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Charge density waves and their transitions in
anisotropic quantum Hall systems
Yuchi He 1,2,3✉, Kang Yang 4,5,6✉, Mark Oliver Goerbig6 & Roger S. K. Mong2,7

In recent experiments, external anisotropy has been a useful tool to tune different phases and

study their competitions. In this paper, we look at the quantum Hall charge density wave

states in the N= 2 Landau level. Without anisotropy, there are two first-order phase tran-

sitions between the Wigner crystal, the 2-electron bubble phase, and the stripe phase. By

adding mass anisotropy, our analytical and numerical studies show that the 2-electron bubble

phase disappears and the stripe phase significantly enlarges its domain in the phase diagram.

Meanwhile, a regime of stripe crystals that may be observed experimentally is unveiled after

the bubble phase gets out. Upon increase of the anisotropy, the energy of the phases at the

transitions becomes progressively smooth as a function of the filling. We conclude that all

first-order phase transitions are replaced by continuous phase transitions, providing a pos-

sible realisation of continuous quantum crystalline phase transitions.
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Quantum Hall (QH) systems play an important role in
understanding correlated phenomena. Because of the
Landau level (LL) quantisation, the interaction dominates

over the kinetic energy when the ratio ν=Ne/Nϕ between the
electron number Ne and number of states Nϕ inside an LL is
not an integer. Various correlated phases appear depending
on the LL index N, such as topological QH liquids1,2 in the lowest
LL (N= 0), non-Abelian QH states3–5 and QH nematics6,7 in the
N= 1 LL. Higher LLs with N > 1 allow for the existence of charge
density wave (CDW) states with ordered modulation in electron
density8–10. Like the QH liquids, these CDW orders emerge from
the inherent strong interaction11.

Recently, interest has focused on QH states perturbed by ani-
sotropy. Anisotropy breaks the rotation symmetry of the system
and changes its geometry. It is interesting to investigate how
different QH phases, e.g., gapped QH fluid12–19 or gapless com-
posite fermion liquid states20–23, can be tuned through external
anisotropy. These studies greatly enhance the understanding of
topological robustness against geometric perturbation. Mean-
while, the reaction of CDW states to external anisotropy has been
much less studied.

The CDW instability leads to Wigner crystals (WC), bubble
phases, and stripe phases8,24,25. In experiments, CDW phases
have different transport properties as compared to the QH fluid
phases. The WC and bubble phases are indeed insulating because
they are collectively pinned by disorder and thus do not con-
tribute to the Hall conductivity. This is e.g., at the origin of the re-
entrant integer QH effect25,26, which has also been predicted27

and observed in higher LLs of graphene28. The stripe phase
strongly breaks the ‘rotational’ symmetry and exhibits a
large anisotropy in the DC diagonal resistance. Meanwhile for the
N= 2 LL, no QH liquid phase has been observed experimentally
so far29 except for the possible ~ν ¼ 1=5 and ~ν ¼ 4=5 states30 at
intermediate temperatures, where ~ν is the partial filling factor in
the N= 2 LL. (In conventional thin GaAs quantum wells, the
filling factor is ν ¼ Ne=Nϕ ¼ 4þ ~ν.) The fewer and clearer
candidates for ground states in the N ≥ 2 LLs make the study of
their competitions in the presence of anisotropy more feasible
and reliable.

Because of the strongly interacting nature, QH systems often
suffer from the limited availability of theoretical tools and in many
cases, it is necessary to resort to numerical calculations. However,
CDW phases, unlike the correlated liquid phases, are easily cap-
tured by an analytic Hartree–Fock (HF) approximation31,32. The
validity of the HF approximation improves as N becomes larger9,33

and it also turns out to be capable of catching the essential physics
for intermediate N10,34 confirmed by experiments26,35,36. Mean-
while, numerical tools always serve as an important reference in
QH problems. In the isotropic case, they have turned out to be
feasible to exhibit CDW phases. The exact diagonalization (ED)37

and the density matrix renormalization group (DMRG)38–40 reach
a good qualitative agreement with the HF approximation as well as
experiments for isotropic systems. Therefore we can use both
theoretical and numerical calculations to study how higher-LL QH
systems react to anisotropy.

In this paper, we provide a quantitative comparison between
analytical HF and numerical DMRG calculations to study the
CDW phases of spin-polarised electrons in the N= 2 LL under a
mass anisotropy, which can be realised in a 2D electron gas in
AlAs quantum wells with a mass anisotropy mx/my ≈ 541. A
tunable mass anisotropy of a 2D electron gas can also be realised
by strain42 or moiré pattern43. The HF approximation yields a
reliable picture for the appearance of different CDW orders while
the DMRG calculation additionally provides quantum fluctua-
tions beyond the mean-field ansatz. The predictions of the two

methods reach good agreement. We find that the 2-electron (2e)
bubble phase is suppressed by increasing the mass ratio between
two orthogonal directions. As a result, the unidirectional stripe
phase near half filling and the low-filling WC become adjacent in
the phase diagram at intermediate fillings. In the isotropic case,
previous studies44–49 suggest that when going from half to
intermediate fillings, the unidirectional stripe phase should
behave as a stripe crystal, a highly anisotropic WC with the same
transverse period as the unidirectional stripe phase. However,
such a stripe crystal is usually covered by the triangular 2e bubble
phase. When anisotropy enters the system, our result shows that
this stripe crystal regime naturally appears and dominates over
other CDW states in intermediate fillings. Its density profile can
be directly reflected by our DMRG studies. Our analysis of the
CDW periodicity shows that the transition from the WC at low
fillings and the stripe crystal should be continuous and at least
second order for sufficiently large anisotropy. All first-order
transitions, found in the isotropic case, are replaced by con-
tinuous ones among the WC regime and the stripe regime.

Results
Model and relevant phases. We consider electrons with aniso-
tropic mass my/mx= α2 ≠ 1 in a uniform magnetic field, with
isotropic Coulomb repulsive interactions. We restrict the elec-
trons to a single partially filled LL, such that the kinetic energy is
quenched. The electron-electron interaction, projected to the Nth

LL is (see Methods for derivation)

�H ¼ 1
2A

∑
q
Veff ðqÞ�ρðqÞ�ρð�qÞ; ð1Þ

Veff ðqÞ ¼ F2
Nðαq2x; q2y=αÞ

2πe2

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q ; ð2Þ

where A is total area of the system. The projected density
operators �ρ consist only of components in the Nth LL and the
form factor FN keeps track of the associated LL wave functions,

FNðq2x; q2yÞ ¼ LN
q2x þ q2y

2
l2

 !
e�ðq2x l2þq2y l

2Þ=4; ð3Þ

�ρðqÞ ¼ ∑
i
e�iq�Ri ; ð4Þ

where Ri is the guiding-centre coordinate of the electron i and LN
is the Laguerre polynomial. The magnetic length is given as
l ¼

ffiffiffiffiffiffiffiffiffiffi
_=eB

p
. Notice that the mass anisotropy affects the effective

interaction only through the form factor. Our HF and DMRG50

calculations are based on the Hamiltonian equation (1).
Let us now briefly review the relevant CDW phases in the N=

