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ABSTRACT

We propose the correlation-locking optimization scheme (CLOSE), a real-time adaptive filtering technique for adaptive optics (AO)
systems controlled with integrators. CLOSE leverages the temporal autocorrelation of modal signals in the controller telemetry and
drives the gains of the integral command law in a closed servo-loop. This supervisory loop is configured using only a few scalar
parameters and automatically controls the modal gains to closely match transfer functions achieving minimum variance control. This
optimization is proven to work throughout the range of noise and seeing conditions relevant to the AO system. This technique was
designed while preparing the high-order AO systems for extremely large telescopes, in particular to tackle the optical gain (OG)
phenomenon. This is a sensitivity reduction induced by on-sky residuals and is a prominent issue with pyramid wavefront sensors
(PWFS). CLOSE follows upon the linear modal compensation approach to OG that was previously demonstrated to substantially im-
prove AO correction with high-order PWFS systems. Operating on modal gains through multiplicative increments, CLOSE naturally
compensates for the recurring issue of unaccounted sensitivity factors throughout the AO loop. We present end-to-end simulations of
the MICADO instrument single-conjugate AO to demonstrate the performances and capabilities of CLOSE. We demonstrate that a
single configuration provides an efficient and versatile optimization of the modal integrator while accounting for OG compensation
and while providing significant robustness to transient effects impacting the PWFS sensitivity.

Key words. instrumentation: adaptive optics – techniques: high angular resolution – telescopes

1. Introduction

Thanks to its extreme sensitivity as compared to other general-
purpose wavefront sensors (WFSs) for astronomical adaptive
optics (AO), the pyramid WFS (PWFS; Ragazzoni 1996) has
been the design choice included in all first-light AO sys-
tems for the three upcoming extremely large telescopes (ELTs;
Tamai et al. 2018; Fanson et al. 2018; Liu & Sanders 2018) as
well as for a number of high-performance systems on 8–10 m
telescopes (Esposito et al. 2010; Guyon et al. 2010; Schatz et al.
2018).

In recent years, the community has shown interest in tackling
the nonlinearity of the PWFS, the so-called optical gain (OG),
which is an on-sky sensitivity reduction induced by the limited
dynamic range of the sensor and can be modeled as a function
of wavefront spatial frequency, with a magnitude depending on
residual wavefront conditions, and therefore on ongoing turbu-
lence statistics (Costa 2005; Korkiakoski et al. 2008a; Deo et al.
2018a). When unmeasured and not compensated for, OG is
a significant hindrance that prevents the application of many
algorithms relying upon the linearity of the servo-loop. Two
extremely common but critical examples are (1) the explicit esti-
mation of the temporal transfer function, which is necessary for
applying modal gain optimization techniques (Gendron & Léna
1994; Dessenne et al. 1998), and (2) the proper subtraction of
the noncommon path aberration setpoint (examined in, e.g.,
Esposito et al. 2020). For setpoint subtraction, the PWFS trig-
gers a divergent positive feedback when attempting convergence

to a wavefront setpoint whose gradient exceeds the modulation
radius.

Our previously proposed modal OG compensation pipeline
(Deo et al. 2019a) demonstrated significant performance
improvements for different seeing conditions, but had some lim-
itations: It required introducing probe signals on the deformable
mirror (DM), it required a significant amount of preliminary
modeling and computations, and it did not incorporate any
modal variance minimization technique depending on noise
level variations. We propose in the present paper a novel
algorithm, a self-regulating and entirely automated real-time
modal gain controller, that resolves these three shortcomings:
the correlation-locking optimization scheme (CLOSE). The
method is inspired by Montera et al. (2018), proposing to apply
neural networks in particular for tip-tilt sensitivity tracking and
compensation. Preliminary results with CLOSE were published
in Deo et al. (2019b).

CLOSE monitors the integrator overshoot through the tem-
poral autocorrelation of modal WFS measurements and drives
modal gains through real-time multiplicative updates. This
allows tracking and optimizing the sole temporal properties of
the loop integrator. The OG compensation multipliers are auto-
matically factored in the gain that is set into the command law
and do not require separate explicit computations. The result-
ing steady-state command law may then be optimized regard-
less of the OG sensitivity reduction and can easily be tuned
so as to compare to the minimum variance (MV) control of
Gendron & Léna (1994).
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Fig. 1. General modeling of the SCAO loop showing the WFS, real-time computer, and DM. The WFS is modeled using the confusion matrix
framework (Sect. 2.1). The confusion matrix A is a random variable depending upon the residual wavefront φRes.

While we started designing CLOSE in the context of the
single-conjugate AO (SCAO) module of the MICADO instru-
ment (Davies et al. 2018; Clénet et al. 2019), the technique nat-
urally extends to a range of AO systems, namely for nonlinear
sensors performing well under a locally valid, modal, linearized
description, such as the PWFS. This includes other Fourier-like
wavefront sensors (Fauvarque et al. 2019; Chambouleyron et al.
2020) as well as quad-cell Shack–Hartmanns or the adaptation
of a diffraction-limited, point-source AO calibration into an ade-
quate command law for extended natural sources or elongated
laser stars, etc.

This paper is organized as follows: in Sect. 2 we present our
formal model for analyzing the AO loop dynamics when using a
WFS prone to optical gain. In Sect. 3 we present the rationale
for the CLOSE servo-loop as well as semi-analytical demon-
strations showing the achieved correspondence with minimum
variance integrators. Then we present in Sect. 4 two proposed
implementations, real-time and offline, and briefly lay out the
computational requirements associated with the use of CLOSE.
We show in Sect. 5 the results of end-to-end numerical simu-
lations, showing convergence, improved performance, and the
breadth of applicable conditions for CLOSE in the MICADO
SCAO system. Finally, Sect. 6 includes some discussions of pos-
sible extensions and limitations of the scheme.

2. Modeling the AO loop

We show in Fig. 1 the schematic of a SCAO loop that is con-
sidered throughout this paper. This model that was designed to
conveniently describe the OG effect on PWFSs operating in low
Strehl regimes. We recall here the key elements relevant to this
study. A more extensive description of this approach may be
found in Deo et al. (2019a).

While the wavefronts defined in Fig. 1, φAtm, φDM, and
φRes, are continuous functions over the telescope aperture, but
are here implicitly meant as their decomposition over a control
basis of the DM: (φ1, . . . , φN), where N is the number of con-
trolled modes, plus an additional fitting component beyond the
DM capabilities. The left half of Fig. 1 is represented in this
modal space. The right half, where the measurement noise p is
introduced, is in the WFS measurement space. For a Shack–
Hartmann, this would be the centroid displacement space, or
for a PWFS, the space of either the normalized pixels or the
gradient-like slopes maps.

The WFS is represented by the OG-describing matrix A
(Sect. 2.1) and the transformation from modal decomposition to
measurement dWFS: the modal interaction matrix of the wave-
front sensor, defined as the Jacobian of the WFS response around
the flat wavefront, that is, computed using infinitesimal push-

pulls. Wavefront reconstruction is performed by matrix-vector
multiplication, with the matrix Rec computed as the general-
ized inverse of dWFS, assuming the latter is adequately con-
ditioned. Finally, Fig. 1 shows that the temporal control of the
loop is operated through a modal integrator using a gain vector
G = [Gi],1≤i≤N .

2.1. Optical gain: The confusion matrix model

In the general case, the small-signal response of a nonlinear
sensor is modified by the presence of atmospheric wavefront
residuals. The WFS Jacobian dWFS(φRes) around any nonzero
setpoint φRes may be written as dWFS(φRes) = A · dWFS, as
shown in Fig. 1. In this description, the modal space operator A
describes a local mixing of model components around φRes as
compared to the calibrated response, and we therefore call A the
modal confusion matrix. The operator A generally is a random
variable dependent on φRes. In the simplest case, for instance, a
Shack–Hartmann WFS with uniform centroid gain, the matrix A
is a scaled identity matrix.

For the PWFS case, it has been shown that the confu-
sion matrix has some reasonable properties when described
on an appropriate modal basis. These properties are the foun-
dation of optical gain modal compensation for the PWFS
(Korkiakoski et al. 2008b). In previous work (Deo et al. 2018a,
2019a), we performed a thorough numerical assessment of the
fluctuations of A when the spatial power spectrum density
(PSD) of φRes is stationary. These analyses were performed
using a Karhunen–Loève (KL) basis orthonormalized on the DM
(Ferreira et al. 2018a). This basis is made of modes containing
an isotropic mix of spatial frequencies of a single norm, sorted
by increasing frequency. The last ∼300 modes (out of 4300 total
modes for the ELT), whose structure is affected by the DM cut-
off, contain a variety of waffles. We use this basis for all purposes
in this paper.

When a decomposition is used on our DM KL basis, we
have previously demonstrated that (1) A is essentially diag-
onal for low-order modes, which bear most of the power
of the atmospheric turbulence; (2) that its diagonal coeffi-
cients vary by no more than a few percent for a given set
of wavefronts φRes of identical PSD, a property in accordance
with convolutional PWFS descriptions (Fauvarque et al. 2019;
Chambouleyron et al. 2020); and (3) that the off-diagonal por-
tion of A, while non-negligible for high-order φi, is of negligible
statistical average.

Using this basis, which statistically diagonalizes A, enables
the modal gain compensation strategy, as shown in the Recon-
struction block of Fig. 1. The modal gains set in G cover two
functionalities: First, they include the compensation of A for
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Fig. 2. Diagonalization of the AO loop model (Fig. 1) for mode i under
the approximation that A is diagonal and is thus reduced to its ith diag-
onal term αi.

ongoing turbulent conditions; and second, they define the trans-
fer function gain such that the modal integrators exhibit appro-
priate rejection levels. Both of these terms are ambiguously
mixed into the coefficients of G set into the controller. This
ambiguity affects the dynamical modeling of the system, which
we describe in Sect. 2.3, as well as the optimization strategies
explained in Sect. 3. Its relation to proper noncommon path aber-
ration compensation, which requires independently identifying
the compensation of A, is discussed in Sect. 6.2. The stability
of A against the PSD of φRes ensures that adequate Gi values
vary with the same temporal scale as the descriptive statistical
parameters (r0, L0, C2

n(h), . . .) of the turbulence.

