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Duchene Muscular Dystrophy (DMD) is the most frequent muscular dystrophy and one

of the most severe due to the absence of the dystrophin protein. Typical pathological

features include muscle weakness, muscle wasting, degeneration, and inflammation.

At advanced stages DMD muscles present exacerbated extracellular matrix and fat

accumulation. Recent progress in therapeutic approaches has allowed new strategies to

be investigated, including pharmacological, gene-based and cell-based therapies. Gene

and cell-based therapies are still limited by poor targeting and low efficiency in fibrotic

dystrophic muscle, therefore it is increasingly evident that future treatments will have to

include “combined therapies” to reachmaximal efficiency. The scope of this mini-review is

to provide an overview of the current literature on such combined therapies for DMD. By

“combined therapies” we mean those that include both a therapy to correct the genetic

defect and an additional one to address one of the secondary pathological features of

the disease. In this mini-review, we will not provide a comprehensive view of the literature

on therapies for DMD, since many such reviews already exist, but we will focus on the

characteristics, efficiency, and potential of such combined therapeutic strategies that

have been described so far for DMD.

Keywords: gene therapy, cell therapy, muscle, Duchenne muscular dystrophy, dystrophin, fibrosis, inflammation,

atrophy

INTRODUCTION

Duchenne Muscular Dystrophy (DMD), the muscular dystrophy, is an X-linked recessive disease
that affects one in 3,500 live male births (Bushby et al., 2010). DMD patients present progressive
muscular weakness, in addition to orthopedic, respiratory, and cardiac complications that lead
to their death around the third or fourth decade of life (McNally, 2007; Bushby et al., 2010).
At the molecular level, DMD is caused by mutations in the dystrophin gene leading to the
absence of the protein (Koenig et al., 1987; Kunkel et al., 1987). The dystrophin gene is one
of the largest genes in the human genome with more than 2 million base pairs in Xp21.2-
p21.1. The size of the dystrophin coding sequence (11 kbp) is huge with 79 exons encoding
a 427 kDa protein (Guiraud et al., 2015). Most of the DMD patients carry out-of-frame and
non-sense mutations leading to reduction of the transcript level and truncation of translation
(Monaco et al., 1988; Roberts et al., 1994). Dystrophin is a cytoskeletal protein critical for
the stability and function of myofibers in muscle: dystrophin establishes a mechanical link
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between the extracellular matrix and the cytoskeletal actin
in muscle fibers through the dystrophin-associated protein
complex (DAPC) (Ervasti and Sonnemann, 2008). Dystrophin
deficiency leads to the rupture of the muscle fiber membrane
during contraction (Allen and Whitehead, 2011) and causes
impaired intracellular signaling (Constantin, 2014). At the
cellular level, the muscles of DMD patients show evidence of
necrosis, degeneration and regeneration, myofiber atrophy, fatty
accumulation, fibrosis, and inflammation (Spencer and Tidball,
2001; Alvarez et al., 2002; Desguerre et al., 2009a,b; Serrano and
Muñoz-Cá-noves, 2010; Zhou and Lu, 2010; Villalta et al., 2011).
Different approaches (gene-based, cell-based, nano-particles, and
pharmacological) have been developed to restore a functional
dystrophin to DMD muscles (Negroni et al., 2016; Chamberlain
and Chamberlain, 2017; Nance et al., 2017). These strategies are
promising and several clinical trials are on-going or have been
conducted onDMDpatients: between 1995 and 2018, 127 clinical
trials are found on clinicaltrials.gov, with 57% pharmacological
approaches, 28% gene-based (22% antisense oligonucleotide
based exon skipping, 6% AAV gene addition), and 3% cell-
based approaches. To maximize the efficiency of gene- and cell-
based approaches, future therapies will have to take into account
the state of the muscle tissue and the secondary modifications
associated to the genetic defect. For example, the integrity of the
sarcolemma of muscle fibers, essential for efficient and long term
gene therapy, is severely compromised in DMD (McElhanon
and Bhattacharya, 2018), which leads to the concomitant loss
of the therapeutic agent (Le Hir et al., 2013). In addition, in
dystrophic muscle the continuous breakdown of muscle fibers
causes inflammation and fibrosis (Serrano and Muñoz-Cánoves,
2017). Such a hostile environment will be detrimental for the
efficacy of cell-based therapies and exacerbated extracellular
matrix will affect the accessibility of all therapeutic agents to the
muscle fibers (gene, cell, or pharmacological).

