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ABSTRACT

Context. The discovery of moderate differential rotation between the core and the envelope of evolved solar-like stars could be the
signature of a strong magnetic field trapped inside the radiative interior. The population of intermediate-mass red giants presenting
surprisingly low-amplitude mixed modes (i.e. oscillation modes that behave as acoustic modes in their external envelope and as grav-
ity modes in their core) could also arise from the effect of an internal magnetic field. Indeed, stars more massive than about 1.1 solar
masses are known to develop a convective core during their main sequence. The field generated by the dynamo triggered by this con-
vection could be the progenitor of a strong fossil magnetic field trapped inside the core of the star for the remainder of its evolution.
Aims. Observations of mixed modes can constitute an excellent probe of the deepest layers of evolved solar-like stars, and magnetic
fields in those regions can impact their propagation. The magnetic perturbation on mixed modes may therefore be visible in astero-
seismic data. To unravel which constraints can be obtained from observations, we theoretically investigate the effects of a plausible
mixed axisymmetric magnetic field with various amplitudes on the mixed-mode frequencies of evolved solar-like stars.
Methods. First-order frequency perturbations due to an axisymmetric magnetic field were computed for dipolar and quadrupolar
mixed modes. These computations were carried out for a range of stellar ages, masses, and metallicities.
Conclusions. We show that typical fossil-field strengths of 0.1−1 MG, consistent with the presence of a dynamo in the convective
core during the main sequence, provoke significant asymmetries on mixed-mode frequency multiplets during the red giant branch. We
provide constraints and methods for the detectability of such magnetic signatures. We show that these signatures may be detectable
in asteroseismic data for field amplitudes small enough for the amplitude of the modes not to be affected by the conversion of gravity
into Alfvén waves inside the magnetised interior. Finally, we infer an upper limit for the strength of the field and the associated lower
limit for the timescale of its action in order to redistribute angular momentum in stellar interiors.
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1. Introduction

Oscillations on the surface of solar-type stars have been observed
and studied across the Hertzsprung-Russel diagram thanks in
large part to the data provided by CoRoT, Kepler, K2, and
the TESS missions (e.g. Michel et al. 2008; Chaplin et al. 2010,
2020; Lund et al. 2017; Huber et al. 2019; García & Ballot
2019). While this list is hardly exhaustive, some key results are
relevant to this paper and to the importance of the transport of
angular momentum in the radiative regions of main sequence
(MS) stars. Indeed, the radiative interior of the Sun seems to
rotate as a solid body slightly slower than the equatorial sur-
face rotation rate (García et al. 2007) until 0.25 solar radii (R�;
e.g. Thompson et al. 2003; Couvidat et al. 2003), and the nuclear
core may rotate even faster (García et al. 2007). The study of
some solar-like stars also shows that they present a nearly solid-
body rotation (Benomar et al. 2015). Likewise, in subgiant (SG)
stars and red-giant (RG) stars, some relevant works are the

discoveries of the unexpectedly slow rotation rate of their cores
(e.g. Deheuvels et al. 2012, 2014, 2016; Mosser et al. 2012,
2017; Gehan et al. 2018), and the surprisingly low amplitude
of dipolar mixed modes in some red giants (RGs; García et al.
2014a; Mosser et al. 2012, 2017; Stello et al. 2016a). As of yet,
there is no clear evolutionary model that yields internal rota-
tion profiles akin to those observed (e.g. Eggenberger et al. 2012,
2017, 2019; Ceillier et al. 2013; Marques et al. 2013, for the loss
of angular momentum on the giant branch), nor is there a robust
explanation for the observed dipole mode amplitude suppression
(Fuller et al. 2015; Cantiello et al. 2016; Lecoanet et al. 2017;
Mosser et al. 2017; Loi & Papaloizou 2018).

Some magneto-hydrodynamic fluid behaviours can strongly
impact the rotation profile of the star both on secular timescales
(Eggenberger et al. 2005; Cantiello et al. 2014; Fuller et al.
2014, 2019) and even on their dynamical timescales (Brun et al.
2005; Featherstone et al. 2009; Augustson et al. 2016). More-
over, the transport of chemical species, energy, and angular
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momentum by internal waves can also play a role (e.g.
Belkacem et al. 2015; Pinçon et al. 2017).

However, none of these cited solutions fully explains the
angular momentum transport from the subgiant stage until the
end of the red giant branch (RGB). This raises the issue of
the incompleteness or inaccuracy of the included set of phys-
ical processes driving the internal dynamics in stellar mod-
els at each step of the evolution. Magnetic fields are not
considered for instance inside the radiative interior of solar-
type stars along their evolution in models (apart from a few
studies that do include the effect of the Tayler-Spruit dynamo,
e.g. Cantiello et al. 2014), while we do know that at least weak
fields must be present, resulting from the relaxation of past
dynamo events (e.g. Braithwaite & Spruit 2004; Braithwaite
2008; Duez & Mathis 2010). Such internal magnetism may pre-
vent differential rotation inside the radiative interior, a configu-
ration that has been observed inside solar-like stars and the Sun
(García et al. 2007; Benomar et al. 2015; Fossat et al. 2017).

The internal structure of SGs and RGs allows acoustic
and gravity modes to couple to form mixed modes. As they
probe the deepest layers of the star, they are of great inter-
est for the understanding of physical processes taking place
from the deepest layers of the radiative interior towards the
surface of the star. For instance, they are known to provide
estimates of the mean rotation rate of the core of SGs and
RGs (e.g. Deheuvels et al. 2012, 2014, 2016; Mosser et al. 2012,
2017; Gehan et al. 2018). Fuller et al. (2015), Lecoanet et al.
(2017), and Loi & Papaloizou (2017) suggested via different
magnetic conversion mechanisms that the presence of a strong
magnetic field inside the core of a RG can convert magneto-
gravity waves into Alfvén waves. This results in a loss of
energy of the observed modes, which are no longer mixed
modes and only present an acoustic signature. Their ampli-
tude is therefore diminished in the power spectrum density
(PSD). Even if these theories are controversial (e.g. Mosser et al.
2017), they point out the potentially large effect of magnetic
fields on mixed-mode amplitudes. The impact of buried pure
toroidal or poloidal magnetic fields on acoustic mode fre-
quencies was studied in the context of the SOlar and Helio-
spheric Observatory (SOHO, Domingo et al. 1995) mission
(Solar Oscillation Imager/Michelson Doppler Imager; SOI/MDI,
Scherrer et al. 1995) and the Global Oscillations at Low Fre-
quencies (GOLF, Gabriel et al. 1995 instruments) for the obser-
vation of the Sun (e.g. Gough 1984; Gough & Thompson 1990;
Dziembowski & Goode 1985, 1989; Takata & Shibahashi 1994;
Kiefer & Roth 2018) but no trace of such fields has been
found in the solar acoustic data. Rashba et al. (2007) devel-
oped the equivalent theory for the Sun’s g modes, whose detec-
tion is still controversial (García et al. 2007; Appourchaux et al.
2010, 2018; Fossat et al. 2017; Fossat & Schmider 2018;
Schunker et al. 2018; Scherrer & Gough 2019). More recent
studies (e.g. Hasan et al. 2005; Prat et al. 2019; van Beeck et al.
2020) focused on the impact of stable fields (with a magnetic
configuration given by Duez & Mathis 2010 that consists in
mixed poloidal and toroidal fields) on slowly pulsating B and
γ-Doradus stars showing pure gravity modes. The effect of
moderate-amplitude magnetic fields on mixed-mode frequencies
of evolved stars was theoretically studied by Loi (2020) in the
case of a non-rotating star. That study provides analytical (non-
perturbative) expressions of the impact of magnetic fields on
mixed mode frequencies that are complementary to the pertur-
bative analysis presented in this paper.

Led by all these previous theoretical studies, we focus our
efforts on understanding the core dynamics of SGs and RGs. We

investigate the impact of a realistic axisymmetric fossil magnetic
field buried inside the core of evolved low-mass (M? . 1.3 solar
masses, M�) and intermediate-mass (1.3 M� . M? . 7 M�)
solar-like pulsators (i.e. SGSs and RGSs) on their observable
mixed-mode frequencies. In our study, as opposed to the work by
Loi (2020), we consider the magnetic field amplitude to be small
enough for its effects on the mixed-mode frequencies to play
as a first-order perturbation, along with the first-order effects
resulting from the slow differential rotation of the star (e.g.
Deheuvels et al. 2014; Gehan et al. 2018). This approximation
is motivated by the non-discovery to date of any magnetic signa-
tures on the mixed-mode frequency pattern of observed RGs.

For the magnetic field, we use a realistic mixed poloidal
and toroidal configuration (Braithwaite & Spruit 2004;
Braithwaite & Nordlund 2006; Duez et al. 2010a,b), and
evaluate its impact on typical mixed modes computed using
the stellar evolution code MESA (Paxton et al. 2011) and
stellar oscillation code GYRE (Townsend & Teitler 2013). After
describing the magnetic-field configuration and its potential ori-
gin and evolution in Sect. 2, we provide in Sect. 3 the first-order
perturbative analysis leading to the magnetic and rotational shift
of mixed-mode frequencies. Section 4 investigates the shifting
of the ` = 1 and ` = 2 mixed mode frequencies in the case
of a M? = 1.5 M�, Z = 0.02 star along its evolution on the
RGB. This star is massive enough to develop a convective core
during the MS, which can lead to the intense production of
magnetic energy. We provide values of the critical field strength
associated to this axisymmetric topology above which the effect
on mode frequencies should be visible in real data, and conclude
on the validity of the perturbative approach depending on the
magnetic-field strength and the evolutionary stage of the star. In
Sect. 5, we then follow the same approach as we do for the RG
branch for the SG stage. During the SG branch (SGB), the nature
of most mixed modes is transitioning from acoustic- toward
gravity-dominated modes. Section 6 discusses the consequences
of the presence of fossil magnetic fields inside evolved solar-like
stars on angular momentum transport. In Sect. 7 we investigate
the stellar mass and metallicity dependence of the magnetic
splitting of mixed modes. Section 8 focuses on comparing the
magnetic field amplitude needed for g-mode conversion into
Alfvén modes with those needed for magnetic splitting to be
detectable in the data. Finally, we conclude on the large potential
of this approach for the future detection of magnetic fields from
the inversion of magnetic-frequency splitting from real data.

2. Internal magnetic fields along the evolution

Magnetism in the depths of stars is very difficult to probe.
Spectropolarimetry, which provides most measurements of stel-
lar magnetic fields through the Zeeman effect, only provides
information on magnetism emerging from the external layers
of the star (e.g. Donati et al. 1997). Probing internal magnetism
in evolved solar-like stars could be game changing, because
magnetism is known to enhance angular momentum trans-
port (Mestel & Weiss 1987; Charbonneau & MacGregor 1993;
Gough & McIntyre 1998; Spruit 1999, 2002; Mathis & Zahn
2005; Fuller 2014; Fuller et al. 2019; Eggenberger et al. 2020).
Thus, strong magnetic fields within subgiants and red giants
could potentially explain their low core-to-envelope rotation-rate
ratio.

One powerful mechanism strengthening and sustaining mag-
netic fields is a convective dynamo, which can create strong mag-
netism from a weak initial field (e.g. Dikpati & Gilman 1999,
for the Sun’s dynamo). Such a mechanism is likely to be the
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Fig. 1. Magnetic configuration schemes (not to scale) following the evo-
lution of low- and intermediate-mass stars from the main sequence. The
represented configuration corresponds to the axisymmetric field topol-
ogy considered in our study. It presents both a poloidal (blue lines) and
a toroidal (red lines) component, with the axis of symmetry aligned with
the rotation axis of the star.

origin of the solar surface magnetic cycle (Brun et al. 2004;
Brun & Browning 2017), and is probably active in any convec-
tive rotating region inside stars (e.g. Brun et al. 2005; Browning
2008; Brown et al. 2010, 2011; Augustson et al. 2012, 2015,
2016). However, internal layers of low-mass evolved stars are
radiative during the SG and RG stages: no convective dynamo
can take place in their depths. For a magnetic field to be present
inside the radiative interior of evolved solar-like stars, either
a dynamo-originated stochastic field has been preserved inside
the radiative cavity following the last dynamo episode (fossil
field scenario), or the field is transient and currently generated
by magnetohydrodynamics instabilities (Spruit 2002; Zahn et al.
2007; Fuller et al. 2019). Spruit (2002) and Fuller et al. (2019)
propose a solution to generate magnetic energy from the com-
bination of the Tayler instability (Tayler 1973) and radial
differential rotation. This rotational instability may result in
large-scale internal magnetic fields, but is out of the scope of
this paper. We focus here on the so-called fossil field scenario,
resulting from the relaxation of magnetic fields originating from
a past convective episode, as described in Braithwaite (2008),
Duez & Mathis (2010), and Mathis et al. (2010). In the case of
giant stars, internal fields may form from two previous convec-
tive dynamo episodes, depending on the mass of the star. Dur-
ing the pre-main sequence (PMS), the star is fully convective:
a similar dynamo process to the solar dynamo could take place
inside the whole star. When the convective region reduces to a
thin surface layer on the MS, the dynamo-originated magnetism
may start to relax inside the radiative interior (Arlt et al. 2013;
Emeriau-Viard & Brun 2017; Villebrun et al. 2019). As the star
evolves on the MS, its radiative interior thus possesses a relaxed
fossil field resulting from the convective dynamo taking place
during the PMS. On the MS, either the star is of low mass
(M? ≤ 1.1 M�) and the convective region simply reduces to a
surface layer, or for M? ≥ 1.1 M� the convective region reduces
to a surface layer while a convective core is formed due to the
change in the hydrogen fusion mechanisms. Such a core likely
also convectively generates a magnetic field via a dynamo (see
Fig. 1). This field could therefore enhance the potentially already
present relaxed magnetic field inside the radiative interior of the
star. During the SG phase, the interior is completely radiative,

and a fossil field is formed, which is also present during the
RGB. The field is located inside the radiative region of the star,
the extent of which varies with evolution.

2.1. The fossil field scenario

In the fossil field scenario, the relaxing magnetic field may
be preserved inside the radiative interior when the convection
ends. If no disruptive processes occur inside the radiative interior
from the MS towards the RGB, such as strong differential rota-
tion (Aurière et al. 2015; Gaurat et al. 2015), the stochastic field
will eventually stabilise into a fossil equilibrium configuration,
reached when the Lorentz force balances hydrodynamics forces
(Chandrasekhar 1958). In that case, and by assuming a constant
magnetic diffusivity, the induction equation is written as:

∂B
∂t

= −η∇ ∧ (∇ ∧ B) , (1)

where η is the magnetic diffusivity. If there is no turbulence in
the region, the associated Ohmic relaxation time due to atomic
processes is τ = R2/η. For a ‘fossil field’, this is comparable to
the lifetime of the star itself, being 1010 years in the case of a
field inside the radiative interior of the Sun (e.g. Cowling 1945).
Thus, if ever generated and never disrupted by hydrodynami-
cal or other MHD processes, the dynamo-originated field should
remain trapped for the remaining evolution of the star as a fos-
sil field, and should still be present in its radiative interior dur-
ing the RGB (Stello et al. 2016b). The intense magnetism dis-
covered in some white dwarfs (Angel et al. 1981; Putney 1999;
Schmidt et al. 2001) could then result from such a PMS-MS
dynamo field, surviving as a fossil field during the succeed-
ing evolutionary stages. The primary challenges regarding these
equilibrium magnetic fields are the determination of their 3D
configuration and the estimation of their amplitude.

