et al. 2020).

Starting from the general macroscopic model, one can fruitfully obtain from it
various sub-classes of SIR-type epidemiological models characterized by non-linear
incidence rates, as for instance recently considered in (Korobeinikov andMaini 2005).
It is also interesting to remark that the presence of non-linearity in the incidence rate
function, and in particular, the concavity condition with respect to the number of
infected has been considered in (Korobeinikov and Maini 2005) as a consequence of
psychological effects. Namely, the authors observed that in the presence of a very large
number of infected, the probability for an infected to transmit the virus may further
decrease because the population tend to naturally reduce the number of contacts.
The importance of reducing at best the social contacts to countering the advance of
a pandemic is a well-known and studied phenomenon (Ferguson 2006). While in
normal life activity, it is commonly assumed that a large part of agents behave in a
similar way, in presence of an extraordinary situation like the one due to a pandemic,
it is highly reasonable to conjecture that the social behavior of individuals is strictly
affected by their personal feeling in terms of safeness. Thus, in this work, we focus on
the assumption that it is the degree of diffusion of the disease that changes people’s
behavior in terms of social contacts, in view both of the personal perception and/or
of the external government intervention. More generally, the model can be clearly
extended to consider more realistic dependencies between an epidemic disease and the
social contacts of individuals. However, this does not change the essential conclusions
of our analysis, namely that there is a close interplay between the spread of the disease
and the distribution of contacts, that the kinetic description is able to quantify. In
particular, we stress the fact that we consider our approach as methodological, thus the
encouraging results described in the rest of the article suggest that a similar analysis can
be carried out, at the price of an increasing difficulty in computations, inmore complex
epidemiological models like the SIDARTHE model (Giordano 2020; Gatto 2020), to
validate and improve the eventual partial lockdown strategies of the government and
to suggest future measures.

The rest of the paper is organized as follows. Section 2 introduces the system of
three SIR-type kinetic equations combining the dynamics of social contacts with the
spread of infectious disease in a system of interacting individuals. Then, in Sect. 2.2
we show that through a suitable asymptotic procedure, the solution to the kinetic
system tends towards the solution of a system of three SIR-type Fokker-Planck type
equations with local equilibria of Gamma-type (Béraud 2015). Once the system of
Fokker-Planck type equations has been derived, in Sect. 3, we close the system of
kinetic equations around the Gamma-type equilibria to obtain a new epidemiological
model in which the incidence rate depends on the number of social contacts between
individuals. Last, in Sect. 4, we investigate at a numerical level the relationships
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between the solutions of the kinetic system of Boltzmann type, its Fokker-Planck
asymptotics and the macroscopic model. These simulations confirm the ability of our
approach to describe different phenomena characteristic of the trend of social contacts
in situations compromised by the rapid spread of an epidemic and the consequences
of various lockdown action in its evolution. A last part is dedicated to a fitting of
the model with the experimental observations: first we estimate the parameters of the
epidemic through the data at disposal and successively we use them in themacroscopic
model showing that our approach is able to reproduce the pandemic trend.

2 A kinetic approach combining social contacts and epidemic
dynamics

Our goal is to build a kinetic systemwhich suitably describes the spreading of an infec-
tious disease under the dependence of the contagiousness parameters on the individual
number of social contacts of the agents. Accordingly to classical SIR models (Heth-
cote 2000), the entire population is divided into three classes: susceptible, infected and
recovered individuals. As already claimed the ideas here developed can be extended
to more complex compartmental epidemic models.

Aiming to understand social contacts effects on the dynamics, we will not con-
sider in the sequel the role of other sources of possible heterogeneity in the disease
parameters (such as the personal susceptibility to a given disease), which could be
derived from the classical epidemiological models, suitably adjusted to account for
new information (Diekmann et al. 1990; Novozhilov 2008; Van den Driessche and
Watmough 2002). Consequently, agents in the system are considered indistinguish-
able (Pareschi and Toscani 2014). This means that the state of an individual in each
class at any instant of time t ≥ 0 is completely characterized by the sole number of
contacts x ≥ 0, measured in some unit.

While x is a natural positive number at the individual level, without loss of gen-
erality we will consider x in the rest of the paper to be a nonnegative real number,
x ∈ R

+, at the population level. We denote then by fS(x, t), f I (x, t) and fR(x, t), the
distributions at time t > 0 of the number of social contacts of the population of sus-
ceptible, infected and recovered individuals, respectively. The distribution of contacts
of the whole population is then recovered as the sum of the three distributions

f (x, t) = fS(x, t) + f I (x, t) + fR(x, t).

Wedonot consider for simplicity of presentation disease relatedmortality aswell as the
presence of asymptomatic individuals which we aim to insert in future investigations.
Therefore, we can fix the total distribution of social contacts to be a probability density
for all times t ≥ 0

∫
R+

f (x, t) dx = 1.

As a consequence, the quantities
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J (t) =
∫
R+

f J (x, t) dx, J ∈ {S, I , R} (1)

denote the fractions, at time t ≥ 0, of susceptible, infected and recovered respectively.
For a given constant α > 0, and time t ≥ 0, we also denote with xα(t) the moment of
the distribution of the number of contacts f (x, t) of order α

xα(t) =
∫
R+

xα f (x, t) dx .

In the same way, we denote with xJ ,α(t) the local moments of order α for the distri-
butions of the number of contacts in each class conveniently divided by the mass of
the class

xJ ,α(t) = 1

J (t)

∫
R+

xα f J (x, t) dx, J ∈ {S, I , R}. (2)

Unambiguously, we will indicate the mean and the local mean values, corresponding
to α = 1, by x(t) and, respectively, xJ (t), J ∈ {S, I , R}.

Inwhat follows,we assume that the various classes in themodel could act differently
in the social process constituting the contact dynamics. The kinetic model then follows
combining the epidemic process with the contact dynamics. This gives the system

∂ fS(x, t)

∂t
= −Kε( fS, f I )(x, t) + QS( fS)(x, t)

∂ f I (x, t)

∂t
= Kε( fS, f I )(x, t) − γε f I (x, t) + QI ( f I )(x, t)

∂ fR(x, t)

∂t
= γε f I (x, t) + QR( fR)(x, t) (3)

where γε is the constant recovery rate while the transmission of the infection is gov-
erned by the function Kε( fS, f I ), the local incidence rate, expressed by

Kε( fS, f I )(x, t) = fS(x, t)
∫
R+

κε(x, y) f I (y, t) dy. (4)

In full generality, we will assume that both the recovery rate γ and the contact function
κ depend on a small positive parameter ε � 1 which measures their intensity. In (4)
the contact function κε(x, y) is a nonnegative function growing with respect to the
number of contacts x and y of the populations of susceptible and infected, and such
that κε(x, 0) = 0. A leading example for κε(x, y) is obtained by choosing

κε(x, y) = βε x
α yα, (5)

where α, βε are positive constants, that is by taking the incidence rate dependent on
the product of the number of contacts of susceptible and infected people.When α = 1,
for example, the incidence rate takes the simpler form
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Kε( fS, f I )(x, t) = βε x fS(x, t)xI (t) I (t). (6)

Let us observe that with the choices done, the spreading of the epidemic depends
heavily on the function κε(·, ·) used to quantify the rate of possible contagion in terms
of the number of social contacts between the classes of susceptible and infected.

