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Immortalized Canine Dystrophic Myoblast Cell Lines
for Development of Peptide-Conjugated
Splice-Switching Oligonucleotides

Yuichiro Tone,"** Kamel Mamchaoui > Maria K. Tsoumpra,* Yasumasa Hashimoto,' Reiko Terada,
Rika Maruyama,* Michael J. Gait>® Andrey A. Arzumanov.>® Graham McClorey? Michihiro Imamura,
Shin’ichi Takeda,' Toshifumi Yokota,* Matthew J.A. Wood? Vincent Mouly,® and Yoshitsugu Aoki’

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense
mutations in the DMD gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using
splice-switching oligonucleotides (SSOs) restores the reading frame of DMD pre-mRNA by generating inter-
nally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional
SSOs, it is essential to perform accelerated and reliable in vitro screening-based assessment of novel oligo-
nucleotides and drug delivery technologies, such as cell-penetrating peptides, before their in vivo pharmaco-
kinetic and toxicity evaluation. We have established novel canine immortalized myoblast lines by transducing
murine cyclin-dependent kinase-4 and human telomerase reverse transcriptase genes into myoblasts isolated
from beagle-based wild-type or canine X-linked muscular dystrophy in Japan (CXMDj) dogs. These myoblast
lines exhibited improved myogenic differentiation and increased proliferation rates compared with passage-15
primary parental myoblasts, and their potential to differentiate into myotubes was maintained in later passages.
Using these dystrophin-deficient immortalized myoblast lines, we demonstrate that a novel cell-penetrating
peptide (Pip8b2)-conjugated SSO markedly improved multiexon skipping activity compared with the respective
naked phosphorodiamidate morpholino oligomers. In vitro screening using immortalized canine cell lines will
provide a basis for further pharmacological studies on drug delivery tools.

Keywords: Duchenne muscular dystrophy, canine X-linked muscular dystrophy in Japan (CXMDy),
immortalized dystrophic canine myoblast, splice-switching oligonucleotides, phosphorodiamidate morpholino
oligomer, cell-penetrating peptide

Introduction live human male births worldwide [1,2]. DMD is mainly
caused by out-of-frame mutations in the DMD gene that en-

DUCHENNE MUSCULAR DYSTROPHY (DMD) is an X codes dystrophin, a protein indispensable for the maintenance
chromosome-linked, progressive, fatal degenerative mus-  of sarcolemmal integrity [3,4]. Currently, corticosteroid treat-

cle disorder with an estimated prevalence of 1 in 3,500-5,000 ment is recommended as the standard therapeutic option for
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patients with DMD aged older than 2 years, although adverse
effects such as osteopenia, weight gain, behavioral changes,
and growth retardation have raised concerns over the long-
term use of these drugs.

Exon skipping is a novel therapeutic approach that involves
the implementation of short, synthetic splice-switching oligo-
nucleotides (SSOs) to effectively target individual DMD gene
mutations and restore the DMD reading frame [5,6]. So far,
three antisense phosphorodiamidate morpholino oligomers
(PMOs) have been approved by the U.S. Food and Drug Ad-
ministration (FDA). The first two of these are ExonDysSl®
(eteplirsen) and Vyondys53® (golodirsen), which target the
pool of DMD patients with confirmed gene mutations amena-
ble to exon 51 or exon 53 skipping, respectively; both of these
PMOs are marketed by Sarepta Therapeutics [7,8]. Recently,
VILTEPSO® (viltolarsen), an antisense oligonucleotide drug
codeveloped by the National Center of Neurology and Psy-
chiatry (NCNP) in collaboration with Nippon Shinyaku Co.,
Ltd., which targets DMD patients with confirmed mutations
amenable to exon 53 skipping, has received conditional ap-
proval in both Japan and the United States, and is awaiting the
results of phase 3 trial (NCT04060199) to confirm its efficacy
and clinical benefit [9-11].

In addition, SSOs targeting other exons of the DMD gene
are also under development. However, the use of PMOs in
animal studies is limited by their poor cellular uptake and
inability to successfully target DMD in the diaphragm and
heart. To overcome these limitations, SSOs have been con-
jugated to short cell-penetrating peptides, generating the so-
called peptide-conjugated PMOs (PPMOs), which are the
most promising candidates awaiting clinical trials [12].