2.2. Fossil field topology

Purely toroidal and purely poloidal magnetic configurations are
known to be unstable (e.g. Tayler 1973; Markey & Tayler 1973;
Braithwaite 2006, 2007). The stability of mixed configurations
with both poloidal and toroidal components is demonstrated in
Tayler (1980), and the relative energy contained in the toroidal
and poloidal components for the field to be stable has been
evaluated numerically (Braithwaite 2008) and semi-analytically
(Akgün et al. 2013). In a similar vein, Braithwaite & Spruit
(2004) simulated the relaxation of stochastic fields in a non-
rotating radiative medium. Those simulations show that a
stochastic field representing a dynamo-generated field inside a
stably stratified region relaxes into a stable, larger-scale, mixed
poloidal and toroidal magnetic field. Duez & Mathis (2010)
give the closest semi-analytic description of such stable mixed
toroidal and poloidal fossil fields. As opposed to previous
studies (e.g. Gough & Thompson 1990) that considered purely
toroidal or purely poloidal field topologies, we use this stable
mixed formalism to investigate the effect on mixed-mode fre-
quencies of a hypothetical fossil field trapped inside the radia-
tive interior of size Rrad of evolved stars (see Fig. 1). We do
not consider in our study non-perturbative boundary condi-
tions associated to more realistic magnetic field configurations
(e.g. Roberts & Soward 1983; Campbell & Papaloizou 1986;
Dziembowski & Goode 1996; Bigot et al. 2000). The mixed
toroidal and poloidal expression from Duez & Mathis (2010)
that minimises the energy of the system is dipolar. Such mag-
netism confined inside the radiative interior of the star is written
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Fig. 2. Mixed poloidal (black lines) and toroidal (colour scale) magnetic field modelled using the formalism of Duez & Mathis (2010); see Eq. (2).
Values are normalised by the maximum radial field amplitude. The field is confined inside the radiative region of the star, the extent of which is
given by the corresponding evolution model MESA and indicated by the black circle. Left to right: cases of a 1.5 M�, Z = 0.02 star from the SG
phase to RGB, with ages of 2.65, 2.75, and 2.80 Gyr, and effective temperatures of 5967, 5075, 4900 K, respectively.

as:

B =


1

r sin θ

(
∇ψ(r, θ) ∧ eϕ + λ

ψ(r, θ)
Rrad

eϕ
)

if r < Rrad,

0 if r > Rrad,
(2)

where ψ is the stream function satisfying

ψ(r, θ) = µ0αλ
A(r)
Rrad

sin2 θ, (3)

with µ0 the vacuum magnetic permeability expressed as 4π in cgs
units, α a normalisation constant fixed by the chosen magnetic-
field amplitude, λ the eigenvalue of the problem to be deter-
mined, Rrad the radius of the radiative interior, and

A(r) = − r j1

(
λ

r
Rrad

) ∫ Rrad

r
y1

(
λ

x
Rrad

)
ρx3dx

− ry1

(
λ

r
Rrad

) ∫ r

0
j1

(
λ

x
Rrad

)
ρx3dx, (4)

with j1 (y1) the first-order spherical Bessel function of the first
(second) kind (Abramowitz & Stegun 1972) and ρ= ρ(r) the
density of the star.

In our study, we consider the field to be aligned with the
rotation axis of the star; hence, non-aligned and non-fossil field
configurations are out of the scope of this paper. Finally, the
axisymmetric poloidal and toroidal magnetic field used in our
analytical calculations can be expressed as

B = B0

[
br(r) cos θ, bθ(r) sin θ, bϕ(r) sin θ

]
, (5)

with the following correspondences to match the Duez & Mathis
(2010) formalism:

B0 =
µ0αλ

Rrad
(6)

br(r) =
2A
r2 (7)

bθ(r) = −
A′

r
(8)

bϕ(r) =
λA

rRrad
, (9)

with the prime symbol denoting the radial derivative.
In order to confine the field inside the radiative area we set λ

as the smallest positive constant for B to vanish at the radiative–
convective boundary (see Fig. 2). As opposed to massive stars,

red giants present a strong internal density gradient. This prop-
erty prevents

∫ Rrad

0 j1
(
λ x

Rrad

)
ρx3dx from going to zero for any

value of λ. As a result, we could not simultaneously cancel the
br and bθ components of the field at the radiative–convective
boundary. To ensure that the field is confined to the radiative inte-
rior, we choose to eliminate only br. This leads to an azimuthal
current sheet that might create instabilities (see Duez & Mathis
2010, for a detailed description). This is accomplished by search-
ing for zeros of y1(λ) instead (a more detailed description is
given in Appendix B). We find that the corresponding smallest
value for λ is about 2.80. This eigenvalue corresponds to the first
zero of the function y1, providing the most stable parametrisa-
tion that eliminates br at Rrad. This rather small value of λ leads
to poloidally dominated fields as represented in Fig. 2.

2.3. Estimating the evolving magnetic field amplitude

By considering an ideal fossil-field scenario, one can estimate
the amplitude of the field along the evolution of the star by con-
sidering magnetic-flux conservation from the end of the more
recent dynamo episode without considering any Ohmic loss of
energy due to the reconnection of field lines during successive
relaxations. Therefore, here we adopt the approach of giving an
upper-limit of the field amplitude by first computing the rate of
magnetic energy produced by stellar dynamos and transmitting
its amplitude to the fossil field, a simple approach that is cur-
rently used in studies in asteroseismology (e.g. Fuller et al. 2015;
Cantiello et al. 2016). However, we know that during the relax-
ation of fossil fields, loss of magnetic energy occurs at small
scales. This has been observed in numerical simulations (e.g.
Braithwaite 2008; Duez 2011; Emeriau-Viard & Brun 2017).
How to properly quantify this Ohmic loss of energy and the cor-
responding turbulent scales all along the evolution of stars is an
open and difficult question because a coherent theoretical mod-
eling should be provided (e.g. Moffatt 2015; Hotta 2017) while
our current MHD simulations assume magnetic diffusivities (and
diffusivities in general) that are in general higher than in stellar
interiors. This question will be examined in detail in a forthcom-
ing article.

We consider the extent of the fossil field configuration to
match the size of the radiative interior of the star during the SG
and RG phases (see Fig. 1). This implies that no reconnections
with the envelope field are considered in our simplified con-
figuration. In our fossil field scenario, the last recorded inter-
nal dynamo is either the convective core dynamo for stars more
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massive than 1.1 M�, as presented in Fig. 1, or the global con-
vective dynamo during the PMS for low-mass stars.

As in Fuller et al. (2015) and Cantiello et al. (2016), we esti-
mate the magnetic amplitude resulting from magnetic flux con-
servation from the end of the last convective dynamo episode
towards the current giant stage, through:

B0? ' B0,init
R2

init

R2
rad,?

, (10)

with Rinit the radius of the convective cavity of the last inter-
nal dynamo phase, and Rrad,? the size of the current radiative
sphere inside which the field is supposed to be confined. This
flux conservation equation ensures that the entirety of the mag-
netic energy is conserved inside the radiative interior, with no
exchanges with the surrounding convective zone, and with no
disruption of the magnetic field by an external mechanism such
as differential rotation. Rinit and Rrad,? are evaluated along the
evolution using the MESA stellar evolution code (Paxton et al.
2011). The B0,init field amplitude is estimated during the reces-
sion phase of the last internal dynamo by the use of rotating
stellar models computed with STAREVOL (STAREVOL is used
instead of MESA to take into account rotation during the early
stages of the evolution of the star needed in order to estimate
the magnetic field amplitude resulting from magnetostrophy and
buoyancy regimes; see Amard et al. 2019; Astoul et al. 2019, for
details). The field is evaluated following Augustson et al. (2019)
and Astoul et al. (2019) by considering the magnetostrophic,
equipartition, and buoyancy-driven regimes (see Appendix A for
details about how the different regimes are constructed). The tur-
bulent equipartition regime corresponds to the state where the
convective kinetic energy density of the fluid is fully converted
into a magnetic energy density (superequipartition regime there-
fore refers to the fluid’s magnetic energy being greater than its
kinetic energy). An equipartition or subequipartition regime is
invoked for the Sun’s dynamo inside the convective envelope
(Brun et al. 2017). The magnetostrophic regime is reached when
Coriolis acceleration balances Lorentz force in the momentum
equation. This corresponds to a maximum-amplitude estimate
of the magnetic field, and can be a superequipartition regime.
The magnetostrophic regime is suspected by Augustson et al.
(2019) to be applicable for stellar dynamos. The buoyancy
dynamo regime corresponds to the case where Coriolis accel-
eration, buoyancy, and Lorentz forces all have the same order
of magnitude. This regime is usually considered for rapidly
rotating low-mass stars and planets with strong density gradient
(Christensen et al. 2009).

2.3.1. Case of M? . 1.1 M�

Low-mass stars do not develop a convective core during the
MS, apart from a small convective interior that arises from the
energy released during the CNO cycle before the temperature
drops (down to ∼5600 K) leading to the p-p fusion mechanism.
However, such stars possess a convective envelope, schemati-
cally represented in Fig. 1. The top panel of Fig. 3 represents
the amplitude of the magnetic field generated at the bottom of
the convective envelope while the star evolves. When the radia-
tive interior replaces the convection at the beginning of the MS
(∼2 × 107 years), the amplitude of the expected magnetic field
that relaxes into the radiative interior at the boundary with the
convective envelope is of the order of magnitude of respec-
tively 106, 105, and 104 G for the magnetostrophic, buoyancy,
and equipartition regimes. Astoul et al. (2019) concluded that in

Fig. 3. Top: magnetic field amplitude at the base of the convective enve-
lope along the evolution of a M? = 1 M� star, with solar metallicity
(Z = 0.0134), uniformly rotating with an initial rotation rate during the
disk-locking of the PMS of Ω = 2.5 µHz. The blue, red, and orange
lines respectively represent the field estimated by considering the mag-
netostrophic, buoyancy, and equipartition regimes. The black dashed
line represents the location of the limit radius between the internal radia-
tive layer and the convective envelope. Bottom: same as top panel at the
top of the convective interior along the evolution of the star. The black
dashed line represents the location of the limit radius between the con-
vective core (when existing) and the radiative layer.

order to reproduce the magnetic amplitude observed at the sur-
face of rotating PMS and MS stars, the magnetostrophic regime
should be considered. For the remainder of this paper we there-
fore use the amplitude of the dynamo field estimated by consid-
ering the magnetostrophic regime as an upper estimate of the
magnetic amplitude inside the radiative interior. The equipar-
tition approximation that is used by Cantiello et al. (2016) and
Fuller et al. (2015) provides much smaller estimates of the field
amplitude, as seen in Fig. 3: we consider these estimates as the
lowest possible value of the fossil field in the remainder of the
article.

We shall also discuss the quick appearance of a convective
core at the beginning of the MS. The characteristic timescale for
a dynamo to emerge from convection and differential rotation
is of the order of a year (by considering a typical solar internal
rotation rate). Therefore, despite its comparatively short lifespan,
this early convective core should still produce a dynamo field.
Its amplitude would be of the order of magnitude represented in
the bottom panel of Fig. 3. This newly generated field has an
amplitude equivalent to that of the original field resulting from
the dynamo in the convective envelope during the PMS: the pres-
ence of this convective core right after the end of the PMS should
not modify the amplitude of the already relaxing field. In this
way we ignore the interaction between the dynamo field and the
surrounding fossil field as shown by Featherstone et al. (2009)
in the case of A-type stars. Such interaction may enhance the
dynamo process, and may lead to stronger core field amplitudes.
For low-mass stars with no persistent convective core during the
MS, we thus consider the relaxation and stabilisation of the field
to occur at the end of the PMS inside the newly formed radiative
interior, ignoring the early convective core, where Binit = BPMS
with values ranging from 104 to 106 G, depending on the chosen
dynamo force balance regime.
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Fig. 4. Same as Fig. 3 but for a M? = 1.4 M� star.

2.3.2. Case of M? & 1.1 M�

If the star is massive enough for a sustainable convective core to
form during the MS, we then consider this convective core to be
the location of the last internal dynamo episode from which the
fossil field relaxed. In that case, Rinit is equal to the radius corre-
sponding to the maximum extent of the convective core during
the MS (RMS), which is estimated with evolution models from
MESA (see Appendix E). Figure 4 represents the same diagrams
as Fig. 3 for a M? = 1.4 M� star. The top panel indicates the
relaxation of the PMS magnetic field with the same order of mag-
nitude as the BPMS field estimated for low-mass stars represented
in Fig. 3. In the bottom panel of Fig. 4 we observe the formation
of the convective core around 10 Myr, which lasts until the end of
the MS. The corresponding field amplitudes are of the same order
of magnitude as the different fields estimated from the relaxation
of the magnetic field resulting from the PMS dynamo (see top
panel of Fig. 4). In that case, we consider the relaxation to a fos-
sil configuration of the field to occur inside the radiative interior
at the end of the MS: Binit = BMS, with values also ranging from
104 to 106 G. This new relaxing field eventually couples with the
surrounding relaxed magnetic field from the PMS, which has an
amplitude of the same order of magnitude.

As shown in Figs. 3 and 4, the expected magnetic-field
amplitude in the convective star during the PMS is very sim-
ilar to that inside the convective core during the MS. Indeed,
Binit is in both cases evaluated to be of the same order of mag-
nitude (between 104 and 106 G). As a result, it appears from our
study that there is no correlation between the development of
a convective core during the MS and the fossil magnetic field
amplitude on the RGB. This would imply that the discrepancy
between low- and intermediate-mass star dipolar mode ampli-
tudes on the RGB (Stello et al. 2016a) might not be provoked by
the fossil magnetic field resulting from the core dynamo action
on the MS. The main difference in field amplitude during the
RGB in our scenario is therefore due to the contraction of the
radiative interior, as the interiors of massive stars contract more
efficiently than those of low-mass stars after the MS, resulting in
larger magnetic field amplitudes during the RGB from Eq. (10).

We consider the dissipation of the fossil field to take place
during the Ohmic timescale computed with its relaxed equi-
librium global scale, and therefore we neglect the losses of

energy induced by its relaxation from the previous dynamo
field during the conversion of convective layers into stably
stratified radiative ones throughout the evolution of stars. This
is a significant approximation, as already pointed out before,
as the reconnection of small-scale magnetic structures into a
larger global structure would decrease the fossil-field initial
amplitude (e.g. Braithwaite 2008; Duez 2011; Moffatt 2015;
Emeriau-Viard & Brun 2017). This reconnection process could
result into amplitude discrepancy between the fossil fields of
low- and intermediate-mass stars. In addition, our estimation of
magnetic field amplitudes throughout evolution is based on scal-
ing laws and flux conservation only; we do not take into account
any interaction between the fossil field in the radiative shell and
the dynamo action inside the convective core of intermediate-
mass stars on the MS. Such interaction could enhance the
dynamo action inside the convective core of intermediate-mass
stars (e.g. Featherstone et al. 2009) and thus result in stronger
fossil-field amplitudes inside intermediate-mass stars than inside
low-mass stars on the RGB. Such interactions between stable
and dynamo fields during the MS could therefore support the
magnetic scenario as an explanation for the amplitude of dipolar
modes discrepancy as presented by Stello et al. (2016a).

3. First-order frequency perturbation of mixed
modes

In this section we develop the first-order perturbation of the
eigenfrequency of the oscillation modes due to the stellar rota-
tion and internal magnetism.

3.1. Oscillations in non-rotating, non-magnetised stars

The general linearised equation of motion of the fluid inside a
non-rotating, non-magnetised star can be written in the inertial
frame as:

ρ
d2ξ

dt2 = F(ξ), (11)

where ξ denotes eigenfunctions of the modes propagating inside
the star. In the case of evolved solar-like oscillators, oscillation
modes correspond to the superposition of mixed acoustic and
gravity waves (Beck et al. 2011; Bedding et al. 2011). F repre-
sents all the applied forces in the inertial frame and is composed
of the effect of pressure and density gradient for a non-rotating,
non-magnetised star (where the effects of the centrifugal accel-
eration and of the Lorentz force are neglected when computing
the structure of the star).