The aim of this review is to highlight pre-clinical studies in
DMD that have tested two therapeutic strategies in combination
(Figure 1). We will only focus on studies that have used
“combined therapies”: one to correct the genetic defect, and a
second to improve the status of the recipient muscle. To improve
the dystrophic environment of the recipient tissue, strategies are
being developed to eliminate the barriers that limit the access of
the therapeutic vector to the fibers and to limit degeneration—
even temporarily—to allow dystrophin to reach therapeutic
expression levels. “Muscle conditioning” treatments ameliorating
the status of the targeted muscle are being developed. Such
improvements per se are beneficial to the muscle and will also
improve the efficacy of gene or cell-based therapy. The final goal
of any combined therapy should be to improve the efficacy of
the single target therapies. Since an extensive literature on the
different single target strategies developed for DMD already exist,
we will not describe these here, nor shall we discuss animal
models used for the same reason.

Improving Dystrophin Expression Using
Combined Therapy
Exon skipping approaches have already shown promising results
in animal models. This therapy is based on the use of
antisense oligonucleotides (AON), that will interfere with the

normal splicing process removing the mutation-carrying exons,
allowing the production of a truncated but still functional
dystrophin (Nakamura, 2017). Indeed the dystrophin structure
with its central rod-domain made of 24 spectrin-like repeats,
can tolerate large internal deletions while maintaining most
of its function. In an elegant study, Peccate et al. recently
demonstrated that a pre-treatment of the skeletal muscle of mdx
mice (the most common mouse model for DMD; Bulfield et al.,
1984) with peptide-phosphorodiamidate morpholino (PPMO)
antisense oligonucleotides targeting dystrophin was beneficial
for a subsequent AAV-based exon-skipping therapy (Peccate
et al., 2016). This pre-treatment allowed temporary restoration
of dystrophin at the sarcolemma, improving membrane integrity
to reduce the loss of vector genome after AAV injection and
improve the efficiency of gene therapy. This study emphasizes
the strong potential of combined approaches to improve the
benefit of AAV-based therapies since without pre-treatment the
viral vector would be lost when the muscle fibers degenerate. For
DMD, such pre-treatment would allow the use of lower and thus
safer vector doses for a higher level of dystrophin expression in
the long term. Such pre-treatment aiming at improving muscle
fiber integrity could benefit also to other muscular dystrophies
with degenerative features. The efficiency of exon-skipping can
also be targeted. Using high-throughput screening, Kendall
et al. identified Dantrolene—currently used to treat malignant
hyperthermia—as a “skipping enhancer” (Kendall et al., 2012).
This drug delivered to mdx mice by intraperitoneal injections
enhanced antisense oligonucleotide (AON)-mediatedDMD exon
skipping. The use of such an enhancer will improve AON
treatment by increasing the therapeutic value of AON, reducing
the dose needed, and thus lowering the costs and potential
toxicity. Finally, nanotechnologies have also been used to deliver
therapeutic agents, such as antisense nucleotides (for a review see
Falzarano et al., 2014). Such tools might in the future be used in
combined therapeutic strategies.

