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QUADRATIC STABILITY OF FLUX LIMITERS ∗

Bruno Després1

Abstract. We propose a novel approach to study the quadratic stability of 2D flux limiters for non
expansive transport equations. The theory is developed for the constant coefficient case on a cartesian
grid. The convergence of the fully discrete nonlinear scheme is established in 2D with a rate not less

than O(∆x
1
2 ) in quadratic norm. It is a way to bypass the Goodman-Leveque obstruction Theorem. A

new nonlinear scheme with corner correction is proposed. The scheme is formally second-order accurate
away from characteristics points, satisfies the maximum principle and is proved to be convergent in
quadratic norm. It is tested on simple numerical problems.

1991 Mathematics Subject Classification. 65M08, 65M12 .

The dates will be set by the publisher.

1. Introduction

A famous Godunov Theorem [18] states that a linear scheme for advection is only first-order accurate, except
in trivial cases. Subsequently, Harten proposed in [22] a constructive notion for Total Variation Diminishing
(TVD) numerical schemes which allows the construction of formally second-order accurate nonlinear numerical
schemes for advection in space dimension d = 1 (1D). The theory of nonlinear TVD schemes is nowadays well
established, see [17, 31] and references therein. However, in contrast with the success of the TVD theory in
1D, Goodman and Leveque proved in [19] the obstruction Theorem summarized as follows: A TVD numerical
scheme with compact stencil for the discretization of conservation laws in space dimension d ≥ 2 is at most
first-order accurate, except in trivial cases. The proof [19] is by contradiction: one starts from a scheme which
satisfies the TVD property and which has a compact stencil in space dimension d = 2 (2D); then one proves
that this scheme is L1 contracting for one dimensional profiles; it turns into the fact that the scheme is just
first-order accurate by another important result [23]. It is a non constructive proof which does not propose any
way to go beyond this limitation (nevertheless we immediately remark that L2 stability of linear schemes for
1D advection can already be achieved at any order [10], contrary to linear stability in L1 norm). To be precise,
we follow the literature [19, 22] for which formal second-order and high-order accuracy means accuracy in the
sense of local Taylor expansion for exact smooth solutions.

Since then, the development of numerical solvers has pursued its route [2, 17, 31] in space dimension d ≥
2, but without the compactness offered by TVD inequalities. This regrettable situation where there is a
divorce between the development of high order numerical methods and the theory of numerical convergence
is a direct corollary of the Goodman-Leveque Theorem. Quoting [19]: While it is not logically necessary
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for a scheme to be TVD in order to be total variation stable, or to converge, we know of no method for
computing weak solutions that is not TVD and yet can be shown to converge. Optimum positive schemes
for transport by Roe and Sidilkover [28] are linear and first order so cannot constitute a solution. The Barth-
Jespersen technique [1] on unstructured meshes guarantees the maximum principle, but the scheme is ultimately
first-order accurate. One finds in Barth-Ohleberger [2] a very nice and comprehensive review on the topic of
limiter techniques and on the consequences of the Goodman-Leveque obstruction theorem on the development
of numerical methods, where the emphasis moves on the preservation of the maximum principle instead of
TVD estimates. Other progresses have been made, in particular by systematically using bound-preserving or
invariant-domain-preserving numerical methods. Bound-preserving numerical linear and nonlinear methods are
extensively studied and developed in the works of Shu [6, 27, 29] and therein. Refer to [32] for the principles of
bound-preserving Finite Volume methods, but even in the latest works, the convergence of fully discrete in time
numerical schemes is not established. Domain invariant techniques and positivity-preserving techniques are also
studied and developed in the contributions of Guermond-Popov et al [20,21], still without proof of convergence
for fully discrete schemes (see for example [21][Th. 4.8] for quite a technical statement on the stability of a
family of bound preserving method for transport). In summary the Goodman-Leveque obstruction Theorem is
still in the background, even in the the latest development.

The purpose of this work is to show that new quadratic stability estimates for nonlinear flux limiter techniques
offer a strategy to go beyond the Goodman-Leveque obstruction Theorem, at least for transport equations on a
cartesian grid. With quadratic stability, a control of nonlinear fully discrete numerical schemes is achieved in 2D
for a large class of multidimensional flux limiters, allowing formally second-order accurate numerical schemes
for which one can proves numerical convergence.

The problems embraced in our analysis must have some non expansive properties in quadratic norm, because
the goal is to reproduce these properties at the discrete level. Such a general non expansive equation in general
dimension writes

∂tu(x, t) +∇ · (a(x)u(x, t)) = s(x) (1)

where the given velocity field is a ∈ W 1,∞(Rd) and the source is s ∈ L∞(Rd). For convection dominated
flows in applied sciences, the calculation of accurate numerical solutions to this equation is of fundamental
importance [16,17,26,31]. If the velocity field is divergent free, that is∇·a = 0, then the equation is non expansive
in all Lp(Rd) norms and in particular in quadratic norm (this is L2(Rd) norm). If the divergence is bounded
∇ · a ∈ L∞(Rd) the expansion is bounded by classical estimates. An equation similar to (1) can be obtained
via the linearization of a truly nonlinear equation ∂tutot +∇· (b(x)f(utot)) = 0 where the final equation for the
perturbation defined for exemple by utot = uref +εu+O(ε2) can be written as ∂tu(x, t)+∇· (a(x, t)u(x, t)) = 0:
the velocity field a(x, t) = b(x)f ′(uref(x, t)) is a function of space and time; non expansive estimates can be
obtained depending on the space-time regularity of the velocity field. Provided the regularity of the velocity
field is sufficient, it is possible to approach weak solutions with smooth solutions (non smooth velocity fields
low regularity such as in [5] are not considered in this work). For the simplicity of the theoretical developments,
we will assume that the initial data has compact support with three bounded derivatives

u(0) = u0 ∈W 3
0 (Rd). (2)

To concentrate on the main features of our approach and to minimize the amount of notations in 2D, the
equation is simplified further. The model problem is 2D advection (that is transport at constant velocity)
discretized on a cartesian grid

∂tu+ p∂xu+ q∂yu = 0, (x, y, t) ∈ R× R× R+. (3)

Additionally the advection velocity field is normalized

p ≥ 0, q ≥ 0 and p+ q = 1. (4)
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One dimensional configurations aligned with the discretization grid correspond to the limit cases (p, q) = (1, 0)
or (p, q) = (0, 1). The equation (3) is already relevant for discretization of kinetic equations, for which u =
f(x,v, t) ≥ 0 represents the density of particles in function of the space variable, the time variable and the
velocity v ∈ Rd variable. The correspondance is v = λ(p, q) where λ ≥ 0 is a rescaling factor to account
for the normalization p + q = 1. Considering the fierce activity nowadays in the field of numerical plasma
physics [3, 7, 13, 15, 25], it is possible that the original methods for the numerical analysis of the advection
equation (3) and perhaps the original scheme constructed at the end of this work for the purposes of numerical
illustrations can already find immediate applications in this field. We think also of the applications of flux
limiters with quadratic stability for the remap stage of Lagrange+remap schemes [8] applied to the numerical
discretization of compressible Euler equations (a different technique is [24]). Radiation transport equations [21]
could also benefit from the techniques of this work. Extension to non constant coefficients are evoked in the
last Section.

The principle of the new quadratic estimates is exposed in 1D in Section 2 and the application to the conver-
gence of the fully discrete schemes is explained in Section 3. The extension to the 2D case is performed in Section
4 where the quadratic stability and the convergence are proved in Theorem 11 which is the main theoretical
contribution of this work. A new scheme is constructed in Section 5 with a notion of corner interaction which
is natural in the context of this work. This scheme is formally second-order accurate except at characteristics
points and satisfies the maximal principle. It converges in quadratic norm by virtue of the theoretical estimates,
at a rate not less than O(∆x

1
2 ). Numerical results obtained with the new schemes are shown in Section 6, in

particular it is clear that the theoretical estimate of convergence of Section 4 is largely suboptimal. It is also
clear that the new non linear scheme is more performant than the linear Lax-Wendroff for truly weak solutions
with BV regularity. Some natural extensions are evoked in last Section 7.

2. Quadratic estimates in 1D

Quadratic stability of flux limiters is easier to explain 1D than in 2D and the result of the analysis can
be compared with the classical 1D theory of flux limiters [16, 17, 22, 31]. A generic scheme for the advection
equation ∂tu+ ∂xu = 0 writes

U j − Uj
∆t

+
Uj+ 1

2
− Uj− 1

2

∆x
= 0, j ∈ Z, (5)

with

Uj+ 1
2

= Uj +
1− ν

2
ϕj+ 1

2
(Uj+1 − Uj) for all j ∈ Z. (6)

In these notations, Uj stand for Unj which is the numerical solution at time step tn = n∆t and U j stands for

Un+1
j which is the numerical solution at time step tn+1 = (n+ 1)∆t. An explicit formulation is

U j = (1− ν)Uj + νUj−1 −
ν(1− ν)

2

(
ϕj+ 1

2
(Uj+1 − Uj)− ϕj− 1

2
(Uj − Uj−1)

)
. (7)

The scalar ϕj+ 1
2

is the flux limiter between two consecutive cells (or mesh points). It is well known [26,31] that if

ϕj+ 1
2
≡ 0 for all j then one obtains the upwind scheme, if ϕj+ 1

2
≡ 1 for all j then one obtains the Lax-Wendroff

scheme. The theory of TVD flux limitation has been developed in [22,30] and is exposed in [16,17,26,31]. For
example the minmod limiter is defined by

ϕj+ 1
2

= minmod
(

1, rj+ 1
2

)
where rj+ 1

2
=
Uj − Uj−1

Uj+1 − Uj
. (8)

The minmod function is defined by minmod(a, b) = 0 for ab ≤ 0 and minmod(a, b) = sign(a) min(|a|, |b|) for
ab ≥ 0.
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Contrary to the classical references [16, 17, 26, 31] where the analysis is l1-based or TVD-based, our analysis
is based on the quadratic discrete Lebesgue space

l2 =

U = (Uj)j∈Z such that
∑
j∈Z
|Uj |2 <∞

 .