We suppose a periodic Lagrangian displacement of the fluid
inside the star due to oscillation modes ξ = ξ̃(r, θ, ϕ)e−iωt, with
ω the eigenfrequencies of the oscillations. The non-perturbative
equilibrium state refers to the non-rotating, non-magnetic oscil-
lating star, for which the equation of motion can be written:

ω2
0ξ0 = −F0(ξ0), (12)

with ω0 the unperturbed eigenfrequencies, ξ0 the unperturbed
eigenmodes, and F0 reduced to pressure and buoyancy forces.
Unperturbed eigenmodes for slowly or non-rotating stars can be
written as a function of the azimuthal order m and the degree `
of the mode (Unno et al. 1989):

ξ0 =

[
ξr(r)Ym

` (θ), ξh(r)
∂Ym

` (θ)
∂θ

,
im

sin θ
ξh(r)Ym

` (θ)
]

ei(mϕ−ωt), (13)

with (r, θ, ϕ) the usual spherical coordinates, and Ym
` the spheri-

cal harmonics of degree ` and azimuthal order m.
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3.2. First-order perturbative forces

3.2.1. Rotational inertial forces

In order to connect our theory to observations, we approximate
the star as a slowly rotating object with two layers, where each
layer is rotating as a solid body. Let Ωcore be the angular rota-
tion rate in the radiative interior and Ωenv be the angular rotation
rate in the convective envelope. This approximation is justified
because asteroseismology generally provides only one measure-
ment inside the deep radiative interior of the star and one at the
surface (because of the limitation of the number of measured
modes and the spatial structure of the kernels or eigenfunctions).
These rotation rates are considered small enough so that the
resulting terms in Ω(r) only come into play as a first-order per-
turbation (e.g. Gough & Thompson 1990). Observational studies
of rotational splitting of mixed modes provide average values of
surface and internal rotation for SGs and RGs. Specifically, we
fix Ωcore ' 0.5 µHz and Ωenv ' Ωcore/10 (Deheuvels et al. 2014;
Gehan et al. 2018). Finally, with Rrad being the size of the radia-
tive interior,

Ω(r, θ) = Ω(r) (14)

=

{
Ωcore if r < Rrad

Ωenv if r > Rrad
. (15)

The system is thus affected in the inertial frame at first order
in Ω by the Coriolis acceleration (Fc, Eq. (16)) and by the
advection linked to the rotating motion of the star relative to
an observer in an inertial frame (Ff , Eq. (17)). In the follow-
ing, for rotational effects, we make use of the decompositions
ω = ω0 + εΩω1, ξ = ξ0 + εΩξ1 , and F = F0 + εΩF1, with
εΩ � 1, which is the dimensionless parameter εΩ = Ω/ΩC,
with ΩC = (GM/R3)−1/2, which is the Keplerian critical angular
velocity (see Gough & Thompson 1990). The Coriolis operator
stands for:

Fc(ξ0) = 2iω0Ω ∧ ξ0, (16)

where Ω = Ω(r)(cos θer − sin θeθ) is the rotation vector (whose
amplitude is small enough in the core and in the envelope for
the effect of the Coriolis acceleration to be considered as a first-
order perturbation). Under the same approximation, the advec-
tion operator associated with the change of frame is written at
first order as

Ff(ξ0) = −2mω0Ωξ0. (17)

3.2.2. The Lorentz force associated to magnetism

For RG with a moderate internal magnetic field, we consider the
magnetic field energy to be weak enough for the effects of the
unperturbed Lorentz force on the system to be negligible com-
pared to the gravitational force (e.g. Augustson & Mathis 2018,
and in prep.).

The system is thus also affected in the inertial frame at
first order by the perturbed Lorentz force (δFL, Eq. (18)). We
again make use of decompositions associated with the per-
turbed Lorentz force: ω = ω0 + εBω1, ξ = ξ0 + εBξ1 and
F = F0 + εBF1, with εB � 1, the dimensionless parameter εB =

B0

(
µ0GM2/R4

)−1/2
which compares the magnetic and gravita-

tional forces (Gough & Thompson 1990). Finally, the perturbed
linearised magnetic operator is given by

δFL(ξ0) = δFL, j+t(ξ0) + δFL,c(ξ0), (18)

where δFL, j+t represents the sum of the current and tension
terms:

δFL, j+t(ξ0) =
1
µ0

[(∇ ∧ B) ∧ δB + (∇ ∧ δB) ∧ B], (19)

where the fluctuation of the magnetic field that comes from the
linearised induction equation1 is

δB = ∇ ∧ (ξ0 ∧ B), (20)

and δFL,c is the compression term associated with the compress-
ibility of the mode (Gough & Thompson 1990):

δFL,c(ξ0) =
∇ ·

(
ρξ0

)
ρ

(∇ ∧ B) ∧ B. (21)

3.3. First-order perturbation equations

The first-order momentum equation is written in the inertial
frame as

2ω1ω0ξ0 +ω2
0ξ1 = −F0(ξ1)−δFL(ξ0)/ρ−Fc(ξ0)−Ff(ξ0), (22)

with ξ1 being the perturbed eigenfunctions of the modes. We
then apply the scalar product 〈ξ0,�〉 =

∫
V ρξ

∗
0 � �dV to Eq. (22).

As F0 is Hermitian, Eq. (22) simplifies and leads to the expres-
sion of the frequency shift at first order in the inertial frame:

ω1 = −
〈ξ0, δFL(ξ0)/ρ〉 + 〈ξ0, Fc(ξ0)〉 + 〈ξ0, Ff(ξ0)〉

2ω0〈ξ0, ξ0〉
· (23)

3.4. Analytical development of frequency shifts

We directly estimate the inertia of the modes, and the contri-
bution of the Coriolis acceleration and of the advection term
associated to the change of frame to the splitting in the inertial
frame. Equation (24) is the inertia of the modes, independent of
the azimuthal order m:

〈ξ0, ξ0〉 =

∫ R

0
ρr2

(
|ξ2

r + Λ|ξh|
2
)

dr, with Λ = `(` + 1). (24)

The effect of the Coriolis acceleration and of the change of
frame are usually written together as the global rotational pertur-
bation (Aerts et al. 2010). For clarity we chose to detail the two
terms in Eqs. (25) and (26):

〈ξ0, Fc(ξ0)〉 = 4mω0

∫ R

0
ρr2Ω(r)|ξh|

2dr

+ 8mω0

∫ R

0
ρr2Ω(r)ξ∗r ξhdr, (25)

〈ξ0, Ff(ξ0)〉 = −2mω0

(∫ R

0
ρr2

(
|ξr|

2 + Λ|ξh|
2
)
Ω(r)dr

)
. (26)

We verify that in the case of solid rotation Ωs, the change of
frame can as usually be written as

−
〈ξ0, Ff(ξ0)〉
2ω0〈ξ0, ξ0〉

= +mΩs. (27)

1 By combining the Maxwell Faraday and the Maxwell Ampére equa-
tions with the Ohm’s law and by considering an ideal plasma with
infinite electric conductivity (low Ohmic diffusivity η, see Eq. (1),
usually verified inside stars), the induction equation reduces to ∂B/∂t =
∇ ∧ (u ∧ B), with u the velocity field.
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The calculation of 〈ξ0, δFL(ξ0)/ρ〉 involves 50 terms for which
the angular integral does not cancel by geometrical combination
of the spherical harmonics. These are reported in Appendix C.
Depending on the nature of the mixed modes, dominant terms
can be extracted from this massive expression (see e.g. works
by Hasan et al. 2005; Rashba et al. 2007, for high-radial-order
pure gravity modes). In the case of subgiant stars, mixed-mode
patterns are strongly dominated by peaks located at the acous-
tic mode eigenfrequencies, and are denoted as p − m modes in
the following study. On the contrary, modes located at internal
gravity-mode frequencies have very small acoustic signatures.
They dominate the spectrum of red giants, and are denoted g−m
modes. The dominant nature of the mode strongly influences the
value of each of the 50 terms; we refer to Sects. 4.3 and 5.2 for
the extraction of dominant terms and to Mathis et al. (2021) for
asymptotic formulations in the case of g-dominated modes and
p-dominated modes.

3.5. Validity of the perturbative analysis

In our scenario the magnetic field perturbation on mixed-mode
frequencies plays a role at first order. For this approximation
to be valid, the magnetic field amplitude should be small when
compared to the zeroth-order processes. Thus, the frequency of
the g − m modes should be larger than the characteristic Alfvén
frequency ωA, usually written as

ωA =
B.k
√
µoρ

, (28)

with k the wave vector. For high-order radial modes, B.k '
B0brkr, with br close to unity, kr the vertical wave number scaling
for g −m modes as Nmax

ω0

√
Λ

Rrad
, the critical field amplitude value for

the perturbative study to be valid can be expressed as:

Bc,g '
ω2

0Rrad
√
µ0ρc

√
ΛNmax

, (29)

with ρc the central density, and Nmax the maximum value of the
Brunt-Väisälä angular frequency profile defined as:

N2 = g
(

1
Γ1

d ln P
dr
−

d ln ρ
dr

)
, (30)

where g is the gravity of the hydrostatic background. In order to
ensure that the frequency of the mode is much larger than the
Alfvén frequency, we set the limit of validity of the perturbative
analysis for g − m modes to Bc,g/1000.

In the case of high-radial-order p − m modes, the Alfvén
speed
vA = B0/

√
µ0ρ (31)

should be compared to the sound speed of the gas (cs) through
S l the Lamb frequency, defined as:

S 2
l =

Λc2
s

r2 = k2
h c2

s , where kh =

√
Λ

r
· (32)

For high-radial-order p − m modes, the minimum field above
which the perturbative analysis may not be valid, considering
the minimum value of the Lamb angular frequency S l,min inside
the radiative core, is written as

Bc,p '

√
µ0ρc

Λ
× S l,min × Rrad. (33)

In the remainder of the present study, we set the limit
of validity for the perturbative analysis for p − m modes to
Bc,p/1000.

4. Investigation of the magnetic impact on
mixed-mode frequencies of red giants

To evaluate the different contributions from Eq. (23) to the fre-
quency perturbation of mixed modes, we model stellar structures
with the MESA evolutionary code (Paxton et al. 2011), and we
compute the frequency of the associated oscillation modes using
the GYRE pulsation code (Townsend & Teitler 2013). In this
section, we estimate frequency perturbations from rotation and
magnetism on mixed dipolar (` = 1) and quadrupolar (` = 2)
modes for the reference star with M? = 1.5 M� and Z = 0.02
along the RGB. This star is characteristic of intermediate-mass
stars observed on the RGB (e.g. Yu et al. 2016). In Sect. 5 the
effect of internal magnetism on mixed modes during the SG
stage is also investigated.

4.1. Expected fossil magnetic field signature on mixed-mode
frequencies during the RGB

From the conservation of the magnetic flux from the end of the
MS, we evaluate the magnetic amplitude range expected for a
typical red giant with M? = 1.5 M� and Z = 0.02. The star
has oscillation modes centred around the frequency of maxi-
mum mode power νmax of about 172 µHz. For such a star, the
initial radiative radius Rinit is about 92% of the star’s total radius
at the beginning of the subgiant phase (R? = 1.8 × 1011 cm,
Rinit = 1.6 × 1011 cm). This reduces to about 13% of the total
radius for the considered evolutionary stage star at the middle
of the RGB (R? = 3.7 × 1011 cm, Rrad = 5.0 × 1010 cm). The
equipartition regime, which is used to estimate field amplitudes
in the study of Cantiello et al. (2016) leads to B0 ∼ 0.7 MG,
while the magnetostrophic regime sets the upper boundary of the
field amplitude to B0 ∼ 7 MG (these boundaries will be extended
along the evolutionary path of the reference star for the analy-
sis of the impact of magnetism along the evolution of the star in
Sect. 4.5). In the following paragraph, we investigate the effect of
the change of internal structure of the star along its evolutionary
path on the RGB on the effect of magnetism at mixed-mode fre-
quencies. We choose to use a magnetic-field amplitude value of
1 MG, consistent with the presence of a convective core dynamo
during the MS.

As a first step, we verify that our perturbative approach can
be used for this typical M? = 1.5 M�, Z = 0.02, νmax ' 172 µHz
red giant. By fixing the validity limit of the perturbative analy-
sis to a reasonable value of B0 = Bc,g/1000, the critical value
for the magnetic-field amplitude at νmax is B0 ' 3 MG from
Eq. (29). Regarding the relatively large value of this limit, we
conclude that the typical magnetic frequency-shift amplitudes
of g − m modes around νmax represented in Fig. 5 belong to
the valid frequency range of the perturbative analysis. How-
ever, a similar calculation for a frequency of 100 µHz leads to
a critical field value (divided by 1000) of B0 ∼ 1 MG, equal
to the value used to build Fig. 5. The MG order of magnitude
is too high to ensure that the perturbative analysis is valid for
evolved red giants with νmax lower than ∼100 µHz. This upper
boundary will further be discussed along the evolution of the
reference star in Sect. 4.5. The reasonable limiting value of
B0 = Bc,p/1000 for the pertubative analysis to be valid for
p − m modes leads to field amplitudes of about B0 ' 10 MG
for typical S l,min ' 200 µHz for the considered red giant by
using Eq. (33). The following study with a field amplitude of
1 MG is therefore consistent with a perturbative regime for p−m
modes.
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Fig. 5. Frequency splittings (δν) calculated for mixed modes frequencies of a M? = 1.5 M�, Z = 0.02, νmax ' 172 µHz red giant, corresponding to
(a) magnetic splitting, (b) the Coriolis effect, (c) the change from co-rotating to inertial frame, and (d) total frequency shifts. Red lines and points
represent splittings for the m = 0 component. The blue and green lines represent the magnetic splitting for the m = 1 and m = −1 components
respectively, that overlap on panel a. The grey dashed line represents the ζ function as defined by Goupil et al. (2013), the beige vertical line
indicates the position of νmax, and the grey vertical line the frequency of the ` = 1 g-dominated mode closest to νmax, ν1,g,max, with squares
indicating the corresponding splitting values associated with the different orders m.

4.2. Results for a typical M? = 1.5 M�, Z = 0.02,
νmax ∼ 172 µHz star on the RGB

The different terms constituting Eq. (23) are evaluated for
mixed modes ` = 1 and ` = 2 frequencies within the
[νmax − 7∆ν:νmax + 7∆ν] interval, which ensures that detectable
solar-like-oscillation modes are inside this region for most stars.
The unperturbed frequencies of mixed modes computed with
GYRE (Townsend & Teitler 2013) are degenerated because of
the choice of a non-rotating and non-magnetic equilibrium. Each
unperturbed mode is thus expected to be split into 2` + 1 com-
ponents because of both rotational and magnetic effects when
applying Eq. (23). Both magnetic first-order terms (reported in
Appendix C) and the mode inertia (see Eq. (23)) depend on m2

or are independent of m; thus, we expect the magnetic-frequency
splittings of the ±m modes to be equal.

Panel a of Fig. 5 represents magnetic shifts on ` = 1 mixed-
mode frequencies

(
δνmag,core,m = −〈ξ0, FL(ξ0)〉/(2ω0〈ξ0, ξ0〉)

)
,

resulting from a field of amplitude B0 = 1 MG affecting the
reference star on the RGB. The magnetic field components br,
bθ, and bϕ expressed by Eqs. (7)–(9) describe the stable axisym-
metric fossil field from the configuration given by Eq. (2). The
magnetic splittings of the m = −1 and m = 1 modes are
equal as expected (C1,[1,−1]), and are larger than the splitting for
m = 0 modes (C1,0) by a factor C1,[1,−1]/C1,0 = 2, as calcu-
lated by Hasan et al. (2005). A characteristic pattern in the mag-
netic splittings can be seen: the global trend follows a power law
in ν, with deviations toward lower splitting values equivalently
spaced in frequency. Such deviations are associated with the ζ
function, a measure of the g nature of the mode through the ratio

of the mode inertia in the g cavity over the total mode inertia
(Deheuvels et al. 2012; Goupil et al. 2013):

ζ =
Icore

I
=

∫ Rrad

0

(
ξ2

r + Λξ2
h

)
r2dr∫ R?