Canine X-linked muscular dystrophy in Japan (CXMDjy),
a beagle-based dystrophic dog, is a midsize mammalian
translational model of DMD (Supplementary Fig. Sla) that
mimics the human DMD phenotype more closely than the
widely used dystrophin-deficient rodent models [13] and has
been used to investigate molecular mechanisms triggering the
physiopathological modifications in DMD [14-19]. The
CXMDj dog model harbors a splice site mutation in intron 6 of
the DMD gene on the X chromosome, which causes the loss of
exon 7 and a disrupted reading frame in DMD mRNA (Sup-
plementary Fig. S1b) [20]. Since restoring the DMD mRNA
reading frame in CXMDj requires multiexon skipping of exons
6 to 8, CXMDj is a suitable model for conducting preclinical
in vivo pharmacokinetic and toxicological assessments to val-
idate the efficacy of multiexon skipping therapeutic strategies
targeting a broader range of patients with DMD [21-23].

To reduce the number of animals used in the SSO drug
screening process, for both ethical reasons and cost-
effectiveness, reliable dystrophic cellular models exhibiting
the fundamental features of DMD need to be established
for effective high-throughput screening before in vivo
validation [24,25]. Although primary myoblasts of DMD
animal models have been successfully isolated and cul-
tured, the efficacy and repeatability of such in vitro
screening assays have been hindered by the limited pro-
liferative capacity of the cells [26-28]. Furthermore, pri-
mary myoblasts often progressively lose myogenicity
during passages in cell culture and are prone to senescence,
rendering the application of dystrophin restoration strate-
gies challenging. Moreover, the ability of myoblasts to fuse
into myotubes varies owing to the heterogeneity of the cell
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populations harvested from individual muscle biopsies
[27,29], compromising the reproducibility and validity of
the assay per se.

To overcome these challenges and efficiently validate our
SSO cocktails, we aimed to create immortalized wild-type
(WT) and dystrophic canine myoblast cell lines with en-
hanced proliferative capacity. These myoblast cell lines can
be used as valuable and cost-effective SSO screening tools
before injecting the most promising SSO combination into
CXMDj dog for assessing its pharmacokinetics and efficacy.
To this end, we immortalized canine myoblasts by trans-
ducing myoblasts isolated from 2-month-old WT or CXMD;
dogs with murine cyclin-dependent kinase 4 (Cdk4) and
human telomerase reverse transcriptase (hTERT). In this
approach, h'TERT and Cdk4 were, respectively, used for
telomere elongation and inhibition of the stress pathway
mediated by p16™%* an inhibitor of the CDK4 family
[30,31]. The combination of these two genes has been shown
to preserve the characteristics of the original myoblasts
through immortalization [32]. To assess the extent of appli-
cability of these immortalized myoblast lines as a suitable
tool for the evaluation of therapeutic agents for DMD, the
efficacy of combinations for multiexon skipping was evalu-
ated. In addition, the drug delivery potential of a newly de-
signed PMO-conjugated internalization peptide (Pip), called
Pip8b2-PMO [33], was compared with the equivalent naked
PMO cocktail. In this study, we have successfully generated
dystrophic deficient immortalized cell lines that can retain
their myogenic potential even after extensive passaging, and
used these new tools to demonstrate efficient drug-related
dose/response exon skipping and dystrophin restoration in
the presence of canine PMO or PPMO SSO cocktails.

Materials and Methods

Ethics approval

WT and CXMD; dogs were maintained at the laboratory
animal facilities of the National Institute of Neuroscience,
NCNP, Japan, following guidelines of the Ethics Committee
for the Treatment of Laboratory Middle-Sized Animals (ap-
proved no. 2019040). Animal housing followed the basic
policies for the conduct of animal experimentation outlined by
the Ministry of Health, Labor and Welfare of the Center for
Accreditation of Laboratory Animal Care and Use, Japan
Health Sciences Foundation (Certification number: A17-130).
In vitro cell-based assays were performed using primary and
immortalized canine myoblasts and were approved by the In-
stitutional Animal Experiment Committees of the NCNP.