In our combined epidemic contact model (3), the operators QJ , J ∈ {S, I , R}
characterize the thermalization of the distribution of social contacts in the various
classes. To that aim, observe that the evolution of themass fractions J (t), J ∈ {S, I , R}
obeys to a classical SIR model by choosing QS ≡ 0 and κε(x, y) ≡ β > 0, thus
considering the spreading of the disease independent of the intensity of social contacts.

The QJ , J ∈ {S, I , R} are integral operators thatmodify the distribution of contacts
f J (x, t), J ∈ {S, I , R} through repeated interactions among individuals (Dimarco and
Toscani 2019; Toscani 2020). Their action on observable quantities ϕ(x) is given by

∫
R+

ϕ(x) QJ ( f J )(x, t) dx =
〈 ∫

R+
B(x)

(
ϕ(x∗

J ) − ϕ(x)
)
f J (x, t) dx

〉
. (7)

where B(x) measures the interaction frequency, 〈·〉 denotes mathematical expectation
with respect to a random quantity, and x∗

J denotes the updated value of the number x
of social contacts of the J -th population as a result of an interaction. We discuss in
the sequel the construction of the social contact model.

2.1 On the distribution of social contacts

The process of formation of the distribution of social contacts is obtained by taking
into account the typical aspects of human behaviour, in particular the search, in absence
of epidemics, of opportunities for socialization. In addition to that, social contacts are
due to the common use of public transportations to reach schools, offices and, in
general, places of work as well as to basic needs of interactions due to work duties. As
shown inBéraud (2015), this leads individuals to stabilize on a characteristic number of
daily contacts depending on the social habits of a country. This quantity is represented
in the following by a suitable value x̄M , which can be considered as the mean number
of contacts relative to the population under investigation. This kind of dynamics and
the relative distribution of average daily contacts observed in (Béraud 2015) is the one
we aim to explain and reproduce in our model.

As a final result of our investigation, we look to a characterization of the distribution
of social contacts in a multi-agent system, the so-called macroscopic behavior. This
can be obtained starting from some universal assumption about the personal behavior
of the single agents, i.e. from themicroscopic behavior. Indeed, as inmanyother human
activities, the daily amount of social contacts is the result of a repeated upgrading based
on well-established rules. To this extent, it is enough to recall that the daily life of each
person is based on a certain number of activities, and each activity carries a certain
number of contacts. Moreover, for any given activity, the number of social contacts
varies in consequence of the personal choice. The typical example is the use or not of
public transportations to reach the place of work or the social attitudes which scales
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with the age. Clearly, independently of the personal choices or needs, the number of
daily social contacts contains a certain amount of randomness, that has to be taken into
account. Also, while it is very easy to reach a high number of social contacts attending
crowded places for need or will, going below a given threshold is very difficult, since
various contacts are forced by working or school activities, among others causes. This
asymmetry between growth and decrease, as exhaustively discussed in (Dimarco and
Toscani 2019; Gualandi and Toscani 2019), can be suitably modeled by resorting to a
so-called value function (Kahneman and Tversky 1979) description of the elementary
variation of the x variable measuring the average number of daily contacts. We will
come back to the definition of the value function later in the section.

Remark 1 It is important to outline that, in presence of an epidemic, the characteristic
mean number of daily contacts x̄M reasonably changes in time, even in absence of
an external lockdown intervention, in reason of the perception of danger linked to
social contacts. Consequently, even if not always explicitly indicated, we will assume
x̄M = x̄M (t).

Furthermore, an important aspect of the formation of the number of social contacts
is that their frequency is not uniform with respect to the values of x . Indeed, it is
reasonable to assume that the frequency of interactions is inversely proportional to the
number of contacts x . This relationship takes into account that is highly probable to
have at least some contacts, and also the rare situation in which one reaches a very
high values of contacts x 	 x̄M . On this subject, we mention a related approach
discussed in Furioli et al. (2020). The introduction of a variable kernel B(x) into the
kinetic equation does not modify the shape of the equilibrium density as shown later,
but it allows a better physical description of the phenomenon under study, including
an exponential rate of relaxation to equilibrium for the underlying Fokker-Planck type
equation derived from the kinetic equation that it we will introduced next in 2.2.

Following (Dimarco and Toscani 2019; Gualandi and Toscani 2019; Toscani 2020),
wewill now illustrate themathematical formulation of the previously discussed behav-
ior. In full generality,we assume that individuals in different classes canhave a different
mean number of contacts. Then, the microscopic updates of social contacts of indi-
viduals in the class J ∈ {S, I , R} will be taken of the form

x∗
J = x − 	ε(x/x̄ J )x + ηεx . (8)

In a single update (interaction), the number x of contacts can be modified for two
reasons, expressed by two terms, both proportional to the value x . In the first one,
the coefficient 	ε(·), which takes both positive and negative values, characterizes the
typical and predictable variation of the social contacts of agents, namely the personal
social behavior of agents. The second term takes into account a certain amount of
unpredictability in the process. A frequent choice in this setting consists in assuming
that the random variable ηε is of zero mean and bounded variance of order ε > 0,
expressed by 〈ηε〉 = 0, 〈η2ε 〉 = ελ, with λ > 0. Furthermore, we assume that ηε has
finite moments up to order three.

The function	ε plays the role of the value function in the prospect theory ofKahne-
man andTversky (Kahneman andTversky 1979, 2000), and contains themathematical
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details of the expected human behavior in the phenomenon under consideration. In
particular, the main hypothesis on which this function is built is that, in relationship
with the mean value x̄ J , J ∈ {S, I , R}, it is considered normally easier to increase the
value of x (individuals look for larger networks) than to decrease it (people maintain
as much connections as possible). In terms of the variable s = x/x̄ J we consider then
as in (Dimarco and Toscani 2019) the class of value functions obeying to the above
general rule given by

	ε
δ(s) = μ

eε(sδ−1)/δ − 1

eε(sδ−1)/δ + 1
, s ≥ 0, (9)

where the value μ denotes the maximal amount of variation of x that agents will be
able to obtain in a single interaction, 0 < δ ≤ 1 is a suitable constant characterizing
the intensity of the individual behavior, while ε > 0 is related to the intensity of the
interaction. Hence, the choice ε � 1 corresponds to small variations of the mean
difference 〈x∗

J − x〉. Thus, if both effects, randomness and adaptation are scaled with
this interaction intensity ε, it is possible to equilibrate their effects as we will show in
Section 2.2 and obtain a stationary distribution of contacts. Note also that the value
function 	ε

δ(s) is such that

−μ ≤ 	ε
δ(s) ≤ μ

and clearly, the choice μ < 1 implies that, in absence of randomness, the value of
x∗
J remains positive if x is positive.
Once the elementary interaction (8) is given, for any choice of the value function,

the study of the time-evolution of the distribution of the number x of social contacts
follows by resorting to kinetic collision-like approaches (Cercignani 1988; Pareschi
and Toscani 2014), that quantify at any given time the variation of the density of the
contact variable x in terms of the interaction operators.