0

(
ξ2

r + Λξ2
h

)
r2dr

· (34)

This characteristic pattern is very similar to the pattern of
mixed modes split by rotation as studied by Goupil et al. (2013)
and is represented by the grey dashed line in Fig. 5. Panel b
of Fig. 5 represents the frequency splittings due to the Corio-
lis acceleration only on ` = 1 mixed-mode frequencies, whereas
panel c shows the effect of the change of frame on mixed mode
frequencies due to the rotation of the star. These two rotational
components are evaluated by considering typical red-giant rota-
tion rates from Gehan et al. (2018) of Ωcore/(2π) = 0.5 µHz,
and Ωenv/(2π) = 0.05 µHz. Combined together, these terms
are well known from previous studies (e.g. Aerts et al. 2010;
Mosser et al. 2015; Vrard et al. 2015), and can also be expressed
as a function of the ζ function.

Dips in the ζ function (grey dashed line) indicate the location
of p−m modes whereas the value of ζ tends towards 1 for g−m
modes. As the rotation rate of evolved solar-like stars is much
higher deeper below the surface than at the surface, the g-mode
cavity is more affected by rotation. This leads to a global rotation
splitting (including both b and c components) that is larger for
g − m than for p − m modes, which also probe the slowly rotat-
ing envelope. As a consequence of the confinement of the mag-
netic field inside the g-mode cavity, g-dominated mixed modes
are also more affected by the magnetic field than p-dominated
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Fig. 6. As in Fig. 5 but for ` = 2 mixed modes. The red line represents the m = 0 mode, the green line with blue points the m = −1, 1 components,
and the green line with purple points the m = −2, 2 components.

mixed modes. Indeed, the minimum values of ζ correlate with
the minimum in the magnetic splitting in panel a.

Finally, the bottom right panel provides the global splitting
due to rotation and magnetism under the previously detailed
rotational and magnetic configurations. Unperturbed frequen-
cies are generally shifted towards higher frequencies for modes
around νmax, with a greater shift for prograde (m = 1) and retro-
grade (m = −1) components than for the zonal modes (m = 0),
which are only affected by magnetism. As a consequence of this
global frequency change, magnetism leads to a break of sym-
metry of the usually studied rotational g-dominated triplet, as
seen by the non-regular vertical spacing between two consecu-
tive grey squares. Rotation plays against magnetism for the shift-
ing of m = −1, p−m modes (at frequencies corresponding to dips
of the ζ function), resulting in upward peaks in the bottom right
diagram at high frequencies.

In Fig. 6 the same approach is taken for quadrupolar ` = 2
mixed modes. In panel a, magnetic splits are represented as a
function of the frequency of the modes, depending on the value
of m. As opposed to the ` = 1 case, zonal modes are more
affected by magnetism than the m = 1,−1 and even more so than
the m = 2,−2 mixed modes, by factors of C2,0/C2,[1,−1] = 1.125
and C2,0/C2,[2,−2] = 1.8 respectively, as in Hasan et al. (2005).
Panels c and d represent the contribution from the Coriolis accel-
eration and from the change of frame. Panel d shows the global
frequency shifts for m ∈ {−2,−1, 0, 1, 2} in the inertial frame
due to magnetism and rotation. The ζ function and the loca-
tion of ν1,g,max are reported in each panel for reference. As for
` = 1 mixed modes, p − m modes are less affected by both rota-
tion and magnetism than g − m modes. Each perturbed quin-
tuplet corresponding to one given unperturbed mixed mode is
expected to have non-constant spacings between its components,
as shown by the non-constant vertical spacing between the quin-
tuplet components in panel d. The asymmetry of ` = 1 and ` = 2

mixed-mode multiplets are schematically represented in Fig. 7,
in which we can observe the simplified behaviour of dipolar- and
quadrupolar-mode frequency patterns due to internal magnetism.

4.3. Asymptotic expressions of the magnetic perturbations
on g–m mode frequencies

In order to interpret the previously presented asymptotic pat-
terns of magnetic splittings, we investigate the frequency depen-
dency of the magnetic splitting at low (ω0 � N) and high
(ω0 � S l) frequency, with N the angular Brunt-Väisälä fre-
quency (Eq. (30)) and S l the Lamb angular frequency (Eq. (32))
in rad s−1.

In both cases, the oscillation vertical wavelength is much
smaller than the characteristic distance of change of the equi-
librium state describing the surrounding fluid. In the Cowling
approximation, and for high-order modes, the equation of non-
radial oscillations can be written (e.g. Aerts et al. 2010):

d2ξr

dr2 =
ω2

0

c2

1 − N2

ω2
0

 S 2
l

ω2
0

− 1
 ξr. (35)

In the approximation of high-order mixed modes, the
local radial displacement is dominated by the horizontal one
(ξr � ξh) in the radiative region. The high-radial-order modes
have a small vertical wavelength, allowing us to perform an
asymptotic Jeffreys-Wentzel-Kramers-Brillouin (JWKB) analy-
sis (Hasan et al. 2005; Prat et al. 2019). Terms with high-order
ξh derivatives dominate because ξ′h ∝ ikrξh, ξ

′′
h ∝ −k2

r ξh, and
kr � 1.

These approximations allow us to estimate the dominant
terms composing Eq. (23) in the case of low-frequency g − m
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Fig. 7. Sketch representing the effect of rotation and magnetism on a single unperturbed mixed mode frequency of degree ` = 1 and ` = 2.

modes:

〈ξ0, ξ0〉g '

∫ R

0
ρr2Λ|ξh|

2dr, (36)

〈ξ0, Fc(ξ0)〉g ' 4mω0

∫ R

0
ρr2Ω|ξh|

2dr, (37)

〈ξ0, Ff(ξ0)〉g ' −2mω0

∫ R

0
ρr2ΩΛ|ξh|

2dr, (38)

〈ξ0, δFL(ξ0)/ρ〉g ' 2πB2
0

∫ R

0
rξ∗hbr (rξhbr)′′ dr

×

∫ π

0

(mYm
l

sin θ

)2

+
(
∂θYm

l

)2
 cos2 θ sin θdθ.

(39)

From Eq. (23), the magnetic contribution to the frequency
perturbation is

δωmag,g ∝
B2

0

ω0
× Ig, (40)

with, in the case of high-order gravity modes,

Ig =

∫ R
0 |(rbrξh)′|2dr∫ R

0 ρr2|ξh|
2dr

, (41)

where we used Eqs. (36) and (39). In the low-frequency regime,
where ω0 � N � S l, Eq. (35) becomes

d2ξr

dr2 = −
N2

ω2
0

Λ

r2 ξr = −k2
r ξr. (42)

In the Cowling approximation, we obtain a set of radial equa-
tions of momentum (see for instance Alvan et al. 2013), with p1
the perturbation associated with the gas pressure:

ξh =
1

rω2
0

1
ρ0

p1, (43)

and

dp1

dr
' −ρ0N2ξr. (44)

Finally, we have that

ξh =
i
r

N2

ω2
0

 ξr

kr
· (45)

We write N = Nmax × f (r), with Nmax the maximum of the
Brunt-Väisälä frequency inside the radiative interior and f (r)
containing all the radial dependence of the N profile. As we look
for the frequency dependence of Ig, and by the use of the JWKB
solution ξr ∝

1
√

kr
ei

∫
krdr (Froman & Froman 2005), we obtain

ξh =

N2
max

ω2
0

1/4

× F(r), (46)

with F(r) containing all factors that are independent of ω. Con-
sidering high-order g − m modes, we evaluate

|(r2brξh)′|2 ∝
N2

max

ω2
0

3/2

, (47)

and

|ξh|
2 ∝

N2
max

ω2
0

1/2

. (48)

This leads to

Ig ∝
N2

max

ω2
0

, and δω g ∝
B2

0

ω3
0

N2
max. (49)

The magnetic splitting of g − m modes is thus proportional
to ω−3

0 to leading order. In Fig. 8, we represent the magnetic
splittings δνmag = δνmag,core,m normalised to one of m = −1, 0, 1
mixed modes for the reference red giant from panel a of Fig. 5.
The black line indicates the normalised frequency power law
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Fig. 8. Normalised magnetic splittings versus mixed-mode frequencies
computed for a simulated M? = 1.5 M�, Z = 0.02, νmax ' 172 µHz
red giant. The normalised power law following 1/ν3 is superimposed in
black.

from Eq. (49). As a result, g −m modes perfectly follow the fre-
quency power law, as inferred from the JWKB analysis. How-
ever, p − m modes that are less affected by magnetism are not
reproduced by this analysis. For a complete theoretical descrip-
tion of asymptotic behaviours, including the origin of the p − m
dips through the ζ function and the theoretical estimation of
angular integrals setting the amplitude of δνmag, we refer to our
paper (Mathis et al. 2021).

4.4. Characterisation of the multiplet asymmetry

Regardless of the degree ` of the mixed modes, the g − m mul-
tiplet formed by the lifting of degeneracy by first-order pertur-
bations linked to rotation and magnetism is asymmetric. This
asymmetry can be quantified for each |m| through the calcula-
tion of an asymmetry measure δ`,m (similar formalism to that
in Deheuvels et al. 2017, adapted for the consideration of mag-
netism in addition to rotation):

δ`,m =
ν`,m + ν`,−m − 2ν`,0

ν`,m − ν`−m
=
δν`,m + δν`,−m − 2δν`,0

δν`,m − δν`,−m
· (50)

This measure is equal to zero when the m and −m com-
ponents of the multiplet are perfectly symmetric around the
m = 0 component, and reaches 1 or −1 when one of the |m|
components overlaps with the m = 0 mode. For the reference
red giant studied in this section, with the considered Ωcore =
10 × Ωenv = 0.5 µHz, B0 = 1 MG, total frequency perturbations
are estimated at ν1,g,max: δν1,1 ' 0.41 µHz, δν1,−1 ' −0.076 µHz,
δν1,0 ' −0.11 µHz, δν2,2 ' 0.93 µHz, δν2,−2 ' −0.74 µHz,
δν2,1 ' 0.56 µHz, δν2,−1 ' −0.27 µHz, and δν2,0 ' 0.17 µHz
from d panels of Figs. 5 and 6. These values lead to asymme-
try measures of δ1,1 ' 0.28, δ2,2 ' −0.09, and δ2,1 ' −0.06.
We notice the change of sign of the measure from ` = 1 to
` = 2 modes, where the m = 0 mode is closer to the m = −1
mode for ` = 1, and closer to the m = 1 mode for ` = 2. The
absolute value of the asymmetry measure is higher for ` = 1
modes than for ` = 2, meaning that the impact of magnetism
compared to rotation is stronger for ` = 1 modes. This is not sur-
prising considering that the acoustic dipolar modes couple with
internal gravity modes, which are sensitive to the magnetic field,
deeper inside the radiative interior than ` = 2 modes for a given
frequency.

Figure 9 depicts the changes in the magnetic splittings along
the evolutionary track of the reference star from the base of the
RGB, during which mixed modes can be approximated as g −m
modes. Squares indicate for each evolutionary stage the ν1,g,max
frequency defined in the previous section, for each of the colour-
coded evolutionary stages reported on the Hertzsprung-Russell
diagram in the right-hand panel of Fig. 9. The middle panel is
composed of the superposition of the magnetic splittings (equiv-
alent to panel a in Fig. 5) corresponding to a field of amplitude
B0 = 1 MG for the m = 1 mixed modes at the given evolutionary
stages, as a function of their unperturbed frequencies. We notice
that for stars ascending the RGB, the value of ν1,g,max is glob-
ally monotonously decreasing. As a consequence, the magnetic
splitting value of g − m modes increases as the star evolves on
the RGB (the base of the RGB corresponds to ν1,g,max . 550 µHz
for the considered reference star). The p − m modes, which are
less affected by magnetism generally, are also more split as they
evolve along the RGB as seen by the minima on the curve of the
middle panel. The increase of δνmag,core,m with the evolution of
the star on the RGB at a given magnetic field amplitude should
make the detection of the magnetic effect on mixed-mode (g−m
and p−m) frequencies easier for evolved red giants than younger
ones on the RGB.

Similar results are obtained for different magnetic field
amplitudes B0, ranging from 0.1 to 10 MG, which may arise
from past dynamo events (see Sect. 2.3). As a summary, the
colour map in the left panel of Fig. 10 represents values of m = 1,
g − m-mode-frequency splittings due to magnetism only, as a
function of the frequency ν1,g,max, which is a proxy for the evo-
lutionary stage along the RGB, and of the applied magnetic field
amplitude. The critical value of the magnetic field Bc/1000 esti-
mated by Eq. (29) for g − m modes at all points along a star’s
evolution delimits the top of the colour map. Specifically, results
above this line are beyond the domain of applicability of the per-
turbative analysis and have been removed. The magnetic signa-
ture increases as the star evolves, as deduced from Fig. 9. The
magnetic signature also increases with the magnetic field ampli-
tude, as expected from the B2

0 dependency in the magnetic split-
ting expression, and as already deduced from Fig. 9.

4.5. Detectability of the magnetic signature

For comparison, we represent the position in the diagram of dif-
ferent typical observational frequencies: the frequency resolu-
tions of the Kepler, TESS, and PLATO data, and the typical value
of ` = 0 mode line widths as estimated by Vrard et al. (2017)
and Mosser et al. (2018). The line width of ` = 1 mixed modes
of normal amplitude was shown by Benomar et al. (2014) to be
linked to that of ` = 0 modes by

Γ1 = Γ0(1 − ζ). (51)

Here, this radial mode line width is considered to be an upper
limit for mixed-mode line width values. All these typical fre-
quencies provide constraints on the minimum field amplitude
needed at each evolutionary stage in order for magnetic effects
to be visible in asteroseismic observations. When considering a
star from the continuous viewing zone (CVZ) of the TESS satel-
lite, meaning that the star has been observed for about 1 year,
with νmax ' 172 µHz, the lower bound value for the magnetic
field amplitude to have detectable signatures is about 0.4 MG. In
the right-hand panel, the same diagram is shown but simplified,
emphasising the (B0, ν1,g,max) combinations for which the mag-
netic signature should be either easily detectable (purple area),
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Fig. 9. Left: mixed-mode frequencies at different evolutionary stages along the RGB indicated in the right panel. Purple dots represent the individual
frequencies of mixed modes, with the shade of the dots allowing to visualise the evolution of the mixed-mode order npg (the order is higher at
high frequencies). Squares represent for each evolutionary stage the frequency of the ` = 1 g-dominated mode closest to νmax (see Fig. 10 for the
determination of this frequency). Middle: m = 1 magnetic splitting of ` = 1 mixed modes located inside [νmax − 7∆ν:νmax + 7∆ν] for each of the
evolutionary stages denoted in the right panel. Squares represent for each evolutionary stage the frequency of the ` = 1 g-dominated mode closest
to νmax (ν1,g,max, see Fig. 5) Right: Hertzsprung-Russell diagram of the M? = 1.5 M�, Z = 0.02 star ascending the RGB. Coloured stars indicate the
different evolutionary stages represented in the other panels.

detectable (blue area), or undetectable (yellow area) based on
4 years of observations, such as those by Kepler.