2 LL for isotropic interactions before presenting our own work. In
the dilute limit ~ν ! 0 (but away from the ~ν ¼ 0 integer QH
plateau), the WC is likely to form10,38, where the electrons have
enough space to stay away from each other due to the Coulomb
repulsion. For an isotropic effective interaction, the lattice takes a
triangular form, which has a maximal crystalline rotational
symmetry51. As the density is increased, the electrons are
squeezed. They tend to cluster around an interaction range
where the pure Coulomb repulsion is weakened by the LL
projection (see Fig. 1 in ref. 10). A bubble phase with two electrons
at each lattice site is formed10,37. The 2e bubble phase still lies on
a triangular lattice but has a different number of electrons in each
unit cell, leading to a discontinuity in the derivative of the energy
per particle Eppð~νÞ which will be elaborated later. Around this
first-order transition, a mixed phase that consists of a WC

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00613-4

2 COMMUNICATIONS PHYSICS |           (2021) 4:116 | https://doi.org/10.1038/s42005-021-00613-4 | www.nature.com/commsphys

www.nature.com/commsphys


coexisting with the 2e bubble phase can form10,36. When the
filling factor further approaches ~ν ! 1=2, a particle-hole
symmetry (PHS) emerges. In this case, a stripe phase manifesting
PHS is the natural candidate. This is confirmed by
experiments52,53 and ED37, while theoretically a 3e bubble phase
is in close competition with the stripe10,34,49. The transition
between the 2e bubble phase and the stripe phase is again first-
order because of their different periodic structures.

In addition to the above picture, it is found that away from
~ν ¼ 1=2, the unidirectional stripe phase becomes unstable against
fluctuation along the stripe direction46,48. These fluctuations lead
to a modulation where the resulting phase has every stripe broken
into a 1D crystal with one electron per unit cell. The Coulomb
repulsion requires neighbouring 1D crystals to have a phase
difference of π while kinetic and thermal dynamics allow them to
slide in the stripe direction. This competition determines whether
this array of 1D crystals behaves like a unidirectional stripe or a
2D crystal experimentally. This is reflected by the shear elastic
modulus47,49 or by viewing a sliding process across one period as
a soliton and studying the unbinding of soliton/anti-soliton
pairs45. Both criteria predict that when the filling ~ν deviates
substantially from ~ν ¼ 1=2, the unidirectional stripe phase
eventually behaves as a highly anisotropic crystal, called the

stripe crystal25,44, and their transition should be continuous.
However, the filling-factor range where the stripe crystal could be
found coincides with the more favoured 2e bubble phase in the
isotropic case. This stripe crystal is thus almost entirely covered.

Phase diagram. We compute the CDW phases for a series of
mass ratios between 5 ≥ mx/my ≥ 1, i.e., 1≥ α≥

ffiffiffiffiffiffi
0:2

p
. The phase

diagrams from HF and DMRG calculations are displayed in
Fig. 1a and b. A significant trend under mass anisotropy is the
shrinking of the 2e-bubble regime (see Fig. 1). For mx/my= 1, the
2e bubble is dominant between ~ν ’ 0:22 and ~ν ’ 0:36. By
increasing the mass anisotropy, the stripe phase and the WC at
small ~ν expand their respective regions in the phase diagram and
finally become adjacent around mx/my= 5. We also find that the
stripe now picks the heavier-mass x-direction, with its periodicity
along the lighter-mass y-direction, in accordance with refs. 40,41.
We discuss the origin of this behaviour in section ‘Explanation for
the lattice constants’.

We notice that the HF and the DMRG calculations are
complementary in describing the unidirectional stripe phase and
the stripe crystal. The HF method here does not take into account
the stripe-direction modulation inside the unidirectional stripe

Fig. 1 Phase diagrams and an illustration of the lattice. Phase diagram: (a) Hartree–Fock results as a function of the mass ratio mx/my and the partial
filling ~ν. The stripe phase is assumed to be unidirectional. The regime of stripe crystal [covered by the 2-electron (2e) bubble for mx=my] is taken from the
isotropic calculation in refs. 45,47,49. For mx/my= 2, a small stripe regime sandwiched between the Wigner crystal (WC) and 2e bubble appears around
~ν ¼ 0:2 and it eventually takes over the 2e bubble phase at mx/my= 5. b DMRG results. Both the stripe crystal and the WC take 2D lattice order. The
colour represents the modulation anisotropy �ρk=�ρ?, where �ρk is the maximal density wave amplitude �ρðqÞ with a non-zero wave vector q in the stripe
direction and �ρ? is the counterpart in the direction perpendicular to the stripe (see Methods). Lighter colour indicates higher anisotropy, and the highest
anisotropy is reached by the unidirectional stripe. c The lattices of the Wigner crystal and the stripe crystal. Left: triangular Wigner crystal in isotropic
systems. Right: stretched (S) lattice deformation. When the lattice deformation is sufficient, this becomes a stripe crystal and the stripe phase forms after
the modulation along y-direction becomes small, indicated by the orange area.
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phase. So we indicate the regime of the stripe crystal computed
from refs. 45,47,49, in which it is believed that the unidirectional
stripe phase computed here should actually correspond to the
stripe crystal25. Meanwhile, the DMRG calculation naturally
includes the stripe-direction fluctuations as it captures the exact
ground state. In Fig. 1b, we use the Fourier decomposition of the
density for non-zero wave vectors along the stripe direction to
demonstrate the stripe modulation, as shown in colour plot. It is,
however, difficult to distinguish weak modulation from zero
modulation, see Supplementary Note 3. The stripe crystal
computed here near ~ν ¼ 1=2 can behave as a unidirectional
stripe in experiments. This is the case near the isotropic limit,
where the modulation has been predicted to be very weak46,49

and likely to be beyond experimental probes.
In the presence of anisotropy, a feature worth noticing is that

the lattice constants have two local minima in energies. One is a
high aspect-ratio rhombus, denoted as the stretched (S) lattice, as
shown in Fig. 1c. The other is closer to a square lattice, denoted as
the compressed (C) lattice, which can be found in Methods. The
physics behind this can be illustrated from the deformation of the
isotropic triangular lattice. When we add anisotropy with D2

symmetry, the diagonals of the rhombus are reoriented along the
two principal axes of the D2 anisotropy. There are two choices of
reorientation, with the long diagonal along either the x-direction
or the y-direction. For the anisotropy considered in our case, the
x-direction length should be compressed and y-direction length
should be stretched. As a result, we can expect two local optimal
configurations due to two different ways of reorientation. These
two triangular lattices are degenerate when the interaction is

isotropic. As anisotropy is switched on, one rhombus is becoming
thinner, while the other becomes closer to a square.