Thus, for a given density f J (x, t), J ∈ {S, I , R}, we can measure the action on
the density of the interaction operators QJ ( f )(x, t) in equations (3) fruitfully written
in weak form. This form corresponds to say that for all smooth functions ϕ(x) (the
observable quantities) we have

d

dt

∫
R+

ϕ(x) f J (x, t) dx =
〈 ∫

R+
B(x)

(
ϕ(x∗

J ) − ϕ(x)
)
f J (x, t) dx

〉
. (10)

Here, the expectation 〈·〉 takes into account the presence of the random parameter
ηε in the microscopic interaction (8) while the function B(x), as already discussed,
measures the interaction frequency. The right-hand side of equation (10) quantifies
the variation in density, at a given time t > 0, of individuals in the class J ∈ {S, I , R}
that modify their value from x to x∗

J (loss term with negative sign) and agents that
change their value from x∗

J to x (gain term with positive sign). In many situations,
the interaction kernel B(x) can been assumed constant (Dimarco and Toscani 2019).
This simplifying hypothesis is not always well justified from a modeling point of view
and thus in this work, we consider instead a non constant collision kernel B(x) (see
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(Furioli et al. 2020) for a discussion on this aspect). Thus, following the approach in
(Furioli et al. 2020; Toscani 2020), we express the mathematical form of the kernel
B(x) by assuming that the frequency of changes in the number of social contacts
depends on x itself through the following law

B(x) = x−b,

for some constant b > 0. This kernel assigns a low probability to interactions
in which individuals have already a large number of contacts and assigns a high
probability to interactions when the value of the variable x is small. The constant b
can be suitably chosen by resorting to the following argument (Toscani 2020). For
small values of the x variable, the rate of variation of the value function (9) is given
by

d

dx
	ε

δ

(
x

x̄J

)
≈ με x̄−δ

J xδ−1. (11)

Hence, for small values of x , the mean individual rate predicted by the value function
is proportional to xδ−1. Then, the choice b = δ would correspond to a collective rate
of variation of the system independent of the parameter δ which instead characterizes
the individual rate of variation of the value function.

In the next section, we investigate the steady states of the interaction operators
QJ ( f )(x, t), J ∈ {S, I , R} which permit to derive the macroscopic epidemic model
containing the effects of social interactions among individuals described in Section 3.

2.2 Asymptotic scaling and steady states

Let us focus on the sole social contact dynamic and introduce a time scaling

τ = εt, f J ,ε(x, τ ) = f J (x, t), J ∈ {S, I , R}.

which, in the following, will permit to separate the scale of the epidemic from the time
scale at which, by hypothesis, the social contacts acts. Then, as a result of the scaling,
the distribution f J ,ε is solution to

d

dτ

∫
R+

ϕ(x) f J ,ε(x, τ )dx = 1

ε

〈 ∫
R+

B(x)
(
ϕ(x∗

J ) − ϕ(x)
)
f J ,ε(x, τ ) dx

〉
. (12)

We concentrate now on the analysis of the asymptotic states of the social contact
dynamics in the case in which elementary interactions (8) produce extremely small
modification of the number of social contacts. To that aim, note that, from the definition
of 	ε

δ in (9) and the assumptions on the noise term ηε we have

lim
ε→0

1

ε
	ε

δ

(
x

x̄J

)
= μ

2δ

[(
x

x̄J

)δ

− 1

]
, lim

ε→0

1

ε
〈η2ε 〉 = λ. (13)

123



Kinetic models for epidemic... Page 11 of 32     4 

Consequently, the actions of both the value function and the random part of the ele-
mentary interaction in (8) survive in the limit ε → 0. Observe that the limit procedure
induced by (13) corresponds precisely to the situation of small interactions while, at
the same time, the time scale of the dynamics is suitably scaled to see their effects.
In kinetic theory, this is a well-known procedure with the name of grazing limit, we
point the interested reader to Cordier et al. (2005); Furioli et al. (2017); Pareschi and
Toscani (2014) for further details. Since if ε � 1 the difference x∗

J − x is small and,
assuming ϕ ∈ C0, we can perform the following Taylor expansion

ϕ(x∗
J ) − ϕ(x) = (x∗

J − x)ϕ′(x) + 1

2
(x∗

J − x)2ϕ′′(x) + 1

6
(x∗

J − x)3ϕ′′′(x̂ J ),

being x̂ J ∈ (min{x, x∗
J },max{x, x∗

J }). Writing x∗
J −x = −	ε

δ(x/x̄ J )x+xηε from (8)
and plugging the above expansion in the kinetic model (12) we have for J ∈ {S, I , R}
d

dτ

∫
R+

ϕ(x) f J ,ε(x, τ )dx =
1

ε

[∫
R+

−	ε
δ(x/x̄ J )x

1−δϕ′(x) f J ,ε(x, τ )dx + λε

2

∫
R+

ϕ′′(x)x2−δ f J ,ε(x, τ )dx

]

+ Rϕ( f J ,ε),

where Rϕ( f J ,ε) is the remainder

Rϕ( f J ,ε)(x, τ ) = 1

2ε

∫
R+

ϕ′′(x)x−δ(	ε
δ(x/x̄ J )x)

2 f J ,ε(x, t)dx

1

6ε

〈∫
R+

ϕ′′′(x̂ J )x−δ(−	ε
δ(x/x̄ J )x + xηε)

3 f J ,ε(x, t)dx

〉
.

Since, by assumption,ϕ and its derivatives are bounded inR+ and decreasing at infinity
and since ηε has bounded moment of order three, namely 〈|ηε |3〉 < +∞, using the
bound (13) we can easily argue that in the limit ε → 0+ we have

|Rϕ( f J )| → 0.