Cell immortalization

Myoblasts derived from two CXMDj dogs and one WT
dog (Supplementary Table S1) were immortalized as pre-
viously described [34]. Briefly, lentiviral vectors encoding
hTERT and Cdk4 with puromycin and neomycin selection
markers, respectively, were used to transduce primary cul-
tures of myoblasts. The transduced cells were then selected
with puromycin (0.2 pg/mL) or neomycin (0.3 mg/mL) for 8
days. The transduced cells were purified as described pre-
viously [34] if necessary, and then seeded at clonal density.
Individual myogenic clones expressing desmin (DES) were
isolated from each population using glass cylinders.
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Cell proliferation assay

Cells were seeded into 96-well plates with growth medium
containing Dulbecco’s modified Eagle’s medium/F-10 1:1
(Invitrogen, San Diego, CA), 20% fetal bovine serum, basic
fibroblast growth factor (2.5ng/mL), and 1% penicillin/
streptomycin. One and 3 days later, the number of viable cells
was determined using the Cell Counting Kit-8 (CCK-8; Do-
jindo Laboratories, Kumamoto, Japan). Absorbance at 450 nm
was measured using the Synergy HTX Multi-Mode Reader
(BioTek Instruments, Winooski, VT). The isolated individual
clones were expanded, representing over 20 divisions from the
time of transduction.

In vitro cell transfections

We designed the following two antisense PMO sequences
to target each of exons 6 and 8 of dog DMD mRNA, as pre-
viously reported [23,35]: dog_Ex6A, 5-GTTGATTGTCGGA
CCCAGCTCAGG-3"; dog_Ex6B, 5-ACCTATGACTGTGG
ATGAGAGCGTT-3’; dog_Ex8A, 5-CTTCCTGGATGGCT
TCAATGCTCAC-3"; and dog C8A, 5-GATAAGTGGTGG
CAACATCTGT-3"; Standard control PMO, 5’-CCTCTTACC
TCAGTTACAATTTATA-3’; dog_C8A (invert antisense), 5'-
TGTCTACAACGGTGGTGAATAG-3". PMO SSOs were
purchased from Gene Tools (Philomath, OR) and were either
used as naked PMOs or were conjugated with Pip8b2 [33] at
the University of Oxford.

Immortalized myoblasts (5x 10* cells for 24-well plate,
1.9 10* cells for 48-well plate) from the CXMD; dogs were
cultured in growth medium containing Dulbecco’s modified
Eagle’s medium/F-10 1:1 (Invitrogen), 20% fetal bovine
serum, basic fibroblast growth factor (2.5ng/mL), and 1%
penicillin/streptomycin for 24 h, then changed to a differen-
tiation medium containing Dulbecco’s minimum essential
medium with 2% horse serum, and cultured for 3 days. The
medium was then replaced with the same differentia-
tion medium containing a final concentration of selected
PMOs. The dual Ex6A and C8 A PMO cocktail was evaluated
by adding 5, 10, or 20 uM (2.5, 5, or 10 uM for each PMO)
antisense Ex6A and C8A PMOs with Endo-Porter transfec-
tion reagent (Gene Tools). The efficacy of dystrophin resto-
ration of the Ex6A, Ex6B, and Ex8A PMO cocktail and that
of the PPMO was compared by adding 0.9-4.5 M PMO
compounds (0.3-1.5uM for each PMO) and 0.3-0.9 uM
PPMO compounds (0.1-0.3 uM for each PPMO) in total,
respectively, without Endo-Porter. In both cases, cells were
cultured for three additional days before RNA analyses or for
6 to 7 days before protein expression analyses via western
blotting or immunocytochemistry.

Reverse transcription polymerase chain reaction
and quantitative polymerase chain reaction

The expressions of myogenic regulatory factors (MRFs)
and markers in immortalized cells were analyzed using re-
verse transcription polymerase chain reaction (RT-PCR).
Briefly, 500 ng of total RNA was extracted from each cell line
with the RNeasy Mini kit (Qiagen, Hilden, Germany), and
used for cDNA synthesis using the High Capacity cDNA
synthesis kit and random hexamer primers (Thermo Fisher
Scientific, Waltham, MA, USA). The obtained cDNA (3 pL)
was then used as a template for PCR with the Ex Taq Hot
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Start Version kit (Takara Bio, Shiga, Japan) to amplify
myogenic differentiation 1 (MYODI), myogenin (MYOG),
neural cell adhesion molecule 1 (NCAM1I), and DES with
specific primers designed using the Primer3plus online tool
(Supplementary Table S2). The PCR program was as follows:
heat denaturation at 95°C for 5 min; 35 cycles of denaturation
at 94°C for 30 s, annealing at 60°C for 30 s, and extension at
72°C for 30s; followed by a final extension at 72°C for
10min. PCR products were analyzed with MultiNA (Shi-
madzu, Kyoto, Japan).