Stimulation of Muscle Growth and
Regeneration
If muscle wasting has already progressed, dystrophin expression
in the surviving fibers will not be sufficient to restore function.
Maintaining and stimulating higher levels of muscle regeneration
could potentially have a beneficial effect in dystrophic muscles.
The first attempt of a combined therapy stimulating muscle
growth came from Abmayr et al. (2005), who used the co-
expression of Insulin-like Growth factor-1 (IGF-1)—a known
inducer of muscle hypertrophy, strength and regeneration
(Philippou and Barton, 2014)—together with the expression of
a functional microdystrophin (µDys) in mdx mice. Muscles
treated with this combined therapy, showed increased muscle
mass and specific force compared to untreated or to muscles
treated withµDys alone. A similar approach was used by Rodino-
Klapac et al. (2013) by combining follistatin—an inhibitor of
myostatin (Sharma et al., 2015)—to increase muscle mass and
strength, and µDys. They showed a potent synergistic effect
of the combined therapy on muscle force and architecture.
This was also demonstrated with an AON triggering exon
skipping of dystrophin and another one targeting myostatin
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FIGURE 1 | (A) Muscular dystrophies fibers, including loss of mass, weakness, fat, and extracellular matrix accumulation. Gene and cell based therapies will have to

overcome the progressive degeneration of muscle fibers. When these histological changes become prominent, combined strategies are needed. (B) Muscle pre- or

co-treatment may target inflammation, atrophy, membrane fragility, muscle weakness, and/or atrophy to pre-condition the tissue to increase efficiency of gene and cell

therapy.

to improve muscle weakness (Kemaladewi et al., 2011; Lu-
Nguyen et al., 2017) with promising results. Similar approaches
to interfere with the myostatin pathways have also been used in
combined therapies: RNA interference for the Activin Receptor
type IIb (AcvRIIB) (Dumonceaux et al., 2010)—the receptor for
Myostatin—or a soluble version of AcvRIIB (Hoogaars et al.,
2012) have been used in combination with AAV-U7 based exon
skipping resulting in a beneficial effect increasing both muscle
mass and strength.

Controlling Fibrosis, Inflammation, and
Atrophy
Fibrosis, inflammation and muscle atrophy are among the most
important complications associated with muscular dystrophy,
and they can severely compromise the efficiency of gene or cell
therapy by limiting access to the dystrophic muscle. Fibrosis
can be defined as the increased expression and accumulation
of Extracellular Matrix (ECM) proteins, such as fibronectin and
collagen, which contributes to muscle dysfunction (Serrano and
Muñoz-Cánoves, 2017). Transforming Growth Factor type β

(TGF-β) is a potent pro-fibrotic cytokine that contributes to the
pathogenesis of several fibrotic disorders, including muscular
dystrophies (Bernasconi et al., 1999). Interestingly, it has been
found that TGF-β induces the expression of Connective Tissue
Growth Factor (CTGF/CCN2) in fibroblasts (Igarashi et al., 1993)
and the pro-fibrotic effects of TGF-β may be CTGF-dependent
(Grotendorst, 1997; Leask and Abraham, 2004; Leask et al., 2004).

The expression of microRNA-29—a family of microRNAs whose

downregulation is associated with fibrosis—not only decreased
TGF-β1 and ECM proteins expression but also completely
restored muscle strength in dystrophic muscle when combined

with µDys treatment (Heller et al., 2017). Similarly, reducing
CTGF expression genetically or blocking CTGF with neutralizing

antibodies, decreased fibrosis, and increased muscle strength and
the efficiency of cell therapy (Morales et al., 2013b). Combining

different cell types in cell therapy has also been shown to

improve the fibrotic environment in dystrophic mice. Gargioli
et al. showed that a pre-treatment using modified tendon

fibroblasts, expressing angiogenic factors such as placenta growth
factor and an antifibrotic treatment using MMP-9, improved
microcirculation, reduced collagen and fat tissue deposition,
decreased leukocyte infiltration, increased fiber numbers and
improved cell-therapy in aged α-Sarcoglycan null mice, a model
of Limb-girdle muscular dystrophy (Gargioli et al., 2008).