Hence, it can be shown that f J ,ε converges, up to subsequences, to a distribution
function f J solution to

d

dτ

∫
R+

ϕ(x) f J (x, τ )dx =
∫
R+

{
−ϕ′(x) μ x1−δ

2δ

[(
x

x̄J

)δ

− 1

]
+ λ

2
ϕ′′(x) x2−δ

}

f J (x, τ ) dx

If we also impose at x = 0 the following no-flux boundary conditions

∂

∂x
(x2−δ f J (x, τ ))

∣∣∣
x=0

= 0 J ∈ {S, I , R}, (14)

123



    4 Page 12 of 32 G. Dimarco et al.

the limit equation coincides with the Fokker-Planck type equation

∂

∂τ
f J (x, τ ) = Qδ

J ( f J )(x, τ ),

where

Qδ
J ( f J )(x, τ ) = μ

2δ

∂

∂x

{
x1−δ

[(
x

x̄J

)δ

− 1

]
f J (x, τ )

}
+ λ

2

∂2

∂x2
(x2−δ f J (x, τ )),

J ∈ {S, I , R} (15)

is characterized by a variable diffusion coefficient.
Remarkably enough, we can compute explicitly the equilibrium distribution of

the surrogate Fokker-Planck model. Indeed, assuming that the mass of the initial
distribution is one and the mean values x̄ J , J ∈ {S, I , R} are constant, and by setting
ν = μ/λ, the equilibria are given by the functions

f ∞
J (x) = CJ (x̄ J , δ, ν)xν/δ+δ−2 exp

{
− ν

δ2

(
x

x̄J

)δ
}

, J ∈ {S, I , R}, (16)

where CJ > 0 is a normalization constant. We may rewrite the obtained steady state
(16) as a generalized Gamma probability density f∞(x; θ, χ, δ) defined by Lienhard
and Meyer (1967); Stacy (1962)

f J ,∞(x; θ, χ, δ) = δ

θχ

1

� (χ/δ)
xχ−1 exp

{− (x/θ)δ
}
, (17)

characterized in terms of the shapeχ > 0, the scale parameter θ > 0, and the exponent
δ > 0 that in the present situation are given by

χ = ν

δ
+ δ − 1, θ = x̄ J

(
δ2

ν

)1/δ

. (18)

It has to be remarked that the shape χ is positive, only if the constant ν = μ/λ satisfies
the bound

ν > δ(1 − δ). (19)

Note that condition (19) holds, independently of δ, when μ ≥ λ
4 , namely when the

variance of the random variation in (8) is small with respect to themaximal variation of
the value function. Note moreover that for all values δ > 0 the moments are expressed
in terms of the parameters denoting respectively the mean x̄ J , J ∈ {S, I , R}, the
variance λ of the random effects and the values δ and μ characterizing the value
function φε

δ defined in (9). Finally, the standard Gamma and Weibull distributions are
included in (16), and are obtained by choosing δ = 1 and, respectively δ = χ . In both

123



Kinetic models for epidemic... Page 13 of 32     4 

cases, the shape χ = ν, and no conditions are required for its positivity. It is important
to notice that the function (17) expressing the equilibrium distribution of the daily
social contacts in a society is in agreement with the one observed in (Béraud 2015).
This was one of the goals of our investigation.

3 Themacroscopic social-SIR dynamics

Once we have obtained the characterization of the equilibrium distribution of the
transition operators QJ , J ∈ {S, I , R}, we are ready to study the complete system (3).
To that aim, the scope of the rest of this section is the determination of the observable
macroscopic equations of the introduced kinetic model.

3.1 Derivation of moment based systems

The assumption that the dynamics leading to the contact formation is much faster
than the epidemic dynamics corresponds to consider βε = εβ in the formula below
(4) and γε = εγ with β, γ > 0, being ε � 1 the scaling parameter introduced in
the previous section. After introducing the scaled distributions f J (x, τ ), noticing that
∂
∂τ

f J = 1
ε

∂
∂t f J , we can rewrite system (3) as follows

∂ fS(x, τ )

∂τ
= −K ( fS, f I )(x, τ ) + 1

ε
Qδ

S( fS)(x, τ ),

∂ f I (x, τ )

∂τ
= K ( fS, f I )(x, τ ) − γ f I (x, τ ) + 1

ε
Qδ

I ( f I )(x, τ ),

∂ fR(x, τ )

∂τ
= γ f I (x, τ ) + 1

ε
Qδ

R( fR)(x, τ ). (20)

The system (20) is complemented with the boundary conditions (14) at x = 0 and it
contains all the information on the spreading of the epidemic in terms of the distribution
of social contacts. Indeed, the knowledge of the densities f J (x, t), J ∈ {S, I , R},
allows to evaluate by integrations all moments of interest. Due to the incidence rate
K ( fS, f I ), as given in (4), the time evolution of the moments of the distribution
functions is not explicitly computable, since the evolution of a moment of a certain
order depends on the knowledge of higher order moments, thus producing a hierarchy
of equations, like in classical kinetic theory of rarefied gases (Cercignani 1988).

Before discussing the closure, i.e. how to obtain a closed set of macroscopic equa-
tions, we highlight that is not restrictive to assume δ = 1 since the obtained Gamma
densities depend on 2 shape parameters. This choice gives for J ∈ {S, I , R}

Q1
J ( f J )(x, τ ) = μ

2

∂

∂x

[(
x

x̄J
− 1

)
f J (x, τ )

]
+ λ

2

∂2

∂x2
(x f J (x, τ )). (21)
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In this case (18) implies χ = ν and θ = x̄ J /ν, and the steady states of unit mass, for
J ∈ {S, I , R}, are the Gamma densities

f ∞
J (x; θ, ν) =

(
ν

x̄ J

)ν 1

� (ν)
xν−1 exp

{
− ν

x̄ J
x

}
. (22)

With this particular choice, the mean values and the energies of the densities (22),
J ∈ {S, I , R}, are given by

∫
R+

x f ∞
J (x; θ, ν) dx = x̄ J ;

∫
R+

x2 f ∞
J (x; θ, ν) dx = ν + 1

ν
x̄2J . (23)

Following the observations of Remark 1 we can now assume x̄ J = xJ (t) where this
time dependent value can be different depending on the class to which agents belong.
In order to obtain the time evolution of the macroscopic observable quantities like
densities and local means from the kinetic model (20), we now consider the Fokker–
Planck operator (21) This operator vanishes in correspondence to a time-dependent
Gamma density equilibrium with mean xJ (t). With these notations, system (20) with
δ = 1 reads then

∂ fS(x, τ )

∂τ
= −βx fS(x, τ )xI (t) I (τ ) + 1

ε
Q1

S( fS)(x, τ ),

∂ f I (x, τ )

∂τ
= βx fS(x, τ )xI (t) I (τ ) − γ f I (x, τ ) + 1

ε
Q1

I ( f I )(x, τ ),

∂ fR(x, t)

∂τ
= γ f I (x, τ ) + 1

ε
Q1

R( fR)(x, τ ). (24)

Integrating both sides of equations in (24) with respect to x , and recalling that,
in presence of boundary conditions of type (14) the Fokker-Planck type operators
are mass and momentum preserving, we obtain the system for the evolution of the
fractions J defined in (1), J ∈ {S, I , R}

dS(t)

dt
= −β xS(t)xI (t)S(t)I (t),

d I (t)

dt
= β xS(t)xI (t)S(t)I (t) − γ I (t),

dR(t)

dt
= γ I (t), (25)

where we have restored the macroscopic time variable t ≥ 0. As anticipated, unlike
the classical SIR model, system (25) is not closed, since the evolution of the mass
fractions J (t), J ∈ {S, I , R}, depends on the evolution of the local mean values
xJ (t). The closure of system (25) can be obtained by resorting, at least formally,
to a limit procedure. In fact, as outlined in the Introduction, the typical time scale
involved in the social contact dynamics is ε � 1 which identifies a faster adaptation
of individuals to social contacts with respect to the evolution time of the epidemic
disease. Consequently, the choice of the value ε � 1 pushes the distribution function