In the next preliminary result, the l2 norm of the numerical solution at the end of the time step is compared

with the l2 norm of the numerical solution at the beginning of the time step. We note ∆ =
(

∆j+ 1
2

)
j∈Z

with

∆j+ 1
2

= Uj+1 − Uj .

Lemma 1. Let U ∈ l2. Then one has
∑
j∈Z |U j |2 =

∑
j∈Z |Uj |2 −Qϕ(∆) where Qϕ(∆) is the quadratic form

Qϕ(∆) = ν(1− ν)
∑
j∈Z |∆j− 1

2
|2 −ν(1− ν)

∑
j∈Z ϕj+ 1

2
∆j+ 1

2

(
(1− ν)∆j+ 1

2
+ ν∆j− 1

2

)
−ν

2(1−ν)2

4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2 . (9)

The parameters of the quadratic form are noted ϕ =
(
ϕj+ 1

2

)
j∈Z

.

Proof. The scheme (5-6) is written explicitly as

U j = Uup
j −

ν(1− ν)

2

(
ϕj+ 1

2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

)
where the upwind scheme is Uup

j = (1−ν)Uj+νUj−1 and the difference is ∆j+ 1
2

= Uj+1−Uj for all j. Denoting

Rj = |U j |2 − |Uup
j |2, one can write

|U j |2 − |Uj |2 = |Uup
j |2 − |Uj |2 +Rj

= −ν(1− ν)|Uj − Uj−1|2 − ν|Uj |2 + ν|Uj−1|2 +Rj
= −ν(1− ν)|∆j− 1

2
|2 +

(
−ν|Uj |2 + ν|Uj−1|2

)︸ ︷︷ ︸
a difference

+Rj
(10)

where

Rj = |U j |2 − |Uup
j |2 = 2(U j − Uup

j )Uup
j + |U j − Uup

j |2

= −ν(1− ν)
(
ϕj+ 1

2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

)
Uup
j + ν2(1−ν)2

4

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2
= −ν(1− ν)

(
ϕj+ 1

2
∆j+ 1

2
Uup
j+1 − ϕj− 1

2
∆j− 1

2
Uup
j

)
+ν(1− ν)ϕj+ 1

2
∆j+ 1

2
(Uup

j+1 − U
up
j ) + ν2(1−ν)2

4

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2
= − ν(1− ν)

(
ϕj+ 1

2
∆j+ 1

2
Uup
j+1 − ϕj− 1

2
∆j− 1

2
Uup
j

)
︸ ︷︷ ︸

another difference

+ν(1− ν)ϕj+ 1
2
∆j+ 1

2

(
(1− ν)∆j+ 1

2
+ ν∆j− 1

2

)
+ ν2(1−ν)2

4

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2 .

(11)

With these expressions, one can calculates
∑
j∈Z

(
|U j |2 − |Uj |2

)
. The differences in (10-11) become telescopic

by summation, so they vanish and the claim is obtained. �

The upwind scheme corresponds to ϕj+ 1
2
≡ 0: in this case the quadratic form Qup = Q0 from (9) is non

positive for all ∆ provided 0 < ν ≤ 1. One recovers without surprise the quadratic stability of the upwind scheme
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under CFL condition (26). The Lax-Wendroff scheme corresponds to ϕj+ 1
2
≡ 1. One obtains he quadratic form

Qlw = Q1 where

Q1(∆) = ν(1− ν)
∑
j∈Z

(
|∆j− 1

2
|2 −∆j+ 1

2
((1− ν)∆j+ 1

2
+ ν∆j+ 1

2
)
)
− ν2(1−ν)2

4

∑
j∈Z

∣∣∣∆j+ 1
2
−∆j− 1

2

∣∣∣2
= ν2(1−ν)

2

∑
j∈Z

∣∣∣∆j+ 1
2
−∆j− 1

2

∣∣∣2 − ν2(1−ν)2

4

∑
j∈Z

∣∣∣∆j+ 1
2
−∆j− 1

2

∣∣∣2
= ν2(1−ν2)

4

∑
j∈Z

∣∣∣∆j+ 1
2

∣∣∣2 .
One recovers, also without surprise, the quadratic stability of the Lax-Wendroff scheme under CFL condition

(26). The natural question is to determine if there exists a general condition on the limiters ϕ =
(
ϕj+ 1

2

)
j∈Z

such

that Qϕ(∆) ≤ 0 for all ∆ ∈ l2. A trivial answer is interpolation of ϕj+ 1
2

between 0 and 1. If the interpolation

is uniform with respect to j, that is ϕj+ 1
2

= ψ ∈ [0, 1] for all j ∈ Z, then the result is evident. The key fact

below is that the interpolation can be taken for ϕj+ 1
2

independently to ϕk+ 1
2

for all j 6= k.

The main technical difficulty concerns the quadratic form

Hϕ(∆) =
∑
j∈Z
|∆j− 1

2
|2 −

∑
j∈Z

ϕj+ 1
2
∆j+ 1

2

(
(1− ν)∆j+ 1

2
+ ν∆j− 1

2

)
− ν

4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2 . (12)

This quadratic form is a part of Qϕ(∆) since one has the formula

Qϕ(∆) = ν(1− ν)

Hϕ(∆) +
ν2

4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2
 . (13)

Proposition 2. Assume the CFL condition (26) and assume 0 ≤ ϕj+ 1
2
≤ 1 for all j ∈ Z. Then Hϕ(∆) ≥ 0

for all ∆ ∈ l2.

Proof. The condition ∆ ∈ l2 guarantees the convergence of the sum in (9), so Hϕ(∆) is finite. The proof uses a
rearrangement of (9), which is valid for ∆ ∈ l2. Since Hϕ(ν) is linear with respect to ν, we note Hϕ(ν) = α+νβ.
One has α =

∑
j∈Z(1− ϕj+ 1

2
)|∆j+ 1

2
|2 ≥ 0 and

β =
∑
j∈Z ϕj+ 1

2
∆j+ 1

2

(
∆j+ 1

2
−∆j− 1

2

)
− 1

4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− ϕj− 1

2
∆j− 1

2

∣∣∣2
=

∑
j∈Z

(
ϕj+ 1

2
− 1

2ϕ
2
j+ 1

2

)
∆2
j+ 1

2

+
∑
j∈Z

(
−ϕj+ 1

2
+ 1

2ϕj+ 1
2
ϕj− 1

2

)
∆j+ 1

2
∆j− 1

2
.

Consider

γ =
1

4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− (2− ϕj− 1

2
)∆j− 1

2

∣∣∣2 −∑
j∈Z

∣∣∣(1− ϕj+ 1
2
)∆j+ 1

2

∣∣∣2 .
An expansion shows that

γ =
∑
j∈Z

(
1
4ϕ

2
j+ 1

2

+ 1
4 (2− ϕj+ 1

2
)2 − (1− ϕj+ 1

2
)2
)

∆2
j+ 1

2

− 1
2

∑
j∈Z ϕj+ 1

2
(2− ϕj− 1

2
)∆j+ 1

2
∆j− 1

2

=
∑
j∈Z

(
ϕj+ 1

2
− 1

2ϕ
2
j+ 1

2

)
∆2
j+ 1

2

+
∑
j∈Z

(
−ϕj+ 1

2
+ 1

2ϕj+ 1
2
ϕj− 1

2

)
∆j+ 1

2
∆j− 1

2
.

So β = γ. Therefore

Hϕ(∆) = α+ νγ =
∑
j∈Z(1− ϕj+ 1

2
)
(

1− ν(1− ϕj+ 1
2
)
) ∣∣∣∆j+ 1

2

∣∣∣2 + ν
4

∑
j∈Z

∣∣∣ϕj+ 1
2
∆j+ 1

2
− (2− ϕj− 1

2
)∆j− 1

2

∣∣∣2 .
(14)

The conditions of the claim insure Hϕ(∆) ≥ 0. �
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Theorem 3. Assume the conditions of Proposition 2. Then the scheme is stable in quadratic norm:
∑
j∈Z |Uj |2 ≤∑

j∈Z |Uj |2.

Proof. The identity (13) yields the claim. �

Remark 1 (Control of discrete gradients). It is worthwhile for further developments to notice that (14-13)
combined with a Cauchy-Schwarz inequality yield the inequality∑

j∈Z

(
(1− ϕj+ 1

2
)|∆j+ 1

2
|2 + |∆j+ 1

2
−∆j− 1

2
|2
)
≤ C(ν)Qϕ(∆) (15)

for some constant C(ν) > 0 which depends of ν ∈ (0, 1). This estimate shows a quadratic control of the second
discrete gradient ∆j+ 1

2
−∆j− 1

2
. It also shows a quadratic control of the first gradient, multiplied by 1− ϕj+ 1

2
.

3. Convergence in 1D

The convenient space for the numerical analysis is the l2 space equipped with a quadratic norm weighted
with the mesh size

V∆x =

U = (Uj) ∈ l2 with norm ‖U‖2∆x = ∆x
∑
j∈Z
|Uj |2 <∞

 .

The associated scalar product is denoted (U, V )∆x = ∆x
∑
j∈Z UjVj for U, V ∈ V∆x.

The strategy of the proof of convergence relies on two ideas. The first idea corresponds to the semi-discrete
limit regime which correspond to O(ν) terms in Qϕ(∆): involved manipulations are similar to the ones in [6,27,
29, 32]. The second idea is fully discrete and is necessary to treat the term which come from the discretization
in time: it relies on sharp estimates which are new with respect to the literature.

3.1. The semi-discrete scheme

The semi-discrete scheme is continuous in time. It is obtained by letting ∆t→ 0 or ν → 0 in (5-6). It writes

U ′j(t) +
Uj(t)− Uj−1(t)

∆x
+

∆x

2

ϕj+ 1
2
(t)(Uj+1(t)− Uj(t))− ϕj− 1

2
(t)(Uj(t)− Uj−1(t))

∆x2
= 0.