In our high-accuracy DMRG calculations on the cylinder
(Supplementary Note 2), we find that the S lattice is slightly
favoured, and its dominance becomes more evident with the
increase of anisotropy. For mx/my= 5, the two lattices are close in
energy for ~ν ≲ 0:2. For higher fillings, the S lattice is much more
favoured. Its periodicity happens to be closer to that of a stripe
phase, as reflected in Fig. 2. As for the C lattice, it tends to form a
metastable stripe with a period half of the lowest-energy stripe.
The details based on HF computation can be found in Methods.
In the following, we assume that the S lattice represents the stable
phase and is the relevant one in all phase transitions.

Energy per particle and lattice constants. The results of the
energy per particle Epp from HF calculations are summarised in
Fig. 2a. The S lattice is employed here (for the C lattice, see
Supplementary Note 1). We can see that upon increasing the
mass ratio, the 3e bubble is no longer in close competition with
the stripe phase, as the symmetry of the latter fits better the
external anisotropy which breaks rotation symmetry down to D2.
To see how the WC evolves into the stripe, we compare the lattice
constant lb [parameterisation in Fig. 1c], the characteristic scale
4π/q*, which will be discussed in the next section, and the stripe
period in Fig. 2b. An important feature is that these quantities
approach almost the same value at the transition point for larger
anisotropy. We will further elaborate this in the subsequent two
sections.

Fig. 2 The energy and the lattice constants of different phases. a The energy per particle of different phases as a function of filling ~ν at mass ratio
mx/my= 1 and mx/my= 5, computed in the Hartree–Fock (HF) approximation in the unit of e2/l. b The lattice constants of the Wigner crystal and the stripe
from HF calculation. We present the half diagonal length lb/2 of the rhombus unit cell and the stripe period. The dashed lines are the length scales set by
the HF minimum 2π/q* at mx/my= 1 and 2π=q�1 at mx/my= 5. The solid blue line represent the value lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

ffiffiffi
3

p
=~ν

q
l, corresponding to an exact triangular

lattice. As the stripe phase takes a unidirectional form in the HF ansatz, there is a discontinuity for mx/my= 5 because of different symmetry orders. But
further DMRG calculation reveals that quantum fluctuations lead to stripe crystal at this filling and smooth the discontinuity. c The energy per particle of
the ground state at each ~ν by DMRG calculations. d The half diagonal length lb/2 of the Wigner/stripe crystal from DMRG calculations. The colour
represents the stripe-direction modulation as in Fig. 1b. The absence of some data points of (d) comparing to (b) is due to that stripe phase cannot be
realised as a stable state in this region.
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The corresponding data for energy and lattice constant from
DMRG is showed in Fig. 2c and d. In the isotropic limit, the
phase boundaries revealed by Fig. 2c are consistent with the HF
result (Fig. 2a) up to a small difference. In Fig. 2c, the interpolated
curve of Epp shows clearly discontinuity in its derivative around
~ν ¼ 0:22 and ~ν ¼ 0:36, corresponding to the first-order transi-
tion between the WC and the 2e bubble phase and that between
the 2e bubble and the stripe phase. While not plotted in Fig. 2c,
we also confirm the competing 3e bubble predicted in ref. 10 with
a energy density difference as small as ~+10−4(e2/ϵl).

For mx/my= 5, the stripe crystal and the WC become adjacent.
As the stripe crystal arises from the modulation of unidirectional
stripes46,54,55, it has one period (lb) being locked around the
characteristic scale 4π/q* (see Methods). In Fig. 2d, for filling
~ν > 0:2, there is a variation in lb smaller than 10%. We consider
this region as the stripe region in our DMRG calculation. For
relatively low filling, 0:2< ~ν < 0:3, our calculation clearly shows
that there is a density modulation along the stripe. For ~ν � 1=2,
the modulation becomes rather small. Similar to the crystal
instability of unidirectional stripes in the isotropic limit46,49, we
see that a modulation develops smoothly within the stripe region,
i.e., with no clear signature of discontinuity in the derivatives of
Epp (Fig. 2c) and lb (Fig. 2d). Furthermore, under the mass
anisotropy mx/my= 5, the period data indicates no clear
discontinuity of the lattice shape between the WC region and
the stripe region. However, the derivative or higher order
derivative of period and energy with respect to filling is less
smooth near ~ν � 0:2. This indicates a transition or a fast
crossover between the WC and the stripe region, as we will
explain in more detail below.

Explanation for the lattice constants. Let us first clarify several
notions from the HF approximation. Under this approximation,
the energy of the system can be expressed as the product of the
electron mean-field densities with the HF interaction potential
uHF, which is given by the Coulomb potential minus its Fourier
transform (see Methods). The HF potential uHF(q) has minima as
a function q (see Fig. 3). In the isotropic case, the minimum is the
same for all directions, denoted as q*. When anisotropy comes in,
we denote the minimum along the y-direction as q�1 while the
minimum along the x-direction as q�2 . We can see clearly that the
minimum q�1 is much lower in energy than q�2 . The former serves

as the global minimum and explains why the stripe for mx/my= 5
lies along the x-direction.

Now we analyse the lattice constants for the WC and the stripe
crystal. In the isotropic case, previous studies49 found that a
triangular WC should exhibit a sharp deformation around ~ν ’
0:22 when ~ν is increased from ~ν ¼ 0. This is also reflected in our
simple HF calculation and DMRG calculation. In Fig. 2b, we find
that the stripe period and the Wigner crystal have a discrepancy
at their transition point for mx=my. In Fig. 2d, a sharp
deformation is also found near ~ν ’ 0:22. The point marked with
an arrow represents a metastable stripe state which has slightly
higher energy than the stable 2e bubble phase. This point is also
marked by an arrow in Fig. 1b. The highly anisotropic crystal
after this deformation is interpreted as the stripe crystal, whose
symmetry is different from a triangular lattice and a phase
transition should take place.

For sufficient anisotropy, we find that in our HF calculations
the discrepancy in periodicity between the stripe and the Wigner
crystal disappears. Our DMRG calculation shows that there is no
clear discontinuity in the first derivative of Eppð~νÞ and no sharp
deformation of the lattice structure, but instead a minimum of lb
along the light-mass axis near ~ν � 0:2.

We first provide a simple calculation based on the HF
approximation to illustrate why for mx/my= 1 the deformation
from a triangular lattice to a stripe crystal is so sharp and how it
becomes smooth when mass anisotropy is large enough. The
energy Epp is given as a summation over reciprocal lattice vectors
[Eq. (21)]. As a rough estimate of Epp, we consider only the first
shell, the six nearest neighbours of the origin that give the largest
contribution. For a triangular lattice under isotropic masses, all
nearest neighbours have equal distance ~Λ ¼ 4π=ð ffiffiffi

3
p

ΛÞ to the

origin, with Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πl2=ð ffiffiffi

3
p

~νÞ
q

the triangular lattice constant in
coordinate space. The average repulsion energy is given by
�E ¼ uHFð~ΛÞ. As ~ν starts to increase from 0, the average repulsion
starts to decrease as shown in Fig. 3a. At ~ν ¼ ~νc ’ 0:15, the
distance reaches the HF minimum ~Λ ¼ q� and �E is globally
minimal. As ~ν increases further, the lattice remains triangular for
a finite range of ~ν. To illustrate this, we compute its energy
compared to a deformed one, where we have two nearest
neighbours stay at the distance q* but keep the other four at a
larger distance ql to maintain the area of the unit cell, resulting in