2.2. Diagonalizing the loop model

Following through with the approximation of statistical diago-
nality of A, Fig. 1 can then be simplified to the flowchart shown
in Fig. 2 because the reference interaction and reconstruction
matrices dWFS and Rec reduce to an identity matrix. Figure 2
applies as one of N decoupled servo-loops for each of the con-
trolled modes, with A reduced to its ith diagonal coefficient αi.
We call αi the modal sensitivity reduction coefficient because
0 < αi ≤ 1 stands for a PWFS. With αi varying only with the
statistical properties of the turbulence, it can be considered as
a constant for the purposes of analyzing the model in Fig. 2 for
stationary or slowly evolving atmospheric conditions. With these
hypotheses, Fig. 2 is no more than a most classical linear integral
feedback loop, but for the unknown and unmeasured αi.

Furthermore, our choice of basis is descriptively similar to
atmospheric KL modes (Dai 1996) for the modes that bear the
most of the turbulence power. Thus, the N modal loops as shown
in Fig. 2 may be approximated as uncorrelated, with their inde-
pendent optimizations resulting in a global one.

2.3. Transfer functions

Each of the N modal servo-loops is entirely described by a
small number of parameters: the temporal spectra of the turbu-
lence and noise for the ith mode, and the αi (unknown) and Gi
(known) scalars. The atmospheric temporal spectrum for a single
KL mode is well described in the literature (Conan et al. 1995;
Gendron 1995) for Kolmogorov or Von Kármán turbulence,

|φ̂i
Atm( f )|2 ∝ f 0 for f < fi, and ∝ f −17/3 for f > fi, (1)

where f denotes temporal frequencies, •̂ temporal Fourier trans-
forms, and fi is the mode cutoff frequency, given by the wind

speed and the mode radial order. We use the spectrum of Eq. (1)
as a reference template for the analyses described in Sect. 3.

The minimization objective we consider for integral control
optimization is the variance of the residual,

Vark

(
φi

Res[k]
)

=

∫
f

∣∣∣φ̂i
Res( f )

∣∣∣2 d f , (2)

where k is the temporal sample index. The value of the φi
Res[k]

cannot be accessed directly, however, but only those of the mea-
surements mi[k]. To perform semianalytical computations of
how to achieve this minimization, as we do in Sect. 3.3, it is
necessary to introduce the various transfer functions between the
quantities involved.

These can easily be obtained (e.g., Madec 1999) from
Fig. 2, and we here recall their expressions in a time-sampled
framework. A discussion of continuous versus discrete time
approaches to AO is proposed in Appendix A. We only note
here that discrete-time is valid (Kulcsár et al. 2006) because (1)
temporal aliasing is negligible, which is the case from the rapid
decrease of Eq. (1); and (2) frequencies involved are well below
Nyquist. We define the shorthand (Eq. (A.8)), where T is the
sampling period and j2 = −1,

h( f ; g) =

[
1 + g ·

exp(−2 jπ f (T + τ))
1 − exp(−2 jπ f T )

]−1

, (3)

using which, we express the transfer functions, where the sub-
scripts identify the input (either φi

Atm or the modal noise ni) and
output (φi

Res or the modal measurement mi) considered,

hi
Atm−→Res = h( f ;αiGi), (4)

hi
n−→Res = −

1
αi

exp(−2 jπ f (T + τ))
1 − exp(−2 jπ f T )

h( f ;αiGi), (5)

and

hi
Atm−→m = αi h( f ;αiGi) (6)

hi
n−→m = h( f ;αiGi). (7)

These transfer functions are formally similar to those of an AO
loop that is not affected by optical gain (αi = 1), except for an
effective noise amplification, as seen from the −1/αi in Eq. (5).
It follows from Eqs. (6) and (7) that the Fourier transform of the
measurements can be written as

m̂i( f ) = h( f ;αiGi)
(
αi φ̂

i
Atm( f ) + n̂i( f )

)
. (8)

Equation (8) emphasizes that for a given turbulence PSD, m̂i( f )
is entirely defined by two parameters: the transfer function gain
αiGi, and the sensitivity-adjusted signal-to-noise ratio (S/N),
noted σi,

σ2
i = αi

2
Var

(
φi

Atm

)
Var (ni)

· (9)

Minimum variance control involves setting Gi such that αiGi is
the minimizer of the quantity expressed in Eq. (2) for the given
adjusted S/N. This either requires measuring αi explicitly, as is
done for instance in other optical gain compensation methods
(Korkiakoski et al. 2008b; Esposito et al. 2015, 2020), or finding
a proxy to indirectly infer the hidden value αiGi, and adjust Gi
adequately.
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3. Correlation-locking scheme

When the modal sensitivity reductions αi are unknown, the
closed-loop measurements mi still contain sufficient information
to retrieve h( f ;αiGi) and control Gi toward optimal rejection.
We intend to perform this control without computing an exten-
sive spectrum of the measurements and without performing an
explicit estimation of the system response, but leveraging the
short-term temporal autocorrelation of the measurements as a
proxy for the effective modal loop gain αiGi. We present in this
section the correlation-locking optimization scheme (CLOSE),
which drives the modal gains Gi in real-time toward a favorable
solution for rejection. This section covers the foundation and
steady-state solutions for the loop transfer functions achieved
using CLOSE. We then present in Sect. 4 the implementation
of CLOSE as a second-layer supervisory loop, taking the modal
WFS measurements as inputs and operating on the gain vector.

3.1. Rationale: Using the loop resonance

For each mode, the loop described on Fig. 2 is a classical feed-
back loop with an integral controller of gain αiGi and total delay1

τ + T . The transfer function h( f ; g), as developed in Sect. 2.3,
is a well-characterized high-pass filter, with a f +2 square mod-
ulus up to the roll-off, followed by a resonance peak located
beyond. Some examples of h( f ; g), using τ = 2T , are shown in
Fig. 3 (top). h( f ; g) is a stable filter up to a maximum gain value
g = gcrit, which depends only on the normalized latency

τ

T
. As

the gain g increases toward gcrit, the resonant peak sharpens and
its amplitude increases. The central peak frequency increases
and converges toward the critical frequency fcrit. In other terms,
the lowest frequency pole of the Laplace transform associated
with h( f ; g) is displaced toward the imaginary axis and eventu-
ally intercepts it at s = 2 jπ fcrit for g = gcrit. Values of fcrit and
gcrit with latency are provided in Table 1 for reference. The given
general formula is demonstrated in Appendix A.

The behavior of the rejection peak as the transfer function
approaches divergence is illustrated in Fig. 3, showing the PSDs
for the atmospheric mode and the noise, and some examples of
transfer functions and output spectra |m̂i( f )|2 for three values of
g = αiGi. The latency is τ = 2T , and the sensitivity adjusted S/N
(Eq. (9)) was taken as σi = 10. Without loss of generality, we
normalized the atmospheric spectrum at |αiφ̂

i
Atm( f = 0)|2 = 1.

The atmospheric spectrum, filtered by the high-pass transfer
function, results in the leftmost peak of |m̂i( f )|2 seen on Fig. 3
(bottom), at the modal cutoff frequency fi = 1 Hz. Near 10 Hz,
we see a transition from rejected turbulence, showing a f −11/3

spectrum, into a regime of f +2, as the input αiφ
i
Atm + ni is domi-

nated by the measurement noise. This regime is followed by the
rejection peak, which amplifies and shifts toward fcrit = 50 Hz
as the gain increases.

3.2. Correlation locking: Steady-state objective

We assume that the AO latency τ has been calibrated and is a
fixed known parameter; consequently, so is fcrit. For reasonable
τ values, fcrit lies in the noise floor of the spectrum, well beyond
the turbulence cutoff frequency. In its simplest form, our philos-
ophy is to note that the amplitude of the resonant peak may be
used as a proxy for the effective modal gain αiGi.

1 Expected value of the delay between the occurrence of a perturbation
φAtm(t) and the mean time of its correction on the DM.

100 101 102

Frequency f (Hz; fS = 500 Hz)
60

40

20

0

20

PS
D 

(d
B)

fcrit

|h i(f, iGi)|2

| i
i
Atm(f)|2

|ni(f)|2

f 17
3

f+2

Input PSDs and transfer functions - /T = 2 frames

iGi
0.19 = 0.30 gcrit
0.37 = 0.60 gcrit
0.56 = 0.90 gcrit

100 101 102

Frequency f (Hz; fS = 500 Hz)
80
70
60
50
40
30
20

PS
D 

(d
B)

fcrit

f+2
f 11

3

f+2

|mi(f)|2 - /T = 2 frames

iGi
0.19 = 0.30 gcrit
0.37 = 0.60 gcrit
0.56 = 0.90 gcrit

Fig. 3. Typical spectral components for our AO semianalytical compu-
tations. Top: input spectra for turbulence and noise, and the measure-
ment power transfer function |hi( f ;αiGi)|2 for three αiGi values. Bot-
tom: corresponding measurement power spectra |m̂i( f )|2. For this exam-
ple, τ = 2T , and fS = 500 Hz, yielding gcrit ≈ 0.61 and fcrit = 50 Hz.

Table 1. Parameters related to transfer function divergence depending
on the latency of the system.