123



Kinetic models for epidemic... Page 15 of 32     4 

f J (x, t), J ∈ {S, I , R} towards the Gamma equilibrium density with a mass fraction
S(t), respectively I (t) and R(t), and local mean value xS(t), respectively xI (t) and
xR(t), as it can be easily verified from the differential expression of the interaction
operators Q1

J , J ∈ {S, I , R}.
Indeed, if ε � 1 is sufficiently small, one can easily argue from the exponential

convergence of the solution of the Fokker-Planck equation towards the equilibrium
f ∞
S (x; θ, ν) (see (Toscani 2020) for details), that the solution fS(x, t) remains suffi-

ciently close to the Gamma density with mass S(t) and local mean density given by
xS(t) for all times. This equilibrium distribution f ∞

S (x; θ, ν) can then be plugged into
the first equation of (24). Successively, by multiplying by x both sides of this equation
(24) and integrating it with respect to the variable x , since the Fokker–Planck operator
on the right-hand side is momentum-preserving, one obtains that the mean xS(t)S(t)
satisfies the differential equation

d

dt
(xS(t)S(t)) = −β xS,2(t)xI (t)S(t)I (t),

which depends now on the second order moment. However, it is now possible to close
this expression by using the energy of the local equilibrium distribution, which can be
expressed in terms of the mean value as in (23) as follows

xS,2(t) = ν + 1

ν
x2S(t).

Therefore, we have

S(t)
dxS(t)

dt
= −β xS,2(t)xI (t)S(t)I (t) − xS(t)

dS(t)

dt
,

where the time evolution of the fraction S(t) can be recovered by the first equation of
system (25). Hence, the evolution of the local mean value xS(t) satisfies the equation

dxS(t)

dt
= −β

ν
xS(t)

2xI (t)I (t). (26)

An analogous procedure can be done with the second equation in system (24), which
leads to relaxation towards a Gamma density with mass fraction I (t) and local mean
value given by xI (t), and with the third equation in system (24). We easily obtain in
this way the system that governs the evolution of the local mean values of the social
contacts of the classes of susceptible, infected and recovered individuals

dxS(t)

dt
= −β

ν
xS(t)

2xI (t)I (t),

dxI (t)

dt
= βxS(t)xI (t)

(
1 + ν

ν
xS(t) − xI (t)

)
S(t),

dxR(t)

dt
= γ

I (t)

R(t)
(xI (t) − xR(t)) . (27)
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The closure of the kinetic system (3) around a Gamma-type equilibrium of social
contacts leads then to a system of six equations for the pairs of mass fractions J (t)
and local mean values xJ (t), J ∈ {S, I , R}. In the following, we refer to the coupled
systems (25) and (27) as the social SIR model (S-SIR). With respect to the classical
epidemiologicalmodel fromwhichwe took inspiration, themain novelty is represented
by the presence of system (27), that describes the evolution of the social contacts. It
is immediate to conclude from the first equation of (27) that the local mean number
of contacts of the population of susceptible individuals decreases, thus showing that
the social answer to the presence of the pandemic is to reduce the number of social
contacts.Amaybe unexpected behavior is present in the second equation of (27),which
indicates that, at least in the initial part of the time evolution of the S-SIR model, the
class of infected individuals increases the local mean number of social contacts. This
effect must be read as a consequence of the more probable transition from susceptible
to infected of individuals with a high number of social contacts. A similar conclusion
has been derived by resorting to a network-based model (Barthélemy et al. 2005),
where it was observed that the epidemic spreads hierarchically (from highly to less
highly connected nodes).

It is interesting to remark that system (27) is explicitly dependent on the positive
parameter ν = μ/λ, which measures the heterogeneity of the population in terms
of the variance of the statistical distribution of social contacts. More precisely, small
values of the constant ν correspond to high values of the variance, and thus to a larger
heterogeneity of the individuals with respect to social contacts. This is an important
point which is widely present and studied in the epidemiological literature (Anderson
and May 1991; Diekmann et al. 1990; Diekmann and Heesterbeek 2000). Concerning
the COVID-19 pandemic, the influence of population heterogeneity on herd immunity
has been recently quantified in (Britton et al. 2020) by testing aSEIRmodel on different
types of populations categorized by different ages and/or different activity levels, thus
expressing different levels of heterogeneity.

A limiting case of system (27) is obtained by letting the parameter ν → +∞, which
corresponds to push the variance to zero (absence of heterogeneity). In this case, if the
whole population starts with a common number of daily contacts, say x̄ , it is immediate
to show that the number of contacts remains fixed in time, thus reducing system (25)
to a classical SIR model with contact rate β x̄2. Hence this classical epidemiological
model is contained in (25)–(27) and corresponds to consider the non realistic case of
a population that, regardless of the presence of the epidemic, maintains the same fixed
number of daily contacts. The described behaviors are exemplified in Fig. 1, where
we considered S(0) = 0.98, I (0) = R(0) = 0.01 and mean number of contacts
xS(0) = xI (0) = xR(0) = 15 for two choices ν = 0.5 and ν = 1. We can easily
observe how the number of recovered is affected by contact heterogeneity: the smaller
the heterogeneity is, the larger the population recovers from the pandemic, we point
the interested reader to (Britton et al. 2020) for an in-depth discussion on this matter.

Remark 2 The derivation leading to systems (25) and (27) can be easily generalized
to local incidence rates (4) with a contact function of the form κ(x, y) = βxα yα with
α �= 1. Also, the procedure can be applied to equilibria which are different from the
Gamma density considered here, provided this density has enough moments bounded.
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Fig. 1 Evolution of system (25)–(27) for ν = 0.5 and ν = 1

Remark 3 The approach just described can be easily adapted to other compartmen-
tal models in epidemiology like SEIR, MSEIR (Brauer et al. 2019; Diekmann and
Heesterbeek 2000; Hethcote 2000) and/or SIDHARTE (Gatto 2020; Giordano 2020).
For all these cited models, the fundamental aspects of the interaction between social
contacts and the spread of the infectious disease, we expect not to change in a sub-
stantial way.