Fig. 3 The evolution of the repulsion energy
--
E with respect to the partial filling ~ν. The curves represent the Hartree–Fock (HF) interaction potential

uHF(q) with E in units of e2/l and q in units of 1/l, where l is the magnetic length. The snowflake represents the average �E between the origin and its six
nearest neighbours in the reciprocal lattice. a Isotropic case. The arrows show how �E evolves with increasing ~ν. At small ~ν, the lattice adopts a triangular
shape with the average repulsion energy uHFð~ΛÞ. When ~ν increases, two of the six nearest neighbours have a tendency to stay at a distance q*, while the
other four are repelled away from the origin, staying at a distance ql. The green line roughly indicates the average repulsion from ql and q*. As ~Λ is
approaching qm, a stretched lattice becomes more and more favoured and eventually causes a transition in the lattice shape from the triangular lattice.
b Under large mass ratio mx/my= 10. The dashed/solid curve corresponds to the interaction along the y/x-direction. When ~ν increases, two of the six
nearest neighbours soon fall to the distance q�1 . The crystal then evolves with this distance fixed while the other four nearest neighbours move away. The
state becomes a stripe crystal phase through a continuous phase transition, or even crossover without transition.
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a rhombic lattice (see Fig. 3a). The energy of the two
configurations is computed up to a quadratic expansion of uHF

around q*:

uHFðqÞ ¼ uHFðq�Þ þ cðq� q�Þ2 þ ¼ ð5Þ
where c is in general positive as for a minimum. Then the average
repulsion for the triangular lattice is given by

�Etri ¼ uHFðqÞ ’ uHFðq�Þ þ c δ~Λ
2
; ð6Þ

where the deviation δ~Λ is

~Λ ¼
ffiffiffiffiffiffiffiffiffiffi
4π~νffiffiffi
3

p
l2

s
) δ~Λ ¼ q�

2~νc
δν: ð7Þ

For the deformed lattice, the average repulsion is

�Edfm ¼ uHFðq�Þ þ 2uHFðqlÞ
3

; ð8Þ

where ql is related to the filling factor by

ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�

2

� �2

þ 2π~ν
q�

� �2
s

) δql ¼
3q�

4~νc
δν: ð9Þ

Inserting these expressions, we find that near ~ν ¼ ~νc

�Etri � �Edfm ’ � cq�2

8~νc2
δν2 < 0: ð10Þ

This illustrates that a deformed lattice is energetically unfavour-
able near ~νc, because the larger values of ql lead to a cost in �E, and
the crystal is still triangular lattice for ~ν ≤ ~νc.

However, if ~Λ is approaching qm, the first local maximum of
uHF, this cost for deformation no longer exists. For q > qm, the
energy curve becomes very flat and the repulsion gains very little
when the distance in the reciprocal lattice is further enlarged. In
this situation, one can imagine that if four of the six nearest
neighbours are pushed further to a larger distance ql while the
other two keep a distance of q*, the energy is much lowered than
for the triangular lattice:

uHF
~Λ
� �

>
2uHFðqlÞ þ uHFðq�Þ

3
; for ~Λ � qm: ð11Þ

Such a deformed lattice, if one considers its density profile in
coordinate space, is rather similar to an array of 1D crystals
equally spaced by 2π/q*. This is exactly a stripe crystal density
profile, which fits well with the deformed lattice found in ref. 49 by
taking la= 2π/q* and lb ¼ 2πl2=ð~νlaÞ. According to this simple
calculation, the lattice constants should have a sudden jump
between ~ν ’ 0:15 and ~ν ’ 0:44. The very sharp deformation
found numerically49 at ~ν ’ 0:22 is indeed consistent with this
simple picture.

Let us turn to the anisotropic case, which we illustrate for an
artificially high mass ratio mx/my= 10, albeit our computation
shows that around mx/my= 5, the lattice shape is already
continous. We consider the S lattice, whose shape eventually
evolves into that of a stripe phase. The HF interaction in the x-
and y-directions takes rather different shapes (see Fig. 3b). The
lattice is anisotropic from low fillings. We use qs and ql to
parameterise it as in Fig. 3b. We can again perform the quadratic
expansion when q�1 is reached. In this situation, the constant c is
direction dependent, for example cx for the x-direction and cy for
the y-direction. If cy≫ cx, one can expect that the lattice period
should be nearly fixed in the y-direction while letting the x-
direction period grow with ~ν, becoming the shape of a stripe
crystal immediately after passing q�1 . Furthermore, a simple
calculation shows that when q1 is reached, ql is still in the
descending regime of uHF. This even more supports that ql keeps

increasing after the system reaches q�1 in the y-direction. As a
result, the above isotropic sharp deformation does not happen.
This is indeed reflected through both our calculations in Fig. 2b
and d. We find that as mx/my increases, the nearest-neighbour
distance qs in y-direction increasingly drops to and remains fixed
at the minimum q1. Only the distance ql now evolves with ~ν and
the system behaves as the stripe crystal without further large
deformation. The scale in the y-direction rapidly goes from the
dilute limit, where the lattice constant depends primarily on ~ν, to
the HF minimum dominated limit, where this lattice constant is
fixed by q*. In this situation, the lattice constant is a continuous
function of ~ν.

Analysis for the transition between a dilute-limit WC and a
stripe crystal. Let us now investigate how the energy per particle
transits between different CDW phases. We focus on the situation
where electrons form a 2D lattice structure. The general form of
Epp comes from the inspiration of HF results. From Eqs. (20) and
(21), the energy per particle is proportional to the sum of
uHF(q)∣ρb(q)∣2 over the reciprocal lattice. For a given lattice la, lb,
the density profile ρb on each lattice site is worked out by mini-
mising Epp. As ρb describes how local electrons at one lattice site
interact with neighbouring lattice sites, it should rely on the lat-
tice structure and the electron density, ρb ¼ ρbðla; lb; ~νÞ. It may be
reasonable to regard it as a smooth function on its variables
as long as the electrons are centred around each lattice site and
the electron number per site is fixed to M. In this case we can
further write ρb= ρb(la, lb,M). Then Epp can be explicitly para-
meterised by

Epp la; lb; ~ν
� � ¼ Epp 2π=ð~νlbÞ; lb; ~ν

� �
: ð12Þ

The dependence on la, lb and ~ν also enters through the reciprocal
lattice summation and an overall factor nB~ν=2 respectively
besides ρb. From such a structure, Epp la; lb; ~ν

� �
is continuous on

its three variables. As la ¼ 2π=ð~νlbÞ, only lb is a variational
parameter when one is looking for the lowest-energy state at a
certain filling. The ground state should satisfy:

δ

δlb
Epp la; lb; ~ν
� � ¼ 0; ) ∂Epp

∂lb
� 2π

~νl2b

∂Epp

∂la
¼ 0: ð13Þ

The solution to the above equation gives lb as a function of ~ν,
lbð~νÞ. Thus the first-order derivative dEpp=d~ν is:

dEpp
d~ν ¼ ∂Epp

∂lb
� 2π

~νl2b

∂Epp

∂la

	 

dla
d~ν þ

∂Epp

∂~ν � 2π
~ν2 lb

∂Epp

∂la

¼ ∂Epp la;lb;~νð Þ
∂~ν � 2π

~ν2 lb

∂Epp
∂la

:
ð14Þ

The second line is obtained by inserting Eq. (13).
First, we verify the above expression by analysing the transition

between different bubbles phases. At the transition point, the
number of electrons at each lattice site changes abruptly.
Therefore ρb is discontinuous on the two sides of the transition.
Meanwhile Eq. (14) is still valid for either side. Since ρb and la, lb
are different for different bubble phases, ∂Epp=∂~ν is discontinuous
at the transition point, signifying a first-order transition.