τ/T fcrit/ fS gcrit δkcrit
(frames) (frames)

0 1/2 2.0 1
1 1/6 1.0 3
2 1/10 ≈0.618 5
τ

T
1/

(
4
τ

T
+ 2

)
2 sin

(
π

fcrit

fS

)
2
τ

T
+ 1

Notes. fS is the sampling rate. δkcrit = fS/2 fcrit is discussed in Sect. 3.2.

We deemed it particularly inconvenient, however, to attempt
real-time estimations of the peak amplitude or structure, which
calls for extensive buffer acquisitions, explicit PSD estimations,
etc. The latter remains well within technical reach and may be
done at later stages of this research.

Instead, we propose to use the autocorrelation (AC) of the
modal measurements, noted m∗i [δk], because it provides another
indirect measure of αiGi. For reference, the AC curves m∗i [δk] at
small time-shifts δk corresponding to the measurement spectra
shown in the bottom panel of Fig. 3 are shown in Fig. 4. As
αiGi increases and as the loop response approaches divergence,
an oscillation of half-period nearing

δkcrit =
fS

2 fcrit
= 2

τ

T
+ 1 frames (10)

is superimposed on the typically wider bell-shaped AC curve.
This oscillation is the correspondence in the AC domain of the
resonance peak, growing in amplitude and converging to fcrit.
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In particular, the first minimum of the AC curve for a time-
shift of δkcrit is a strongly marked signal that allows measuring
the amount of resonance in the loop with a minimal latency of
δkcrit frames. This value is the one metric that is monitored by
CLOSE to implicitly register the value of the loop gain αiGi,

m∗i [δkcrit] =

∑
k mi[k]mi[k − δkcrit]∑

k mi[k]2 , (11)

which, as we show in Sect. 4, is also convenient to track with
simple real-time estimators. Decreasing αiGi reduces the ampli-
tude of the oscillation over the AC function, which tends to
increase the value of m∗i [δkcrit], and the opposite occurs when
αiGi is increased (within the stability limits).

Because the relation between αiGi and m∗i [δkcrit] is mono-
tonic, we can act on Gi in order to lock the δkcrit correlation value
onto a steady-state solution,

m∗i [δkcrit] = r ∈ [−1, 1], (12)

where we call r the setpoint value. Without additional knowl-
edge, the value of r ought to be adjusted (or defined per mode)
to fit a performance-maximizing criterion in all useful situa-
tions that the AO would face and across the complete range
of the effective modal S/N. The automatic driving of Gi to sat-
isfy Eq. (12) is of course particularly convenient if and only if a
unique or a small number of setpoint values may be found.

The δkcrit correlation value and the value r we target to lock
it onto are empirically representative of the spectral energy ratio
between the low-frequency atmospheric rejection residual and
the overshoot peak near fcrit. This is shown in Figs. 3 and 4.

Generally speaking, using higher values for r imposes a more
cautious and robust steady-state control solution with a lower
loop gain, with a strong, near unit correlation at δkcrit separation.
Lower values lead to more aggressive loop behaviors that might
reach nearly divergent transfer functions, but with a maximized
rejection of the low-frequency components. As αiGi approaches
gcrit, m∗i [δkcrit] goes toward −1, and the output of the system is a
slowly dampened sinusoid of period 2δkcrit frames.

Furthermore, with the condition of Eq. (12) satisfied, CLOSE
enforces a transfer function constraint that is independent of the
sensitivity reduction αi of the WFS. In other words, it automat-
ically compensates for the optical gain effect using modal com-
pensation coefficients.
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Fig. 5. For effective S/Nσi = 1, 10, and 100, closed-loop residual vari-
ances (top panels) and resulting δkcrit autocorrelation of the measure-
ments (bottom panels) as a function of the loop gain αiGi from 0 up to
gcrit. The latency is taken as τ = 2.T . Black lines show the total resid-
ual variance

∫
f

∣∣∣φ̂i
Res( f )

∣∣∣2 d f normalized to 1 at its minimum, blue rep-

resents the variance induced by turbulence
∫

f

∣∣∣hi
Atm−→Res · φ̂

i
Atm( f )

∣∣∣2 d f ,

and green shows the variance induced by noise
∫

f

∣∣∣∣hi
n−→Res ·

1
σi

∣∣∣∣2 d f .

3.3. Correlation-locking and minimum variance:
Semianalytical solutions

We have introduced the concept of a correlation-locking condi-
tion to adjust the controller gains and achieve a given control
transfer function independently of the sensitivity reduction. We
propose to compare the solutions obeying Eq. (12) to a minimum
variance (MV) modal integrator, verifying Eq. (2).

For the example developed in Figs. 3 and 4, the gain αiGi
minimizing the variance of the wavefront residual is gMV ≈

0.231. At this gain value, we obtain m∗i [δkcrit] = −0.025. This
numerical observation indicates that r = 0 should be pursued as
a candidate setpoint.

The computations are easily generalized for values other than
the sensitivity-corrected S/Nσi = 10 used for the examples. We
show in Fig. 5 the variations of m∗i [δkcrit] and of the residual
variance (Eq. (2)) with αiGi, for S/N values σi = 1, 10, and
100. We also plot the two components of the variance that are
due to the turbulence residual and the noise propagation, that is,
the two components that the CLOSE servo-loop seeks to bal-
ance optimally. The observed variations of m∗i [δkcrit] confirm its
monotonicity with the gain as well as the relationship inferred in
Sect. 3.2: a negative observable m∗i [δkcrit] (or setpoint r) relates to
a high gain loop, and a positive m∗i [δkcrit] to a low gain loop. For
all three S/Ns, Fig. 5 show the approximate match between the
gain yielding minimum variance and the intercept m∗i [δkcrit] = 0.
This further establishes that r = 0 should be pursued as a special
value that can be used in a variety of situations.

Generalizing these analyses further, we show in Fig. 6 the
values of αiGi resulting in setpoints r of −0.5, −0.1, 0, 0.1, and
0.5, together with the MV solution for effective S/N values 10−1–
104. The gain gMV minimizing the variance for a given S/N is
found following Gendron & Léna (1994) by numerically mini-
mizing the joint Eqs. (4) and (5). CLOSE solutions are found
by numerically solving m∗i [δkcrit] = r for αiGi through Eqs. (6)
and (7). Additional data for τ = 0 and τ = T are presented in
Appendix B.

First, we note that the correlation-locked solution for an
empirical r = 0 is a remarkably close match to the MV solu-
tion gMV. The discrepancy at worst reaches 20% and 15% of
gMV in the two knees of the curve, near σi = 3 and σi =
100, respectively. We also confirm the statement made earlier:
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Fig. 6. Minimum variance gain gMV and solutions found using CLOSE
with five different setpoint values, depending on the sensitivity-
corrected S/Nσi. These computations are performed using the modal
input spectrum of Eq. (1) with fi = 1 Hz.

Positive setpoints lead to lower values of αiGi for a given σi,
and negative ones lead to a higher gain value. Interestingly, nega-
tive setpoints impose a gain floor even when the S/N is extremely
poor. To achieve r < 0 over essentially white noise, the controller
forcefully increases the gain so as to introduce a detectable oscil-
lation of the amplified noise. Overall, r = 0 seems to provide an
approximate near-MV solution over most of the σi range, with
some room for improvement using a combination of r > 0 val-
ues for the higher end of the S/N range. The exact discrepancy
between the gMV and the CLOSE solution at null setpoint of
course depends on the actual spectrum of turbulence, in particu-
lar, on the cutoff frequency fi.

These semianalytical simulations altogether show that reach-
ing the CLOSE steady-state solution using r = 0 can provide a
near minimum variance solution throughout the entire range of
σi. This makes it a relevant control technique for all the con-
trolled DM modes for any choice of guide-star magnitude, for
any amount of input turbulence, and for any sensitivity reduc-
tion αi because all these parameters merely factor in the com-
putation of σi. With a unique setpoint value, semianalytical
computations offer a simple criterion that would enable fully
automatic (almost) minimum variance integral control even for
sensors with poorly modeled sensitivity variations.

We validate these claims using end-to-end numerical sim-
ulations in Sect. 5. We propose in the next section a practical
implementation of the steady-state equations presented above.

4. Practical implementation

4.1. Real-time

Modal WFS telemetry mi[k] is obtained at each time-step k as
the product of the WFS output by the modal reconstructor Rec.
Two online autocovariance estimators are built from the mi[k]
using discrete integrators,

N0
i [k] = p mi[k]2 + (1 − p)N0

i [k − 1]

Ncrit
i [k] = p mi[k]mi[k − δkcrit] + (1 − p)Ncrit

i [k − 1], (13)

where k is the time-step index and p ∈ [0, 1] is a smoothing
parameter. N0

i and Ncrit
i are thus low-pass time-filtered estimates

such that N0
i tracks the series variance Vark(mi[k]), and their ratio

Ncrit
i /N0

i tracks the critical autocorrelation m∗i [δkcrit]. After an

empirical optimization of the parameter p, we opted for fast inte-
grators with p = 0.3 for all simulations presented in Sect. 5. One
objective achieved through this smoothing parameter is that the
gap of δkcrit frames between the joint estimations of the variance
and of m∗i [δkcrit] is bridged.

After the AC estimation, the modal gains Gi are updated
using multiplicative increments as follows:

Gi[k] = Gi[k − 1] ×
1 + q±

Ncrit
i [k]

N0
i [k]

− r
 . (14)

The r parameter is the loop setpoint as defined in Sect. 3.
The q± learning factor may encompass two different values,

with either q+ and q− used depending on the sign of

Ncrit
i [k]

N0
i [k]

− r,

q+ being used for Gi increases in Eq. (14), and q− for decreases.
This asymmetry is kept as an option to make the algorithm more
reactive to overshooting transients (using q− > q+) as com-
pared to tracking gain increases due to a transfer function that
is deemed too slow (using q+).