Inflammation is part of the normal regeneration process
where macrophages play a fundamental role in both
inflammation and regeneration by the sequential expression of
cytokines and inflammatory molecules (Juban and Chazaud,
2017). It is now well-established that the inflammatory response
in damaged muscle positively influences normal muscle
repair, while its exacerbation in dystrophic muscle promotes
the formation of fibrotic tissue during disease progression
(Tidball, 2005). For these reasons, targeting inflammation
may improve therapies for DMD (Miyatake et al., 2016).
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Several different combined approaches have been used to
decrease inflammation and improve therapeutic outcome:
anti-inflammatory prednisolone combined with AON exon
skipping treatment has been shown to increase dystrophin
expression (Verhaart et al., 2012). A study by Cabrera et al.
(2014) showed that andrographolide—an inhibitor of NF-κB
(pro-inflammatory pathway implicated in atrophy and fibrosis;
Li et al., 2008)—reduces the expression of fibrotic factors and
ECM proteins, while increasing muscle strength and cell therapy
efficacy. Another study showed that treatment with HCT 1026—
a non-steroidal anti-inflammatory drug capable of releasing
nitric oxide (NO)—increased the efficiency of cell therapy
in mdx mice and in a mouse model of limb girdle muscular
dystrophy (Brunelli et al., 2007). NO deficiency in DMD, due to
the disappearance of nNOS linked to the dystrophin complex, is
also an important issue since it is a potent regulator of skeletal
muscle physiology and regeneration, and could also be targeted
in combined therapies (Timpani et al., 2017).

Muscular atrophy is a common feature of DMD and many
pathological processes discussed in this mini-review contribute
to muscle wasting (Shin et al., 2013). One of the pathways
involved in the regulation of muscle mass is the Renin-
Angiotensin System (RAS) (Cabello-Verrugio et al., 2012a,
2015). Several of its components are upregulated in dystrophic
muscles (Sun et al., 2009) where they can also trigger a fibrotic
response. Pharmacological modulation of RAS can be used to
decrease atrophy (Burks et al., 2011), decrease fibrosis (Cabello-
Verrugio et al., 2012b; Morales et al., 2013a; Acuna et al.,
2014) and ameliorate cardiac complications related to MD (Allen
et al., 2013; Sabharwal et al., 2014). Several studies have used
combined therapies using Losartan, an inhibitor or the AT-1
receptor. Losartan treatment has been shown to increase the
efficiency of myoblast cell therapy (Fakhfakh et al., 2012) and
Adipose-Derived Stem Cell therapy (Lee et al., 2015). However,
a study by Lee et al. (2014) showed that although combined
therapy with Losartan and exon skipping was beneficial in
terms of muscle regeneration, the efficiency of exon skipping
was lower in Losartan treated mice due to decreased in vivo
morpholino penetration. In this study, Losartan was added
prior to morpholino treatment, it would be interesting to see
what happens when losartan treatment is started after the exon
skipping treatment. Moreover, as Losartan seems to increase
sarcolemma stability, it could be interesting to see the effect of
viral gene therapy after Losartan treatment.

In Vitro Modification of Myogenic Cells
Among “combined therapies” those combining gene- and cell-
therapies should be mentioned, even though none of the two
strategies improve the status of the recipient muscle. Most
combined gene- and cell-based studies developed so far consist in
genetic modification of adult stem cells harvested from patients
or dystrophic models to produce a functional dystrophin protein.
In order to accommodate DNA packaging limitations in a range
of viral vectors, synthetic mini- and micro-dystrophin versions
have been engineered (Athanasopoulos et al., 2004) and tested
in cell transplantation studies using lentiviral vectors. Several
transduced types of myogenic cells, e.g., mouse, canine, primate,