Then we turn to the WC and the stripe crystal. At low fillings,
lbð~νÞ is controlled by the long distance Coulomb tail, and the
system forms the dilute-limit WC. As the electrons become
denser, our picture in the last section tells us that at intermediate
fillings the lattice structure is dominated by the HF minimum q*

as a stripe crystal. We denote the two kinds of dependence as
lwb ð~νÞ and lsbð~νÞ. The former is controlled by the electron density
and the ~1/r repulsion. It slightly deviates from the triangular

isotropic result lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

ffiffiffi
3

p
=~ν

q
l, while the later is fixed around
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4π/q*. Analysing Eq. (14) in the isotropic situation, around the
transition point, lwb ð~νÞ deforms sharply to lsbð~νÞ. As the anisotropy
increases, such a sharp deformation should disappear. The lattice
structure is continuous at the transition point ~ν� between the WC
and the stripe crystal, lwb ð~ν�Þ ¼ lsbð~ν�Þ. The first-order derivative
dEpp=d~ν is continuous, but in the second-order derivative, the
expression dlb=d~ν appears:

d2Epp
d~ν2

¼ dlb
d~ν

�
∂
∂la

� 2π
~νl2b

∂
∂la

��
∂Epp

∂~ν � 2π
~ν2lb

∂Epp

∂la

�

þ 4π
~ν3 lb

∂Epp
∂la

� 2π
~ν2 lb

∂2Epp

∂~ν∂la
þ ∂2Epp

∂~ν2
:

ð15Þ

Because lwb ð~ν�Þ and lsbð~ν�Þ are controlled by different ranges of the
interaction, their first-order derivatives could be different (see
Fig. 2d). In that case the transition is second order. This does not
rule out the possibility that the transition can be higher orders, or
no phase transition in the strict sense separating the WC and
stripe region, in contrast to the isotropic limit. There, a phase
transition must take place when the WC is adjacent to the stripe
crystal because of the symmetry difference of the two
crystalline CDWs.

Experimental indications. As for experimental implications of
our results, notice first that the mass anisotropy of AlAs quantum
wells41 are suggested to be mx/my ≈ 5.

As we have shown, the mass anisotropy leads to the
disappearance of the 2e bubble phase. The 3e bubble phase
ceases to be in close competition with the stripe phase. As a result,
the region of the stripe phase is greatly enhanced and stabilised.
In transport measurements, the stripe direction yields the easy
direction while the periodic direction is the hard direction. If one
measures the longitudinal resistivities along two directions, ρxx
and ρyy, the result would manifest incommensurate behaviours in
the stripe phase. In the isotropic case, such a large anisotropy in
the longitudinal resistivity is observed near ~ν � 1=252,53. As mass
anisotropy is increased, we expect that this behaviour will extend
down to lower fillings.

We also find that first-order phase transitions between
different CDW phases are replaced by continuous phase
transitions (or even no transitions) with the increase of mass
ratio. As for the first-order phase transition between the WC and
the 2e bubble phase, it can be detected through transport
measurement under microwave irradiation36,56–58. The pinning
mode due to disorder manifests itself as the resonance peak of the
real part of the longitudinal conductivity ReσxxðωÞ at finite
frequency. It detects the periodic structure of CDW phases. For
the isotropic situation ReσxxðωÞ was found to exhibit two peaks
corresponding to coexistence between a WC and a 2e bubble
phase around the first-order transition point36. As the filling is
increased, the weight of the WC is lowered and finally disappears.
When mass anisotropy comes into play, such a first-order phase
competition is replaced by a continuous phase transition between
the WC and the stripe crystal as we showed in the last section.
The periodic structure deforms smoothly through the two phases.
Therefore we expect that only one peak appears throughout the
transition region for intermediate ~ν, corresponding to that of the
WC or stripe crystal. The position of the microwave resonance
smoothly changes throughout this phase transition point. The
pinning mode is also feasible for the transition between the crystal
phase and the unidirectional stripe58. For the unidirectional
stripe, there is a resonance peak for the longitudinal conductance
along the easy direction while no resonance occurs along the hard
direction. As now the 2e and 3e phases are completely removed,
the system has fewer candidates and it may be interesting to see
how the pinning modes in the stripe crystal should eventually

evolve into that of a unidirectional stripe. This can help us
understand better the nature of the QH stripe phase.

Ref. 59 suggests that the magnetic susceptibility may be used as
a tool to detect CDW phase transitions. This quantity is related to
the second derivative of Eppð~νÞ. We have shown that at the
transition between the dilute-limit WC and the stripe crystal, the
energy Eppð~νÞ can be at most discontinuous in its second order
derivative. Therefore such an experiment on susceptibility should
be able to uncover the WC-stripe crystal transition.

Discussion
Our analytic HF and numerical DMRG calculations reach a
remarkable agreement in studying the CDW phases under mass
anisotropy in the N= 2 LL. The mass anisotropy suppresses the
2e bubble phase and enlarges the region of the stripe phase in the
phase diagram. In particular, the previously predicted stripe
crystal now dominates at intermediate fillings. The first-order
phase transitions between the WC and the 2e bubble phase are
replaced by that between the WC and the stripe crystal. While
they are separated by a sharp deformation in the isotropic limit,
in the anisotropic case, no sharp deformation between them is
observed, but a second-order phase transition is likely to take
place. We nevertheless do not rule out the possibility of a
crossover due to the discreteness of our numerical data. Our
results can lead to many interesting experimental phenomena
that enhance the understanding of strong correlation in QH
systems.

There are a few perspectives from the work in this paper.
Notice that in the isotropic case, there can be a Kosterlitz-
Thouless transition from the stripe crystal to the unidirectional
stripe phase45 due to the proliferation of soliton-anti-soliton
pairs. How such a transition point evolves under anisotropy
remains interesting. This however requires including stripe-
direction quantum fluctuations that are beyond the simple HF
method used in this work, where we limit our calculations to the
classical density profiles. One needs to resort to quantum density
profiles. For example in ref. 46, the density profile is assumed to
take ρb as that of a M-particle ~ν ¼ 1 wave function60. But there is
no such a simple quantum density profile for the stripe phase. A
systematic approach is the more complicated self-consistent HF
approximation54. On the other hand, our DMRG calculation with
the implementation of symmetry breaking and quasi-momentum
conservation allows us accurately to compute the lattice shapes
and energy. The data also reveal the instabilities of a unidirec-
tional stripe to form stripe crystals at intermediate filling. But
closer to the half filling, the density modulation in the stripe
direction becomes very weak and it is difficult to conclusively
distinguish the unidirectional stripe from the stripe crystal. The
precise determination of weak stripe crystals or unidirectional
stripes calls for more sophisticated data extrapolation.