3.2 A social-SIR model with saturated incidence rate

The system (25)–(27) is a model for describing the time evolution of an epidemic
in terms of the statistical distribution of social contacts, without taking into account
any external intervention. However, protection measures such as lockdown strategies
inevitably cause reduction in the average number of social contacts of the population
which can be taken explicitly into account in our model. In the epidemiological litera-
ture, a natural way to introduce this mechanism, which dates from the work of Capasso
and Serio (Capasso and Serio 1978), consists in considering a non linear incidence
rate whose main feature is to be bounded with respect to the number of infected. Inter-
estingly, on this subject, we aim to highlight that a similar behavior of the incidence
rate can be directly derived starting from our social-SIR model (25)–(27). The addi-
tional hypothesis that is sufficient to introduce is that the average number x̃ I of social
contacts of infected is frozen as an effect, for instance, of external interventions aimed
in controlling the pandemic spread. If this is the case, one can explicitly solve the first
equation of system (27), which now reads

dxS(t)

dt
= −β

ν
x2S(t)x̃ I I (t), (28)

due to the fact that xI (t) = xI (t = 0) = x̃ I . The exact solution of the equation (28)
can then be computed and it gives

xS(t) = xS(0)

1 + β

ν
xS(0)x̃ I

∫ t

0
I (s) ds

. (29)
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The above expression is a generalization of the so-called saturated incidence rate
(Capasso and Serio 1978; Korobeinikov and Maini 2005) whose classical form is

g(I ) = 1

1 + φ I
(30)

with φ a suitable positive constant. The same expression can be found from (25) by
plugging (29) into the system. This gives

dS(t)

dt
= −β̄ S(t)I (t)H(I (t), t),

d I (t)

dt
= β̄ H(I (t), t)S(t)I (t) − γ I (t),

dR(t)

dt
= γ I (t), (31)

where β̄ = βxS(0)x̃ I and

H(r(t), t) = 1

1 + β̄

ν

∫ t

0
r(s) ds

, 0 < r ≤ 1. (32)

We refer in the following to this function H(r(t), t) to as the macroscopic incidence
rate. Finally by approximating the integral

∫ t
0 r(s) ds ≈ tr(t) one obtains

H(r(t), t) = 1

1 + φ(t)r(t)
, 0 < r ≤ 1. (33)

with φ(t) = (β̄t)/ν, i.e. the classical incidence rate described for the first time in
(Capasso and Serio 1978).

Remark 4 It is possible to consider a higher influence of the number of contact in the
transmission dynamics by taking α > 1 in (5). Proceeding then as described in Sect.
3.1, since

∫ +∞

0
xα f ∞

S (x)dx = cαx
α
S , cα > 0,

in the specific case f ∞
S a Gamma distribution, we would obtain

d

dt
xS(t) = −β

ν
xα+1
S x̃α

I I (t),

with xα
I (t) = x̃α

I > 0 whose solution is

xS(t) = xS(0)(
1 + cαβαxα

S (0)

ν
x̃α
I

∫ t

0
I (s)ds

)1/α .

123



Kinetic models for epidemic... Page 19 of 32     4 

Therefore we obtain the closed system for the evolution of mass fractions of the type
(31) which incorporates the generalized macroscopic incidence function

H(r(t), t) = 1

(1 + φ(t)r(t))1/α
, 0 < r(t) ≤ 1, (34)

with φ(t) = cααβxα
S (0)t/ν > 0.

In the next Sect. 4 we will perform some numerical computations in which the
social SIR model (31) is used in the case in which the incidence rate takes the form
(32) as well as in the classical case (33) with φ(t) = φ. In a last part, we will also
show that a more accurate fit of the model with the experimental data is obtained using
a generalized incidence rate of the form (34).

To conclude this part, let now derive the basic reproduction number of the model
introduced and discussed in the previous part. To that aim, let us note that by defining

D(S(t), I (t)) =
∫
R+

K ( fS, f I )(x, t) dx = β̄H(I (t), t)S(t)I (t). (35)

we have that in both cases D(S, I ) fulfills all the properties required by the class
of non-linear incidence rates considered in Korobeinikov and Maini (2005). Indeed,
D(S, 0) = 0, and the function D(S, I ) satisfies

∂D(S, I )

∂ I
> 0,

∂D(S, I )

∂S
> 0 (36)

for all S, I > 0. Moreover D(S, I ) is concave with respect to the variable I , i.e.

∂2D(S, I )

∂ I 2
≤ 0, (37)

for all S, I > 0.
Furthermore, in this case we may define classically the basic reproduction number

R0 of the model which is given by

R0 = 1

γ
lim

I→0,S→1

∂D(S, I )

∂ I
= β̄

γ
= βxS(0)x̃ I

γ
(38)

4 Numerical experiments

In addition to analytic expressions, numerical experiments allow us to visualize and
quantify the effects of social contacts on the SIR dynamics used to describe the time
evolution of the epidemic. More precisely, starting from a given equilibrium distribu-
tion detailing in a probability setting the daily number of contacts of the population, we
show how the coupling between social behaviors and number of infected people may
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Fig. 2 Test 1. Large time
distribution of the Boltzmann
dynamics compared with the
equilibrium state of the
corresponding Fokker-Planck
equation. The initial distribution
has been chosen of the form in
(39)

Fig. 3 Test 1. Top: distribution of the daily social contacts for the two choices of the function H . Middle:
SIR dynamics corresponding to the different choices of the different mean number of daily contact (left
constant case, right as a function of the epidemic). Bottom left: final distribution of the number of contacts.
Bottom right: time evolution of the contact function H
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modify the epidemic by slowing down the number of encounters leading to infection.
In a second part, we discuss how some external forcing, mimicking political choices
and acting on restrictions on the mobility, may additionally improve the reduction of
the epidemic trend avoiding concentration in time of people affected by the virus and
consequently decreasing the probability of hospitalization peaks. In a third part, we
focus on experimental data for the specific case of COVID-19 in different European
countries and we extrapolate from them the main features characterizing the incidence
rate H(I (t), t).

4.1 Test 1: On the effects of the social contacts on the epidemic dynamics

We solve the social-SIR kinetic system (24). The starting point is represented by a
population composed of 99.99%of susceptible and 0.01%of infected. The distribution
of the number of contact is described by (16) with ν = 1.65, δ = 1 and xJ = 10.25
in agreement with (Béraud 2015) while the epidemic parameters are β = 0.25/x2J
and γ = 0.1. The kinetic model (20) is solved by a splitting strategy together with a
Monte Carlo approach (Pareschi and Russo 2001) where the number of samples used
to described the population is fixed to M = 106. The time step is fixed to �t = 10−2

and the scaling parameter is ε = 10−2. These choices are enough to observe the
convergence of the Boltzmann dynamics to the Fokker-Planck one as shown in Fig. 2
where the analytical equilibrium distribution is plotted together with the results of the
Boltzmann dynamics. For this problem, we considered a uniform initial distribution

f0(x) = 1

c
χ(x ∈ [0, c]), c = 20, (39)

being χ(·) the indicator function. In the introduced setting, we then compare two
distinct cases: in the first onewe suppose that nonlinear effects in the contacts dynamics
do not modify the contact rate, meaning H(I (t), t) = 1, while the second includes the
effects of the function H(I (t), t) given in (33) with φ(t) = φ = 10, i.e. the classical
saturated incidence rate case (Capasso and Serio 1978). The results are depicted in
Fig. 3. The top right images show the time evolution of the distribution of the number
of contacts for the two distinct cases, while themiddle images report the corresponding
evolution of the epidemic. For this second case, the function H(I (t), t) as well as the
distribution of contacts for respectively the susceptible and the recovered are shown at
the bottom of the same figure. We clearly observe a reduction of the peak of infected
in the case in which the dynamics depends on the number of contacts with H(I (t), t)
given by (33) and φ constant. We also observe a spread of the number of infected over
time when sociality reduction is taken into account.