We remind the reader that, for simplicity, we consider a smooth initial data (2). Then the solution u is smooth
as well. The interpolation of the smooth function u ∈W 3(R×R+) (with compact support in space) is denoted
as Vj(t) = u(j∆x, t). One defines the truncation error rj(t)

rj(t) = V ′j (t) +
Vj(t)− Vj−1(t)

∆x
+

∆x

2

ϕj+ 1
2
(t)(Vj+1(t)− Vj(t))− ϕj− 1

2
(t)(Vj(t)− Vj−1(t))

∆x2
.

It is easy to verify that

rj(t) = O(∆x2) +
∆x

2

(1− ϕj+ 1
2
(t))(Vj+1(t)− Vj(t))− (1− ϕj− 1

2
(t))(Vj(t)− Vj−1(t))

∆x2
. (16)

The O(∆x2) is uniform with respect to the index j and the time t. Since u is compact in space, then only a
finite number of rj(t) can be non zero at a given time t. The number of non zero terms is O(∆x−1) uniformly
with respect to the time t.
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Let us define the numerical error Ej(t) = Vj(t) − Uj(t) which vanishes at initial time Ej(0) = 0. The error
satisfies

E′j(t) +
Ej(t)− Ej−1(t)

∆x
+ ∆x

ϕj+ 1
2
(t)(Ej+1(t)− Ej(t))− ϕj− 1

2
(t)(Ej(t)− Ej−1(t))

2∆x2
= rj(t). (17)

Theorem 4. Let T > 0. Assume 0 ≤ ϕj+ 1
2
(t) ≤ 1 for all j ∈ Z and 0 ≤ t ≤ T . Then there exists a constant

C > 0 such that ‖E(t)‖∆x ≤ C∆x
1
2 .

Proof. Multiply (17) by Ej(t) and sum over all j. One obtains

d

dt
‖E(t)‖2∆x +

∆x2

2

∑
j∈Z

(1− ϕj− 1
2
(t))

∣∣∣∣Ej(t)− Ej−1(t)

∆x

∣∣∣∣2 = (E(t), r(t))∆x

where the residual can be estimated with (16). One gets

d
dt‖E(t)‖2∆x + ∆x2

2

∑
j∈Z(1− ϕj− 1

2
(t))

∣∣∣Ej(t)−Ej−1(t)
∆x

∣∣∣2
≤ C∆x2‖E(t)‖∆x − ∆x2

2

∑
j∈Z(1− ϕj− 1

2
(t))

Ej(t)−Ej−1(t)
∆x

Vj(t)−Vj−1(t)
∆x

≤ C∆x2‖E(t)‖∆x + ∆x2

4

∑
j∈Z(1− ϕj− 1

2
(t))

∣∣∣Ej(t)−Ej−1(t)
∆x

∣∣∣2
+∆x2

4

∑
j∈Z(1− ϕj− 1

2
(t))

∣∣∣Vj(t)−Vj−1(t)
∆x

∣∣∣2 .
(18)

One has
∣∣∣Vj(t)−Vj−1(t)

∆x

∣∣∣ ≤ C and only a O(∆x−1) terms are non zero. One gets d
dt‖E(t)‖2∆x ≤ C∆x2‖E(t)‖∆x +

C∆x. Then a Gronwall Lemma yields the claim. �

3.2. The fully discrete scheme

One combines the analysis of Section 3.1 and the inequality (15). The interpolation of the exact solution u
on the pace-time grid is V nj = u(j∆x, j). The truncation error is rnj

V n+1
j − V nj

∆t
+
V nj − V nj−1

∆x
+

(1− ν)

2

ϕn
j+ 1

2

(V nj+1 − V nj )− ϕn
j− 1

2

(V nj − V nj−1)

∆x
= rnj .

It is decomposed in two parts rn = sn + tn. The first part is the truncation error of the Lax-Wendroff scheme

snj =
V n+1
j − V nj

∆t
+
V nj − V nj−1

∆x
+

(1− ν)

2

(V nj+1 − V nj )− (V nj − V nj−1)

∆x

so snj = O(∆x2). The second part comes from the flux limitation

tnj = − (1− ν)

2

(1− ϕn
j+ 1

2

)(V nj+1 − V nj )− (1− ϕn
j− 1

2

)(V nj − V nj−1)

∆x
. (19)

The error Enj = V nj − Unj vanishes at initial time (that is E0
j = 0 for all j) and satisfies En+1

j = E
n

j + ∆trnj
where

E
n

j = (1− ν)Ej + νEj−1 −
ν(1− ν)

2

(
ϕj+ 1

2
(Ej+1 − Ej)− ϕj− 1

2
(Ej − Ej−1)

)
.

One deduces that

‖En+1‖2∆x = ‖En‖2∆x + 2∆t
(
E
n
, rn
)

∆x
+ ∆t2‖rn‖2∆x.
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It is better to rewrite it as

‖En+1‖2∆x − ‖E
n‖2∆x

2∆t
=
(
E
n
, rn
)

∆x
+

∆t

2
‖rn‖2∆x

so that a comparison with (18) is possible. One obtains

‖En+1‖2∆x − ‖En‖2∆x
2∆t

+
1

2ν
Qϕn(∆E,n) =

(
E
n
, rn
)

∆x
+

∆t

2
‖rn‖2∆x. (20)

The quadratic form is evaluated with respect to ∆E,n =
(

∆E,n

j+ 1
2

)
j∈Z

with ∆E,n

j+ 1
2

= Enj+1 − Enj . The last term

in (20) does not pose any problem because by definition ‖rn‖∆x = O(1) and ∆t‖rn‖∆x = O(∆t). The other
term is (

E
n
, rn
)

∆x
=
(
E
n
, sn
)

∆x
+
(
E
n
, tn
)

∆x
(21)

where
(
E
n
, sn
)

∆x
≤ C∆x2‖En‖∆x and

(
E
n
, tn
)

∆x
= − (1− ν)

2

∑
j∈Z

(
(1− ν)Enj + νEnj−1 −

ν(1− ν)

2

(
ϕnj+ 1

2
∆E,n

j+ 1
2

− ϕnj− 1
2
∆E,n

j− 1
2

))
(22)

×
(

(1− ϕnj+ 1
2
)Dn

j+ 1
2
− (1− ϕnj− 1

2
)Dn

j− 1
2

)
with the notation Dn

j+ 1
2

= V nj+1 − V nj .

Lemma 5. One has
(
E
n
, tn
)

∆x
≤ C

(
Qϕn

(
∆E,n

)) 1
2 ∆x

1
2 .

Proof. From (22) one splits
(
E
n
, tn
)

∆x
= Gn1 +Gn2 with

Gn1 = −1− ν
2

∑
j∈Z

(
(1− ν)Enj + νEnj−1

) (
(1− ϕnj+ 1

2
)Dn

j+ 1
2
− (1− ϕnj− 1

2
)Dn

j− 1
2

)
and

Gn2 = −ν(1− ν)2

4

∑
j∈Z

(
ϕnj+ 1

2
∆E,n

j+ 1
2

− ϕnj− 1
2
∆E,n

j− 1
2

)(
(1− ϕnj+ 1

2
)Dn

j+ 1
2
− (1− ϕnj− 1

2
)Dn

j− 1
2

)
.

The first contribution is

Gn1 =
1− ν

2

∑
j∈Z

(
(1− ν)∆E,n

j+ 1
2

+ ν∆E,n

j− 1
2

)
(1− ϕnj+ 1

2
)Dn

j+ 1
2

= −1− ν
2

∑
j∈Z

(1− ϕnj+ 1
2
)∆E,n

j+ 1
2

Dn
j+ 1

2
− ν 1− ν

2

∑
j∈Z

(
∆E,n

j+ 1
2

−∆E,n

j− 1
2

)
(1− ϕnj+ 1

2
)Dn

j+ 1
2
.

Remark 1 and a Cauchy-Schwarz inequality yield

Gn1 ≤ C
(
Qϕn

(
∆E,n

)) 1
2

∑
j∈Z
|Dn

j+ 1
2
|2
 1

2

≤ C
(
Qϕn

(
∆E,n

)) 1
2 ∆x

1
2 .

Similarly, Remark 1 and simple inequalities yield for the second contribution Gn2 ≤ CQϕn(∆E,n)
1
2 ∆x

1
2 which

ends the proof. �
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Theorem 6. Let T > 0. Assume the CFL condition (26) and assume 0 ≤ ϕn
j+ 1

2

≤ 1 for all j ∈ Z and all n ∈ N
such that n∆t ≤ T . Then there exists a constant C(ν) > 0 such that

max
n∆t≤T

‖En‖∆x ≤ C(ν)∆x
1
2 .

Proof. Consider the above material (20-21-22) and Lemma 5. Take ε > 0 a small parameter. A Cauchy-Schwarz
inequality yields (

E
n
, tn
)

∆x
≤ CεQϕn

(
∆E,n

)
+
c

ε
∆x.

For ε small enough, the coefficient Cε is less than the coefficient 1
2ν in front of the quadratic form in the left

hand side of (20). One obtains

‖En+1‖2∆x−‖E
n‖2∆x

2∆t ≤ C∆x2‖En‖∆x + C∆x+ ∆t
2 ‖r

n‖2∆x (23)

where all constants depend on ν ∈ (0, 1). The end of the proof with a Gronwall inequality is standard. �

For example one obtains that the minmod scheme (5-7) with the minmod flux (8) is quadratically stable and
convergent in quadratic norm. This is already a progress with respect to the proof with TVD estimates in [9]

where the convergence of the minmod scheme is shown to be not less than O(∆x
1
2 ), but in the L1 norm which

is weaker than the quadratic norm.

4. Quadratic estimates in 2D

Now that quadratic stability of flux limiters has been established in 1D, we study a way to use this method
for the design of flux limiters in higher dimension. At the end of the construction, it will provide a strategy to
bypass the Goodman-Leveque obstruction by using quadratic stability instead of TVD stability. We will use the
same approach as in 1D, that is we will modify a 2D Lax-Wendroff linear scheme with limiters and study the
resulting scheme. However, in a preliminary stage, we need to define what we denote as the 2D Lax-Wendroff
scheme. Due to its simplicity, it is probable the scheme is not new, even we do not know a reference in the
literature.