This asymmetric tracking is not used for results shown in
this paper, but was used in preliminary numerical simulations
(and throughout Deo et al. 2019b). It allows maintaining sta-
bility at higher q± values. However, using q+ , q− induces a
bias in the mean value achieved for m∗i [δkcrit] that then differs
from r. We empirically observed that for q− = 5q+, for example,
r ∈ [−0.2,−0.1] should be used to retrieve the performance seen
with r = 0 in the q+ = q− case.

The q± learning factors determine the time constants associ-
ated with the convergence and tracking ability of the CLOSE
servo-loop. We infer that for a real AO system, q± values in
the range of 10−3−10−4 should be used (assuming 500 Hz fre-
quency), hence providing typical time constants in the 2−20 s
range. The ideal choice of q± will probably remain dependent on
the system and will certainly require some adjustments account-
ing for robustness and responsiveness to variations of turbulence
conditions, vibrations, or other transient events. While the the-
oretical derivations were most accurate using r = 0, we do not
exclude that for each system, some sort of empirical tweaking
of r may be necessary to either privilege consistent stability or
aggressive rejection.

4.2. Computational strain

Implementing CLOSE in a real-time fashion is of course
expected to increase the AO loop computational require-
ments. While the AC estimations and gain updates themselves
(Eqs. (13) and (14)) are negligible compared to the matrix-vector
multiplication (MVM), having the mi[k] available in real-time
requires to perform the reconstruction in two successive MVM
steps. The first MVM converts WFS measurements into modal
values, with a computational burden nearly identical to the usual
overall MVM from measurements to DM commands. The sec-
ond step computes DM increments from modal values, with a
nearly square matrix with a size of the number of actuators.
While this two-step operation is not universal, it is worth noting
that it is used routinely on some instruments (e.g., Guyon et al.
2018). While this two-step technique may become a computa-
tional bottleneck in particular for high-contrast systems on ELTs,
it is currently baselined for the control of the deformable M4 on
ESO’s ELT (Bonnet et al. 2019).
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For a typical PWFS AO system with some spatial oversam-
pling (the pixel projected size is smaller than the DM pitch),
the number of pixels that is read out is typically 5–6 times the
number of actuators because there are four pupil-like images,
times the square of the oversampling factor. The number of
outputs of the PWFS is therefore 2.5–6 times the number of
modes, depending on whether slopes-map preprocessing is used
or not. The algorithmic interest and computing cost of skipping
the preprocessing is discussed in Deo et al. (2018b), for exam-
ple. While the first MVM execution time depends on the WFS
output dimensionality, the second MVM only depends on the
number of controlled modes, with a smaller but not negligible
computational footprint. As an example, we measured the real-
time computer (RTC) computation time for the AO simulation
setup we used in Sect. 5 (see Table 2): 881.6± 4.2 µs using a sin-
gle MVM, against 1035.6± 3.6 µs using two cascaded MVMs.
These timings where achieved using a single Nvidia Tesla P100
graphical processor.

4.3. Offline implementation

If the RTC software cannot be altered on an existing system or if
the additional strain is not acceptable within the RTC specifica-
tions, CLOSE can be implemented in a block-wise manner. All
estimators, gain updates, and command matrix updates are per-
formed in offline time, certainly in another process, and prefer-
ably on another machine, over batches of contiguously recorded
measurements. This buffered strategy enables deploying CLOSE
on nearly any existing AO system that reliably provides its WFS
telemetry without excessive delays.

A time-continuous buffer of K WFS measurements is for-
warded to the CLOSE process, which turns them into modal
measurements mi, . . . , mi[K − 1] using the modal reconstructor
Rec. For each mode, the AC estimators of Eq. (13) are replaced
by the direct computation of the normalized δkcrit-shifted AC
term over the telemetry buffer,

Nblock
i =

1
K − δkcrit

∑K−1
k=δkcrit

mi[k]mi[k − δkcrit]

1
K

∑K−1
k=0 mi[k]2

· (15)

The gain-updating equation can then be performed,

Gi[new] = Gi[previous] ×
[
1 + q±

(
Nblock

i − r
)]
, (16)

using q± factors adjusted for the longer integration time and
the increased SNR on AC estimation. Typically, q± ought to be
larger by a factor

√
K for a dynamical effect comparable to the

real-time implementation. The new command matrix can then be
computed accounting for the new Gi values, and when all side-
tracked computations are completed, can be set into the RTC.

5. Numerical simulation results

This section describes some end-to-end numerical simulations
that demonstrate the performance achieved with CLOSE when
applied to the MICADO SCAO design (Clénet et al. 2019;
Vidal et al. 2019). The main parameters of the system and the
simulations are summarized in Table 2. All simulations were per-
formed using the COMPASS platform (Ferreira et al. 2018b).

In Sect. 5.1 we analyze the convergence of modal gains when
the AO loop is bootstrapped. In Sect. 5.2 we verify the steady-
state performance achieved using r = 0 for various S/N levels.

Table 2. AO numerical simulation parameters.

Numerical simulation configuration

Telescope D = 39 m diameter
ELT pupil model (no spider arms)
von Kármán, ground layer only

Turbulence r0 at 500 nm: [8.9−21.5] cm
L0 = 25 m
Speed: 10 m s−1 [10–40]
On-axis natural guide star

Guiding Zero point: 2.6 × 1010 ph s−1 m−2

Magnitude MR: [0–18]
Tip-tilt mirror

DMs Hexagonal M4 model pattern
Pitch of 54 cm, coupling of 0.24
4302 controlled actuators

PWFS
Subapertures 92× 92 – pixel size 42 cm.

24 080 pixels used for control (a)

Wavelength Monochromatic, 658 nm
Throughput 0.28 (including quantum efficiency)
Modulation Circular, 4 λ

D radius
Readout noise 0.3 e−

RTC controller
Loop rate fS = 500 Hz
Latency τ = 2T = 4 ms (b)

Method Two step modal linear integrator
Pixels−→ [mi] × [Gi] −→ actuators

Basis DM Karhunen–Loève basis (c)

Real-time implementation
CLOSE p = 0.3; q± = 10−3; δkcrit = 5

r = 0. [−0.5, 0.5].

Notes. Values within brackets indicate probing ranges for various sim-
ulations reported across Sect. 5. Values preceding brackets indicate
the default value for the parameter. (a)Bypassing the slope maps com-
putation according to Guyon (2005), Clergeon (2014), and Deo et al.
(2018b). (b)Extended to τ in [0, T , 2T ] in Appendix C. (c)Ferreira et al.
(2018a).

This is expanded in Sect. 5.3 by exploring the effect of different
setpoint values. Finally, we show in Sect. 5.4 the dynamic behav-
ior of CLOSE when it is exposed to sudden changes in condi-
tions. Throughout the following sections, seeing conditions are
referred to using the Fried parameter r0, always given at 500 nm;
and guide-star brightnesses are identified by the R-band mag-
nitude (MR), related to the photon flux per the zeropoint and
system throughput given in Table 2. AO performance is most
often measured in terms of H-band long-exposure (LE) Strehl
ratios (SR), computed from simulated monochromatic point-
spread functions at 1650 nm. SR comparisons given in percent
are always in percentage point units, never relative variations.

5.1. Gain convergence upon closing the loop

We first investigate the dynamics of the modal gains upon clos-
ing the AO loop with CLOSE enabled. These simulations were
all initialized identically, regardless of r0 or MR. We opted for
the starting value Gi[k = 0] = 0.5 for all modes. With the sys-
tem latency τ = 2T simulated, the critical gain value was gcrit ≈

0.61. Because the sensitivity reduction αi is always smaller than
1, this ensured that the loop was closed with a comfortable
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Fig. 7. Convergence of CLOSE gains on the 2.0 s following closing of
the AO loop for guide stars of MR = 0 and 16 and atmospheric r0 of
14.5 and 9.0 cm. All Gi are initialized to 0.5 at the start (blue line).
Gi values are shown as averaged over the time windows given in the
legend. Curves are smoothed along the i index for clarity. Final SRs are
given in H band and are computed from the cumulative exposure over
the last 200 ms (k ∈ [900, 1000]).

stability margin. From these initial 0.5 values, the Gi were driven
by CLOSE to their steady-state values, accounting both for non-
linearity compensation and temporal variance minimization.

We show in Fig. 7 the temporal averages of the 4301 modal
gains Gi for several time windows within the first two seconds
after the AO loop is closed. These simulations were performed
for four different cases, with r0 of 14.5 and 9.0 cm, and guide
stars with brightnesses of MR = 0 and MR = 16.

For the bright cases, steady state is reached by frame k ≈
500, that is, within one second. The process is slightly slower
for the MR = 16 cases, with a continued convergence of the Gi
between frames k = 500 and k = 1000. Simulations at MR = 0
are essentially performed with an infinite S/N. The dynamical
gains αiGi therefore evolve nearby the maximum stability value
gcrit, and the Gi coefficients reached in steady state essentially
reflect the inverse α−1

i of the PWFS sensitivity reduction. The
Gi curves reached at the end of convergence in MR = 0 cases
are in good accordance with the abacuses presented in previous
work (Deo et al. 2018a, 2019a) that were obtained by directly
measuring αi sensitivity reductions on static turbulence screens,
with αi typically depending on mode index i as decreasing up
to mode 30, which contains spatial frequencies corresponding to
the modulation radius, then again increasing roughly as a power
law up to the highest-order modes.