4.2 Test 2: Forcing a change in the social attitudes

Next, we compare the effects on the spread of the disease when the population adapts
its habits with a time delay with respect to the onset of the epidemic. This kind of
dynamics corresponds to amodeling of a possible lockdown strategy whose effects are
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to reduce the mobility of the population and, correspondingly, to reduce the number
of daily contacts in the population.

The setting is similar to the one introduced in Sect. 4.1 where we first consider a
switch between H = 1 to H(I (t)) = 1/(1 + φ I (t)), with φ = 20, when the number
of infected increases. The social parameters are ν = 1.65, δ = 1 and xJ = 10.25, as
before, while the epidemic parameters are β = 0.25/x2J and γ = 0.1, the final time is
fixed to T = 70. The initial distribution of contacts is also assumed to be of the form
(39).

We consider three different settings, in the first one H = 1 up to t < 35 (days), in
the second one up to t < 17 (days) while in the third case we prescribe a lockdown
for a limited amount of time (5 < t < 15) and then we relax back to H = 1. The
results are shown in Fig. 4 for both the distribution of daily contacts over time and
the SIR evolution. We can consequently identify three scenarios. In the first case, on
the top, we observe a slight reduction of the speed of the infection after t > T /2.
The second case, middle images, causes a clear change to the epidemic dynamic, an
inversion around t = 20 happens. Finally, for the third case we first observe inversion
and then the resurgence of the number of infected when the lockdown measures are
relaxed. We consider now an alternative scenario whose results are depicted in Fig. 5.
In this situation, we compare the case

H1(I (t), t) = 1

1 + φ I (t)
(40)

with the case

H2(I (t), t) = 1

1 + φ
∫ t
0 I (s) ds

. (41)

The value of φ is increased to φ = 50 to enhance the different behaviors of the
two models in two of the three possible lockdown scenarios described previously. In
the case of the early lockdown (lockdown after 17 days), the difference between the
two models is small. In particular, the case of the incidence rate depending on the
instantaneous number of infected gives, as expected, a slightly larger number of total
infected in time. The case of early lockdown followed by a relaxation exhibits much
stronger differences. In this latter, a time shift between the second wave is clearly
present while the incidence rate depending on the history of the pandemic gives a
higher pick of infected. For this problem, the simulations are run for T = 100 days.

4.3 Test 3: Extrapolation of the incidence rate shape from data

In this part, we consider experimental data about the dynamics of COVID-19 in three
European countries: France, Italy and Spain. For these three countries, the evolution of
the disease, in terms of reported cases, evolved in rather different ways. The estimation
of epidemiological parameters for compartmental-like models is an inverse problem
of, in general, difficult solution for which different approaches can be considered. We
mention in this direction a very recent comparison study (Liu et al. 2020). It is also
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Fig. 4 Test 2. Comparisons of different lockdown behaviors. Top: late lockdown. Middle: early lockdown.
Bottom: early lockdown and successive relaxation

worth to mention that often the data are partial and heterogeneous with respect to their
assimilation, see for instance the discussions in Albi et al. (2021); Capaldi (2012);
Chowell (2017); Roberts (2013). This makes the fitting problem challenging and the
results naturally affected by uncertainty.

The data we employ, concerning the actual number of infected, recovered and
deaths of COVID-19 are publicly available from the John Hopkins University GitHub
repository (Dong et al. 2020). For the specific case of Italy, we considered instead the
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Fig. 5 Test 2. Comparisons of different lockdown behaviors and different form of the incidence rate: H1,
H2 defined in (40)–(41). Left: early lockdown. Right: early lockdown and successive relaxation

GitHub repository of the Italian Civil Protection Department1. In the following, we
present the adopted fitting approach which is based on a strategy with two optimiza-
tion horizons (pre-lockdown and lockdown time spans) depending on the different
strategies enacted by the governments of the considered European countries.

In details, we considered first the time interval t ∈ [t0, t�], being t� the day in which
lockdown started in each country (Spain, Italy and France) and t0 the day in which
the reported cases hit 200 units. The lower bound t0 has been imposed to reduce the
effects of fluctuations caused by the way in which data are measured which have a
stronger impact when the number of infected is low. Once the time span has been
fixed, we then considered a least square problem based on the minimization of a cost
functional J which takes into account the relative L2 norm of the difference between
the reported number of infected and the reported total cases Î (t), Î (t) + R̂(t) and the
evolution of I (t) and I (t) + R(t) prescribed by system (31) with H ≡ 1. In practice,
we solved the following constrained optimisation problem

minβ,γJ ( Î , R̂, I , R) (42)

where the cost functional J is a convex combination of the mentioned norms and
assumes the following form

J ( Î , R̂, I , R) = p
‖ Î (t) − I (t)‖2

‖ Î (t)‖2
+ (1 − p)

‖ Î (t) + R̂(t) − I (t) − R(t)‖2
‖ Î (t) + R̂(t)‖2

We then choose p = 0.1 and we look for a minimum under the constraints

0 ≤ β ≤ 0.6, 0.04 ≤ γ ≤ 0.06.

In Table 1 we report the results of the performed parameter estimation together with
the resulting reproduction number R0 defined in (38).

1 Presidenza del Consiglio dei Ministri, https://github.com/pcmdpc/COVID-19
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Table 1 Test 3. Model fitting
parameters in estimating the
reproduction number for the
COVID-19 outbreak before
lockdown in various European
countries

France
Mar 5-Mar 17

Italy
Feb 24-Mar 9

Spain
Mar 5-Mar 14

β 0.300686 0.317627 0.370362

γ 0.040000 0.058391 0.043168

R0 7.5172 5.4397 8.5795

Once that the contagion parameters have been estimated in the pre-lockdown time
span, we successively proceeded with the estimation of the shape of the function H
from the data. To estimate this latter quantity, we solved a second optimization problem
which reads

minHJ (43)

in terms of H where J is the same functional of the previous step and where in the
evolution of the macroscopic model the values β, γ have been fixed as a result of
the first optimization in the pre-lockdown period. The parameters chosen for (43) are
p = 0.1 while the constraint is

0 ≤ H ≤ 1.

The second optimisation problem has been solved up to last available data for each
countrywith daily time stepping�t = 1 andover a timewindowof three days. This has
been done with the scope of regularizing possible errors due to late reported infected
and smoothing the shape of H . Both optimisation problems (42)–(43) have been
tackled using the Matlab functions fmincon in combination with a RK4 integration
method of the system ofODEs. In Fig. 6, we present the result of such fitting procedure
between the model (31) and the experimental data.