One considers the same Finite Volume structure as in the Goodman-Leveque work [19]

U i,j − Ui,j
∆t

+ p
Ui+ 1

2 ,j
− Ui− 1

2 ,j

∆x
+ q

Ui,j+ 1
2
− Ui,j− 1

2

∆x
= 0, for all i, j (24)

where the explicit numerical fluxes at time step n are denoted as Ui+ 1
2 ,j

and Ui,j+ 1
2

for all possible i and j. The

mesh size is the same in the horizontal and vertical directions, that is ∆x = ∆y > 0.
The basic first-order accurate numerical method is the upwind scheme for which the fluxes are

Upwind fluxes: Uup

i+ 1
2 ,j

= Uup

i,j+ 1
2

= Ui,j . (25)

The upwind scheme (24-25) is stable in quadratic norm (and in all Lebesgue norms) under the CFL condition

ν =
∆t

∆x
≤ 1. (26)

The upwind scheme is naturally consistant at first order O(∆x + ∆t) = O(∆x) with the advection equation.
A way to derive the Lax-Wendroff scheme is to analyze with the modified equation technique the numerical
dissipation of the upwind scheme, and then to subtract the first order numerical dissipation.
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Lemma 7. The modified equation of the upwind scheme (24-25) is

∂tu+ p∂xu+ q∂yu−
p∆x

2
∂xxu−

q∆x

2
∂yyu+

∆t

2
(p∂x + q∂y)

2
u = 0, (27)

or equivalently

∂tu+ p∂xu+ q∂yu− (1− ν)
∆x

2
(p∂x + q∂y)

2
u− pq∆x

2
(∂x − ∂y)

2
u = 0. (28)

Proof. With the notations V nj = u(xj , tn) for all j and n, one has the expansions
p
V ni,j−V

n
i−1,j

∆x = p∂xu
n
i,j −

p∆x
2 ∂xxu

n
i,j +O(∆x2),

q
V ni,j−V

n
i,j−

∆x = q∂yu
n
i,j −

q∆x
2 ∂yyu

n
i,j +O(∆x2),

V n+1
i,j −V

n
i,j

∆t = ∂tu
n
i,j − ∆t

2 ∂ttu
n
i,j +O(∆t2).

(29)

For u a solution to (24), one has ∂tu = −(p∂x + q∂y)u and ∂ttu = (p∂x + q∂y)2u. Plugging (29) in (24-25) , one
gets

∂tu+ p∂xu+ q∂yu−
p∆x

2
∂xxu−

q∆x

2
∂yyu+

∆t

2
(p∂x + q∂y)

2
u = O(∆x2 + ∆t2)

which is the modified equation at second order. The tensorial nature of the numerical diffusion is better revealed
after rearrangement of the second terms in the modified equation

−p∂xxu− q∂yyu+ ν(p∂x + q∂y)2u

= −(p∂x + q∂y)2u+ (p2 − p)∂xxu+ 2pq∂xyu+ (q2 − q)∂yyu+ ν(p∂x + q∂y)2u

= −(1− ν)(p∂x + q∂y)2u− pq (∂xx − 2∂xy + ∂yy)u

= −(1− ν)(p∂x + q∂y)2u− pq (∂x − ∂y)
2
u.

It gives (28). �

The modified equation (28) couples an advection equation with an anisotropic diffusion equation. The theory
of discrete anisotropic equations made recent progress on the basis of Selling’s decomposition of symmetric
tensors [4]. In this work, we use a more direct approach to analyze the tensorial nature of the numerical

diffusion. The first contribution (1− ν)∆x
2 (p∂x + q∂y)

2
u is the diffusion in the direction of the flow, it vanishes

for ν = 1. The second contribution −pq∆x
2 (∂x − ∂y)

2
u is the diffusion in the direction at angle 3

4π with the
horizontal direction. It is independent of the time step and is purely a two-dimensional grid effect. This term
has no counterpart in dimension one.

We define the 2D Lax-Wendroff type scheme for which the fluxes are

Lax-Wendroff fluxes:

{
U lw
i+ 1

2 ,j
=

Ui,j+Ui+1,j

2 − ν Ui+1,j−pUi,j−qUi+1,j−1

2 ,

U lw
i,j+ 1

2

=
Ui,j+Ui,j+1

2 − ν Ui,j+1−pUi−1,j+1−qUi,j
2 ,

(30)

It can be rewritten in another equivalent form which is more adapted to our purposes. We note the difference
in the direction of the flow

∆i,j = Ui,j − pUi−1,j − qUi,j−1

and we define modified fluxes

Modified fluxes:

{
Umod
i+ 1

2 ,j
= Ui,j + 1−ν

2 ∆i+1,j ,

Umod
i,j+ 1

2

= Ui,j + 1−ν
2 ∆Ui,j+1,

(31)
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We consider also the corner difference

∆i+ 1
2 ,j+

1
2

= Ui,j+1 − Ui+1,j . (32)

It allows to defined the scheme

U i,j − Ui,j
∆t

+ p
Umod
i+ 1

2 ,j
− Umod

i− 1
2 ,j

∆x
+ q

Umod
i,j+ 1

2

− Umod
i,j− 1

2

∆x
+
pq

2

∆i− 1
2 ,j+

1
2
−∆i+ 1

2 ,j−
1
2

∆x
= 0 (33)

Lemma 8. The scheme obtained with the fluxes (30) in the standard Finite Volume formulation (24) is equal to
the scheme (33) with the Finite Volume fluxes (31) and the corner correction (32). It is second order accurate
in space and time and does not respect the maximum principle.

Proof. The total incoming flux of (30)-(24) is

pU lw
i− 1

2 ,j
+ qU lw

i,j− 1
2

=
pUi−1,j+qUi,j−1

2 +
Ui,j

2 −
ν
2 ∆Ui,j

= pUi−1,j + qUi,j−1 + 1−ν
2 ∆i,j = pUmod

i− 1
2 ,j

+ qUmod
i,j− 1

2

,

so it is equal to the total incoming flux of (31-33).
The total outgoing flux of (30)-(24) is

pU lw
i+ 1

2 ,j
+ qU lw

i,j+ 1
2

=
Ui,j

2 +
pUi+1,j+qUi,j+1

2 − ν
2p∆i+1,j − ν

2 q∆Ui,j+1

= Ui,j + 1−ν
2 p∆Ui+1,j + 1−ν

2 q∆i,j+1

− q2 (Ui,j+1 − pUi−1,j+1 − qUi,j)
−Ui,j2 +

pUi+1,j+qUi,j+1

2 − p
2 (Ui+1,j − pUi,j − qUi+1,j−1)

= pUmod
i− 1

2 ,j
+ qUmod

i,j− 1
2

− pqUi,j + pq
2 Ui+1,j−1 + pq

2 Ui−1,j+1

= pUmod
i− 1

2 ,j
+ qUmod

i,j− 1
2

+ pq
2

(
∆i− 1

2 ,j+
1
2
−∆i+ 1

2 ,j−
1
2

)
which is the sum of the total outgoing fluxes plus the corner correction in (33). So both schemes are the same.
The Lax-Wendroff fluxes (30) are easily justified by the modified equation, so the scheme is second-order accurate
(a confirmation is in the numerical Section 6). For p = 1 and q = 0, the scheme is identical to the classical
Lax-Wendroff scheme which does not respect the maximum principle. �

The 2D spaces for the numerical analysis are extension of the 1D spaces

l2 =

U = (Ui,j)i,j∈Z such that
∑
ij

|Ui,j |2 <∞


and

V∆x =

U ∈ l2 with the norm ‖U‖2∆x = ∆x
∑
ij

|Ui,j |2
 .

4.1. 2D limiters

The Lax-Wendroff scheme is written (33) as a Finite Volume scheme with additional corner interactions.
This formulation is adapted to the tensorial nature of the numerical diffusion visible in the modified equation
(28). The introduction of flux limiters ϕi+ 1

2 ,j
, ϕi,j+ 1

2
and ϕi+ 1

2 ,j+
1
2

is done my mimicking the 1D procedure
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(7-8). It yields the scheme

U i,j − Ui,j
∆t

+ p
U lim
i+ 1

2 ,j
− U lim

i− 1
2 ,j

∆x
+ q

U lim
i,j+ 1

2

− U lim
i,j− 1

2

∆x
+
pq

2

C lim
i− 1

2 ,j+
1
2

− C lim
i+ 1

2 ,j−
1
2

∆x
= 0 (34)

where 
U lim
i+ 1

2 ,j
= Ui,j + 1−ν

2 ϕi+1,j∆i+1,j ,

U lim
i,j+ 1

2

= Ui,j + 1−ν
2 ϕi,j+1∆i,j+1,

C lim
i+ 1

2 ,j+
1
2

= ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2
.

(35)

The cell-based limiter ϕi,j is the equivalent of ϕj+ 1
2

is 1D (while ∆i,j is the equivalent of ∆j− 1
2
). The corner-

based limiter limiter ϕi− 1
2 ,j+

1
2

is a new term related to the tensorial nature of numerical diffusion in 2D. Inspired

by the quadratic properties in 1D, we study the properties of the scheme when the flux limiters satisfy the bounds

0 ≤ ϕi,j , ϕi+ 1
2 ,j+

1
2
≤ 1 for all i, j. (36)

We will assume without restriction that U ∈ V∆x.