Methods
LL projection for anisotropic masses. The total Hamiltonian is given by the
kinetic part Hk plus the interaction part (1/2A)∑qV(q)ρ(q)ρ(− q), where V(q) is
the Coulomb interaction and ρðqÞ ¼ ∑Ne

i expð�iq � riÞ with ri being the coordinate
of the electron. The kinetic energy can be expressed in terms of the following one-
particle Hamiltonian with anisotropic masses:

Hk ¼
Π2

x

2m=α
þ

Π2
y

2mα
: ð16Þ

where the mass ratio is characterised by my/mx= α2. The covariant momentum is
given as Π= p+ ∣e∣A in a magnetic field B ¼ ∇ ´A ¼ �Bẑ. The LL projection can
be achieved by decomposing the electron coordinates into the cyclotron and
guiding centre coordinates as ημ=−∑νl2ϵμνΠν, Rμ= rμ− ημ, where l ¼

ffiffiffiffiffiffiffiffiffiffi
_=eB

p
and ϵμν is the anti-symmetric tensor. The cyclotron coordinates completely
determine the LL structure. In the presence of mass anisotropy the ladder operators
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for LLs are related to ηx and ηy through

a ¼ ηxffiffiffiffiffi
2α

p
l
þ i

ηy
ffiffiffi
α

p
ffiffiffi
2

p
l

ay ¼ ηxffiffiffiffiffi
2α

p
l
� i

ηy
ffiffiffi
α

p
ffiffiffi
2

p
l
: ð17Þ

The LLs are defined by the ladder operators through Nj i ¼ ayN=
ffiffiffiffiffi
N!

p
0j i.

The projection to the LL N is done by averaging the density operator
hNjρðqÞjNi ¼ ∑ihNj exp½�iq � ðηi þ RiÞ�jNi in the interaction Hamiltonian. After
this procedure, the kinetic energy can be dropped.

Hartree–Fock approximation. The analytic HF method provides a physical picture
in understanding the reaction of CDWs to anisotropy at a mean-field level, whereas
the DMRG numerical calculations incorporate quantum fluctuations absent in the
mean-field theory. Different CDW orders, typically the unidirectional stripe order
and the 2D crystalline order, are essentially captured by the analytic HF method.
On the other hand, the modulation induced by quantum fluctuations in the stripe
direction, which leads to the formation of the stripe crystal, is beyond our simple
HF approximation (in contrast to the self-consistent HF approximation54). Such a
stripe crystal can be manifested in the DMRG result. It probes into the regime
when the stripe crystal is adjacent to the low-filling WC.

With the CDW orders, the HF approximation enables us to extract the energy
of different states. The WC and the M-electron bubble phase possess the 2D lattice
order, while the stripe phase takes the unidirectional order. Within the HF
approximation, the energy of the system is given by:

EHF ¼
1
2A

∑
q
uHFðqÞh�ρðqÞih�ρð�qÞi: ð18Þ

In our calculation, we will jump between the discrete sum ∑q and the continuous
integral ∫dq whenever convenient, related through ∑q=A∫dq/(2π)2. The HF
potential uHF is given by the effective potential minus its Fourier transformation9

uHFðqÞ ¼ Veff ðqÞ �∑
p

Veff ðpÞ
Nϕ

expð�ip ´ ql2Þ; ð19Þ

The first and second terms are usually called the direct and the exchange
interaction, respectively. As common in the HF approximation, the direct
interaction is repulsive while the exchange interaction is attractive. Looking back at
Eq. (2), because of the Laguerre polynomial in the form factor FN, the direct
interaction has a series of zeros. At its first zero, the repulsive interaction vanishes
and a large attractive exchange interaction dominates. This leads to a global
minimum q* in the HF potential25 (also Fig. 3). For CDWs, they will greatly benefit
from this minimum if the periodicity is consistent with q*. In general the CDW
period scales indeed as 1=q� � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
for the LL index N25. This is the reason

why the HF approximation becomes increasingly accurate for larger N: the
quantum fluctuations arise at the edges of bubbles and stripes, taking place at a
length scale l. For large N these edge fluctuations are small compared to the CDW
periods.

Now we work out the energy per particle Epp= EHF/Ne. The WC and bubble
phases can be considered together as the former is equivalent to an 1e-bubble
phase. For a system on a lattice, the expectation value of the density takes a
decomposition:

h�ρðqÞi ¼ ρbðqÞ∑
j
e�iq�Rj ; ð20Þ

in which Rj are lattice vectors labelled by j. The function ρb represents the density
profile at each lattice site. In QH systems, the non-commutativity of the x- and y-
guiding centre coordinates requires that each electron must occupy a minimal
surface smeared over an area ~ l2. So at each lattice site the density distribution
cannot be point-like (also see Fig. 4a). For an M-electron bubble phase, the
normalisation requires ρb(0)=M. The area Au of the unit cell and the highest
partially filled LL filling ~ν satisfy 2πl2M ¼ ~νAu . Using the identity
∑j expð�iq � RjÞ ¼ ðA=AuÞ∑Qδq;Q , where Q is a reciprocal lattice vector, one can
find that the energy per particle is given by:

Epp �
EHF

Ne
¼ ∑

Q

nB~ν

2M2 uHFðQÞ ρbðQÞ
�� ��2; ð21Þ

where nB= 1/(2πl2) is the flux density. In the above summation we need to put
Veff(0)= 0 in uHF(Q) as a result of charge neutrality. This is different from the
cohesive energy used in refs. 8 and10, where the exchange energy at Q= 0 is also
subtracted. For practical calculation, the summation in Eq. (21) is usually taken
over a dozen shells in the reciprocal space for sufficient convergence of the energy.

In our HF approximation, there are several assumptions for the density profile
ρb(q) at each lattice site. Here we take a classical assumption of a uniform
distribution of ~ν ¼ 1 inside a disc10,24. In coordinate space this can be
represented as:

ρbðrÞ ¼
1

2πl2
Θðrb � rÞ; ð22Þ

with rb the radius of the disc (see Fig. 4a), which will be determined later.