Next, we seek to understand numerically the dependencies of the function H from
the number of infected. In particular, we first define the candidate incidence functions
H1, H2 and H3 as

H1(I (t), t) = c

1 + φ I (t)
,

H2(I (t), t) = c

1 + φ
∫ t
0 I (s) ds

,

H3(I (t), t) = c(
1 + φ

∫ t
0 I (s) ds

)1/α ,

with c > 0, accordingly with (32)–(33) and (34) where φ and α are free parameters
which are determined through a least square minimization approach that best fit the
estimated curve with conditions φ > 0, α ≥ 1. The results of this procedure are
presented in Table 2 and in Fig. 7. In Table 2, we reported the values of the fitting
coefficients φ and α and to evaluate the goodness of fit we reported the so-called

123



    4 Page 26 of 32 G. Dimarco et al.

Fig. 6 Test 3. Fitting of the parameters of model (31) where β, γ > 0 were estimated before the lockdown
measures assuming H ≡ 1. The parameters characterizing the function H(·) in (31) have been computed
during and after lockdown at regular interval of time, up to July 15. The lockdown measures change in each
country (dashed line)

determination coefficient R2, where R2 ≈ 1 indicates perfect fit. We can observe
that the optimization gives acceptable results for the different forms of the incidence
function especially in the right column of Fig. 7, it appears clearly that the functions
H2 and H3 are able to better explain the estimated values of H especially after the
epidemic peak. In particular, the fits of the model with the available data when H3 is
used are particular good. This fact may indicate that people are rather fast to apply
social distancing, and therefore to reduce their average number of contacts, whereas
they tend to restore the pre-pandemic average contact rate more slowly, possibly due
to further memory effects.

4.4 Test 4: S-SIR model with fitted contact function

In this last part, we discuss the results of the social-SIR model when the contact
function has the shape extrapolated in the previous paragraph. In particular, we aim in
studying the role of the extrapolated incidence function H in the fitting of the model
with the experimental data. Our choice consists in considering H dependent on the
total number of infected, where however, to leave freedom to the model to produce
qualitative trends that are in agreement with the data, we leave three free parameters.
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Table 2 Fitting parameters for
the estimate of the contact
functions H1, H2, and H3 in
different countries based on the
evolution of H(t) solution of the
optimisation problem (43). The
corresponding determination
coefficient R2 is also reported

H1 France
Mar 18 - Jul 15

Italy
Mar 10 - Jul 15

Spain
Mar 15 - Jul 15

c 0.8972 0.8954 1.078

φ 1015 1720 1423

R2 0.7515 0.7097 0.5733

H2 France
Mar 18 - Jul 15

Italy
Mar 10 - Jul 15

Spain
Mar 15 - Jul 15

c 0.5973 0.7465 0.6076

φ 7.91 15.39 9.073

R2 0.496 0.8507 0.3692

H3 France
Mar 18 - Jul 15

Italy
Mar 10 - Jul 15

Spain
Mar 15 - Jul 15

c 0.8141 0.8424 0.9066

φ 1437 141.6 1624

α 5.9312 2.7263 4.9578

R2 0.7375 0.8872 0.6722

In details the incidence function takes the form

H(t, I (t)) = c(
1 + φ

∫ t
0 I (s)ds

)1/α , (44)

where the starting point are the parameters of Table 2 with slight modification with
the scope of trying to reproduce the best fit possible with the data at disposal. In order
to compare qualitatively the observed curve of infected and the theoretical one, we
consider the following setting for the three countries under study: ν = 1.65, δ = 1 and
xJ = 10.25, �t = 0.01, ε = 0.01, and M = 105 particles for the DSMC numerical
approximation of the kinetic model. Moreover, we suppose S(t = 0) and I (t = 0) to
match the relative number of susceptible and infected of each country at the time in
which we start our comparison.

In Fig. 8 we show the profiles of the infected over time together with the shape of
the function H again over time. The results show that with the choices done for the
incidence rate function, it is possible to reproduce, at least qualitatively, the shape of
the trend of infected during the pandemic observed in Italy and in France.

It is worth to remark that the considered social parameters have been estimated
only in the case of France, see (Béraud 2015), and we assumed that the initial contact
distribution is the same for the Italian case.

We now focus on the case of Spain. For this country, according to Fig. 6, the trend
of infected undergoes a deceleration during the lockdown period. This can be also
clearly observed in Fig. 7 where the extrapolated shape of the contact function H is
shown. Let also observe that while the global behavior of this function is captured by
the fitting procedure, we however lose the minimum which takes place around end
of April. This minimum is responsible of the deceleration in the number of infected
and can be brought back to a strong external intervention in the lifestyle of the Spain
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Fig. 7 Test 3. Estimated shape of the function H in several European countries (left plots) and its dependency
on the variables I (t) and

∫ t
0 I (s)ds (right plots)

country with the scope of reducing the hospitalizations. This effect can be reproduced
by our model by imposing the same behavior in the function H . The Fig. 8 reports on
the bottom right the shape of the function H over time for in particular this last case.
The results show that the S-SIR model is capable to qualitatively reproduce the data.
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Fig. 8 Test 4. Left: Number of infected over time for the S-SIR model when memory effects are taken into
account in the contact function. Top left France, Top right Italy, Bottom left Spain, Bottom right effective
value of the incidence function

Conclusions

The development of strategies for mitigating the spreading of a pandemic is an impor-
tant public health priority. The recent case of COVID-19 pandemic has seen as main
strategy restrictive measures on the social contacts of the population, obtained by
household quarantine, school or workplace closure, restrictions on travels, and, ulti-
mately, a total lockdown. Mathematical models represent powerful tools for a better
understanding of this complex landscape of intervention strategies and for a precise
quantification of the relationships between potential costs and benefits of different
options (Ferguson 2006). In this direction, we introduced a system of kinetic equa-
tions coupling the distribution of social contacts with the spreading of a pandemic
driven by the rules of the SIR model, aiming to explicitly quantify the mitigation of
the pandemic in terms of the reduction of the number of social contacts of individuals.
The kinetic modeling of the statistical distribution of social contacts has been devel-
oped according to the recent results in (Béraud 2015), which present an exhaustive
description of the contact dynamic in the France population, divided by categories.
The characterization of the equilibrium distribution of social contacts in the form of a
Gamma density allowed to obtain a new macroscopic system (25)–(27) of six differ-
ential equations giving the joint evolution of mass fractions and local mean values of
daily contacts for the different classes of individuals: susceptible, infected and recov-
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ered. It is worth to notice that the obtained system (27), driving the evolution of the
local mean values of social contacts, was found explicitly dependent from a parameter
which can be directly linked to the variance of the equilibrium Gamma distribution.
This permitted to naturally include in the set of forecasting equations a measurable
effect of the heterogeneity of the social contacts. In this direction, with respect to a
direct choice of a nonlinear incidence rate in the classical SIR model, as first consid-
ered in Capasso and Serio (1978), the system (25)–(27) allows for an explanation of
the relation between the contacts among individuals and the spread of an epidemic.
Moreover, the new presented model gives a better description of the effects of the
contacts reduction policies in the spread of a virus in a population. The numerical
experiments confirm that the kinetic system is able to capture most of the macroscopic
phenomena related to the effects of partial lockdown strategies, and, eventually to
maintain pandemic under control.
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