Lemma 9. One has
∑
ij |U i,j |2 =

∑
ij |Ui,j |2 −Qϕ(∆) where the quadratic form is

Qϕ(∆) = ν(1− ν)
∑
ij

|∆i,j |2 + νpq
∑
ij

∣∣∣∆i− 1
2 ,j+

1
2

∣∣∣2
−ν(1− ν)

∑
ij

ϕi,j∆i,j ((1− ν)∆i,j + νp∆i−1,j + νq∆i,j−1)

−νpq
∑
ij

ϕi− 1
2 ,j+

1
2
∆i− 1

2 ,j+
1
2

(
(1− ν)∆i− 1

2 ,j+
1
2

+ νp∆i− 3
2 ,j+

1
2

+ νq∆i− 1
2 ,j−

1
2

)
−
∑
ij

∣∣∣∣ν(1− ν)

2
(pϕi+1,j∆i+1,j + qϕi−1,j∆i−1,j − ϕi,j∆i,j)

+
νpq

2

(
ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

)∣∣∣2
Proof. The structure of the calculation is the same as in the proof of Lemma 1. One decompose

Qϕ(∆) =
∑
ij

|Ui,j |2 −
∑
ij

|Uup
i,j |

2

︸ ︷︷ ︸
=Q1

+
∑
ij

|Uup
i,j |

2 −
∑
ij

|U i,j |2︸ ︷︷ ︸
=Q2

.

• Calculation of Q1.
Since Uup

i,j = (1− ν)Ui,j + νpUi−1,j + νqUi,j−1, one has∑
ij |U

up
i,j |2 =

∑
ij

(
(1− ν)2 + ν2p2 + ν2q2

)
|Ui,j |2

+2
∑
ij

(
(1− ν)νpUi,jUi−1,j + (1− ν)νqUi,jUi,j−1 + ν2pqUi−1,jUi,j−1

)
,

and one also has

ν(1− ν)
∑
ij

|Ui,j − pUi−1,j − qUi,j−1|2 = ν(1− ν)
∑
ij

(
1 + p2 + q2

)
|Ui,j |2

−2ν(1− ν)pUi,jUi−1,j − 2ν(1− ν)qUi,jUi,j−1 + 2ν(1− ν)pqUi−1,jUi,j−1.
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One gets by addition

|Uup
i,j |

2 + ν(1− ν)
∑
ij

|Ui,j − pUi−1,j − qUi,j−1|2

=
∑
ij

(
(1− ν)2 + ν2p2 + ν2q2 + ν(1− ν) + ν(1− ν)p2 + ν(1− ν)q2

)
|Ui,j |2 + 2νpqUi−1,jUi,j−1

=
∑
ij

(
(1− ν) + νp2 + νq2

)
|Ui,j |2 + 2νpqUi−1,jUi,j−1

=
∑
ij

|Ui,j |2 − νpq
∑
ij

|Ui−1,j − Ui,j−1|2 .

So

Q1 = ν(1− ν)
∑
ij

|Ui,j − pUi−1,j − qUi,j−1|2 + νpq
∑
ij

|Ui−1,j − Ui,j−1|2

= ν(1− ν)
∑
ij

|∆i,j |2 + νpq
∑
ij

∣∣∣∆i− 1
2 ,j+

1
2

∣∣∣2 ≥ 0.

• Calculation of Q2.
One has

Q2 = −2
∑
ij

(U i,j − Uup
i,j )Uup

i,j︸ ︷︷ ︸
=Q3

−
∑
ij

|U i,j − Uup
i,j |

2

where

U i,j = Uup
i,j−

ν(1− ν)

2
(pϕi+1,j∆i+1,j + qϕi−1,j∆i−1,j − ϕi,j∆i,j)−

νpq

2

(
ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

)
.

The first term in Q2 is

Q3 = −ν(1− ν)

2

∑
ij

(pϕi+1,j∆i+1,j + qϕi−1,j∆i−1,j − ϕi,j∆i,j) ((1− ν)Ui,j + νpUi−1,j + νqUi,j−1)

−νpq
2

∑
ij

(
ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

)
((1− ν)Ui,j + νpUi−1,j + νqUi,j−1) .

Rearrangement yields

Q3 =
ν(1− ν)

2

∑
ij

ϕi,j∆i,j ((1− ν)∆i,j + νp∆i−1,j + νq∆i,j−1)

+
νpq

2

∑
ij

ϕi− 1
2 ,j+

1
2
∆i− 1

2 ,j+
1
2

(
(1− ν)∆i− 1

2 ,j+
1
2

+ νp∆i− 3
2 ,j+

1
2

+ νq∆i− 1
2 ,j−

1
2

)
.

Other calculations are immediate. �

To analyze the sign of the quadratic form in Lemma 9, it is possible to rely on the one-dimensional result
of Proposition 2 for the simpler quadratic form (12). Let us define four quantities H1,2,3,4. The first one H1

concerns the cell-based differences analyzed in the horizontal direction by means of the 1D quadratic form (12)

H1 =
∑
ij

|∆i,j |2 −
∑
ij

ϕi,j∆i,j ((1− ν)∆i,j + ν∆i−1,j)−
ν

4

∑
ij

|ϕi,j∆i,j − ϕi−1,j∆i−1,j |2 .
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The second one H2 concerns the cell-based differences analyzed in the vertical direction by means of (12)

H2 =
∑
ij

|∆i,j |2 −
∑
ij

ϕi,j∆i,j ((1− ν)∆i,j + ν∆i,j−1)− ν

4

∑
ij

|ϕi,j∆i,j − ϕi,j−1∆i,j−1|2 .

The third one H3 concerns the corner-based differences analyzed in the horizontal direction

H3 =
∑
ij

|∆i+ 1
2 ,j+

1
2
|2 −

∑
ij

ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2

(
(1− ν)∆i+ 1

2 ,j+
1
2

+ ν∆i− 1
2 ,j+

1
2

)

−ν
4

∑
ij

∣∣∣ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2
− ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2

∣∣∣2 .
Finally the fourth one H4 concerns the corner-based differences analyzed in the vertical direction

H4 =
∑
ij

|∆i+ 1
2 ,j+

1
2
|2 −

∑
ij

ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2

(
(1− ν)∆i+ 1

2 ,j+
1
2

+ ν∆i+ 1
2 ,j−

1
2

)

−ν
4

∑
ij

∣∣∣ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

∣∣∣2 .
One has the decomposition

Qϕ(∆) = pH1 + qH2 + pH3 + qH4 +H5 (37)

where the additional term is

H5 = ν2(1−ν)p
4

∑
ij |ϕi,j∆i,j − ϕi−1,j∆i−1,j |2

+ ν2(1−ν)q
4

∑
ij |ϕi,j∆i,j − ϕi,j−1∆i,j−1|2

+ ν2p2q
4

∑
ij

∣∣∣ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2
− ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2

∣∣∣2
+ ν2pq2

4

∑
ij

∣∣∣ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

∣∣∣2
−

∑
ij

∣∣∣ν(1−ν)
2 (pϕi+1,j∆i+1,j + qϕi−1,j∆i−1,j − ϕi,j∆i,j)

+νpq
2

(
ϕi− 1

2 ,j+
1
2
∆i− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

)∣∣∣2
(38)

The term H5 is by definition O(ν2), while H1,2,3,4 are affine with respect to the Courant number ν. Moroever

H5 is homogeneous of degree 2 with respect to all products (ϕi,j∆i,j)ij and
(
ϕi+ 1

2 ,j−
1
2
∆i+ 1

2 ,j−
1
2

)
ij

. Under the

conditions (36) and assuming the CFL condition, one already has H1,2,3,4 ≥ 0 as a corollary of Proposition 2.
It remains to study the sign of H5.

Lemma 10. Under the previous conditions, one has H5 ≥ 0.

Proof. Let us begin with notations which are useful to synthesize the structure of H5. For a = (ai,j) ∈ l2 defined
at centers, one defines the operator L such that (La)i,j = ai,j − pai−1,j − qai,j−1 and the operator M such
that (Ma)i,j = ai−1,j − ai,j−1. For b = (bi+ 1

2 ,j+
1
2
) ∈ l2 defined at vertices, one defines with similar notations

(Lb)i+ 1
2 ,j+

1
2

= bi+ 1
2 ,j+

1
2
−pbi− 1

2 ,j+
1
2
−qbi+ 1

2 ,j−
1
2

and (Mb)i+ 1
2 ,j+

1
2

= bi− 1
2 ,j+

1
2
−bi+ 1

2 ,j−
1
2
. Let T the translation

operator such that a = Tb means ai,j = bi+ 1
2 ,j+

1
2
. The adjoints operators Lt and M t are defined with respect

to the natural quadratic scalar product in l2. One has for example (Lta)i,j = ai,j − pai+1,j − qai,j+1.
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One uses a = (ai,j) where ai,j = ϕi,j∆i,j is defined at centers and b = (bi+ 1
2 ,j+

1
2
) where bi+ 1

2 ,j+
1
2

=

ϕi+ 1
2 ,j+

1
2
∆i+ 1

2 ,j+
1
2

is defined at vertices. Then one writes

H5 = ν2(1−ν)
4

∑
ij

p|ai,j − ai+1,j |2 + q|ai,j − ai,j+1|2

+ν2pq
4

∑
ij

p|bi,j − bi−1,j |2 + q|bi,j − bi,j−1|2 −
ν2

4

∥∥(1− ν)Lta− pqTMb
∥∥2

l2
.

One uses the identity pα2 + qβ2 = (pα+ qβ)2 + pq(α− β)2 to transform the first two lines H5. One obtains

H5 = ν2(1−ν)
4

(
‖Lta‖2l2 + pq‖M ta‖2l2

)
+ ν2pq

4

(
‖Lb‖2l2 + pq‖Mb‖2l2

)
− ν2

4 ‖(1− ν)Lta− pqTMb‖2l2 .

An expansion of the last square yields

‖(1− ν)Lta− pqTMb‖2l2 = (1− ν)2‖Lta‖2l2 − 2(1− ν)pq(Lta, TMb)l2 + p2q2‖Mb‖2l2

= (1− ν)2‖Lta‖2l2 − 2(1− ν)pq(M ta, TLb)l2 + p2q2‖Mb‖2l2
because the double product is rearranged as (Lta, TMb)l2 = (M ta, TLb)l2 using the commutation property
LTM = MTL. So one has the formula

H5 =
ν3(1− ν)

4
‖Lta‖2l2 +

ν2(1− ν)pq

4
‖M ta‖2l2 +

ν2pq

4
‖Lb‖2l2 +

ν2(1− ν)pq

2
(M ta, TLb)l2

=
ν3(1− ν)

4
‖Lta‖2l2 +

ν3(1− ν)pq

4
‖M ta‖2l2 +

ν2pq

4
‖(1− ν)M ta+ TLb‖2l2 .