Exon skipping was verified by PCR amplification of cDNA
templates with 0.6 mM of primer spanning exons 3—4 (GG
CAAAAACTGCCAAAAGAA) and exon 10 (TGCTTCG
GTCTCTGTCAATG) of the canine DMD transcript, fol-
lowed by MultiNA analysis. Exon-skipping efficiency was
calculated as follows: (exon-skipped transcript molarity)/
(native + intermediate + exon-skipped transcript molari-
ty) X 100%. To ensure the identity of the exon skipped band,
the amplified PCR region corresponding to the 221bp in-
frame exon skipped band was electrophoresed on agarose
gels and then excised from the gels, purified using a gel ex-
traction kit (Qiagen), and subjected to Sanger sequencing,
which was performed by Eurofins Genomics (Tokyo, Japan)
using the same primer set that was used for quantitative PCR
(qPCR). PowerUP SYBR Green Master Mix (Thermo Fisher
Scientific) was used to quantify cDNAs using StepOnePlus
Real-Time PCR Systems (Thermo Fisher Scientific). Re-
lative quantity of the genes was calculated by the AACt
method. Hypoxanthine phosphoribosyltransferase 1 (HPRT
1) and succinate dehydrogenase complex, subunit A (SDHA)
were used as multiple reference genes. Data were analyzed
using StepOne Software v2.3 (Thermo Fisher Scientific).

Immunocytochemistry

Cells were washed with phosphate-buffered saline (PBS),
fixed in 100% methanol for 10 min at —20°C, and permea-
bilized in 0.1% Triton-X (FUJIFILM Wako Pure Chemical,
Osaka, Japan) for 10 min at room temperature. Cells were
blocked with 5% goat serum for 15 min at 37°C and then
incubated overnight at 4°C with mouse anti-dystrophin
(1:150 dilution, NCL-Dysl1; Leica Microsystems, Tokyo,
Japan) and mouse anti-myosin heavy chain (MyHC) (1:400
dilution, MAB4470, clone MF20; R&D, Minneapolis, MN)
antibodies. Cells were then washed with PBS and incubated
with Alexa Fluor 488 goat anti-mouse IgG (H+L; 1:500 di-
lution, Thermo Fisher Scientific) as the secondary antibody
for 60 min at room temperature. Nuclei were stained with 4,6-
diamidino-2-phenylindole (DAPI) solution (1:1,000 dilution,
DOJINDO). Labeling signals were imaged using a fluores-
cent microscope (BZ-X800, KEYENCE, Osaka, Japan) and
BZ-X Analyzer or BZ-X800 Analyzer (KEYENCE).

Western blotting

Sample preparation, sodium dodecyl sulfate/polyacrylamide
gel electrophoresis (SDS-PAGE), and semidry blotting were
performed as previously described [36]. After blocking for
1h in 5% skimmed milk, polyvinylidene fluoride (PVDF)
membranes containing the proteins were incubated with the
following primary antibodies: mouse anti-dystrophin (1:500
dilution, ab15277; Abcam, Cambridge, United Kingdom or
1:500 dilution, NCL-Dys1; Leica Microsystems) and mouse
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anti-alpha-actinin (1:2,000 dilution, A7811, Sigma-Aldrich)
as a loading control. This was followed by incubation with
the secondary antibody Histofine Simple Stain MAX PO
(MULTI) (1:500 dilution; Nichirei Biosciences, Tokyo, Ja-
pan). The bands were visualized using SuperSignal West
Dura Extended Duration Substrate (Thermo Fisher Scientific)
in ChemiDoc Touch MP Imaging System (Bio-Rad Labora-
tories, Hercules, CA) and quantified using ImageLab soft-
ware (Thermo Fisher Scientific).

Statistical analysis

Statistical analysis and calculation of effective con-
centration (ECs() were conducted using GraphPad Prism
8 (GraphPad Software, La Jolla, CA). Student’s t-test or
one-way analysis of variance with parametric Dunnett’s
multiple comparisons test was conducted to determine
statistical significance. P<0.05 was considered statistically
significant.