For simplification, we consider the magnetic signature to be
observable when δνmag is larger than the data frequency resolu-
tion (δ f ). However, this threshold should be discussed and con-
sidered carefully as described by the following criteria:

1. It usually takes a few δ f for a signal to be detectable within
observational data because of the spreading of the signal over
several frequency bins. However, typical line widths of g − m
mixed modes are very small, as measured from Eq. (51) where
ζ → 1. For the typical g−m mode located at ν1,g,max, we estimate
ζ ' 0.98 from Fig. 5, which leads to an estimation of g−m mode
line widths of about 2.4 nHz by considering the typical line width
of radial modes of 120 nHz (e.g. Mosser et al. 2018). The min-
imal frequency resolution of the Kepler satellite being greater
than ∼7.9 nHz, g − m mixed modes are not resolved, and a dilu-
tion factor must be considered (Dupret et al. 2009; Mosser et al.
2018). This results in a lower limit for g − m mode line widths
of 2δ f /π, evaluated at 5 nHz for the Kepler four-year observa-
tions (see also Mosser et al. 2018, for the estimation of ` = 1-
mode line widths for a typical red giant). We conclude that the
line width of g − m modes is of the order of magnitude of the
resolution of the data. Therefore, the detection limit of the mag-
netic signature at δνmag,core,m ' δ f is consistent. In contrast, even
though p − m modes have a larger line width of about 70 nHz,
the magnetic effect has a much smaller amplitude, and these are
therefore much more difficult to detect. We keep the detection
limit at δνmag,core,m & δ f which is pertinent for g − m modes, but
one should use this lower boundary with care especially when
looking at p-dominated mixed modes.

2. In addition to the magnetic splitting, one should also add
the shift due to the rotation of the star from Eqs. (16) and (17),
whose measurements come with their own uncertainties.
Thereby, the magnetic effect should be large enough for its sig-
nature to be easily distinguishable from rotational pattern adjust-
ment errors. These errors have been estimated by Mosser et al.
(2018) at about ∆ν/200, corresponding to about 1.3 times the
Kepler typical frequency resolution. Once again, the lower limit
of detectability evaluated at δ f may be too small, especially in
the case of noisy data.

3. When adding rotational perturbations, the magnetic sig-
nature can only be measured through the use of the asymme-
try measure δ`,m defined in Eq. (50), as magnetic and rotational
effects add up. For the effect of magnetism to be detectable, the
criterion is changed from δνmag,core,m & δ f to

ν`,m + ν`,−m − 2ν`,0 & δ f (52)

in the presence of rotation. From a perfectly symmetric rota-
tional ` = 1 triplet, at given frequencies [−δνrot,1, 0, δνrot,1], per-
turbations by magnetism produce the shifts [δνmag,1, δνmag,1/2,
δνmag,1] (see Sect. 4.1). The criterion from Eq. (52) may then be
rewritten as

ν0,`,0 + δνmag,`,m + δνrot,`,m︸                           ︷︷                           ︸
ν`,m

+ ν0,`,0 + δνmag,`,m − δνrot,`,m︸                           ︷︷                           ︸
ν`,−m

− 2(ν0,`,0 + δνmag,`,m/2︸                 ︷︷                 ︸
ν`,0

) & δ f , (53)

with ν0,`,0 the unperturbed frequency of the m = 0 component.
Simplifying Eq. (53) leads back to the equation δνmag,core,m & δ f .
The chosen minimum limit of detection is thus conserved when
the star rotates.

4. For a few red giants, a departure of the symmetric
rotational triplet due to buoyancy glitches can be observed,
which is caused by strong chemical gradients generated by
the first dredge-up and left behind by the retreating envelope
(Cunha et al. 2015, 2019; Jiang et al. 2020). Mosser et al. (2018)
shows that KIC 3216736 is the only red giant among the 200
studied that exhibits buoyancy glitches, with only its m = 0 com-
ponent visible. As deduced analytically by Cunha et al. (2015,
2019), buoyancy glitches are very rare on the RGB, and glitch-
induced oscillation variation occur only at the luminosity bump.
As a consequence, glitches will be neglected in the rest of our
study.

5. If the star rotates fast enough, second-order and higher-
order asymmetric rotational perturbations of the centrifugal
and Coriolis accelerations can affect the symmetric rotational
frequency pattern (Dziembowski & Goode 1992; Suárez et al.
2006). Such second-order perturbations should affect both ` = 1
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Fig. 10. Left: m = 1 mixed-mode mean frequency perturbation due to magnetism only (δνmag in µHz) as a function of mixed-mode frequencies
(ν1,g,max in µHz) and the magnetic field amplitude in Gauss for a M? = 1.5 M�, Z = 0.02. Typical limiting frequencies are indicated: black dashed
lines represent the frequency resolution in the psd corresponding to 4 years of Kepler continuous observations (∼8 nHz), 3 years of PLATO two
main fields (∼11 nHz), 1 year of TESS continuous viewing zone data (∼30 nHz), a typical line width of radial modes, which are an upper limit for
the line width of dipolar mixed modes (∼0.12 µHz), 2 months of PLATO stare-and-step observations (0.19 µHz), and 27 days of TESS individual
sectors (0.37 µHz). The coloured area is limited by the critical magnetic-field amplitude range for the validity of the perturbative analysis. We
choose to limit the results at Bc,g/1000, as defined in Sect. 3.5. Red lines represent the expected magnetic-field amplitude by considering magnetic-
flux conservation from the end of the MS, with original fossil field amplitudes of 0.1 and 1 MG, as detailed in Sect. 2.3. Right: same as left panel,
but simplified with the colour map replaced by typical limiting frequency values corresponding to Kepler data. The yellow area corresponds to the
combination of ν1,g,max and magnetic amplitude for which magnetic splittings cannot be visible in Kepler observations. The blue area corresponds
to small magnetic shifts that should be visible in Kepler observations. The purple area corresponds to very large magnetic shifts, larger than the
typical line width of radial modes.

and ` = 2 mixed modes. However, Deheuvels et al. (2017)
emphasise that a measured core rotation rate of Ωc ' 710 nHz
along with a five-times-smaller envelope rotation rate are much
too low for second-order rotational effects to significantly con-
tribute to rotational splittings. Therefore, second-order rotational
effects should not produce significant asymmetric perturbations
in the spectrum of red giants or subgiants. Moreover, we consider
only rotation as a perturbation in the case of red giants as they are
considered as slow rotators. Indeed, Ouazzani et al. (2013) show
that the effect of rotation can be expressed by perturbative cal-
culations when Ω/(2π)/(∆P/P2) . 2, which is the case for red
giants according to core rotation measurements by Gehan et al.
(2018). For the study of rapid rotators with non-perturbative
developments, we refer to Prat et al. (2019) and van Beeck et al.
(2020) (for gravity modes), and to Reese et al. (2006) (for acous-
tic modes).

6. Latitudinal differential rotation may also induce asymme-
tries, but as evaluated through non-perturbative calculations with
the Adiabatic Code of Oscillation including Rotation (ACOR)
by Deheuvels et al. (2017), typical latitudinal differential rota-
tion profiles lead to a very small asymmetry measure of ∼10−3.
This corresponds to δνmag,core,m ' 2 × 10−3δνrot,core,m, evaluated
at δνmag,core,m ' 0.5 nHz for the rotational splittings associated
with core rotation of 0.5 µHz. Given the frequency resolution of
asteroseismic data ranging from ∼7.9 (Kepler 4 years data) to
∼380 nHz (TESS 1 month data), and considering typical latitu-
dinal differential rotation inside solar-like stars, the effect of lati-
tudinal differential rotation on the symmetry of the mixed-mode
pattern is therefore negligible.

7. Near-degeneracy effects occur by the combination of rota-
tion and mode mixing: when two mixed modes with the same

(`,m) combination have frequencies that are too close to each
other (i.e. the frequency spacing between the two mixed modes
is smaller than the rotation rate), their frequencies are perturbed
(Dziembowski & Goode 1992; Suárez et al. 2006). We refer to
the complete study of Deheuvels et al. (2017) for the theoretical
development of near-degeneracy effects on the asymmetry
of rotational multiplets. We emphasise the fact that near-
degeneracy effects produce increasing asymmetry measure δ`,m
when ` increases (δνdegeneracy,`=1 � δνdegeneracy,`=2). This can be
interpreted as being due to the fact that the frequency separation
between two consecutive ` = 1 mixed modes is much larger than
the separation between two consecutive ` = 2 mixed modes. In
the case of KIC 7341231 studied by Deheuvels et al. (2017), no
asymmetries were found in the ` = 1 triplet, whereas ` = 2 mul-
tiplet asymmetries are |δ2,2| & 0.14. In order to disentangle near-
degeneracy from magnetic effects, measures of ` = 1 and ` = 2
mixed mode asymmetries are effective. More precisely, an asym-
metry measure such that δν`=1 & δν`=2 is a clear indicator that
the magnetic effects are larger than those of near-degeneracy.

In conclusion, (B0, ν1,g,max) areas delimited in the right panel
of Fig. 10 should be used with care. In addition to the charac-
teristic frequency positions, expected magnetic-field amplitudes
at given evolutionary stages from Eq. (29) are represented by
red lines in each panel, considering amplitudes at the end of
the MS of Bms = 0.1 and 1 MG. The maximum expected mag-
netic amplitude is represented by the Bms = 1 MG upper red
line on the diagram (magnetic field amplitude along the evolu-
tion; we recall that this results from the conservation of the mag-
netic field flux from the end of the MS as explained in Sect. 2.3).
We note that the value of Bms = 0.01 MG corresponding to the
equipartition regime leads to magnetic field amplitude values
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Fig. 11. Synthetic stretched period echelle diagram built from Eq. (54), showing modelled mixed-mode frequencies affected by rotation with
Ωcore = 0.5 µHz and magnetic-field strengths increasing left to right with B0 = 0.1 MG, B0 = 0.2 MG, B0 = 0.5 MG, and B0 = 1 MG in
the radiative interior. Purely rotationally split components are given for reference by background crosses on the first two panels. Coloured dots
indicate the positions of the ` = 1 mixed modes of azimuthal order m ∈ {1, 0,−1}, respectively blue, red, and green dots. The horizontal black line
delimits domains for which the rotational splitting is small compared to ∆Π1ν

2
max/2 (see Gehan et al. 2018, for more details). Synthetic patterns

above this line are typically representative of patterns of mixed modes for subgiants and early giants, and those below are associated with evolved
red giants. The magnetic effect is small compared to rotational effects in white areas, is of the same order of magnitude as in orange areas, and is
larger than δνrot,core,m in red areas.

that are too low on the RGB to be represented on the dia-
gram. From Fig. 10 we conclude that the more evolved the star
the easier it is to detect its internal magnetic signature. More
specifically, magnetic fields of BMS ' 1 MG at the end of the
MS produce frequency perturbations that are too small to be
detected inside young RG with νmax & 475 µHz and are too
large for the perturbative analysis to be valid for older RG with
νmax . 190 µHz. Globally, the expected range for the magnetic-
field amplitude to reach sufficiently large values for the mag-
netic signature to be observable depends upon the duration of the
observing campaign; for example, the red lines crossing the dif-
ferent Kepler boundaries are shown in the right panel of Fig. 10.

4.6. Stretched spectrum

As a way of summarising previous results concerning the asym-
metry of the perturbed rotational triplet and the amplitude of
this perturbation by magnetism, we illustrate the stretched spec-
trum corresponding to perturbed frequencies of mixed modes in
Fig. 11. This visualisation technique was initially developed by
Vrard et al. (2015) to estimate the observational period spacing
(∆Π1) of mixed modes, and it is quite often employed to estimate
the internal rotation rate of red giants (e.g. Gehan et al. 2018). In
these diagrams (see Fig. 11), ` = 1 mixed-mode frequencies are
represented by coloured dots (green: m = −1, red: m = 0, blue:
m = 1) as a function of the corrected period τ modulo ∆Π1,
defined via the differential equation:

dτm =
1
ζ

dν
ν2 , (54)

with ζ defined by Eq. (34), and ν the observational frequency of
the mode. For a rotating star without magnetism, the period sep-
aration between two mixed-modes of the same azimuthal order

m is given by integrating Eq. (54):

∆τm = ∆Π1

(
1 − 2ζ

δνrot,core,m

ν

)
, (55)

with δνrot,core,m the rotational perturbation of the mode due to the
core rotation. We show in Appendix D that this stretched period
spacing can be rewritten in the presence of magnetism as

∆τm = ∆Π1

(
1 − 2ζ

δνrot,core,m + δνmag,core,m

ν

)
, (56)

with δνmag,core,m the magnetic perturbation in the core of the star.
The method described by Gehan et al. (2018) to estimate the
rotation period of the star can therefore still be applied to mag-
netised stars due to the similarities between Eqs. (55) and (56).
However, the resulting value is no longer an estimate of δνrot,core

but rather of
(
δνrot,core + δνmag,core

)
. A second analysis step is

necessary in order to separate the rotational and magnetism sig-
natures. This is accomplished through the measurement of the
asymmetry of the multiplet described in Sect. 4.4.

In Fig. 11 we represent four stretched spectra. From left
to right, we increase the core magnetic field amplitude (B0 ∈

{0.1, 0.2, 0.5, 1}MG). In the first two panels, the positions
of non-magnetised modes are represented by faded crosses
for comparison. They are constructed following the method
described in Gehan et al. (2018). As in the case of non-
magnetised rotating stars, we obtain three ridges, corresponding
to the m ∈ {−1, 0, 1} components of the mixed modes. We can
see in the left panel that for a weak magnetic field the rotational
ridges are nearly identical to the magnetically influenced ones,
with the triplet being slightly shifted towards higher frequen-
cies as expected given our discussion in Sect. 4.4. The horizon-
tal black line separates two rotational regimes. Below this line
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Fig. 12. Left: a range of mixed mode frequencies is shown for different evolutionary stages along the subgiant phase (and early RGB). The
individual stages are indicated on the evolutionary track plotted in the right panel. Purple dots represent the individual frequencies of mixed
modes, with the shade of the dots allowing to visualise the evolution of the mixed-mode order npg. Squares represent the frequency of the ` = 1
g-dominated mode closest to νmax for each evolutionary stage. We refer to Fig. 5 for the determination of this frequency. Middle: magnetic splitting
of ` = 1, m = 1 mixed modes located inside the range [νmax−7∆ν:νmax +7∆ν] for each of the evolutionary stages denoted in the right panel. Squares
represent the frequency of the ` = 1 g-dominated mode closest to νmax (see Fig. 5 for further reference). Right: Hertzsprung-Russell diagram of
a M? = 1.5 M�, Z = 0.02 star evolving on the subgiant phase. Coloured stars indicate the different evolutionary stages represented in the other
panels.

the effect of rotation is moderate, where the resulting rotational
splitting of the modes is of the order of ∆Π1ν

2
max/2. This regime

is associated with crossing of the three ridges in the stretched
spectrum, wherein the rotational splitting leads to the crossing
of mixed modes with different ng. In contrast, above the black
line, the core rotation rate is small enough so that the individual
multiplets do not overlap with each other.

We now construct criteria similar to those in Sect. 4.5 char-
acterising the magnetic effect on the rotational triplet. By study-
ing the m = −1 component of the triplet, one can compare the
effect of rotation and magnetism on the frequency of the modes.
Indeed, magnetism and rotation have opposite effects on the fre-
quency of the m = −1 component. We conclude that when the
stretched period of the m = −1 mode increases with the fre-
quency of the mode, magnetic effects dominate rotation effects.
We identify three different regimes depending on the curvature
of the m = −1 ridge of the stretched spectrum:

1. When the green ridge representing m = −1 mode compo-
nents is concave, the effect of magnetism is negligible relative to
rotational effects. This scenario is indicated by the white areas in
Fig. 11.

2. When δνmag approaches δνrot, the curvature of the m = −1
ridge reverses and becomes convex. At that point, magnetism
and rotation have comparable effects on mixed-mode frequen-
cies. This scenario corresponds to the orange areas in Fig. 11.

3. When the magnetic field is even larger, its effects can dom-
inate the rotational effects. Such instances are shown as red areas
in Fig. 11. One must take caution in this regime, as the magnetic
field amplitudes may be large enough to violate the first-order
approximation considered in this paper.

We choose not to indicate the frequency values on the y-
axes because the position of the ridges of the stretched spectrum
depends on the choice of the integration constant, and thus on
the minimum frequency we consider, where we set all τ values
to zero.