Some more insight into the bootstrapping of CLOSE can be
gained by inspecting temporal series of modal gains, as shown in
Fig. 8. These series correspond to four modes and are the same
data set as in Fig. 7 for r0 = 14.5 cm, MR = 0. While the AO
loop bootstraps in only a few frames, the convergence of CLOSE
takes longer and induces some modal gain oscillations after the
initial ramp-up. The amplitude and time constants of these oscil-
lations certainly depend on a number of parameters, and impor-
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Time series of Gi during bootstrap (MR=0, r0=14.5 cm)

Fig. 8. Time series of CLOSE gains for four select modes in the 2.0 s
following closing of the AO loop for the simulation r0 = 14.5 cm, MR =
0 shown in Fig. 7.

tantly on the learning factor q±. In Fig. 8, various periods are
observed, from ≈1 s down to smaller oscillations typically every
∼30 frames (60 ms).

The randomness of the turbulence screens is certainly a fac-
tor in continuous variations of Gi, and the oscillations con-
tinue even as the AO integrator and CLOSE reach steady states,
beyond 1–2 s. of runtime, but with little effect on the correction
quality. Figures 11 and 12 show complementary data to those
in Figs. 7 and 8, including longer time series and higher Strehl
ratios.

Furthermore, the physical nature of the PWFS is certainly
a contributor to the Gi fluctuations as compared to a purely
linear sensor. When Gi reaches values that are too high, or
if we had started from Gi values higher than the steady state
that is ultimately reached, the optical gain phenomenon itself
helps to maintain stable suboptimal control states while the con-
troller performs the slow gain decrease. To summarize this effect,
reduced atmospheric residuals (e.g., bootstrapping or improv-
ing conditions) induce an increase in WFS sensitivity. When
the gains in Gi are overset, transfer functions become highly
resonant or temporarily unstable. In turn, the added wavefront
residual from transitory divergence of the loop or noise oscilla-
tions induces a reduction in the PWFS sensitivity, however. This
regime is progressively stabilized as the adaptive filtering even-
tually adapts the command law to the ongoing conditions and
reaches a steady-state regime. These transitory effects are fur-
ther discussed in Sect. 5.4.

When we compare in Fig. 7 the behavior in the MR = 0 and
MR = 16 cases, we observe the effect of the implicit optimization
of the transfer function, with steady-state gain values dampened
by typically 20–50% in the dim case relative to the bright one,
depending on the mode number and r0. The results presented in
Fig. 7 tend to validate that without any priors and regardless of
the PWFS sensitivity reduction, CLOSE successfully drives the
modal integrator gains to convergence in a period of 1–2 s.

5.2. Performance in stationary conditions for r = 0

In addition to the adaptive capability of CLOSE shown in
Sect. 5.1, we investigated the steady-state AO performance. In
order to perform this analysis, we generalized similar simu-
lations as performed in Sect. 5.1 to a wider range of r0 val-
ues (based on statistics provided by ESO within the frame of
the development of ELT instruments) and guide-star magnitudes
(11.5–17.5).

The measured performances are shown in Fig. 9 (top), with
the long-exposure H-band SR plotted against the star magnitude
and computed for five different seeing conditions. For all results
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Fig. 9. Long-exposure SR in H band obtained for end-to-end simula-
tions of the MICADO SCAO setup with CLOSE (top), and with a man-
ually optimized scalar integrator (bottom) for guide-star magnitudes
MR = 11.5–17.5 and seeing conditions r0 = 8.9–21.5 cm.

the SR was averaged over 2 s exposures, starting 3 s after the
AO loop was closed, and with initial modal gains Gi = 0.5 as
previously. These simulations were also performed with a man-
ually optimized scalar integrator (Gi = constant, with one con-
stant value per seeing and magnitude), and the performance is
shown in Fig. 9 (bottom). This again shows the improvement that
is achieved using fine-tuned modal control, which was demon-
strated in previous research. In particular, using modal control
enables us to (1) improve the performance in poor seeing, even
with bright guide stars, because nonlinearity is then a dominant
member of the error budget. It also enables us (2) to increase the
performance at the faint end, with a gain of typically +0.5 mag
for an identical objective.

While the simulation setup is not a perfect simulation of the
MICADO system, Fig. 9 (top) is indicative of the performance
that could be achieved using CLOSE on such a system. If we
exclude the worst seeing conditions r0 = 8.9 cm, a performance
of 70% SR or better is always achieved for bright stars, it even
reaches 89% in excellent seeings. 40% or better is achieved for
MR up to 16. SRs better than 40% are also achieved for bright
stars for r0 = 8.9 cm. This potentially enables us to salvage poor-
seeing nights for a number of scientific cases with milder correc-
tion requirements. For the metric used here, CLOSE performs
equally to other previously introduced modal compensation
techniques for the PWFS (Korkiakoski et al. 2008b; Deo et al.
2019a; Chambouleyron et al. 2020), but with the added value of
automation and adaptability, without the offline computations,
seeing estimations, dithering signals, or modifications to the
optical setup required by these methods.

5.3. Validation of the setpoint

We have shown throughout Sects. 3 and 4 that CLOSE is entirely
configured with very few parameters, namely, δkcrit, which ought
to be chosen depending on the system latency, and p, q±, and

r being the choice of the operator. While the temporal filter-
ing introduced with p and q± is easily apprehended and only
affects the performance during transitory regimes, the determi-
nation of r is subject to more caution because it determines the
final performance. Although semianalytical computations indi-
cated r = 0 as an apparently universal choice, these computa-
tions were the conclusion of a number of modeling hypotheses
and approximations, as described in Sect. 2.

Our objective here is to validate whether r = 0 remains an
appropriate choice in most situations. We performed end-to-end
simulations extending those presented in Sect. 5.2, now consid-
ering various r setpoints from −0.5 to 0.5 and wind speeds from
10 to 40 m s−1. The performances measured are shown in Fig. 10.
Some minor discrepancies can be found between Figs. 9 and 10,
which are explained by the different durations of simulated long
exposures and the mismatched random turbulence screens. The
SRs for Fig. 10 were computed on 600 ms exposures, follow-
ing a 600 ms bootstrap for CLOSE and the AO. As compared
to Fig. 9 (2 + 2 s), this was a necessary speedup given the large
number of numerical simulations that were performed. We also
note that LE SRs are generally determined to no better than
2–3% of standard deviation over the distribution of turbulence
screens.

In addition to the expected variations in SR with seeing,
guide-star magnitude, and wind speed, we observe in Fig. 10 that
the setpoint yielding the maximum SR, rmax thereafter, is almost
always −0.1 or 0, except for two cases (MR = 12, r0 = 12.8 and
8.9 cm and 30 m s−1) where rmax = −0.2. When for a given r0,
MR, and wind speed we obtain rmax , 0, we observe that the
difference with the corresponding performance at r = 0 is gen-
erally only 1–2%. The slight bias toward rmax < 0 may partly
be explained by the reduced simulated time for CLOSE conver-
gence. Cases with lower r would therefore have increased the
modal gains more effectively in the allocated 300 frames because
of the proportional effect introduced in Eq. (14).

The variations in SR with r are clearly determined from
Fig. 10 as an asymmetric bell curve with a longer decrease on
the r > 0 side. With r larger than the optimal value, the AO uses
slower modal integrators with less turbulence rejection, which
are more forgiving with regard to performance than r being too
small. The latter cases introduce a buildup of noise that ulti-
mately leads to diverging oscillations as r becomes too negative,
hence a faster decrease in SR for simulations with r smaller than
the optimum.

A few outlying cases show a significant performance gap
between the maximum SR and the SR achieved for r = 0, up to
a greatest difference of 6.3% (MR = 15, r0 = 12.8 cm, 20 m s−1).
These cases, where r = 0 induces a noticeably suboptimal per-
formance, are all found for wind speeds of 20 m s−1 or more.
With the high latency of τ = 2 frames simulated here, the higher
wind speed induces a narrow acceptable range of gain αiGi for
each mode to achieve near-optimal rejection, and thus a narrow
range of r values leading to this optimization with CLOSE. As
discussed in Sect. 3.3, while the CLOSE solution achieved for
the modal gain is an empirical close match to the optimum rejec-
tion solution, we may be reaching the limits of this approxima-
tion for cases with high latency and high wind speeds.

To investigate the usability of CLOSE with r ≈ 0 even fur-
ther, we also performed similar simulations for different values
of the system latency using τ = 0, 1 or 2 frames and using
AO setups other than the MICADO SCAO, namely two SCAOs
on an 8 m telescope, using a PWFS and a Shack–Hartmann
(SH) WFS, respectively. The configuration of these simulations
and the obtained results are shown in Appendix C. Beyond the
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Fig. 10. Long-exposure SR in H band (color and text) for stationary simulations exploring different conditions regarding the seeing (outer rows), the
guide-star magnitude (outer columns), the wind speed (inner rows), and the CLOSE setpoint (inner columns) for the MICADO SCAO simulation.
Color scales are local to each of the subplots and do not match each other.

results shown in Fig. 10, the extensive simulations exposed in
Appendix C confirm that the setpoint r = 0 may be used as
a baseline for a variety of AO systems in a large number of
observation situations. The performance and steady-state behav-
ior may eventually be fine-tuned by adjusting the r setpoint upon
empirical criteria if deemed necessary.

5.4. Transients in observation conditions

Beyond the performances of correlation-locking observed in sta-
tionary conditions exposed in Sects. 5.2 and 5.3, we propose
here to analyze the dynamical capabilities of CLOSE in sit-
uations where the PWFS sensitivity or the illumination vary
rapidly. For this purpose, we designed two simulations with
evolving conditions. The first simulation emulates a seeing burst
in which atmospheric conditions degrade dramatically during a
short period, and the second simulation emulates a passing cir-
rus, with an equivalent drop of 3 mag (−94% of flux) of the guide
star.