Results

Successful generation of immortalized canine WT
and dystrophin-deficient myoblast lines

We first tested the differentiation and proliferation cap-
abilities of our novel immortalized myoblast cell lines. For
further characterization, we chose two clones (clone 8 and 9)
out of six, and two clones (clone 2 and 3) out of three for

a Day 0 Day 3

WT

CXMD (DMD)

* %

Cell count
[x10° cells/well]
[,8]

9

-o- CXMD primary
- CXMD immortalized clone8
-4~ CXMD immortalized clone9
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CXMDj and WT immortalized myoblast cell lines, respec-
tively, based on their higher ability to proliferate and form
fully mature myotubes when subjected to differentiation (data
not shown). After culturing for 6 days under differentiation
conditions, all immortalized myoblasts fused into myotubes
with the expression of skeletal muscle MyHCs (Figs. 1a, 2a,
and Supplementary Fig. S2a, b). In addition, dystrophin
expression was only detected in immortalized myoblasts
from WT dogs by immunocytochemistry, as expected (Fig. 2a).
The immortalized cells for at least 20 consecutive passages
after transduction showed superior ability to proliferate
compared with their respective parental primary myo-
blasts, which were passaged 15 times (Fig. 1b). Further-
more, this superior ability was maintained in all clones,
indicating that the immortalization process inhibited cel-
lular senescence.

Expression of MRF and myogenic markers during
differentiation of immortalized myoblast cell lines

To confirm that the WT and dystrophic immortalized
cell lines maintained their myogenic signatures, we in-
vestigated the expression of several myogenic markers
that have previously been used as key validators of myo-
genic status [32]. After 6 days of differentiation, WT and
dystrophic-derived cell lines expressed MRFs and the
myogenic markers MYOG, MYODI1, NCAMI1, and DES
(Fig. 2b and Supplementary Fig. S2b). The formation of

Day 6

FIG. 1. Differentiation and
proliferation ability of im-
mortalized WT and dystro-
phic canine myoblasts. (a)
Representative phase-contrast
images of cells undergoing
differentiation. Images of im-
mortalized WT clone 2 and
CXMDj clone 9 were ob-
tained after O, 3, or 6 days of
differentiation. Scale bar:
200 um. (b) Cell proliferation
assay using Cell Counting Kit-
8. Cell counts per well are
represented as the meanzt
standard deviation. N=3;
**P<(0.01. CXMDj, canine
X-linked muscular dystrophy
in Japan; WT, wild type.
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FIG. 2. Myogenic properties of newly established cell lines
from WT and dystrophic dogs. (a) Immunocytochemistry
showing MyHC expression on day 6 and dystrophin on day 8
after triggering differentiation in WT clone 2 and CXMD;
clone 9 (green), respectively. Nuclei were visualized with
DAPI (blue). Scale bar: 50 um. NC, negative control without
primary antibody. (b) Expression of muscle regulatory factors,
including MYODI, MYOG, NCAM1, and DES, evaluated by
RT-PCR of immortalized WT clone 2 and CXMDjy clone 9.
N=3. DES, desmin; MyHC, myosin heavy chain; MYODI,
myogenic differentiation 1; MYOG, myogenin, NCAMI,
neural cell adhesion molecule 1; RT-PCR, reverse transcrip-
tion polymerase chain reaction.

myotubes in primary myoblasts from CXMDj dogs (with
15 passages) was weaker than in the immortalized myo-
blasts (Supplementary Fig. S2d). In line with this finding,
the expression of MYOG was undetectable by qPCR (data
not shown), while the expression levels of NCAMI and
DES were lower in the primary myoblasts after 15 pas-
sages compared with the immortalized myoblasts, suggesting

TONE ET AL.

that maintenance of the myogenic capacity of myoblasts is
difficult, possibly due to the dominant proliferation of
originally pertained fibroblasts in the late passages (Sup-
plementary Fig. S2d).

Successful skipping of exons 6/8 in immortalized
dystrophic canine myoblast cell lines using a dual
PMO cocktail

CXMDj dogs harbor a splice site mutation in the acceptor
site of intron 6, leading to an out-of-frame mRNA transcript
fusing exons 6 to 8 (Supplementary Fig. S1b). Skipping of
exons 6 to 8 results in exon 6 to 8 or 6 to 9 multiexon
skipping, due to endogenous alternative skipping of exon 9.
When the immortalized myoblast lines from CXMD; dogs
were treated with a cocktail of the PMOs Ex6A and C8A,
targeting exons 6 and 8 of the DMD gene, respectively, exon
skipping products, especially exon 6 to 9 multiexon skip-
ping, were successfully detected by RT-PCR (Fig. 3a, b).
Moreover, the apparent restoration of the DMD mRNA
reading-frame was confirmed by western blotting and im-
munocytochemistry (Fig. 3c, d). The restoration levels of
dystrophin in dystrophic canine myoblast cell lines treated
with individual PMO concentrations of 2.5 or 5 uM were
around 4% and 6%, respectively. Using the immortalized
myoblast line from WT dogs, we also detected exon skipping
caused by the PMO cocktail chosen by us (Supplementary
Fig. S3a, b).