5. Magnetic effect on mixed mode frequencies of
subgiants

Studying magnetic effects on mixed modes inside subgiants is
more complicated than studying those occurring on the RGB

because of the transition from p − m to g − m modes that occurs
during this evolutionary stage. As a consequence, the driving
terms listed in Appendix C are no longer fully represented by
Eq. (39), and the mode inertia is no longer simply Eq. (36) dur-
ing the subgiant stage (Hekker & Christensen-Dalsgaard 2017),
leading to variations in the magnetic-splitting patterns.

5.1. Evolution of the magnetic splitting during the subgiant
stage

The subgiant phase is much shorter than the RGB, especially for
intermediate-mass stars; it lasts ∼0.1 Gyr for a M? = 1.5 M�,
Z = 0.02 star, during which the frequency of maximum power
varies between approximately 700 and 500 µHz. Figure 12 rep-
resents the same three panels as Fig. 9 at this earlier stage, which
is indicated by the position of the considered stars in the right
panel. In the left panel, we see that the value of ν1,g,max is no
longer monotonously decreasing as it was during the RGB. In
the middle panel, the amplitude of the magnetic signature for
modes contained in the [νmax − 7∆ν:νmax + 7∆ν] range are rep-
resented for all the considered evolutionary states by the black-
dotted lines. Green squares indicate the position of ν1,g,max. We
observe that for evolved subgiants (and early red giants, e.g. stars
older than ∼2.675 Gyr), the magnetic signature is consistent with
the asymptotic theoretical pattern detailed in Sect. 4.3. However,
younger red giants have larger magnetic frequency splittings at
ν1,g,max, and even more substantial signatures for p − m modes,
as seen in the middle panel of Fig. 12. We thus investigate the
asymptotic regime where high-radial-order p − m modes domi-
nate the frequency spectrum.

5.2. Analytic expression of the magnetic perturbations for
high-radial-order p–m modes

In the approximation of acoustic modes, the local radial dis-
placement is much larger than the horizontal one (ξh � ξr). The
high-radial-order modes have a small wavelength, allowing us to
perform an asymptotic JWKB analysis, where terms with high-
order ξr derivatives dominate. This approximation is valid for
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high-frequency, high-order mixed modes, for which the splitting
components can be expressed as:

〈ξ0, ξ0〉p '

∫ R

0
ρr2|ξr|

2dr, (57)

〈ξ0, Fc(ξ0)〉p ' 4mω0

∫ R

0
ρr2ΩRe(ξ∗r ξh)dr, (58)

〈ξ0, Ff(ξ0)〉p ' −mω0

∫ R

0
ρr2Ω|ξr|

2dr, (59)

〈ξ0, δFL(ξ0)/ρ〉p ' 2πB2
0

∫ R

0
rξ∗r

(
bθ (rξrbθ)′′ + bφ

(
rξrbφ

)′′)
dr

×

∫ π

0

(
Ym

l

)2
sin3 θdθ. (60)

In the case of high-order acoustic modes, the dominant magnetic
ratio becomes:

Ip =

∫ R
0

(
|(rbθξr)′|2 +

∣∣∣(rbφξr)′
∣∣∣2) dr∫ R

0 |ξr|
2ρr2dr

· (61)

At high frequency, whereω0 � S l � N, Eq. (35) may be written
as

d2ξr

dr2 =
S 2

l

c2
s
ξr = −k2

r ξr, with kr = −
ω0

cs
· (62)

Taking S l = S l,min × g(r), with S l,min the minimum value of the
Lamb frequency inside the acoustic cavity and g(r) containing
all radial dependencies of S l, the solution can be expressed as

ξr ∝
ei

∫
krdr

kr
∝

 ω2
0

S 2
l,min

−1/4

. (63)

We thus arrive at the following expression for the amplitude scal-
ing of the radial displacement:

|ξr|
2 ∝

 ω2
0

S 2
l,min

−1/2

. (64)

Therefore, for a rapidly oscillating radial eigenfunction (ξ′r �
ξr), and i ∈ {θ, ϕ},

|(rξrbi)′|2 ∝

 ω2
0

S 2
l,min

1/2

. (65)

By employing the scaling for ξr in Eq. (61), we can see that

Ip ∝
ω2

0

S 2
l,min

, (66)

and

δωmag,p ∝
B2

0

S 2
l,min

ω0. (67)

For high-frequency p − m modes, the magnetic splitting
is therefore proportional to the unperturbed frequency of the
mode at first order. This asymptotic behaviour explains the aver-
age rise in the measured δνmag,core,m with ν1,g,max at high fre-
quencies (early subgiants; see Fig. 12). As for red giants, we
check this power law for a typical M? = 1.5 M�, Z = 0.02,

Fig. 13. Normalised magnetic splittings of the p − m modes versus
mixed-mode frequencies computed for a simulated M? = 1.5 M�,
Z = 0.02, νmax ' 750 µHz subgiant. The normalised power law fol-
lowing ν is superimposed in black.

νmax = 750 µHz. In Fig. 13 the normalised magnetic splitting of
the ` = 1, m ∈ {1, 0,−1}modes within the [νmax−7∆ν:νmax+7∆ν]
range is represented by the green dotted line. The subgiant
mixed-mode frequency space is less populated, as p − m modes
completely dominate the spectrum. We observe a g − m mode
among p−m modes at ∼565 µHz. The black line corresponds to
the normalised power law describing the p − m-mode magnetic
signature from Eq. (67), proportional to the mixed-mode unper-
turbed frequencies ν0 = ω0/(2π). We confirm that the modelled
p − m modes follow this ν0 asymptotic trend well at high fre-
quency. We refer to Mathis et al. (2021) for a complete study of
the asymptotic behaviour of p−m-mode frequencies in the pres-
ence of magnetism.

5.3. Detectability of magnetic signature along the subgiant
stage

As done for stars on the RGB (see Sect. 4.5), we now investigate
the detectability of such magnetic signatures within the power
spectrum density of subgiants. As this evolutionary stage is a
transition period between p − m and g − m modes, we choose to
represent the detectability of the two asymptotic regimes p − m
and g−m in Fig. 14. In contrast with Fig. 10, in which we follow
the ascension of the RGB using the ν1,g,max proxy, we choose to
study the star during the SG stage by following its age, as ν1,g,max
does not evolve monotonously from consecutive subgiant stages.
The top panels of Fig. 14 represent the amplitude of the magnetic
splitting (not including rotational effects) affecting ` = 1, m = 1
g−m modes along the evolution of the star during the SGB. The
abscissa are reversed in order to retain the same orientation as
used in Fig. 10. From right to left in the diagrams, we observe a
decrease in the magnetic effect on g−m modes as the star evolves
along on the SGB, followed by an increase of the magnetic sig-
nature as the star reaches the RGB. The top-right panel delim-
its regions of detectability in the (Age, B0) space. For a similar
field amplitude, the magnetic signatures of the g − m modes are
harder to detect in the power density spectra of subgiants than
in those of a red giant. We observe the same change of slope
in the colour map for p − m modes (see the bottom panels of
Fig. 14), which are the majority among the mixed modes in sub-
giants. This change is due to the switch of asymptotic regime.
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Fig. 14. Top panels: same as Fig. 5 but for younger stars (νmax & 350 µHz) with the abscissa changed to the age of the star (reversed to be consistent
with the convention used in Fig. 5). Bottom panels: same as top panels but considering p − m modes instead of g − m modes.

In all panels, the red lines delineate the expected magnetic field
amplitude evaluated by conservation of the magnetic flux inside
the radiative interior from the end of the MS. By comparing the
relative position of these red lines with the frequencies char-
acterising asteroseismic data, if such magnetic field amplitudes
(B . 1 MG) are indeed present in the subgiants’ radiative inte-
riors, their effect on mixed-mode frequencies is not detectable
with data from any current satellite. In order to reach the fre-
quency resolution needed to be able to identify magnetic effects
on mixed mode frequencies during the SGB (δ f . 10−3 µHz),
the observation duration must be longer than about 30 years.
Therefore, we do not present further analysis of the magnetic
signature on mixed-mode frequencies for subgiants.

6. Angular momentum transport by fossil magnetic
fields in evolved solar-like stars

The transport of angular momentum inside stars is a conse-
quence of internal dynamical mechanisms. Understanding the

transport of angular momentum inside stars therefore allows us
to understand their global dynamical evolution. Current obser-
vational constraints on the transport inside stars begin with
an estimation of the profile of their internal rotation rate (e.g.
Beck et al. 2012). Constraining the core rotation rate also helps
to estimate the surface rotation rate (Gallet & Bouvier 2013;
Spada & Lanzafame 2020), and the measurement of the surface
rotation rate provides an estimate of the age of the star dur-
ing the MS through gyrochronology (e.g. Barnes 2003, 2010;
Angus et al. 2015). Stars with magnetic activity may possess
signatures of their surface rotation rate in their psd through
the periodic reduction of their brightness by a few percent due
to magnetised dark spots at the surface (e.g. McQuillan et al.
2013; van Saders & Pinsonneault 2013; Mathur et al. 2014;
García et al. 2014b; Ceillier et al. 2017; Santos et al. 2019).
However, internal rotation rate measurements are more diffi-
cult to obtain in general; for instance even the rotation rate
of the core of the Sun has yet to be measured, as it requires
the presence of g modes to efficiently probe the deepest layers
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of the radiative interior (e.g. García et al. 2008; Mathur et al.
2008). In the case of subgiants and red giants that possess mixed
modes, the internal rotation rate of a restricted sample of evolved
stars has recently been measured (e.g. Deheuvels et al. 2012,
2020; Mosser et al. 2012; Gehan et al. 2018). As detailed in
Sect. 2.3.2, the observed rotation-rate ratio (Ωcore/Ωenv ' 5−10)
between the core and the envelope of evolved solar-like stars
(Deheuvels et al. 2012, 2014; Mosser et al. 2015; Vrard et al.
2015; Gehan et al. 2018) is not consistent with the strong con-
traction of the core after the MS that should lead to much higher
ratio values (e.g. Eggenberger et al. 2012, 2019; Ceillier et al.
2013; Cantiello et al. 2014). A dynamical process must be iden-
tified to transport angular momentum from the contracting core
towards the envelope in order for this observation to be under-
stood. In the recent literature that tackles this important ques-
tion, most of the attention has been given to the potential effects
of Maxwell stresses triggered by unstable fields in stably strati-
fied radiative regions (e.g. Fuller et al. 2019; Eggenberger et al.
2020; Den Hartogh et al. 2020; Jouve et al. 2020). Here we
recall the potentially significant efficiency with which a sta-
ble axisymmetric field redistributes angular momentum along
poloidal field lines, a well-known result since Ferraro (1937),
Mestel & Weiss (1987). We aim to provide a quantitative esti-
mate of the characteristic timescale needed for such a field to
redistribute angular momentum for field amplitude that could be
detected in seismic data. As such, we are closing the loop: we
are looking for seismic signatures of a potential axisymmetric
fossil field as a potential candidate to explain the strong angu-
lar momentum transport revealed by the observed weak surface-
to-core rotation contrast. Given the amplitude of the field that
we predict to be able to detect, we compute the characteristic
timescale on which it redistributes angular momentum. If it is
very short compared to evolution timescales, as expected, this
confirms that it is an excellent candidate for the observed strong
extraction of angular momentum.

By considering a large-scale axisymmetric fossil magnetic
field trapped inside the radiative interior of evolved solar-like
pulsators, we investigate the impact of such magnetism on the
internal rotation profile of the star (see e.g. Mestel & Weiss
1987; Charbonneau & MacGregor 1993, for previous studies on
the Sun). We consider the field lines to be closed, without any
re-connection with the dynamo-generated field in its convection
zone. Such configurations are depicted in Fig. 2, and follow-
ing Mestel & Weiss (1987), consider the following poloidal cur-
rent due to the toroidal component of the axisymmetric magnetic
field:

jp =
1

4πr
∇(rBϕeϕ) ∧ eϕ. (68)

The toroidal component of the equation of induction can be writ-
ten
∂Bϕ
∂t

= r sin θ(Bp · ∇)Ω, (69)

where Bp is the poloidal magnetic field vector. The current has
a component perpendicular to Bp, and so it exerts a torque that
changes the rotation profile according to

ρr2 sin θ
∂Ω

∂t
= r jp ∧ Bp · eϕ. (70)

The rotation profile is therefore affected in time according to the
toroidal component of the momentum equation

ρr2 sin θ
∂Ω

∂t
=

1
4π

Bp · ∇(rBϕ). (71)

Assuming no turbulence, and given that the Ohmic diffusion
timescale due to atomic processes is very large, changes to the
poloidal component of the magnetic field can be neglected at
the leading order. This leads to the partial differential equation
that describes the redistribution of angular momentum along the
poloidal field lines by Alfvén waves:

∂2Ω

∂t2 =
1

4πρr2 Bp · ∇
(
r2Bp · ∇

)
Ω. (72)

If the variation of Ω along the magnetic field lines of Bp, which
define the coordinate s, is small with r and with the scale of
variation of Bp, then

∂2Ω

∂t2 =
Bp

2

4πρ
∂2Ω

∂s2 · (73)

From this equation, Alfvén waves transport angular momentum
leading to the Ferraro iso-rotation law

(
Bp · ∇Ω

)
= 0 where

rotation becomes constant along the poloidal field lines because
they are considered to be fixed in time. Given the defintion of
our axisymmetric magnetic field, Bp scales with B0, and as the
magnetic field extent covers all the radiative interior delimited
by Rrad, the characteristic time for angular momentum transport
derived from Eq. (73) is equal to the Alfvén time:

τ =
Rrad

vA
, (74)

with vA the Alfvén speed defined by Eq. (31). As shown in
Ferraro (1937), Mestel (1953), and Mestel & Weiss (1987), this
characteristic time to flatten the rotational profile of the radiative
interior is very short.

Figure 15 evaluates the characteristic time for magnetism
to flatten the rotational profile of the radiative interior of the
reference star along the RGB (left panel) and along the SGB
(right panel) as a function of ν1,g,max and age, respectively, and
as a function of the magnetic field amplitude ranging from 0.1
to 10 MG. As expected, a greater magnetic amplitude implies
a shorter characteristic transport time. We do not observe any
significant impact of the evolutionary stage of the star on the
transport characteristic time during the SGB and RGB. In any
case, the characteristic time to flatten the radiative interior of the
star is of the order of 1 year and thus such considered magnetic-
field amplitudes (as represented by red lines in Fig. 15) are very
efficient at transporting angular momentum inside the radiative
region. With this order-of-magnitude analysis we reconfirm that
magnetism is a very good candidate for rapidly transporting
angular momentum after the MS. It may actually be too pow-
erful to maintain the slight differential rotation rate observed
inside evolved solar-like stars (Eggenberger et al. 2012, 2017;
Cantiello et al. 2014).

The isolated-field scenario used for these calculations is
however a strong assumption; this should be discussed. It has
been proposed that the primordial magnetic field buried inside
the radiative zone of the Sun inhibits the spread of the tachocline
(e.g. Rüdiger & Kitchatinov 1997; Gough & McIntyre 1998;
Barnes et al. 1999). Such confined magnetism can explain the
quasi-uniform rotation rate of the radiative interior of the
Sun. However, Brun & Zahn (2006) and Strugarek et al. (2011)
showed that we may expect the confined magnetic field to spread
by Ohmic diffusion towards the envelope, and to eventually
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Fig. 15. Characteristic time of angular momentum transport τ in years as expressed by Eq. (74), depending on the given evolutionary stage and the
magnetic field amplitude. The magnetic field amplitude expected at each stage from the conservation of flux from the end of the MS is indicated
by red lines for BMS = 0.1 and 1 MG. Left: transport along the RGB with ν1,g,max as the abscissa. Right: transport along the subgiant branch with
age as the abscissa.

reconnect with the convection zone dynamo field. Due to Fer-
raro’s law of iso-rotation, the latitudinal differential rotation of
the convection zone would then imprint on the radiation zone.
Such a phenomenon is however not observed in the radiative
interior of the Sun. On the other hand, from a more theoreti-
cal standpoint, it has been argued that with a proper ordering of
timescales of the dynamical processes, this spread can be pre-
vented (e.g. Wood et al. 2011; Acevedo-Arreguin et al. 2013).
Indeed, this question of tachocline confinement and its role in
global dynamics is still an open question; it is nevertheless still
relevant for the radiative interior of red giants. If the fossil field
reconnects with the surface dynamo field, we expect the radia-
tive interior to undergo a small amount of differential rotation
despite the strong magnetic field.