and human muscle precursors (Ikemoto et al., 2007; Quenneville
et al., 2007b; Pichavant et al., 2010), murine side population (SP)
cells (Bachrach et al., 2004), canine (Sampaolesi et al., 2006),
and human (Dellavalle et al., 2007) mesoangioblasts/pericytes,
have been tested in dystrophic models. The group of J. Tremblay
demonstrated that the use of electroporation combined with the
introduction of a phiC31 integrase led to the stable expression
of full-length dystrophin in murine and human MPCs, even
if this technique is less efficient than viral vector transduction
(Quenneville et al., 2007a). Kazuki et al. have also validated
the use of a human artificial chromosome (HAC) to restore
full-length dystrophin in mouse and human iPS cells (Kazuki
et al., 2010), while genomic integration of the full-length human
dystrophin has been achieved in iPS cells (Farruggio et al., 2017)
and mesangioblasts (Loperfido et al., 2016). Also, a full-length
dystrophin was efficiently expressed in dog mesoangioblasts
using piggyBac transposons (Loperfido et al., 2016). The same
technique was used to modify mouse mesoangioblasts prior to
transplantation inmdxmice, showing a good level of dystrophin
expression, increased number of satellite cells, reduction in
fibrosis, and increased muscle function (Iyer et al., 2018). Exon
skipping has also been tested in combination with cell therapy
approaches using targeted antisense sequences vectorised in U7
snRNA constructs in skin fibroblasts (Chaouch et al., 2009) or
CD133+ cells of DMD patients (Benchaouir et al., 2007).

More recently, direct targeting of a morbid allele has been
challenged using nucleases in vitro and in vivo: meganucleases,
Zinc-finger nucleases, TALENs, and CRISPR have all been used
for genome editing to correct DMD cells carrying deletions and
out-of-frame mutations in dystrophin gene (Ousterout et al.,
2013, 2015b; Popplewell et al., 2013; Young et al., 2016; Gee et al.,
2017; Pini et al., 2017; Reinig et al., 2017; Wang et al., 2017; Zhu
et al., 2017). A recent study also described a multiplexed strategy
using a lentiviral vector capable of editing multiple sequences at
a time, allowing the correction of up to 62% of mutations causing
DMD (Ousterout et al., 2015a). While none of these approaches
have yet been used to our knowledge in combined therapies, they
could also profit from such strategies.

CONCLUDING REMARKS

Combined Therapies for DMD
There is now an increased interest in developing combined
therapies for DMD (Table 1). A combined therapy is most often
designed to treat the secondary consequences of the muscular
dystrophy that decrease the efficiency of single therapies, e.g.,
inflammation, fibrosis, or degeneration. If efficient, this therapy
should have two effects: (1) improve the muscle phenotype
per se and, (2) improve the combined therapy by pre- or co-
conditioning the muscle that is receiving the treatment. In
other words, combined therapies should have a synergistic
effect. It is essential to combine the positive outcomes of
distinct therapies that target these different features to enhance
therapeutic efficiency. Many combinatory studies could be tested,
just to name one for example, it would be interesting to know
if SMT-C1100—an utrophin upregulation drug (Tinsley et al.,
2011), already tested in clinical trials with promising results and
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TABLE 1 | Overview of synergistic therapies tested in muscular dystrophies.
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Benefit References

Cell therapy NO/HCT 1026 X X X X Increased mesoangioblast cell-therapy, muscle

force, and animal performance in exhaustion

treadmill tests. Reduced CK activity in serum in

α-SG null mice.

Brunelli et al., 2007

Cell therapy PIGF/MMP9 X X X X Reduced collagen. Increased mesoangioblast

cell-therapy and increased number of fiber per

CSA in α-SG null mice.

Gargioli et al., 2008

Cell therapy Losartan X X X X X Reduced collagen expression. Increased

number of fibers and nuclei from transplanted

human myoblasts and increased survival after

transplantation in Rag−/−/mdx mice.

Fakhfakh et al., 2012

Cell therapy CTGF/CCN2

genetic reduction

and blockage

X X X Increased number of Dystrophin fibers after

mouse myoblast cell-therapy and decreases

fibrosis in mdx and mdx-CTGF+/− mice.

Morales et al., 2013b

Cell therapy Andrographolide X X X X Reduction of fibrosis. Increased muscle force

and cell-therapy with wt mouse satellite cells in

mdx mice.