Successful skipping of exons 6/8 in immortalized
dystrophic canine myoblast cell lines using

a combination of three SSO-based PMO

or PPMO cocktail

Pip8b2 is a recently optimized peptide demonstrating
higher cell-penetrating efficiency than the previously reported
members of the Pip series [33]. We sought to investigate this
improved potency through comparison of a previously re-
ported three SSO-based PMO cocktail comprising Ex6A,
Ex6B, and Ex8A [23] versus that of the respective Pip8b2-
conjugated cocktail, using our newly generated immortalized
dystrophin-deficient cell line.

When cells were transfected by a mixture of PMO or
Pip8b2-PMO without any transfection reagent (gymnotic
delivery), dose-dependent exon 6 to 9 skipping was ob-
served. In the case of the PMO cocktail, the exon skipping
efficiency seemed to be saturated at 1.2 pM, whereas the
Pip8b2-conjugated PMO cocktail showed much higher
skipping efficiency at just 0.3 uM. The half-maximal ECs,
of exon skipping activity was ~ 14 times lower in the cells
transfected by Pip8b2-PMOs than in those transfected by
the unconjugated PMO cocktail (Fig. 4a). Western blotting
analysis revealed a higher expression level of dystrophin in
Pip8b2-PMO-transfected cells compared with that in un-
conjugated PMO cocktail-transfected cells (Fig. 4b). The
exon skipping efficiency observed in this assay was con-
sistent with the same assay performed using primary myo-
blasts between passages 4—10 (Supplementary Fig. S4).
We also confirmed that exon skipping was not induced by
transfection of standard control PMO as recommended by
Gene Tools and, dog_C8A (invert antisense) conjugated to
Pip8b2 (refer to Materials and Methods section) (Supple-
mentary Fig. S5).
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Discussion

Over the last decade, there has been a surge in the field of
translational research aiming to develop novel gene-based
therapeutic approaches for treating DMD, given the fact that
current treatment regimens only alleviate the severity or
delay the progression of DMD, without successfully re-
verting the pathophysiological phenotype or eradicating
the cause of this disease. Exon skipping has emerged as a
promising therapeutic approach for the treatment of pa-
tients with DMD; however, the clinical benefit of the three
FDA-approved PMOs, eteplirsen, golodirsen, and viltolarsen,
requires further confirmatory studies [37]. Although a
plethora of potent peptide-conjugated PMO derivatives,
called PPMOs, are currently being tested to enhance exon
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FIG. 3. Multiexon skipping
analysis using dual cocktail of
PMOs targeting exons 6 and
8 of DMD in immortalized
myoblast lines. (a) RT-PCR of
immortalized CXMDj clone 9
with or without PMO treat-
ment. N=3. (b) Direct se-
quencing of the PCR products
of the skipped transcript in
(a). (¢) Immunocytochemistry
of dystrophin in WT clone 2
and CXMDjy clone 9 with or
without PMO treatment. NC,
negative control with absence
of primary antibody against
dystrophin; PC, positive
control with WT clone 2.
Scale bar: 50 pm. (d) Wes-
tern blotting analysis for
dystrophin expression. Pro-
tein expression levels are
represented as the meanzt
standard deviation, normal-
ized to the level of alpha-
actinin. N=3; **P<0.01,
*k%¥P<(0.001. NT, not trea-
ted; M, high-molecular-weight
protein marker. DMD, Du-
chenne muscular dystrophy;
PMOs, phosphorodiamidate
morpholino oligomers.
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skipping treatment methods in laboratories worldwide,
their transition from laboratory animal experimentation
to human clinical trials will be dependent on improvement
of their therapeutic profile due to inherent toxicity is-
sues that surround the use of cationic-based peptides [12].
To effectively overcome this challenge, high-throughput
screening of novel peptide-conjugated SSOs in cellular
systems derived from dystrophic animal models that more
closely mimic the human DMD phenotype needs to be
developed.