Since it is the sum of three non negative terms, the claim is obtained. �

Theorem 11. Under the CFL condition (26), the scheme (35-36) is quadratically stable and is convergent with

an order at least O(∆x
1
2 ) in quadratic norm.

Proof. Stability is a consequence of (37) and Lemma 10. To show convergence, it is sufficient to adapt Section
3.2. One considers that the truncation error rn = sn − tn is a sum of the truncation error sn = O(∆x2) of the
Lax-Wendroff scheme plus the contribution (39) of the limiters: it denoted as tn =

(
tni,j
)
, like (19) in 1D. The

latter is function of all 1 − ϕi,j and all 1 − ϕi+ 1
2 ,j+

1
2
. The identity (20) also holds in 2D and it is sufficient to

estimate (E
n
, tn)∆x as in (21). We give below the main steps of the proof.

• First step. One writes Eup,n
i,j = (1− ν)Eni,j + νpEni−1,j + νqEni,j−1, E

n

i,j = Eup,n
i,j + Fi,j and

Fni,j = −ν(1− ν)

2

(
pϕi+1,j∆

E,n
i+1,j + qϕi−1,j∆

E,n
i−1,j − ϕi,j∆

E,n
i,j

)
−νpq

2

(
ϕi− 1

2 ,j+
1
2
∆E,n

i− 1
2 ,j+

1
2

− ϕi+ 1
2 ,j−

1
2
∆E,n

i+ 1
2 ,j−

1
2

)
.

The total residual rn = sn + tn is split in two terms. The first is the residual of the linear Lax-Wendroff scheme
so it is O(∆x2). The second one is the departure to the Lax-Wendroff residual (compare with (19))

tni,j = −ν(1− ν)

2

p(1− ϕi+1,j)Di+1,j + q(1− ϕi−1,j)Di−1,j − (1− ϕi,j)Di,j

∆x
(39)

−νpq
2

(1− ϕi− 1
2 ,j+

1
2
)Di− 1

2 ,j+
1
2
− (1− ϕi+ 1

2 ,j−
1
2
)Di+ 1

2 ,j−
1
2

∆x
.

One has (
E
n
, tn
)

∆x
= (Eup,n, tn)∆x + (Fn, tn)∆x .



16 TITLE WILL BE SET BY THE PUBLISHER

• Second step. One has by rearrangement

(Eup,n, tn)∆x =
ν(1− ν)

2

∑
ij

(
(1− ν)∆E,n

i,j + νp∆E,n
i−1,j + νq∆E,n

i,j−1

)
(1− ϕi,j)Di,j

+
νpq

2

∑
ij

(
(1− ν)∆E,n

i+ 1
2 ,j−

1
2

+ νp∆E,n

i− 1
2 ,j−

1
2

+ νq∆E,n

i+ 1
2 ,j−

3
2

)
(1− ϕi+ 1

2 ,j−
1
2
)Di+ 1

2 ,j−
1
2

• Third step. From the decomposition (37) and Remark 1, one obtains the bound

∑
ij

(
(1− ϕni,j)|∆

E,n
i,j |2 + (1− ϕn

i+ 1
2 ,j+

1
2

)|∆E,n

i+ 1
2 ,j+

1
2

|2

+p|∆E,n
i,j −∆E,n

i−1,j |2 + q|∆E,n
i,j −∆E,n

i,j−1|2

+p|∆E,n

i+ 1
2 ,j+

1
2

−∆E,n

i− 1
2 ,j+

1
2

|2 + q|∆E,n

i+ 1
2 ,j+

1
2

−∆E,n

i+ 1
2 ,j−

1
2

|2
)
≤ C(ν)Qϕn(∆E,n)

• Fourth step. One has the fact that |Di,j |+
∣∣∣Di+ 1

2 ,j−
1
2

∣∣∣ ≤ C∆x with only O(∆x−1) being non zero. So one

obtains by a Cauchy-Schwarz inequality that

(Eup,n, tn)∆x ≤ C(ν)Qϕn(∆E,n)
1
2 ∆x

1
2 .

• Fifth step. One has more directly (Fn, tn)∆x ≤ C(ν)Qϕn(∆n)
1
2 ∆x

1
2 . One obtains the 2D equivalent of

Lemma 5. It yields the proof after an estimate (23) which is the same as in Theorem 6. �

5. Construction of a 2D minmod limiter

The objective in this section is to show that the above considerations can be used to construct a practical
procedure for the definition of the limiters (35-36). The proposed method relies in a first step on the LBV
method [11,12] which is on extension of the TVD criterion on general grid. This method is well suited to design

the limiters (ϕi,j) centered in the cells. The second step is devoted to the definition of the limiters
(
ϕi+ 1

2 ,j+
1
2

)
for the corner interactions.

5.1. Construction of cell-based limiters ϕi,j

The LBV semi-norm is defined in [12] for general meshes. We review the LBV framework then we use it to
define the cell-based limiters ϕi,js. Another idea will be used to define the corner-based limiters.

5.1.1. The LBV semi-norm on a cartesian mesh

A simple definition of the LBV semi-norm on a cartesian mesh is the following.

Definition 12. On a cartesian mesh, the LBV semi-norm is

|U |LBV = ∆x2
∑
i,j

∣∣∣∣Ui,j − pUi−1,j − qUi,j−1

∆x

∣∣∣∣ = ∆x
∑
i,j

|Ui,j − pUi−1,j − qUi,j−1| . (40)

The interest of the LBV semi-norm is that it is endowed with an appropriate multidimensional Harten
calculus [22]. Let us consider the local minimal value and the local maximal value

mi,j = min (Ui,j , pUi−1,j + qUi,j−1) and Mi,j = max (Ui,j , pUi−1,j + qUi,j−1) .
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Let us assume that the numerical solution at the end of time step verifies for all i, j a double inequality

mi,j ≤ U i,j ≤Mi,j , (41)

which can be rewritten as

U i,j = (1− di,j)Ui,j + di,j (pUi−1,j + qUi,j−1) (42)

where

0 ≤ di,j ≤ 1. (43)

Lemma 13. Assume (41) for all i, j. Then |U |LBV ≤ |U |LBV.

Proof. From (42), one has

U i,j −
(
pU i−1,j + qU i,j−1

)
= Ui,j − (pUi−1,j + qUi,j−1)
− di,j (Ui,j − (pUi−1,j + qUi,j−1))
+ di−1,jp (Ui−1,j − (pUi−2,j + qUi−1,j−1))
+ di,j−1q (Ui,j−1 − (pUi−1,j−1 + qUi,j−2))
= (1− di,j) (Ui,j − (pUi−1,j + qUi,j−1))
+ pdi−1,j (Ui−1,j − (pUi−2,j + qUi−1,j−1))
+ qdi,j−1 (Ui,j−1 − (pUi−1,j−1 + qUi,j−2)) .

One obtains the inequality∣∣U i,j − (pU i−1,j + qU i,j−1

)∣∣ ≤ (1− di,j) |Ui,j − (pUi−1,j + qUi,j−1)|
+ pdi−1,j |Ui−1,j − (pUi−2,j + qUi−1,j−1)|
+ qdi,j−1 |Ui,j−1 − (pUi−1,j−1 + qUi,j−2)| .

Summation over all indices yields∑
i,j

∣∣U i,j − (pU i−1,j + qU i,j−1

)∣∣ ≤∑
i,j

((1− di,j) + pdi,j + qdi,j) |Ui,j − (pUi−1,j + qUi,j−1)|

which yields the claim since p+ q = 1. �

The upwind scheme is LVD, indeed it admits the explicit formulation U i,j = (1−ν)Ui,j+ν (pUi−1,j + qUi,j−1)
which satisfies the criterion of Lemma 13. The two-dimensional Lax-Wendroff fluxes (30) generate a scheme
which is not LVD for 0 < ν < 1: this is evident, since the Lax-Wendroff scheme is not TVD in dimension one
which corresponds to p = 1 and q = 0. The interesting question is to find a constructive method for the design
of the classical Finite Volume numerical fluxes on the edges Un

i+ 1
2 ,j

and Un
i,j+ 1

2

such that the LVD criterion is

satisfies. Below we use the method proposed by Lagoutière.

Lemma 14. Assume the usual CFL condition 0 < ν ≤ 1. Then the upwind fluxes and Lax-Wendroff fluxes
(30) satisfy for all i, j

mi,j ≤ pUi− 1
2 ,j

+ qUi,j− 1
2
≤Mi,j . (44)

Proof. Evident. �

Lemma 15. Consider the explicit version of the scheme (24)

U i,j = Ui,j − ν
(
pUi+ 1

2 ,j
+ qUi,j+ 1

2

)
+ ν

(
pUi− 1

2 ,j
+ qUi,j− 1

2

)
. (45)
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Assume the numerical fluxes satisfies two family of inequalities which are, firstly the incoming conditions (44)
for all i, j, and secondly the following outgoing conditions for all i, j{

Ui,j + 1−ν
ν (Ui,j −Mi,j) ≤ pUi+ 1

2 ,j
+ qUi,j+ 1

2
,

Ui,j + 1−ν
ν (Ui,j −mi,j) ≥ pUi+ 1

2 ,j
+ qUi,j+ 1

2
.

(46)

Then |U |LBV ≤ |U |LBV.

Inequalities (44) are called incoming because they concern incoming fluxes Ui− 1
2 ,j

and Ui,j− 1
2

in a given cell

with indices i and j. Inequalities (46) are called outgoing because they concern outgoing fluxes Ui+ 1
2 ,j

and

Ui,j+ 1
2
. The first inequalities can also be interpreted as a kind of consistency requirement of the incoming flux.