Cabrera et al., 2014

Cell therapy Losartan X X X X X Reduction of fibrosis. Increased effect in ADSC

cell-therapy, increased muscle weight and

increased fibers in mdx mice.

Lee et al., 2015

Exon skipping X sh-ActRIIb X X Increased muscle weight and force, and

increased fiber diameter in mdx mice.

Dumonceaux et al., 2010

Exon skipping X Myostatin X X Dual myostatin and dystrophin skipping in vitro

in human control and DMD cells, and in the

mdx mice.

Kemaladewi et al., 2011

Exon skipping X sActRIIB-Fc X X X Improved muscle strength and dystrophin

rescue, no evidence of synergistic effect in the

mdx mice.

Hoogaars et al., 2012

Exon skipping X Dantrolene X X X X Increased exon skipping, decreased CK levels,

and improve muscle strength in mdx mice.

Kendall et al., 2012

Exon skipping X Prednisolone X X X Increased Dystrophin expression in

gastrocnemius of mdx mice.

Verhaart et al., 2012

Exon skipping X Losartan X X X X Increased muscle regeneration and reduction

of dystrophin expression in mdx mice.

Lee et al., 2014

Exon skipping X AON Dystrophin X X X Decrease gene therapy vector loss, increase

dystrophin expression in mdx mice.

Peccate et al., 2016

Exon skipping X Myostatin X X X Increased exon skipping and dystrophin

expression, decreased fibers with central

nuclei, decreased collagen VI, increased

muscle strength and improves animal behavior

in mdx mice

Lu-Nguyen et al., 2017

Microdystrophin X IGF-1 X X Increased muscle mass and strength, reduced

myofiber degeneration, and reduced

contraction-induced injury in mdx mice.

Abmayr et al., 2005

Microdystrophin X Follistatin X X Increased muscle force and resistance to injury,

restored fiber size in young and old mdx mice.

Rodino-Klapac et al.,

2013

Microdystrophin X MicroRNA-29

overexpression

X X X X X Reduced fibrosis, increased muscle strength,

reduced contraction-induced injury, increased

muscle size in mdx/utrn+/− mice.

Heller et al., 2017

a-SG, alpha-sarcoglycan; DMD, Duchenne Muscular Dystrophy; MDC1A, congenital muscular dystrophy type 1A; AAV, adeno-associated virus; AON, antisense oligonucleotide; NO,

Nitric oxide.

Pink, type of treatment (viral vectors, antsiense, or pharmacological).

Blue, status of the muscle (muscle mass and/or strength, fibrosis, and inflammation).

Green, whether this is a pre or a co treatment.

Orange, whether this was done in in vitro model.
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no side-effects (Ricotti et al., 2016)—shows a synergistic effect
when combined with other therapies, like cell therapy.

Of course, the advances in combined therapies should not
stop the efforts that have been conducted to ameliorate single
target therapies for DMD since they will eventually also benefit to
these combined therapies. Future technical advances in distinct
approaches will help to improve combined therapeutic assays
that will eventually lead to the effective treatment or even a cure
for DMD.

Early Detection and Treatment vs.
Symptomatic Patients
It is important to make this distinction. The early detection of
dystrophin deficiency and a precise genetic diagnosis (Aartsma-
Rus et al., 2016) will allow the treatment to be started before
the onset of fibrosis, chronic damage, and inflammation in
the muscle. A genetic correction might then be enough to
avoid the progression of the disease. With this in mind, a
screening test for the presence of a fully functional dystrophin
for all male newborns could potentially result in an invaluable
social and monetary benefit for the families and the health
care system (Landfeldt et al., 2016; Ryder et al., 2017).

However, the diagnosis for sporadic mutations is usually done
when the patients start to show their first symptoms in
early childhood and, at this moment, muscles already show
extensive damage, inflammation and fibrosis. In this case,
secondary effects of the gene deficiency should be addressed in
combined therapies to enhance the correction of the genetic
defect.
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