7. Dependency of the magnetic splitting on stellar
parameters

In the above sections, we derive our study from mixed modes
of a typical M? = 1.5 M�, Z = 0.02 star during its evolu-
tion from the base of the subgiant stage towards the top of
the RGB. In the following section, we explore the impact of a
change of mass and metallicity on the previous results. From
theoretical studies, stellar-evolution models, and observations,
we know that massive stars evolve on shorter timescales than
less massive ones. It is also well known that metal-rich stars
live longer. We follow the evolution of stars with different ini-
tial masses (M? ∈ {1, 1.5, 2, 3}M�) and different metallicities
(Z ∈ {0.0002, 0.002, 0.02, 0.04}) in the Hertzsprung-Russell dia-
gram in right panel of Figs. 16 and 17. In the left panels, for
each mass we observe the evolution of the magnetic splitting
δνmag,core,m of the central g − m mode as the star evolves.

7.1. Mass dependency

To investigate the effect of stellar mass on magnetic splitting, we
consider low- and intermediate-mass solar-type oscillators from
the subgiant towards the red giant phases, for which the convec-

tive envelope is thick enough for acoustic modes to be excited
at the surface. From the left panel of Fig. 16, it takes around
12.5 Gyr for the M? = 1 M� star to ascend the RGB, whereas
the M? = 3 M� reaches this stage in less than 1 Gyr. As a first
result, significant magnetic signatures arise on frequency spec-
tra at an earlier time for more intermediate-mass stars than for
lighter ones. This first effect is due to the fact that intermediate-
mass stars take less time to evolve from the SG to the RG stage
than low-mass stars.

We also represent the value of the magnetic splittings as a
function of the dominant g − m mode frequencies ν1,g,max in the
middle panel of Fig. 16. Intermediate-mass stars show the tran-
sition between the p − m- and g − m-dominated mixed modes
(see Fig. 12) at lower frequencies than low-mass stars. We inter-
pret this mass dependency as follows: the frequency range inside
which we can detect mixed-mode form is set by the frequency
range of acoustic modes that propagate all over the star, strongly
correlated with the size of the star. As a result, acoustic modes
propagating inside intermediate-mass stars have lower eigen-
frequencies than those inside low-mass stars for a given evo-
lutionary stage. In other words, the frequency associated with
the base of the RGB where g − m modes dominate is lower
for intermediate-mass stars than for low-mass stars. However,
the mass difference does not significantly impact the magnetic
frequency-splitting values for a given g − m mode frequency.
The small mass dependency seen at low frequency in the middle
panel comes from the mixed-mode nature of the mode, which
is more dominated by its acoustic nature for massive stars than
for low-mass stars at a given frequency on the RGB. The conse-
quence is a slightly smaller effect of magnetism on mixed-mode
frequencies for more massive stars during the RGB.

7.2. Metallicity dependency

In Fig. 17 the same three panels as in Fig. 16 are represented,
with the change in mass replaced by a change in metallicity from
Z = 0.0002 to Z = 0.04 for a fixed M? = 1.5 M�. As expected,
the more metallic the star, the slower it evolves as seen in the
left panel. The effect of metallicity on the magnetic signature at
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Fig. 16. Left: magnetic frequency splitting calculated at the central mode frequency ν1,g,max versus the age of the different evolutionary stages
reported in the right panel for Z = 0.02, M? ∈ {1, 1.5, 2, 3}M�. Middle: magnetic frequency splitting calculated at the central mode frequency
ν1,g,max for the different evolutionary stages and masses reported in the right panel. Right: Hertzsprung-Russell diagram corresponding to the
colour-coded Z = 0.02, M? ∈ {1, 1.5, 2, 3}M� stars. The star symbols indicate the position of the star at which measurements are reported in the
left and middle panels.

Fig. 17. Same as Fig. 16 but with varying metallicity; we represent M? = 1.5 M�, Z ∈ {0.04, 0.02, 0.002, 0.0002} stars.

a given mixed-mode frequency of the stars is negligible during
the RGB. However, the transition from SG to RG arises at lower
frequencies for low-metallicity stars. This leads to a large spread
in magnetic-signature values at a given frequency (see the mid-
dle panel of Fig. 17), similar to what is observed when varying
the mass of the star shown in the middle panel of Fig. 16.

8. Comparison with low-amplitude dipolar
mixed-mode critical field

The magnetic greenhouse effect, as proposed by Fuller et al.
(2015) and supported by the study of Lecoanet et al. (2017),
consists in a complete transfer of energy of magnetised grav-
ity waves towards Alfvén waves, geometrically trapped inside
the core of the star. The resulting oscillation mode is then purely
acoustic, with a great loss of power compared to the correspond-
ing mixed mode due to the loss of the gravity wave energy
trapped inside the core. Such a mechanism implies the total dis-
appearance of g components in the ` = {1, 2} mode regions
in the psd. For this reason, Mosser et al. (2017) led an obser-
vational study looking for signatures of mixed-mode residuals
inside low-amplitude ` = 1 regions. The complete rotational
mixed-mode frequency pattern is adjusted: it reconstructs the
observed ` = 1 pattern well. These latter authors conclude

that even for stars showing low-amplitude inside the ` = 1
region, the remaining oscillation modes have a mixed p and g
nature. However, Loi & Papaloizou (2020) set a warning about
the physical conditions under which the suppression of mixed-
mode amplitude may arise along with the disappearance of the g
components: the authors support that interactions between grav-
ity modes and magnetic fields may result in various behaviours
depending on the configuration and strength of the magnetic
field, and of the star’s structure and stratification. This latter
study brings perspectives concerning the validity of the the-
ory proposed by Fuller et al. (2015), which may be adapted for
mixed-mode amplitude suppression by magnetism without loos-
ing all the mixed nature of the modes.

This topic being very controversial, we do not intend to form
any conclusions as to whether or not the greenhouse effect is
the key to mode suppression. However, we provide the compar-
ison of the critical magnetic-field amplitude needed for mode
suppression –as fixed by Fuller et al. (2015)– with the min-
imum field amplitudes needed for the magnetic signature of
mixed-mode frequencies to be detectable in observational data.
Table 1 contains the approximated values of the magnetic field
corresponding to the minimum detection threshold inside data
from Sect. 4.5 (Bmin) and of the critical field needed for mode
suppression to occur according to the theory by Fuller et al.
(2015). Results depend on the duration of observation, and on
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Table 1. Comparison of the critical field Bc,low−amplitude needed for mode
suppression by the greenhouse effect (Fuller et al. 2015) and the mini-
mum magnetic field amplitude leading to frequency shifts of about the
frequency resolution inside data.

Instrument Time M? νmax Bmin Bc,low−amplitude
(yr) (M�) (µHz) (MG) (MG)

Kepler 4 1.5 300 0.50 3
Kepler 4 1.5 200 0.25 1
Kepler 4 1.5 100 0.10 0.1
PLATO 3 1.5 300 0.6 3
PLATO 3 1.5 200 0.35 1
PLATO 3 1.5 100 0.11 0.1
TESS 1 1.5 300 1.2 3
TESS 1 1.5 200 0.55 1
TESS 1 1.5 100 0.20 0.1

the considered frequency of the modes. In any case, we observe
that as the star evolves (corresponding to a decrease of νmax)
the two critical magnetic-field amplitudes are of the same order
of magnitude, whereas the critical field for mode suppression is
much larger for less-evolved red giants. This means that if mag-
netic suppression by the greenhouse mechanism is at work inside
RGs, one should also observe magnetic signatures on mixed-
mode frequencies, especially for young RGs (see also the work
of Rieutord 2017).

9. Discussion and perspectives

In this study, we investigate the effects of an axisymmetric mixed
poloidal and toroidal fossil field aligned with the rotation axis of
the star on mixed-mode frequencies during the SG and RG evo-
lutionary stages. We concentrate on the fossil field scenario, in
which a buried magnetism is present inside the radiative interior
of the stars. This field results from the relaxation of a magnetic
field generated from previously active dynamos. By using differ-
ent force and energy balance regimes, we show that the expected
fossil magnetic-field amplitude stabilised at the end of the MS
should be in the range of [0.1−1] MG. This range is indepen-
dent of the mass of the star, and of the presence or not of a sus-
tainable convective core during the MS. Such field amplitudes
are sufficiently large to be pertinent for our study of the effects
of magnetism on mixed-mode frequencies. Indeed, our pertur-
bative analysis of mixed-mode frequencies of evolved solar-like
stars provides constraints for the expected field amplitudes inside
evolved stars. Such field amplitudes during the RGB may per-
mit the detection of magnetic signatures on g − m mixed-mode
frequencies. Specifically, the amplitude of magnetically induced
frequency shifts is of about ∼0.1 µHz during the RGB when con-
sidering field amplitudes between 0.1 and 1 MG, and this shift is
larger than the frequency resolution of long-term observations
by the Kepler, TESS, and PLATO missions. Depending on the
nature (p − m or g − m) of the mixed mode and of its frequency,
the magnetically induced frequency shift may also exceed the
typical line width of the mode. Along the RGB, the effect of
magnetism on g − m modes, which propagate inside the mag-
netised radiative interior, is larger than on p − m modes, which
also propagate inside the convective envelope. This difference
between g − m and p − m modes is also visible when evaluating
the effect of the rotation of the star, where p − m modes probing
the more slowly rotating envelope are less affected by rotation

than g − m modes that primarily provide information about the
more rapidly rotating core. Our results therefore mostly concern
the effect of magnetism on g−m modes, despite the fact that they
are more difficult to observe than p − m modes because of their
relatively low amplitude in current data sets.

However, during the SG stage, p − m modes dominate the
observed spectra and are more affected by magnetism than dur-
ing the RGB. This is reflected in the large extent of the radiative
interior: Rrad → R? during the SG phase while Rrad → 0 during
the RGB. As a result, p − m modes probe more highly magne-
tised plasma when the star is young. Fossil magnetism result-
ing from active dynamos before or during the MS is however
not strong enough throughout the SGB to produce detectable
changes either on their p − m or g − m mixed-mode frequen-
cies. We do not exclude the possibility of having stronger
fields than that obtained by the balanced regimes. For exam-
ple, Fuller et al. (2015) proposed a mechanism that uses the fre-
quency of magneto-gravity waves to estimate field amplitudes as
large as 10 MG in KIC 8561221 during the SG phase.

The two g- and p- dominated mode regimes correspond to
two different asymptotic cases: ω � N � S l for g − m modes,
and N � S l � ω for p − m modes. Asymptotic power laws
corresponding to the magnetic effect on p − m and g − m mode
frequencies are provided, where low-frequency g−m-mode mag-
netic splittings behave as δωmag,g ∼ 1/ω−3 whereas p − m-mode
magnetic splittings behave as δωmag,p ∼ ω. These asymptotic
power laws possess amplitude scaling factors, and correlate with
the ζ mode-coupling function. Complete expressions for these
are derived in Mathis et al. (2021). Considering the typical bal-
anced field amplitudes, we argue that, as for rotational pertur-
bations, these first-order expressions are sufficient to ascertain
the effect of magnetism on mixed-mode frequencies. As the star
evolves on the RGB, the effect of magnetism on mixed-mode
frequencies gets larger, where very evolved red giants or agb
stars with νmax . 100 µHz may be non-perturbatively impacted
by magnetism. For such evolved stars, we refer to the study of
Loi (2020).

We show that the considered axisymmetric magnetism,
aligned with the rotation axis of the star, acts as a new perturba-
tion of the already present rotational multiplet. The magnetised
mixed multiplet with order npg is made asymmetric by the pres-
ence of a magnetic field: all ` = 1 and ` = 2 multiplet compo-
nents are shifted towards higher frequencies, with the amplitude
of the shifts depending on the azimuthal order m of the mode.
We argue that this asymmetry can be distinguished from other
asymmetry sources such as non-degenerate effects. Adjustment
methods such as described in Vrard et al. (2015), Mosser et al.
(2015), and Gehan et al. (2018) may be adapted to investigate
magnetic asymmetries. If the magnetic effect is small compared
to the rotational impact on mixed-mode frequencies, the multi-
plet is simply shifted towards higher frequencies. However, we
may observe crossings of the components between successive
npg mixed-mode multiplets if the magnetic field amplitude is
sufficiently large, yet a strong core rotation also yields similar
crossings.

If such isolated fossil fields exist inside the radiative inte-
rior of evolved stars, they would also affect the rotational pro-
file of the radiative zone: we show that within the assumptions
of Mestel & Weiss (1987), the rotation is frozen to poloidal field
lines within a few years, eventually leading to an almost flat rota-
tional profile inside the radiative interior. A reconnection of the
fossil and dynamo-generated magnetic fields in the convection
zone at the tachocline may however permit a small amount of
differential rotation to persist inside the radiative interior.
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Under the hypothesis that g modes may be trapped inside the
core of the star as described by Fuller et al. (2015), we also show
that magnetic signatures may be detectable in the frequency pat-
tern of a star before the complete suppression of the mode ampli-
tudes, especially in the case of young red giants. This result is of
great interest because the magnetic signature within mixed-mode
frequencies may appear in the psd with ` = 1 modes of normal
amplitude.
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Appendix A: Magnetic scaling-law regimes

By considering the fluid in the rotating frame under the effect of
magnetism (via the Lorentz force) and rotation (via the Corio-
lis acceleration), assuming stationarity and neglecting viscosity
and the centrifugal acceleration, the Navier-Stokes equation in a
convection zone may be written as:

(u · ∇) u︸  ︷︷  ︸
Advection

= −
∇P
ρ︸︷︷︸

Fluid pressure

− 2Ω ∧ u︸ ︷︷ ︸
Coriolis

+
1

4πρ
(∇ ∧ B) ∧ B︸               ︷︷               ︸

Lorentz force

+ g︸︷︷︸
Gravity

,

(A.1)

with g the gravitational acceleration.
For this equation, several force balances allow us to evaluate

the amplitude of the magnetic field in different regimes. The bal-
ance between forces is a partitioning that depends upon the con-
vective Rossby number. It is more subtle than a typical asymp-
totic analysis because it is meant to encompass three convective
Rossby number regimes smoothly:

– At high Rossby number (Ro� 1) flows are weakly rotation-
ally constrained but possess a strong dynamo;

– for Ro close to one, flows are modestly rotationally con-
strained, again with a strong dynamo;

– for low Ro (Ro� 1), the magnetostrophic regime is reached,
corresponding to rotationally constrained and magnetised
flows.

It is found in Augustson et al. (2019) that the partitioning
of forces is dominated by combinations of the inertial terms
(Reynolds stresses), the Coriolis acceleration, and the Lorentz
force (or Maxwell stresses) for all Rossby numbers. However,
depending upon Rossby number regime, the relative influence
of each of these three strongest forces changes.