Our laboratory is currently committed to developing SSO-
based treatments targeting a wide range of the DMD patient
pool. To accurately test the efficacy, tolerability, and toxicity
of novel SSO agents, we are breeding various dystrophin-
deficient mouse models and have routinely screened SSOs
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using primary and immortalized model-specific myoblasts.
Given the fact that all our in-house mouse dystrophic models
(mdx, mdx52, human DMD-null) present with a mild non-
progressive form of DMD, and are characterized by acute
necrosis at an early age and rapid muscle regeneration, we
opted to use the CXMD; dog model as an extra confirmatory
step to study the pharmacokinetics of our most promising
SSO PMO and PPMO-based cocktails. In fact, CXMDj is an
ideal midsized canine model for proof-of-concept studies on
multiexon 6 to 8 skipping, genome editing, and viral-based
and cell-based therapies for DMD, which presents with a
severe and progressive form of DMD, with histopathological
characteristics that more closely resemble those in humans
[22,23]. Nevertheless, before the assessment of such strate-
gies in vivo, in vitro screening assays are required to limit
animal experimentation as well as save time and expenses.
We have previously used primary myoblasts isolated from

dogs for this purpose; however, based on our experience,
these cells generally show relatively less proliferation, im-
perfect myotube differentiation, and variable drug response
in advanced passages, owing to the high heterogeneity of the
cell population [26-28,38]. To overcome these limitations,
canine dystrophic myoblasts need to be isolated using
fluorescence-activated cell sorting [39-41]; however, this
process affects cell viability [42].

In this study, we provide the first report on the successful
establishment of canine immortalized myoblasts from skeletal
muscles of CXMDj and WT beagle dogs. An immortalized
canine myoblast cell line was recently established from a
normal Golden Retriever/Labrador mix dog using SV40 as an
immortalizing agent [43], however, it has been shown that the
expression of SV40 Tag perturbs myogenic differentiation
[44]. Moreover, there has not been any report of myoblast line
originating from canine dystrophic models, which is an
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indispensable tool for the estimation of ECsy and exon skip-
ping efficiency of SSO cocktails. In general, immortalization
of myoblasts is associated with a high risk of loss of myo-
genesis owing to prolonged expansion of cells [45-48].
However, we have previously demonstrated successful estab-
lishment of immortalized pathological human myoblasts from
the myoblasts of patients with various neuromuscular disor-
ders and confirmed that their myogenic characteristics are
well-maintained [32,34]. Using the same method, we have
established immortalized canine dystrophic myoblasts and
confirmed that the clones selected for analysis demonstrate
significantly enhanced proliferation and myotube formation
abilities compared with those of the primary culture cells from
which these immortalized cells originated. This differentiation
was accompanied by the expression of several myogenic
markers, in line with the previous report of immortalized hu-
man myoblasts [34,49]. Even in late passages, myogenicity
was well-maintained in immortalized myoblasts compared
with that in primary myoblasts, confirming the appropriateness
of these novel immortalized cell lines to use as a screening tool
for therapeutics in skeletal muscle. Thus, our dystrophic
myoblast lines can be used to screen for modified SSOs and the
results obtained may be useful for comparisons of in vitro
dystrophin restoration potency between existent and already
trialed compounds versus novel-synthesized compounds, al-
lowing for estimations of minimal concentrations best utilized
in vivo to produce the desired effect.

In addition, we evaluated the recently designed cell
penetrating peptide of the Pip series, named Pip8b2, using
the immortalized CXMDj; myoblast line. The generation of
Pip8b2, which belongs to the novel series of CPPs, was
based on the observation that the amino acids composing
the hydrophobic cores of the peptides, rather than the linear
amino-acid sequences, predominantly determine the cell
penetration potency (EP2751128A2, European Patent Of-
fice). As expected, we verified that Pip8b2-conjugated
PMO cocktails markedly improved the exon 6 to 9 skipping
activity of corresponding naked PMOs, in line with dose/
response PMO and PPMO experiments carried out using our
primary myoblast cell lines. This result encourages in vivo
studies involving pharmacological, pharmacokinetic, and
toxicological analyses.

In conclusion, we assessed the improved exon skipping
efficiency of PMOs due to Pip8b2 conjugation, using the
newly established dystrophic myoblast line as a tool. The
same assay can be applied for further optimization of PPMOs
and other modified SSOs.
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