Proof of Lemma 15. From (45), (44) and (46), one obtains the upper bound

U i,j ≤ Ui,j − ν
(
Ui,j +

1− ν
ν

(Ui,j −Mi,j)

)
+ νMi,j

that is U i,j ≤Mi,j after simplifications. Similarly one has

U i,j ≥ Ui,j − ν
(
Ui,j +

1− ν
ν

(Ui,j −mi,j)

)
+ νmi,j .

that is U i,j ≥ mi,j after simplifications. �

Lemma 16. Assume 0 < ν ≤ 1. Then the upwind fluxes satisfy all inequalities (44) and (46).

Proof. The bounds (44) are already verified in Lemma 14. The remaining inequalities (46) are evident because
the upwind fluxes yield pUi+ 1

2 ,j
+ qUi,j+ 1

2
= Ui,j . �

5.1.2. Explicit formula for ϕi,j

Next we consider the scheme (34) defined by the minmod type limiters

ϕi,j = minmod
(

1, ri− 1
2 ,j
, ri,j− 1

2

)
(47)

where 
ri− 1

2 ,j
=

Ui,j − pUi−1,j − qUi,j−1

Ui−1,j − pUi−2,j − qUi−1,j−1
,

ri,j− 1
2

=
Ui,j − pUi−1,j − qUi,j−1

Ui,j−1 − pUi−1,j−1 − qUi,j−2

(48)

and by

ϕi+ 1
2 ,j+

1
2

= 0. (49)

The latter means that the correction terms at corners are not taken into account. They will be reintroduced
later.

Lemma 17. The scheme (34-35) with (47-49) satisfies the special form (41) of the maximum principle, is LVD
and is stable in quadratic norm. It is formally only first order accurate.

Proof. By definition, the requirements (36) are satisfied so quadratic stability holds. The scheme is only first-
order accurate because of (49), that is the corner contributions miss with respect to the formulation (31-33) of
the second-order accurate Lax-Wendroff scheme.
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To show that it is LVD and satisfies the maximum principle under the form (41), one relies on the verification
of of (44-46). One has

pUi− 1
2 ,j

+ qUi,j− 1
2

= pUi−1,j + qUi,j−1 + ϕi,j (Ui,j − pUi−1,j − qUi,j−1)

= (1− ϕi,j) (Ui,j − pUi−1,j − qUi,j−1) + ϕi,jUi,j ∈ [mi,j ,Mi,j ]

so the double inequality (44) holds for the total incoming flux.
Moreover one has by construction (47-48) that

ϕi+1,j (Ui+1,j − pUi,j − qUi+1,j−1) = αi,j (Ui,j − pUi−1,j − qUi,j−1) 0 ≤ αi,j ≤ 1

and

ϕi+1,j (Ui+1,j − pUi,j − qUi+1,j−1) = βi,j (Ui,j − pUi−1,j − qUi,j−1) 0 ≤ βi,j ≤ 1.

So one can write

pUi+ 1
2 ,j

+ qUi,j+ 1
2

= Ui,j +
1− ν

2
(pαi,j + qβi,j) (Ui,j − pUi−1,j − qUi,j−1) .

Then one has the lower bound

pUi+ 1
2 ,j

+ qUi,j+ 1
2
≥ Ui,j +

1− ν
2

(pαi,j + qβi,j) (Ui,j −Mi,j) ≥ Ui,j +
1− ν

2
(Ui,j −Mi,j)

from which the first inequality of (46) is deduced. Similar manipulations yield the second inequality of (46).
Therefore the scheme is LVD. �

Next we desire to show the asymptotic value ϕi,j ≈ 1 for smooth solutions. This is the first step is showing
that the scheme is formally second order, which is one element of the refutation of the Goodman-Leveque
obstruction Theorem. The second step will to construct the corner limiter ϕi+ 1

2 ,j+
1
2
≈ 1, contrary to (49) which

is analyzed in this section. We consider the smooth solution u issued from an initial data (2) and the discrete
data obtained by interpolation

Ui,j = u(i∆x, j∆x) for all (i, j). (50)

Lemma 18. Consider the scheme (34-35) with the limiters (47-49) and with the initialization (2-50). Assume
the solution is locally non characteristic

(a∂xu+ b∂yu) (i∆x, j∆x) 6= 0.

Then ϕi,j = 1 +O(∆x).

Proof. We note xi = i∆x and yj = j∆x. From (48), a Taylor expansion shows

Ui,j − pUi−1,j − qUi,j−1 = ∆x (p∂xu+ q∂yu) (xi, yj) +O(∆x2).

Of course one also has Ui−1,j−pUi−2,j−qUi−1,j−1 = ∆x (p∂xu+ q∂yu) (xi, yj)+O(∆x2). The non characteristic
condition yields that ri− 1

2 ,j
= 1 +O(∆x). Similarly ri,j− 1

2
= 1 +O(∆x). The claim is obtained by (47). �

5.2. Construction of corner-based limiters ϕi+ 1

2
,j+ 1

2

The LVD requirement is restricted to the definition ϕi,j and is a poor interest for the design of ϕi+ 1
2 ,j+

1
2
.

This is why a different method is used to construct explicitly the corner-based limiters in a way such that
ϕi+ 1

2 ,j+
1
2
≈ 1 for smooth solutions.
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Since it is important for many applications, we concentrate hereafter on the fulfillment of the maximum
principle for the numerical solution at the end of the time step (as in many references cited in the introduction).
That is we ask that

mabs
i,j = min (Ui,j , Ui−1,j , Ui,j−1) ≤ U i,j ≤Mabs

i,j = max (Ui,j , Ui−1,j , Ui,j−1) (51)

where U i,j at the end of the time step if obtained from the numerical solution defined at (47-48) which is

denoted as Ûi,j . That is Ûi,j takes of the standard fluxes through the edges while U i,j incorporates the corner
corrections. Note that mabs

i,j ≤ mi,j ≤ Ui,j ≤Mi,j ≤Mabs
i,j .

The formula for Ûi,j is

Ûi,j − Ui,j
∆t

+ p
U lim
i+ 1

2 ,j
− U lim

i− 1
2 ,j

∆x
+ q

U lim
i,j+ 1

2

− U lim
i,j− 1

2

∆x
= 0. (52)

It is followed by corner corrections

U i,j − Ûi,j
∆t

+
pq

2

C lim
i− 1

2 ,j+
1
2

− C lim
i+ 1

2 ,j−
1
2

∆x
= 0. (53)

One gets from (52-53)

C lim
i− 1

2 ,j+
1
2
− C lim

i+ 1
2 ,j−

1
2

=
2

pqν

(
Ûi,j − U i,j

)
.

To fulfill (51) we require 
1
pqν

(
Ûi,j −Mabs

i,j

)
≤ C lim

i− 1
2 ,j+

1
2

≤ 1
pqν

(
Ûi,j −mabs

i,j

)
,

1
pqν

(
Ûi,j −Mabs

i,j

)
≤ −C lim

i+ 1
2 ,j−

1
2

≤ 1
pqν

(
Ûi,j −mabs

i,j

)
.

(54)

It leads to a definition of the corner-based limiters

ϕi− 1
2 ,j+

1
2

= min
(
ϕ+
i− 1

2 ,j+
1
2

, ϕ−
i− 1

2 ,j+
1
2

)
(55)

where 
ϕ+
i− 1

2 ,j+
1
2

= minmod

(
1,

1
pqν (Ûi,j−mabs

i,j )
∆
i− 1

2
,j+ 1

2

)
+ minmod

(
1,

1
pqν (Ûi,j−Mabs

i,j )
∆
i− 1

2
,j+ 1

2

)
,

ϕ−
i+ 1

2 ,j−
1
2

= minmod

(
1,

1
pqν (Ûi,j−mabs

i,j )
−∆

i+ 1
2
,j− 1

2

)
+ minmod

(
1,

1
pqν (Ûi,j−Mabs

i,j )
−∆

i+ 1
2
,j− 1

2

)
.

(56)

Note that Ûi,j −mabs
i,j ≥ 0 and Ûi,j −Mabs

i,j ≤ 0. Therefore one term vanishes systematically in both lines of
(56).

Lemma 19. The new scheme with corner limitation (56) satisfies the maximum principle. Assume the solution
is locally not an extrema

|∂xu(xi, yj)|+ |∂yu(xi, yj)| > 0.

Then it is formally second-order.

Proof. For the simplicity of the analysis, we consider that the previous stage for the construction of Ûi,j is
performed with optimal limitation, that is ϕi,j ≡ 1. Then the previous optimally removes the diffusion in the
direction of the flow visible in the modified equation (28). So one can write

Ûi,j = u(xi, yj)−∆xν(p∂x + q∂y)u(xi, yj) + pq
∆x2ν

2
(∂x − ∂y)

2
u(xi, yj) +O(∆x3).
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Let us analyze the first ratio R =
1
pqν (Ûi,j−mabs

i,j )
∆
i− 1

2
,j+ 1

2

. For the simplicity of the analysis we assume that ∂yu(xi, yj) >

∂xu(xi, yj) which is not a restriction. One can write mabs
i,j = u(xi, yj) + ∆xmin (0,−∂xu(xi, yj),−∂yu(xi, yj)) +

O(∆x2) that is

mabs
i,j = u(xi, yj)−∆xmax (0, ∂yu(xi, yj)) +O(∆x2).

So

Ûi,j −mabs
i,j = ∆x (max (0, ∂yu(xi, yj))− ν(p∂x + q∂y)u(xi, yj)) +O(∆x2).

One also has

∆i− 1
2 ,j+

1
2

= −∆x (∂x − ∂y)u(xi, yj) +O(∆x2)

One gets the approximation

R =
max (0, ∂yu(xi, yj))− ν(p∂x + q∂y)u(xi, yj)

pqν (∂yu(xi, yj)− ∂xu(xi, yj))
+O(∆x).