The results for these simulations are shown in Figs. 11
and 12. We proceeded identically for both transients, simulat-
ing 8 s (4000 frames) of total runtime decomposed as 2 s of
bootstrapping the AO loop from flat gains Gi(t = 0) = 0.5,
followed by 4 s in degraded conditions, and finally 2 s after
reverting to the initial conditions. Both Figs. 11 and 12 show
the time series of the H-band SR and of the modal gains Gi
for four select modes. The lower panels in Figs. 11 and 12
show a snapshot of the modal gain vector G over all 4301
DM modes at times t = 2, 6, and 8 s, that is, immediately
before the changes in seeing or brightness, and at the end of the
simulation.

0 1 2 3 4 5 6 7 8
Time (sec)

0
20
40
60
80

100

H-
ba

nd
 S

R 
(%

)

SR (%)

r0=21.5 cm r0=8.9 cm r0=21.5 cm

SR and modal gains during seeing burst (MR = 14)

0.0

1.0

2.0

3.0

M
od

al
 g

ai
n 

G
i

G4

G29

G501
G1000

100 101 102 1030.0

1.0

2.0

3.0

4.0

G
i

Gi at t = 2.0 sec.

100 101 102 103

Mode i
0.0

1.0

2.0

3.0

4.0
Gi at t = 6.0 sec.

100 101 102 1030.0

1.0

2.0

3.0

4.0
Gi at t = 8.0 sec.

Fig. 11. Top: time series of the H-band SR and modal gains Gi for a few
select modes during the simulation of a burst of seeing; r0 = 21.5 cm for
t < 2 s and t > 6 s and r0 = 8.9 cm for 2 < t < 6 s. Curves are smoothed
using a 10 ms window. Bottom: snapshot of the modal gain vector G at
time t = 2, 6, and 8 s.

Seeing burst. For the seeing burst (Fig. 11), the turbulence
screen was scaled up between t = 2 and 6 s to simulate a r0
change from 21.5 cm to 8.9 cm while keeping a guide star of
brightness MR = 14. The sudden changes in r0 at t = 2 and 6 s
induce discontinuities in the wavefront because we performed
an instantaneous scaling across the entire aperture. This induced
very short drops to 0% SR (a few frames). At t = 2 s, the modal
gains optimized for r0 = 21.5 cm do not permit reaching optimal
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Fig. 12. Similar to Fig. 11. Time series and modal gain snapshots dur-
ing a cloud-like transient, simulated as a guide-star magnitude change:
MR = 14 for t < 2 s and t > 6 s and MR = 17 for 2 < t < 6 s.

performance immediately now that r0 = 8.9 cm. For 2 < t < 3 s,
CLOSE drives the Gi up by a factor 2–4 to accommodate the
OG-induced sensitivity reduction, which is significantly stronger
at r0 = 8.9 cm. This second long convergence to the new optimal
state allows an SR improvement up to the 30–35% consistently
measured for 3 < t < 6 s, which is the expected performance in
these stationary conditions (r0 = 8.9 cm, MR = 14; as seen in
Fig. 9).

Similarly, the second transition back to r0 = 21.5 cm at
t = 6 s shows an immediate SR performance about 45% below
the expectation, indicating that the system is out of tune because
the Gi are now beyond reasonable values for r0 = 21.5 cm. The
modal gains are automatically decreased, however, and the SR
converges to 85% within 0.5 s. This is consistent with the mag-
nitude of the time constants involved because we used a learning
factor q± = 10−3 at a frame rate of 500 Hz.

Photometric variations. The “cirrus simulation” (Fig. 12)
was run using the median seeing r0 = 14.5 cm, with a change of
guide-star brightness from the initial MR = 14 down to MR = 17
during the perturbation interval 2 < t < 6 s. While such a flux
attenuation qualitatively appears as a major change, the effect
on the gain is rather mild when compared to the previous case.
The reaction of CLOSE that can be observed in Fig. 12 is that
an appropriate overall reduction in modal gains is progressively
introduced during the transient and then reverted after t = 6 s.
This behavior is typically expected from modal gain optimiza-
tion with S/N. The SR temporal evolution shows that the pro-
gressive optimization of the transfer functions for MR = 17
allows for an improvement from 10 to 20% of SR within the
4 seconds spent at this brightness level.

It is worth noting that while the modal gain curve reached at
t = 6 s only shows a modest reduction compared to t = 2 s, this
reduction is in fact the product of two counterbalancing effects:
First, a reduction of αiGi to improve the noise rejection, but cou-
pled to an increase in the sensitivity compensation α−1

i because
the mean residual wavefront is notably increased, which induces
a stronger OG sensitivity reduction in the PWFS response. These
two effects are entirely implicit: As the flux drops by 3 mag, the
corrective capability of the AO immediately decreases, the resid-
ual wavefront increases, and thus the sensitivity αi decreases as
well. Factored in the transfer function, the gain αiGi is decreased

immediately and compensates for the sudden shift in S/N. After-
ward, CLOSE accounts for the fine-tuning of the Gi to more pre-
cisely set the rejection at the new sensitivity level. The opposite
occurs at t = 6 s: The sharpening of the correction improves the
sensitivity, and the dynamical gain αiGi immediately increases
and provides more turbulence rejection, now with less noise to
amplify. This effects explains why compared to the seeing burst,
(1) the fluctuations in Gi are significantly milder and (2) the
return-to-steady-state time is much shorter.

Finally, as with the seeing burst, we note that the perfor-
mance in the final state t > 6 s is identical to the beginning
t < 2 s. This indicates that no diverging signals were accumu-
lated during the transitions and that the AO is capable of revert-
ing cleanly after such transients.

Synthesis. From the two experiments performed with sud-
den changes in observing conditions, we may conclude that
CLOSE efficiently and automatically accommodates sudden sig-
nificant changes in S/N, whether from the seeing or the guide-
star brightness. This robustness to transients is observed for
improving or deteriorating conditions. This efficient conver-
gence toward nominal performance, when the seeing improves
in particular, underlines the robustness of the proposed AO con-
trol scheme. When the seeing suddenly improves, the AO is con-
figured with gains that are significantly too high for the newly set
turbulent conditions, but the control scheme allows reoptimizing
the gains without the loop diverging.

6. Discussion

6.1. In general: An interaction matrix transform

In the most general sense, as developed in Sects. 2 and 3, CLOSE
is an automatic minimum variance controller for servo-loops
whose input is built of a low-frequency rumble and a white noise
floor (Eq. (1), Fig. 3). When these conditions are met, as is
the case with astronomical adaptive optics, and when indepen-
dent modal loops can be decoupled, CLOSE is an excellent tool
for optimizing the system regardless of miscalibrated sensitivity
factors.

CLOSE is therefore adequate for any system that admits
a description as in Fig. 1, where an eigenbasis can be found
that properly describes the nonlinearity of the system, that is,
diagonalizes (well enough) the modal confusion matrix A. This
is the case for the PWFS, as has been proven experimen-
tally (Deo et al. 2018a) and analytically (Fauvarque et al. 2019;
Chambouleyron et al. 2020). This was extended to the entire
class of Fourier-based wavefront sensors.

Furthermore, it has been demonstrated that a number of con-
figuration changes of PWFSs are very well described by varia-
tions in the modal matrix A, while the interaction matrix dWFS
can be kept to the unresolved, bright, on-axis, single-star matrix
acquired in the laboratory (or simulated). These changes include
online changes to the modulation radius, or tracking double stars
of various separations and orientations relative to the pyramidal
prism edges, as well as other extended objects (Titan, uncom-
pensated atmospheric dispersion beacon; Vidal et al. 2019). For
binary stars, it has in particular been shown that using CLOSE
restores the performance of the servo-loop to near single-star lev-
els, without the additional burden of biasing the loop setpoint
to drive one binary component to the PWFS apex, which is the
usual and nonetheless efficient alternative.

All of these transformations, similarly to optical gain, can
be approximated by Fourier filters that alter the description of
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the sensor and thus are adequately tracked by CLOSE. Ideally,
a Fourier basis would have to be used to properly diagonalize
A. Our experience and numerical analyses demonstrate that a
frequency-ordered KL basis is a sufficient approximation. We
previously studied (Deo et al. 2018a) for the case of optical gain
alone that the scaling applied by A on Fourier modes of identi-
cal norm is isotropic within a few percent. This proves that KL
modes are adequate for such an operation.

6.2. Further required steps

Finally, we would like to point out a few elements that are cur-
rently beyond the scope of what CLOSE is capable of achiev-
ing. One of the most prominent issues with high-order PWFSs is
the proper subtraction of non-common path aberrations (NCPAs)
as the servo-loop setpoint, which issue is tightly coupled with
the estimation of modal OG compensation coefficients. In the
state presented in this paper, CLOSE does not enable an inde-
pendent estimation of the transfer function gain αiGi and the
OG compensation coefficient α−1

i , as we observed in the cloud
transient analyzed in Sect. 5.4. Obtaining α−1

i is necessary for a
proper OG-adjusted compensation of the setpoint. Other tech-
niques, which include injecting probe signals into the system
DM, allow an explicit retrieval of α−1

i (Esposito et al. 2020).
While CLOSE does not include this feature, it is very compat-
ible with such techniques but is much more reactive to short-
term transients. A joint implementation of several modal gain
estimation techniques would be extremely beneficial for an all-
in-one solution for PWFSs control, including minimum variance
laws, proper NCPA compensation, shift and misalignment track-
ing (Héritier et al. 2018), etc.

One additional comment should be made about the poten-
tial limitations of the modeling described in Sect. 2. The proper
variance minimization obtained with CLOSE relies on the clear
separation of two frequency components from the turbulence
and the noise in the resulting measurement PSD: |m̂i|

2( f ). The
requirements of this paper exceed this by requiring that the
modal noise is white and that the turbulence spectrum obeys
Eq. (1). We proved with the Shack–Hartmann results shown in
Appendix C, however, that the decay exponent −17/3 of Eq. (1)
may allow some tolerance because it is then actually −11/3 due
to additional subaperture aliasing. Together with using different
von Kármán outer scales L0, this is very likely to affect the quan-
titative conclusions of the semianalytical derivations described
in Sect. 3.3, but we are confident that it will not compromise
the monotonicity of the relationship between the δkcrit correla-
tion and the loop gain αiGi. Thus, a simple reassessment of the
loop setpoint r to try and achieve quasi-optimality is likely to be
sufficient for situations like this.