The force balance described in Augustson et al. (2019) fits
the available simulation data well when the force balance is
described as

I + C + L ≈ 0, (A.2)

where I is the magnitude of the inertial forces, C that of the Cori-
olis force, and L that of the Lorentz force. Using a scaling argu-
ment about the dominant length scales, velocity, and magnetic
field amplitudes at that scale, one can show that in this case

ME/KE ≈ a + b/Ro, (A.3)

where Ro≈ vl/(2Ω0l) and l is that dominant length scale, a
describes the efficiency of a small-scale local dynamo that
depends only on the helical turbulence generated by convection,
and b refers to how close to perfect magnetostrophy the system
is. In this framework, three specific regimes can be reached:

– The magnetostrophic regime (low Rossby number) is
reached when the Lorentz force balances the Coriolis accel-
eration and other forces are much smaller in magnitude. This
regime can be achieved for a sufficiently high rotation rate.
From Eq. (A.1), we deduce that

B '
√

8πΩρRconvvconv, (A.4)

with Rconv the size of the convective zone, and vconv the con-
vective velocity. This can be rewritten in terms of convective
Rossby number Ro = vconv/(2ΩRconv) and kinetic energy
density associated with convective motions KE = ρv2

conv/2
as:

B '

√
8πKE

Ro
· (A.5)

– Dynamo action converts a fraction of the kinetic energy of
the convective motions into magnetic energy. In the equipar-
tition regime (high Rossby number regime where the Cori-
olis acceleration can be neglected), the assumption is thus
that the dynamo is efficient enough such that the mag-
netic energy density ME = B2/(8π) balances the convective
kinetic energy density KE of the fluid:

B '
√

8πKE. (A.6)

– In the modest Rossby number regime, all three forces have
roughly the same magnitude. So, ultimately, in the Rossby
number regime that is close to unity, all three forces play
nearly equal roles. By neglecting inertial forces, considering
constant density, and with ∇.u = 0, the curl of Eq. (A.1) can
be written

(Ω.∇) u =
1

4πρ
∇ ∧ ((∇ ∧ B) ∧ B) + ∇ ∧ g. (A.7)

Comparing the three terms composing Eq. (A.7), the balance
is reached for

B '

√
8πKE
√

Ro
· (A.8)

We refer to the Augustson et al. (2019) and Astoul et al.
(2019) studies for additional details on the estimation of
the buoyancy dynamo field strength. This field has an inter-
mediate value between the equipartition and magnetostro-
phy regimes, which set the upper and lower boundaries of
the expected magnetic amplitude during episodes of internal
convective dynamo action.

Appendix B: Magnetic field stable topology

We recall the stable configuration theoretical expression
(Duez & Mathis 2010) that is used in our study to represent fos-
sil fields aligned with the rotation axis of the star:

B =


1

r sin θ

(
∇ψ(r, θ) ∧ eϕ + λ

ψ(r, θ)
Rrad

eϕ
)

if r < Rrad,

0 if r > Rrad,
(B.1)

where ψ is the stream function:

ψ(r, θ) = µ0αλ
A(r)
Rrad

sin2 θ, (B.2)

with µ0 the vacuum magnetic permeability, α a normalisation
constant, λ the eigenvalue of the problem that fixes the shape of
the magnetic configuration, Rrad the radius of the radiative cavity,
and

A(r) = − r j1

(
λ

r
Rrad

) ∫ Rrad

r
y1

(
λ

x
Rrad

)
ρx3dx

− ry1

(
λ

r
Rrad

) ∫ r

0
j1

(
λ

x
Rrad

)
ρx3dx, (B.3)

with j1 (y1) the first-order spherical Bessel function of the first
(second) kind (Abramowitz & Stegun 1972).

In order for the field to be confined inside the radiative inte-
rior of evolved solar-like stars, ψ(r, θ) (and thus A(r)) should
go to zero at the radiative–convective boundary located by Rrad.
There are two options to cancel ψ(Rrad, θ) for any value of θ:
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Fig. B.1. Attempt to find the first zero of∫ r

0
j1

(
λ

x
Rrad

)
ρx3dx at the radiative–convective

boundary. We consider the typical red giant
with M = 1.5 M�, Z = 0.02 on the RGB.
Panel a: trend of the evolution of the ψ
function at r = Rrad with the eigenvalue λ. The
value λ1 closest to the eigenvalue is indicated
by the red vertical line. Panel b: shape of

the functions y1

(
λ1

r
Rrad

) ∫ r

0
j1

(
λ1

x
Rrad

)
ρx3dx,

j1

(
λ1

r
Rrad

) ∫ Rrad

r
y1

(
λ1

x
Rrad

)
ρx3dx and ψλ1

(r, θ) with λ1 ' 7.62, the vertical dashed line
indicates the surface. Panel c: magnetic field
components with λ1 ' 7.62. Panel d: resulting
magnetic field topology with λ1 ' 7.62.

Fig. B.2. Same legend as Fig. B.1 for the first

zero of y1

(
λ

r
Rrad

)
at the radiative–convective

boundary instead. In this case we find the first
eigenvalue λ1 ' 2.80.

– Cancelling ρ
∫ Rrad

0 j1

(
λ

x
Rrad

)
x3dx allows us to confine br and

bθ inside the radiative interior and to keep the field in its more
stable configuration (Woltjer 1959; Duez et al. 2010a).

– Cancelling y1(λ) allows only br to go to zero at the radiative
boundary. Non-zero Bθ generates an azimuthal current sheet
that potentially creates instabilities (Duez & Mathis 2010).

We observe in panel a of Fig. B.1 that the Ψ function fails to
reach zero at the edge of the convective interior for any value

of λ1 when trying to suppress ρ
∫ Rrad

0 j1

(
λ

x
Rrad

)
x3dx. The first

minimum of the function ψ(Rrad, θ) is found at λ1 ' 7.62, and
leads to a ψλ1 (r, θ) function proportional to the blue curve repre-
sented in panel b and to the magnetic field topology represented

in panels c and d of Fig. B.1, for which the field is not trapped
inside the radiative interior. Such magnetic-field configuration is
not the most stable one according to the studies of Braithwaite
(2008) and Duez & Mathis (2010).

By performing instead the analysis with a constant
density profile (i.e. searching for zeros of the function

ρ
∫ Rrad

0 j1

(
λ

x
Rrad

)
x3dx) allows the search for λ1 to converge. We

therefore conclude that the steep density profile inside red giants

prevents the
∫ Rrad

0 j1

(
λ

x
Rrad

)
x3ρdx integral from converging to

zero easily.
The only remaining option to find the eigenvalue λ1 that can-

cels ψ at the radiative boundary for all θ is therefore to search
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for the zeros of y1(λ) instead of those of the integral in Eq. (4).
Results are represented in Fig. B.2, with λ1 ' 2.80 the eigen-
value used in this study. This method allows br to cancel at the
radiative boundary, but does not constrain the horizontal compo-
nent of the field. As shown by panel c of Fig. B.2, angular com-
ponents are still very close to zero at the radiative–convective
boundary. As a result, this magnetic field topology is stable
(Duez & Mathis 2010) and can be considered as trapped inside
the radiative interior along the evolution.

Appendix C: Non-zero average terms of the Lorentz
work

In this section, we present all the non-zero terms composing the
work of δFL·ξ

∗/ρ. They either involve only poloidal components
of the magnetic field, or toroidal components only. The prime
symbol (′) indicates a total derivative, either radial or latitudinal
depending on the considered variable.

C.1. Poloidal terms

By using A = [(rbθ)′+ br], the terms of the work of δFL, j+t ·ξ
∗/ρ

involving poloidal components write:

− m2 ξhbθAξ∗r
r2

(
Ym

l

)2
+

(rξrbθ)′Aξ∗r
r2

(
Ym

l

)2
sin2 θ

−
(rξhbr)′Aξ∗r

r2 Ym
l ∂θY

m
l sin θ cos θ +

ξrbθAξ∗h
r2 ∂θYm

l (Ym
l sin2 θ)′

−
Abr|ξh|

2

r2 ∂θYm
l (∂θYm

l sin θ cos θ)′ + m2 Abr|ξh|
2

r2 sin θ
∂θYm

l Ym
l cos θ

− m2 (ξhbθ)′bθξ∗r
r

(
Ym

l

)2
+

(rξrbθ)′′bθξ∗r
r

(
Ym

l

)2
sin2 θ

−
(rξhbr)′′bθξ∗r

r
Ym

l ∂θY
m
l sin θ cos θ

+
b2
θ |ξr|

2

r2 Ym
l sin θ

 (Ym
l sin2 θ)′

sin θ

′
−
ξhbrbθξ∗r

r2 Ym
l sin θ

[
(∂θYm

l sin θ cos θ)′

sin θ

]′
+ m2 ξhbrbθξ∗r

r2 Ym
l sin θ

(
Ym

l
cos θ
sin2 θ

)′
+ m2 (ξhbθ)′brξ

∗
h

r sin θ
∂θYm

l Ym
l cos θ

−
(rξrbθ)′′brξ

∗
h

r
Ym

l ∂θY
m
l sin θ cos θ +

(rξhbr)′′brξ
∗
h

r

(
∂θYm

l

)2
cos2 θ

−
ξrbrbθξ∗h

r2 ∂θYm
l cos θ

 (Ym
l sin2 θ)′

sin θ

′
+

b2
r |ξh|

2

r2 ∂θYm
l cos θ

[
(∂θYm

l sin θ cos θ)′

sin θ

]′
− m2 b2

r |ξh|
2

r2 ∂θYm
l cos θ

(
Ym

l
cos θ
sin2 θ

)′
+ m2 (rξhbr)′bθξ∗h

r2 sin θ
Ym

l (Ym
l cos θ)′

+ m2 b2
θ |ξh|

2

r2 sin2 θ
Ym

l [sin θ(Ym
l )′]′ − m4 b2

θ |ξh|
2

r2 sin2 θ

(
Ym

l

)2

+ m2 (rξrbθ)′bθξ∗h
r2

(
Ym

l

)2
− m2 (rξhbr)′bθξ∗h

r2 sin θ
∂θYm

l Ym
l cos θ

− m2 ξrbθbrξ
∗
h

r2 Ym
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cos θ
sin3 θ

(Ym
l sin2 θ)′

+ m2 b2
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2

r2 Ym
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cos θ
sin3 θ

(∂θYm
l sin θ cos θ)′

− m4 b2
r |ξh|

2
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(
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)2 cos2 θ

sin4 θ
+ m2 (rξhbr)′′brξ

∗
h

r sin2 θ

(
Ym

l
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cos2 θ

+ m2 (ξhbθ)′brξ
∗
h

r sin θ
Ym

l cos θ(Ym
l )′

and the work of δFL,c · ξ
∗/ρ is composed of:

−
Abθ

r

(
ρr2ξr

)′
ρ

ξ∗r
(
Ym

l

)2
sin3 θ − bθAξ∗r ξh∂θ

(
∂θYm

l sin θ
)
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l
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(
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)2
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r

(
ρr2ξr
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ρ
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l ∂θY

m
l sin2 θ cos θ

− m2Abrξ
2
hYm

l ∂θY
m
l cos θ.

C.2. Toroidal terms

The terms that involve the toroidal component of the field are for
the work of δFL, j+t · ξ

∗/ρ:

2
(rξrbϕ)′bϕξ∗h

r2 Ym
l ∂θY

m
l sin θ cos θ

+ 2
b2
ϕ|ξh|

2

r2 ∂θYm
l cos θ(∂θYm

l sin θ)′
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ϕ|ξh|

2

r2 sin θ
∂θYm

l Ym
l cos θ +

(rξrbϕ)′′bϕξ∗r
r

(
Ym

l

)2
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+
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r
Ym
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l sin θ)′
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l (Ym

l sin2 θ)′

+
b2
ϕ|ξh|

2

r2 ∂θYm
l [sin θ(∂θYm
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2
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(
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l

)2
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r2

(
Ym

l
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r2 Ym
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(
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and:

−
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(
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(
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for the work of δFL,c · ξ
∗/ρ.

Appendix D: Stretched spectrum spacing ∆τm in
the presence of magnetism

In order to investigate the internal rotation rate of evolved solar-
like stars possessing mixed modes, Mosser (2015) concentrates
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on the rotational splitting on g−m modes. We assume that solar-
like stars are slow rotators, and therefore neglect the centrifu-
gal acceleration and other second-order rotational effects which
scale as Ω2. From the study of Goupil et al. (2013) the global
rotational splitting of a mixed mode is written as

δνrot,m = δνrot,gζ + δνrot,p(1 − ζ). (D.1)

For g−m modes the ζ function is very close to 1, so δνrot,m '

δνrot,gζ ' δνrot,coreζ, providing a measure of the core rotation rate
of the star. Therefore, the unperturbed frequency of g−m modes
can be written as νg = ν− δνrot,gζ with ν the measured frequency
in the presence of rotation.

For a rotating and magnetised star, we rewrite the unper-
turbed frequency as a function of the observed frequency
through:

νg = ν −
(
δνrot,g + δνmag,g

)
ζ, (D.2)

with δνmag,g the frequency perturbation due to magnetism only.
The validity of this expression comes from the asymptotic study
contained in the paper (Mathis et al. 2021). As a consequence,
the period of mixed modes of azimuthal component m varies as

dPm

dν
= −

1
ν2 , (D.3)

leading to

dPm = −
dν(

νg +
(
δνrot,g,m + δνmag,g,m

)
ζ
)2 · (D.4)

With the use of a limiting case where
(
δν + δνmag,core,m

)
/ν → 0,

one obtains:

dPm = −
dν
ν2
g

(
1 − 2ζ

δνrot,g,m + δνmag,g,m

νg

)
· (D.5)

The period spacing between two consecutive mixed modes
is therefore written as:

∆Pm = ∆P
(
1 − 2ζ

δνrot,g,m + δνmag,g,m

νg

)
, (D.6)

with ∆P the period spacing between two consecutive m = 0
axisymmetric mixed modes. Noting that ∆τm = ∆Pm/ζ and by
using the fact ∆P can be written as ∆P = ζ∆Π1, Eq. (D.6)
becomes:

∆τm = ∆Π1

(
1 − 2ζ

δνrot,g,m + δνmag,g,m

νg

)
· (D.7)

Appendix E: MESA inlist

In this appendix we report the MESA inlist used to calculate the
stellar evolution models of the 1.5 M�, Z = 0.02 star:

&star_job

! begin with a pre-main sequence model
create_pre_main_sequence_model = .true.

/ !end of star_job namelist

&controls

! starting specifications
initial_mass = 1.5 ! in Msun units
initial_z = 0.02
use_Type2_opacities = .true.
Zbase = 0.02
max_model_number = 900

!������������ MISC
profile_interval = 10
history_interval = 10
max_num_profile_models = 1000

calculate_Brunt_N2 = .true.
star_history_name = ’history.data’
profile_data_prefix = ’profile’
profiles_index_name = ’profiles.index’

set_min_D_mix = .true.
min_D_mix = 1d1

!������������ Output pulse files for GYRE
pulse_data_format = ’GYRE’
write_pulse_data_with_profile = .true.
add_center_point_to_pulse_data = . true.
add_double_points_to_pulse_data = . true.

!������������ WIND
cool_wind_RGB_scheme = ’Reimers’
cool_wind_AGB_scheme = ’Blocker’
RGB_to_AGB_wind_switch = 1d-4
Reimers_scaling_factor = 0.2
Blocker_scaling_factor = 0.5
use_accreted_material_j = .true.
accreted_material_j = 0

!������������� OVERSHOOTING
overshoot_scheme(1) = ’exponential’
overshoot_zone_type(1) = ’any’
overshoot_zone_loc(1) = ’any’
overshoot_bdy_loc(1) = ’any’
overshoot_f(1) = 0.015
overshoot_f0(1) = 0.004

!������������� MESH
mesh_delta_coeff = 0.7
varcontrol_target = 0.7d-3
predictive_mix(1) = .true.
predictive_superad_thresh(1) = 0.005
predictive_avoid_reversal(1) = ’he4’
predictive_zone_type(1) = ’any’
predictive_zone_loc(1) = ’core’
predictive_bdy_loc(1) = ’top’
dX_div_X_limit_min_X = 1d-4
dX_div_X_limit = 5d-1
dX_nuc_drop_min_X_limit = 1d-4
dX_nuc_drop_limit = 1d-2

/ ! end of controls namelist
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