Transforming it to momentum space, we find

ρbðqÞ ¼
rb
l2q

J1ðqrbÞ; ð23Þ

where J1 is a Bessel function. The normalisation requirement ρb(0)=M leads to
rb ¼

ffiffiffiffiffiffiffi
2M

p
l. So for the disc density profile, the energy per particle is

Epp ¼ ∑
Q

nB~ν
M

uHFðQÞ J
2
1ð

ffiffiffiffiffiffiffi
2M

p jQjlÞ
jQlj2 : ð24Þ

For the stripe phase, it is uniform in one direction but periodic in the
perpendicular one. A classical density profile is to have alternating uniform ~ν ¼ 1
and ~ν ¼ 0 unidirectional stripes along the periodic direction10. The distribution is
written as

h�ρðrÞi ¼ ∑
j

1

2πl2
Θ

a
2
� jr � ê� jΛsj

	 

; ð25Þ

where ê is the direction of the CDW order, perpendicular to the stripe direction,
and Λs is the stripe period. The width of the stripe a has to satisfy the filling factor
~ν ¼ a=Λs . Its energy per particle is given by:

Epp ¼ nB
2π2~ν

∑
j
uHF

2πê
Λs

j

� �
sin2ðπ~νjÞ

j2
: ð26Þ

The stripe period is a variational parameter fixed by minimising the above Epp. As
the stripe phase only has this periodic structure, we can immediately link it to the
minimum of the HF potential. It is found that this period almost coincides with the
inverse of the HF minimum8,10,24:

Λs � 2π=q�: ð27Þ
Looking at Eq. (2), we deduce that the zeros of the direct potential are scaling as

1=
ffiffiffi
α

p
in the qx-direction and

ffiffiffi
α

p
in the qy-direction. The HF minimum q* scales in

the same way. This suggests that for stripes arrayed in the x-direction, the period Λs

behaves as
ffiffiffi
α

p
and that for stripes arrayed in the y-direction, the period Λs behaves

inversely. Such behaviours of the minima are also reflected in uHF for mx/my= 5
presented in Fig. 3b. Therefore for a solid phase, in coordinate space its periodicity
in the y-direction is stretched while that in the x-direction is compressed.

Now we briefly mention the ansatz states in the case of an anisotropic mass. The
triangular lattice is no longer the optimal one in this case. We restrict ourselves to
rhombus lattices whose diagonals are along the x- and y-directions, the principal
axes of the anisotropy, as parametrised in Fig. 4a. The lengths la and lb satisfy

lalb ¼
2πl2M

~ν
; ð28Þ

such that a unit cell contains M electrons. Therefore la, lb are not independent and
we use la as the variational parameter. At each ~ν, we work out the la with the lowest
energy.

In addition to the deformation of the lattice, in principal we also need to
consider the deformation of ρb(q), the smearing region of the guiding centres
around each lattice site. In the isotropic case, this smearing region is assumed to be
a disc. In the presence of anisotropy, this region should also be deformed like the
lattice shape. Since the HF computation is to search for the lowest-energy state
variationally, it is not very efficient when both deformations are included so that
the searching dimensions become 2. The optimal smearing region is more
accessible through numerical methods, such as the above-mentioned self-consistent
HF approximation calculation48,54 and our DMRG calculation. In order to get a
good estimate of this deformation, we adapt two kinds of trial density profiles. The
first is still assuming the profile ρb(q) to be a round shape. The second is to deform

Fig. 4 Parameterisation of the lattice and the numerical density profile.
a The unit cell of bubble phases. The bubble at each lattice site has a
smearing region 2πl2= h/eB per electron, where e is the electron charge
and B is the magnetic field. b Charge density waves on the infinite cylinder
geometry: visualisation of the DMRG data for the density profile of 2
electron bubble crystal at 2/7 filling and the isotropic limit.
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ρb(q) like the cyclotron orbitals, namely rescaling it by
ffiffiffi
α

p
and 1=

ffiffiffi
α

p
in two

perpendicular directions. We expect that the energy of the true deformation of
ρb(q) can be approximated by the lower one of these two configurations. By varying
~ν and M, we find that the energy of these two configurations crosses several times.
The round disc is usually more favourable when the bubbles have the tendency to
cluster into a unidirectional CDW state. Notice that in this HF calculation, the
stripe phase and the crystal phases always possess different symmetry orders. This
is why in Fig. 2b there is a discontinuity at mx/my= 5. Our DMRG calculation
supplements this drawback and reveals that the actual phase near the phase
boundary takes an intermediate density profile between unidirectional stripe and a
well separated crystal phase. So the discontinuity in Fig. 2b is an artificial result of
the simple HF ansatzes.

Details of DMRG calculations. We use the density matrix renormalization group
(DMRG) to determine the ground states of the Hamiltonian on an infinitely-long
cylinder geometry with circumference L38,39,50,61. In our calculation, there are at
most 4-8 periods (depends on lengths of lattice vectors with L ~ 30l) wrapped
around the cylinders. We do not attempt to do extrapolation to infinite L.
Nevertheless, the finite-size errors for estimating energies and lattice shapes are
small, demonstrated in Fig. 5.

DMRG optimises the matrix product state (MPS) variational wave
functions62,63 to approximate the ground states. The ‘quality’ of the MPS ansatz is
controlled by the bond dimension χ, where χ is the size of the matrices used in the
MPS. The optimised MPS is expected to approach the exact ground state in the
χ→∞ limit. We extrapolate the data of different χ to estimate energy densities (see
e.g., Fig. 5a).

Using Landau gauge, the orbitals (single-particle eigenstates) of the kinetic
Hamiltonian [Eq. (16)] are localised and aligned along the axis of the cylinder and
labelled by the orbital centre/ canonical momentum (2πn=L; n 2 Z). Working with
the infinite cylinders (iDMRG), we need to specify the unit cell size Nu, namely to
set the MPS to be translational invariant by Nu orbitals.

Unlike working with liquid phases, the circumference L has to be chosen
discretely to ensure that the crystal lattices are neither stretched nor compressed by
the periodic geometry 38,39. In other words, for those L (denoted as Lop), the
ground state energy density is a minimum for nearby L.

When implementing DMRG, we need to find the pairs (Nu, Lop) as we want to
obtain states with broken spatial symmetry instead of cat states. An infinite quasi-
one dimensional crystal can be considered as an infinite repetition of a unit
cylinder of crystal. By magnetic flux quantisation, this unit cylinder contains an
integer number of orbital centres/ fluxes, denoted by Nnu. By definition, Nnu= qNe/
p, where Ne is the number of unit cell in the unit cylinder and p/q is the partial
filling fraction of the projected LL (¼ ~ν). As Nnu is an integer, Ne is an integer
multiple of p. Therefore, Nnu is an integer multiple of q. The symmetry broken
quantum state is thus transnational invariant by Nnu and we set Nu=Nnu.

In our situation, we find that the system always takes a rhombus lattice
embedded on the cylinder with one rhombus diagonal parallel to the axis (Figs. 4
and 6). Define NR as the number of unit cells wrapped around the cylinder
circumference. We have Ne= 2MNR and thus Nu= 2qMNR/p, where M is the
number of electrons each bubble contains. As Nu and NR are both integers, Nu

should also be an integer multiple of 2Mq; NR is an integer multiple of p. Notice
that the above condition is consistent with that to implement charge conservation
in DMRG, which requires Nu to be an integer multiple of q.

Given a permissible Nu (NR), by finding Lop, the lengths of the diagonals of the
rhombus unit cell can be estimated: lR= Lop/NR for the diagonal along the
tangential direction. In the following, we show that the estimated lR, as well as the
energy densities, shifts very slightly for the values NR we study in DMRG.