Telescope vibrations are a less trivial modification of the
input turbulent spectrum. Naturally, CLOSE cannot achieve any
better vibration rejection than other nonpredictive integrators. As
for other spectrum modifications, a reassessment of r could help
in achieving near optimality, as good as this may be in the pres-
ence of narrow vibration peaks. Low-frequency (e.g., <10 Hz)
vibrations would implicitly be registered as a degradation in see-
ing, and would require biasing the setpoint toward r > 0 to
prevent the corresponding gain increase. Conversely, vibrations
between fcrit/2 and 3 fcrit/2 would be registered as noise energy
and require biasing the setpoint toward r < 0.

We foresee that vibrations at or near fcrit will cause specific
issues. All of our simulations have shown that CLOSE, seeking
its near-MV solutions, tends to push the loop gain very close to
its critical value when the S/N is good enough. This could lead

to transients with very high vibration amplification, for instance,
as the vibration restarts after a pause during which αiGi was
boosted near gcrit. These situations will require the implemen-
tation of specific fail-safes to avoid the sudden divergence of
the AO loop. More generally, CLOSE in the presented version
does not currently cope well with spurious divergences of the
AO loop: The loss of WFS feedback associated with DM diver-
gence (or clipping at maximum value) will induce CLOSE (if
r ≤ 0) to continue increasing gains toward infinity, even though
the loop has already diverged. It is now necessary to experiment
with various modifications of the input spectra (correlated noise,
vibrations, non von Kármán spectra) and the integral command
law (leaky integrators, linear predictive methods) to investigate
the extent to which and the versatility with which we may obtain
satisfactory results with the version of CLOSE presented in this
paper, and which further improvements are necessary.

7. Conclusion

We have presented a self-regulating adaptive filtering method
that enables tracking the modal gains of the integrator controller
in an AO system in hard or soft real-time. This technique allows
keeping the system always close to peak performance against
variable conditions (seeing, wind speed, and S/N) and the vari-
able sensitivity of the WFS. Because it is entirely automatic
and independent of WFS sensitivity fluctuations, the proposed
scheme is particularly well suited for high-order PWFS designs
on ELTs, which are prone to strong optical gain effects. This OG
effect is well decoupled and stable against seeing statistics using
a KL control basis of the DM as we use, however, thus enabling
a separable modal analysis throughout.

Our method is called CLOSE, for correlation-locking
optimization scheme. It leverages the monotonic relationship
between the hidden actual transfer function gain and the loop
resonance peak, whose amplitude is indirectly assessed through
the temporal autocorrelation of the modal phase residuals com-
puted at a single given time-shift δkcrit. The appropriate counter-
reaction is then applied on the modal gain in order to lock
the previously mentioned δkcrit correlation value to a chosen
setpoint. Using semianalytical computations, we have demon-
strated that for given conditions, there is an unequivocal rela-
tion between the transfer function gain and the value of the δkcrit
correlation, and that correlation locking easily permits almost
achieving a modal minimum variance criterion regardless of the
modal S/N.

We have used extensive end-to-end AO simulations to show
the versatility of CLOSE. Using the unique setpoint r = 0, we
showed automatic convergence of the modal gains in a wide
variety of simulated conditions using different wind speeds,
guide-star magnitudes, and seeing parameters. We also demon-
strated the automatic adaptability of the scheme to abrupt
changes in observation conditions, hopping between different
sets of optimal control gains in a matter of seconds. These
simulations use the design parameters of the PWFS of the
MICADO SCAO system, and compared to recent design studies
for this system (Vidal et al. 2019), achieve nominal performance
accounting both for optical gain modal compensation and modal
transfer function optimization. This performance is achieved
while entirely alleviating from extensive situation-dependent
optimizations, database look-ups, or manual tune-ups, thus offer-
ing CLOSE as an all-in-one baseline strategy for AO modal
control.

While CLOSE elegantly paves the way for solving vari-
ance minimization issues with nonlinear sensors, we cautioned
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in Sect. 6.2 that the scheme in the version described in this paper
does not provide an explicit estimation of the sensitivity reduc-
tion coefficient nor a fully fledged solution to the NCPA subtrac-
tion issue for sensors of varying sensitivity.

Work is currently underway to refine and expand the work
described in this paper to make it usable for on-sky operations.
Importantly, we will design and deploy the necessary fail-safes
in case CLOSE suffers from a loss of reliable feedback from
the modal outputs, or if the AO falls into nonlinear measure-
ment pits. In these cases, the modal gain update equations tend to
increase the gains exponentially. These situations must be auto-
matically identified and unambiguously distinguished from tran-
sient sensitivity reductions. If its capabilities, convenience, and
versatility are confirmed, we envision CLOSE as a core con-
trol technique for future AO systems, embedded within a larger
framework of leveraging real-time telemetry for AO control.
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Appendix A: Expanding on AO transfer functions

We detail here the transfer functions of the AO loop as a com-
plement to Sect. 2.3 and highlight the differences between a
continuous-time description, as is necessary for a real physi-
cal system, and a discrete-time description that is adequate for
AO simulators such as COMPASS. The material reviewed in
Appendix A.1 is well known (e.g., Madec 1999; Kulcsár et al.
2006) but seldom presented, and we deem it necessary for a
proper mathematical grounding of Sects. 2.3 and 3. Ultimately,
this development lets us derive the values for fcrit and gcrit pro-
vided in Table 1.

A.1. Continuous- and discrete-time descriptions

Both the real continuous-time system (CTS) and the simulated
discrete-time system (DTS) are clocked at the sampling period
T , which is also the integration time of the WFS detector. In
the DTS, the turbulence is not averaged over T , but sampled at
a single instant. Likewise, the notion of the duration of action
of the deformable mirror simply does not exist. Both systems,
however, have in common the core of the control: they share the
same numerical algorithms as are implemented in the real-time
computer, which in both cases are numerical and in discrete time
steps.

We introduce several transfer functions hereafter. The WFS
performs an integration of the signal during T . In Fourier for-
malism, its transfer function can be written as

hwfs( f ) = exp (− jπ f T )
sin (π f T )
π f T

, (A.1)

which is the Fourier transform of a rectangular window extend-
ing from t = 0 to t = T . We may see Eq. (A.1) as a smoothing
by a zero-centered box: sinc(π f T ), combined with a half-frame
delay, exp (− jπ f T ), thus ensuring hwfs describes a causal system.

The WFS measurement is processed by the reconstructor
matrix to be expressed in a modal space m[k], we drop here the
mode index i for clarity, and is integrated with a gain g into the
modal command v[k] using the classical discrete integrator,

v[k] = v[k − 1] + g · m[k], (A.2)

where k is the loop iteration number. The direct translation of
Eq. (A.2) into the frequency space gives the expression of the
transfer function of the discrete time integrator,

g · hdigInt( f ) =
v̂( f )
m̂( f )

=
g

1 − exp(−2 jπ f T )
· (A.3)

It should be noted that hdigInt( f ) is nonphysical, first because it
shows no computational time delay, and second because it is
periodically undefined for every multiple of the sampling fre-
quency fS = 1/T : it is only appropriate for representing a dis-
crete time system.

Now, in an real CTS, the RTC computation result v[k] is sent
to a digital-to-analog converter (DAC), which holds the (modal)
command on the DM during the period T . The DAC, a zero-
order hold, has the same transfer function as the WFS,

hdac( f ) =
1 − exp (−2 jπ f T )

2 jπ f T
, (A.4)

also including a half-frame delay. With the association hwfs ·hdac,
a full frame delay thus naturally appears.

Equation (A.4) joins the digital world back into the physical
reality of the CTS by transforming the Dirac comb of numerical

samples into an analog signal. Noticeably, the association of the
nonphysical numerical integrator with the DAC transfer function
form the following product,

hdigInt( f ) · hdac( f ) =
1

2 jπ f T
, (A.5)

that is, the proper transfer function of a continuous-time
integrator.

The final point of the discussion is that of the time delay
τ. We defined the loop delay as the additional amount of time,
on top of the causal process. For a CTS, this is the time spent
between the end of the WFS integration and the beginning of the
application of the command on the DM. In this case, the transfer
function is

hdelay( f ; τ) = exp(−2 jπ f τ). (A.6)

When τ = 0, the DM command v[k] exactly applies during the
acquisition of m[k + 1]. This one-frame shift is built in the equa-
tions thanks to the two half-frames from the WFS and DAC. All
the elements are introduced for the transfer function between the
input turbulence φi

Atm and the modal measurements mi[k] in the
case of a CTS,

hcorr,CTS( f ; g) =
1

1 + g · hwfs( f ) · hdigInt( f ) · hdac( f ) · hdelay( f ; τ)
·

(A.7)

For the DTS, there is neither WFS nor DAC windowing, but
we need to introduce an apparently artificial one-frame delay
exp(−2 jπ f T ) to account for the fact that a command computed
at a given iteration can at best only serve for the next one,

hcorr,DTS( f ; g) =
1

1 + g · hdigInt( f ) · hdelay( f ; τ) · exp(−2 jπ f T )
·

(A.8)

Expanding, we obtain

hcorr,DTS( f ; g) =
1

1 + g ·
exp(−2 jπ f (T + τ))
1 − exp(−2 jπ f T )

, (A.9)

that is, the shorthand h( f ; g) of Eq. (3).
With the closed-loop transfer functions with a CTS and a

DTS representation of the AO, we now study the critical behav-
ior of the system as the gain increases to approach divergence.