It can be reorganized as

R =
1

q
+

max (0, ∂yu(xi, yj))− ν∂yu(xi, yj)

pqν (∂yu(xi, yj)− ∂xu(xi, yj))
+O(∆x)

Asymptotically for ∆x → 0 and q < 1, one has R ≥ 1
q > 1. Considering (56) one obtains ϕ+

i− 1
2 ,j+

1
2

= 1

for ∆x small enough. Other cases are similar so one gets that ϕ+
i± 1

2 ,j∓
1
2

= 1 for small ∆x. One recovers the

Lax-Wendroff scheme at the limit which is second order in space and time. �

At the end of this construction, the scheme (34-35) with the edge limiters (47-49) and the corner limiters

(56) is convergent in quadratic norm with an order not less than O(∆x
1
2 ), is formally second order away from

characteristic points and satisfies the maximum principle.

6. Numerical illustrations

We provide some numerical illustrations of the capabilities of the numerical method that has been developed
in the above theoretical Sections. The results show without ambiguity that the O(∆x

1
2 ) is pessimistic. We

compare the results calculated with the Lax-Wendroff scheme (30-33) and with the new nonlinear scheme
(34-35)+(47-49)+(56). The error is reported in L1, L2 and L∞ norms with a procedure explained in Section
6.1.

The domain of calculation is the academic square with periodic boundary conditions, i.e. the torus T =
[0, 1]2per. In what follows we report error measurements in function of the mesh size in different norms, and
deduce the order of convergence. One observes that the order of convergence of the nonlinear scheme is between
1 and the order of convergence of the Lax-Wendroff scheme for the first three test problems with smooth exact
solutions. It seems to be the price to pay to obtain the maximum principle. However for the last test for which
the initial data is the indicatrix function of a square, the initial data has not the smoothness required by (2).
On the contrary it is a BV profile and the solution to the equation must be interpreted in the weak sense. In
this case the new nonlinear scheme is more accurate that the Lax-Wendroff scheme, both in L1 and L2 norms.

6.1. Simple test

The initial data is u0(x, y) = cos 2π(x + 2y). The velocity vector is defined by p = q = 1/2. The final time
of observation is T = 2, so the final solution is equal to the initial solution, that is u(T ) = u0. The CFL is
ν = 0.25. The asymptotic order of accuracy is approximated with the formula

order ≈ log(E(∆x)− log(E(∆x/2)

log 2
.
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where E(∆x) and log(E(∆x/2) are evaluated with the two finest meshes. The results are in Table 1.
One observes order 2 with the Lax-Wendroff scheme and on order between 1 and 1.5 for the nonlinear scheme.

This was expected because it is a known behavior of the 1D minmod scheme. Indeed the accuracy is formally
shown to be equal to 2, but away from characteristic points. Around characteristic points, the accuracy is much
less because the limitation procedure is activated to satisfy the maximum principle.

LW L1 LW L2 LW L∞ NL L1 NL L2 NL L∞

∆x =1/20 0.825 0.815 0.809 0.706 0.710 0.730
∆x =1/40 0.219 0.219 0.219 0.258 0.289 0.345
∆x =1/80 0.0553 0.0553 0.0552 0.0994 0.1078 0.147
∆x =1/160 0.0138 0.0138 0.0138 0.0344 0.0395 0.0629

order ≈ 2 2 2 1.46 1.45 1.22

Table 1. Error measurements for u0(x, y) = cos 2π(x+ 2y).

6.2. Stationary solution

The velocity vector is still p = q = 1/2. Here u0(x, y) = cos 2π(x−y) which is a stationary solution u(t) = u0

for all t ≥ 0 since (p∂x + q∂y)u0 ≡ 0. Such non trivial stationary solution cannot exist in 1D. The final time of
observation is T = 2. The CFL is ν = 0.25. The results are provided in Table 2. The order of convergence is
around 3 for the 2 schemes in all norms, except for the nonlinear scheme for which the order is ≈ 5

2 in maximum
norm.

LW L1 LW L2 LW L∞ NL L1 NL L2 NL L∞

∆x =1/20 0.00597 0.00597 0.00597 0.0143 0.0150 0.0203
∆x =1/40 0.00075 0.00075 0.00075 0.00189 0.00232 0.00421
∆x =1/80 0.000095 0.000095 0.000095 0.00022 0.00030 0.00070

order ≈ 2.98 2.98 2.98 3.1 2.95 2.58

Table 2. Error measurements for u0(x, y) = cos 2π(x− y).

6.3. A Gaussian

This problem is more challenging for the Lax-Wendroff scheme which develops natural oscillations because
this scheme is not able to respect the maximum principle for steep profiles. The velocity vector is now given
by p = 1/3 and q = 2/3. The CFL is ν = 0.5. The initial data is u0(x, y) = exp(−100r2) with r2 =
(x − 0.5)2 + (y − 0.5)2. A plot of the solutions is displayed in Figure 1 on the coarse mesh at T = 3. It
shows the oscillation of the Lax-Wendroff scheme. On the contrary the new nonlinear scheme respects perfectly
the maximum principle, in accordance with its theoretical properties. The error are displayed in Table 3 with
similar conclusions as for the previous tests.

LW L1 LW L2 LW L∞ NL L1 NL L2 NL L∞

∆x =1/40 0.823 0.499 0.438 0.461 0.386 0.454
∆x =1/80 0.221 0.182 0.182 0.195 0.161 0.186
∆x =1/160 0.0557 0.0492 0.0535 0.0594 0.0517 0.0731
∆x =1/320 0.0139 0.0124 0.0136 0.0170 0.0164 0.0312

order ≈ 2 1.98 1.97 1.80 1.65 1.22
Table 3. Error measurements for the Gaussian.



TITLE WILL BE SET BY THE PUBLISHER 23

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
x

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

y

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
x

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

y

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 1. Advection of Gaussian. On the left calculated with the linear Lax-Wendroff scheme.
On the right calculated with limitation of the fluxes. Th maximum principle is not respected
with the linear scheme. It is satisfied with the limitation procedure.

6.4. Indicatrix function

The interest of an unconditional respect of the maximum principle is better exemplified with an initial data
which is an indicatrix function. Indeed, high-order linear schemes cannot satisfy the maximum principle and in
practice, important oscillations are generated. Here we choose u0(x, y) = 1 if max(|x− 0.5|, |y− 0.5|) < 0.2 and
u0(x, y) = 0 otherwise. It is the indicatrix function of a square. The other datas are as in the two first tests.
The solutions are shown in Figure 2. The errors are reported in Table 4. No convergence is observed in L∞

because the solution is a weak solution with BV regularity only. The nonlinear scheme is more accurate than
the Lax-Wendroff scheme in L1 and L2 norms. It seems to convergence at order 2

3 in L1 and 1
3 in L2. This fact

is easy to interpret by interpolation of L2 between L1 and L∞.
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Figure 2. Advection of square indicatrix function. On the left calculated with the linear Lax-
Wendroff scheme. On the right calculated with limitation of the fluxes. Th maximum principle
is not respected with the linear scheme. It is satisfied with the limitation procedure.

7. Possible extensions

Corner corrections were developed in this work only for the purposes of having compact notations amenable
for the refutation of the Goodman-Leveque obstruction theorem by means of quadratically stable limiters.
We do not known if corner corrections are logically necessary for the obtention of quadratic stability of flux
limitation techniques. Hereafter we evoke two possibilities to extend the modified equation to more interesting
problems.
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LW L1 LW L2 LW L∞ NL L1 NL L2 NL L∞

∆x =1/20 0.856 0.487 0.773 0.718 0.479 0.767
∆x =1/40 0.713 0.470 0.857 0.454 0.381 0.791
∆x =1/80 0.508 0.381 0.860 0.280 0.297 0.801
∆x =1/160 0.346 0.305 0.869 0.174 0.233 0.808
∆x =1/320 0.234 0.245 0.876 0.109 0.184 0.812
∆x =1/640 0.157 0.197 0.882 0.0683 0.145 0.814

order ≈ 0.57 0.31 0 0.67 0.34 0
Table 4. Error measurements for the indicatrix function.

Let us firstly consider the 2D equation with smooth variable coefficients

∂tu+ ∂x(a(y)u) + ∂y(b(x)u) = ∂tu+ (a(y)∂x + b(x)∂yb(x))u = 0.

This equation is relevant in plasma physics [3,13,15,25]. It is easy to check that the equivalent equation of the
upwind scheme on a cartesian grid is

∂tu+ (a(y)∂x + b(x)∂y)u− ∆x

2
∂x(|a(y)|∂xu)− ∆x

2
∂y(|b(x)|∂yu) +

∆t

2
(∂xa(y) + ∂yb(x))2 = 0.

With this formulation, it is easy to construct a conservative (or divergent) Lax-Wendroff like scheme with
variable coefficients by modifying (34). One can for exemple discretize p and q at half index positions. More
complicated coefficients a(x, y) and b(x, y) are possible also.

The other situation concerns a 3D equation with constant coefficients on a cartesian grid ∂tu+p∂xu+q∂yu+
r∂zu = 0 where p, q, r ≥ 0 and p+ q + r = 1. The modified equation of the upwind scheme is

∂tu+ (p∂x + q∂y + r∂z)u−
∆x

2
(p∂xx + q∂yy + r∂zz)u+

∆t

2
(p∂x + q∂y + r∂z)

2u = 0.

It can be rewritten as

∂tu+ (p∂x + q∂y + r∂z)u−
∆x

2
(1− ν)(p∂x + q∂y + r∂z)

2u

−∆x

2
pq(∂x − ∂y)2u− ∆x

2
pr(∂x − ∂z)2u− ∆x

2
qr(∂y − ∂z)2u = 0.

The development of corner correction techniques in 3D should be possible from this formulation. We also think
of using the recent theory [4] in order to get more insights into the tensorial nature of the anisotropic diffusion
operator.

The methods and proofs were developed on a cartesian grid, but for the sole purposes of the simplicity of
the mathematical developments. It is reasonable to foresee that transport on unstructured grids can also be
addressed with quadratically stable limiters. It will nevertheless require a convenient mathematical apparatus
to generalize the quadratic forms to such more challenging configurations.
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