We compare the energy densities and lattice shapes of the data of different NR

to estimate the finite size error for evaluating those quantities. As the computation
cost grows exponentially with NR, we limit our calculation to a small NR.
Furthermore, since the Hamiltonian is anisotropic, we can choose the axial
direction along either the heavy-mass or the light-mass direction. Comparing the
results from the two choices gives a further evaluation of the finite-size effect. Here,
we show our results (Fig. 5) for the system at filling ~ν ¼ 1=6 in the isotropic limit.
The expected triangular lattice has two natural ways to be embedded on the
cylinder surface, which serves as two starting points of deformation under the two
choices of introducing anisotropy (config1, config2) respectively, see Fig. 6. By
computing lR for different NR, we find that lR converges to the length of the short/
long diagonal of the ideal triangular lattice for the two types of embedding.
Similarly, the data of energy densities shows that the estimation based on finite-size
data may be accurate.

Spatial symmetry breaking in our DMRG calculation. In this part, we discuss the
issue of obtaining symmetry broken states to directly detect CDW orders. To do
this, we need to figure out if a spatial-symmetry broken state can be an exact
ground state on infinite cylinders, and that if CDW orders can be overestimated or
induced due to the finite bond dimension of MPS approximation.

Strictly speaking, spatial symmetry can only break in the thermodynamic limit.
For finite systems, the exact ground state is the unique cat state. As we work with
infinite cylinder geometry, the system is infinite in one direction but finite in the
other. There are two kinds of spatial symmetries on the cylinder: the translational
and ‘rotational’ symmetries. Here, we argue that the translational symmetry along
the cylinder axis can be broken in the strict sense; the ‘rotational’ symmetry cannot
be broken for the exact ground states but can be broken for the DMRG finite-χ
approximated ground states.

As pointed out in ref. 39, the translational symmetry can be broken in the strict
sense for a system on an infinite cylinder with a finite circumference. The observation
is that albeit a continuous symmetry is forbidden to be broken in one dimension, the
translational symmetry of the Hamiltonian is discrete. On the other hand, the
‘rotational’ symmetry is a continuous symmetry, which is expected to be preserved.

The DMRG calculation is known to usually overestimate the symmetry broken
orders once they are not enforced to vanish. The overestimation gets corrected by
increasing the bond dimension. One example is that a one-dimensional quasi-order
leads to a finite-bond-dimension long-range order which decays with bond
dimension64–66. In the current problem of QH CDW on an infinite cylinder, we
find that translational symmetry breaking orders are overestimated; the ‘rotational’
symmetry breaking order is induced because of the finite bond dimension MPS.

There are two motivations to look for symmetry breaking states instead of cat
states. The first motivation is numerical efficiency. We expect that there is extra

Fig. 5 Estimate energy density by DMRG and determine lattice shape from energy data. a Estimate energy by extrapolating DMRG data with different
bond dimension χ. The unit of energy is e2/ϵl. Our scheme is fitting the ansatz E(χ)= E− b/χβ by fitting E(χ) as a linear function of 1/χβ;−b is the fitted
slope and an estimation of E is obtained from the intercept. We adjust the other fitting parameter β to do multiple linear fittings and determine β as that
maximises the r value. The plot with β= 1.44, is an example of such fit for the ground state at cylinder circumference L= 26, fold of ‘rotational’ symmetry
NR= 4 and 1/6 filling. b Determining lattice shape and energy density by searching optimal Lop defined as the location of energy minimum for nearby L. The
energies are extracted using the method illustrated in (a). We use the lattice shapes of systems with Lop to estimate that of the infinite 2D system. The fold
of ‘rotational’ symmetry NR is also the number of unit cells along the tangential direction. For a simple rhombus lattice, the length of one diagonal of the
rhombus unit cell lR can be determined as NRlR= Lop. The plot shows the calculation for systems at filling 1/6 and the isotropic limit. We calculate systems
with three different NR. Two of them have the short rhombus axis along the tangential direction and one has the long rhombus axis along the tangential
direction. In the thermodynamic limit, a triangular lattice Wigner crystal is expected. For exact triangular lattices, the optimal should be at where denoted
by star symbols (L*). The data shows that Lops deviate from L*s by small values. Accordingly, the estimated lR deviates from ideal values l�R. The deviation is
around 1.5% for NR= 4, 0.7% for NR= 5 (short); around 0.02% for NR= 3 (long). Also, we see the estimated energy densities differ by ~10−5.
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entanglement entropy for a cat state comparing to corresponding symmetry broken
states. For the breaking of continuous internal symmetry, it has been shown67,68

that the extra bipartite entanglement entropy is logarithmic in the length of
partition boundary. Similar result is expected to apply to spatial symmetry breaking.
For the orbital basis bipartition, it is clear that translational symmetry breaking
reduces the entanglement entropy by log ðNuÞ. Notice that Nu is proportional to the
cylinder circumference L. The efficiency of DMRG benefits from a less entangled
target state. Working with fully symmetry-broken states is the fastest, even if we can
only utilise a quasi-momentum conservation in the DMRG without continuous
‘rotational’ symmetry. The second motivation is that obtaining symmetry broken
states allows for the direct confirmation of CDW phases and also the calculation of
physical quantities such as densities and certain two-point correlations. In the
following, we discuss details of determining QH CDW states by DMRG.

As the translational symmetry breaking along the cylinder axis is exact, it is
most straightforward to measure the order along this direction, for example, the
(weak) density modulation along the stripe. However, the approximated ground
state by MPS with a fixed bond dimension χ may not tell us whether there is a
translational symmetry breaking. Even if the exact ground state is uniform in the
axial direction, the finite-χ approximation may still have some density modulation.
One needs to extrapolate data of different χ to see if the density modulation
vanishes in the χ→∞ limit.

At the same time, as there is no ‘rotational’ symmetry breaking for the exact
ground state, we need to interpret the ‘rotational’ symmetry breaking of DMRG
data. Each data point comes from DMRG optimisation on a fixed bond dimension
MPS, with fixed unit cell size, and the matrix elements are restricted to be real. If
the bond dimension approaches infinity, a well-optimised state, of course, should
not break the ‘rotational’ symmetry. However, restricting the variational space

within the MPS ansatz with a fixed bond dimension, there exists effective pinning
which decays with increasing bond dimension. This could be similar to the role of
the pinning field in an exact calculation of a finite system. For a range of small
pinning strength, the symmetry-breaking order can serve as an estimation of the
exact result. If the pinning strength is too small, the symmetry can restore; the
threshold strength should be related to the spacing of the low-lying states of the
exact spectra. In our calculation of isotropic WC, we observe that for some
relatively small systems ~20l, the symmetry restores, for large enough bond
dimensions with estimated energy accuracy 10−6. On the other hand, if the density
modulation of the exact state is too weak, the corresponding ‘rotational’ symmetry
cannot break even for moderate bond dimension.

Data availability
Additional results supporting the findings of this study are included in Supplementary
Information. The data that supports the plots within this paper is available from the
corresponding author on request.
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