A.2. Critical point. Analog case

The critical frequency and gain (Sect. 3.1) are determined by
finding the couple of gcrit and fcrit that zero the denominator of
Eq. (A.7). The equation to be solved for g and f is

g
1

2 jπ f T
exp (− jπ f T )

sin (π f T )
π f T

exp(−2 jπ f τ) = −1. (A.10)

Equating for phase and modulus,

g
sin(π f T )
2π2 f 2T 2 = 1, and −

π

2
− π f T − 2π f τ = −π, (A.11)

which reduce to

fcrit =
1

2T + 4τ
(A.12)

gcrit =
2π2 f 2

critT
2

sin(π fcritT )
· (A.13)
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A.3. Critical point. Digital case

In the same way as for Appendix A.2, the equation to be solved
is

g
exp(−2 jπ f (T + τ))
1 − exp(−2 jπ f T )

= −1. (A.14)

Leveraging

1 − exp(−2 jπ f T ) = 2 j exp(− jπ f T ) sin(π f T )

= 2 exp
(

j
π

2

)
exp(− jπ f T ) sin(π f T ),

we obtain the phase and modulus equations,

g = 2 sin(π f T ), and −2π f τ−2π f T = −π+π/2−π f T, (A.15)

and ultimately,

fcrit =
1

2T + 4τ
(A.16)

gcrit = 2 sin(π fcritT ), (A.17)

which is the general formula given in Table 1. We finally note
that for a CTS with latency τ ≥ 1, we have fcritT < 1/6 � 1, and
therefore Eqs. (A.13) and (A.17) both reduce to the same value
gcrit ≈ 2π fcritT in a first-order approximation. The general dis-
cussions and derivations presented in Sect. 3 are in this case also
applicable to a continuous-time description of the system. As a
final note, Kulcsár et al. (2006) described the necessary hypothe-
ses and proved that a discrete-time treatment of the minimization
criterion in Eq. (2) is equivalent to a continous-time treatment.

Appendix B: Semianalytical CLOSE solutions for
latencies of 0 and 1 frames

We propose in this appendix some additional data to expand the
discussion in Sect. 3.3 by exploring the close match obtained for
all sensitivity-corrected S/Nσi between the minimum variance
gain gMV and the steady-state gain yielded by CLOSE for a set-
point r = 0. While in Fig. 6 this comparison was restricted to
a latency τ = 2T , we show in Fig. B.1 the same analysis for
latencies τ = 0 and τ = T . All parameters are otherwise similar,
in particular, the sample atmospheric spectrum (Eq. (1)) with a
cutoff of 1 Hz. The time difference δkcrit at which the autocorre-
lation is locked to the setpoint r is taken from Table 1.

For all three latencies τ = 0, T, and 2T , we observe the same
remarkable match between the minimum variance solution and
CLOSE for a null setpoint. This was also simulated for inte-
ger latencies up to τ = 5T , although these cases are not nec-
essarily relevant for a real AO system and are not reported here.
While Fig. B.1 (top) reports a very satisfactory correspondence,
the analysis we proposed reaches the limit of the discrete time
approximation of real AO systems, as we showed in Appendix A.
With fcrit = fS/2, the case τ = 0 is therefore only adequate for
simulated systems.

As commented on in the main text, the same conclusions
apply at other latencies: Positive setpoints induce an undersetting
of the integrator gain, while negative setpoints produce an over-
setting and impose a gain floor at low S/N. This concludes our
analysis of the minimum-variance capability of CLOSE for var-
ious latencies. We are confident that this property would extend
in between, to fractional latencies within that range and beyond.

Fig. B.1. Minimum variance gain gMV and solutions found using
CLOSE with five different setpoint values, depending on the sensitivity
corrected S/Nσi. These computations are performed using the modal
input spectrum shown in Fig. 3.

Appendix C: Experimenting with the
correlation-locking setpoint – additional data

In this appendix we propose supplementary simulations to those
in Sect. 5.3 to investigate the final long-exposure SR that is
produced in the system imager versus the setpoint r used to
drive CLOSE. The experimental protocol is identical to that in
Sect. 5.3, generalized to three different latency values τ/T =
0, 1, and 2 frames for three different AO system designs: the
MICADO parameters used in the main text, and a PWFS
and a Shack–Hartmann, both on an 8 m diameter telescope.
The parameters for these simulations, thereafter referred to as
PWFS8M and SH8M, are given in Table C.1 or are identical to
those in Table 2 if unspecified.

Results with varying latencies, guide-star magnitudes, seeing
conditions, and wind speeds against the r setpoint are given in
Tables C.2–C.4, which also include results presented in Sect. 5.3
(see Table C.2, “Latency τ = 2.T”). In the tables presented here,
we provide the maximum SR in H band for each given set of
conditions [AO setup, τ, r0, MR, wind speed V] that was achieved
over r values from −0.5 to 0.5. This value is noted SR(rmax), and
the argument at which it is attained is noted rmax. For rmax , 0,
we provide the value that was attained for the same parameters at
our favorite all-in-one solution r = 0. This value is noted SR(r =
0).

Conclusions for the MICADO simulations (Table C.2) are
essentially identical to the analysis provided in Sect. 5.3: minor
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fluctuations in the rmax value, with r = −0.1 or r = 0 being
almost always optimal within the LE SR error bar of a few per-
cent. These simulations are therefore conclusive in showing the
versatility of CLOSE for different system latencies without addi-
tional complexities other than changing the value of δkcrit.

The simulations performed with the PWFS8M setup
(Table C.2) show very similar trends to the MICADO setup,
which indicates that our conclusion that r = 0 almost always
optimally works may very well apply to a wide range of PWFS
designs. A performance improvement and the automation of the
integrator tune-up can also be a benefit for AO systems smaller
than an ELT. The PWFS8M simulations at τ = 0, MR = 12
allow us to note the broadening of the bell function of the SR
as a function of r, as was visible in Fig. 10. Some rmax val-
ues are shifted toward positive values, up to +0.3, but the dif-
ference between SR(rMax) and SR(r = 0) is negligible. It is
lower than 1%. This behavior is expected because the margin
for setting αiGi, thus r, decreases with increased latency, as the
trade-off between low frequency rejection and noise amplifica-
tion becomes tighter. Thus, for very short latencies, the precision
of αiGi for stable control and variance minimization is of little
importance, and it follows that the setpoint r also benefits from
an increased margin.

The simulations with the SH8M setup reported in Table C.4
are comparable to PWFSs, except for the brighter cases MR = 8.
For these, and most particularly for MR = 8, τ = 0, the ideal
setpoint rmax is noticeably pushed to positive values, even hitting
the extremum of our parameter space r = +0.5, although based
on the recorded SRs, we may safely assume that no significant
improvement would be reached for r in the 0.5–1.0 range. How-
ever, the difference in performance between rmax ≥ 0.5 and r = 0
is again insignificant, except for the cases with a wind speed of
40 m s−1.

The cases discussed here (SH8M, τ = 0, MR = 8) are the one
simulation in which modal optimization is least important, if at
all: the sensor is linear, the S/N is extremely good, and the band-
width effect is minimum. The need for balance between noise
amplification and turbulence rejection is quite different from the
design case explored in the main text. For all other cases with the
SH8M setup, that is, where variance minimization by the rejec-
tion or noise trade-off is valid, we validated the near-minimum
variance performance of CLOSE with a null setpoint, extending
the conclusions seen for PWFSs. In particular, this also implies

Table C.1. AO numerical simulation parameters for simulation setups
PWFS8M and SH8M.

Numerical simulation configurations
PWFS8M SH8M

D = 8 m diameter
Telescope Circular pupil

(no obstruction, no spider)
Tip-tilt mirror

DMs Cartesian grid DM defined per:
Pitch of 50 cm, coupling of 0.24

221 controlled actuators
WFS

Wavelength 658 nm 500 nm
Throughput 0.28 0.50
Subapertures 24× 24 16× 16 (a)

Measurements 1936 pixels total 368 slopes total
Modulation 4 λ

D radius –
Centroiding – Center of gravity

– 300 mas px−1

Readout noise 0.3 e− 3.0 e− (b)

RTC controller
Modes controlled 220 200 (a)

Frequency fS = 500 Hz
Latency τ = [0,T, 2T ]

Real-time implementation
CLOSE p = 0.3; q± = 10−3; δkcrit = [1, 3, 5]

r = 0 [−0.5, 0.5]

Notes. Unspecified parameters are identical to the MICADO setup
detailed in Table 2. (a)Fried geometry, with 20 highest-order KL modes
filtered. (b)The read-out noise penalty for SH is loosely based on gen-
erally available detectors given the required number of pixels. This
paper does not intend to compare Shack–Hartmann and PWFS. Guide-
star magnitudes for the SH simulations are adjusted for a comparable
S/N.

that the method we proposed is sound beyond certain hypotheses
of the numerical analysis of Sect. 3, and in particular beyond the
spectrum proposed in Eq. (1). The power law in Eq. (1) ought
to be changed to −11/3 when accounting for the aliasing with a
Shack–Hartmann sensor (Conan et al. 1995).
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Table C.2. Summary of long-exposure SRs in H band for stationary simulations exploring the latency, seeing conditions, guide-star magnitude,
and wind speed against the CLOSE r setpoint for the MICADO simulation setup.

Simulation setup: MICADO
Latency τ = 0

r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 84.0 83.2 82.7 81.6 75.5 69.4 63.8 58.4 62.4 46.6 36.3 30.7

16.3 rmax −0.1 0.0 0.0 +0.1 0.0 −0.1 −0.1 0.0 0.0 −0.1 0.0 −0.1
SR(r = 0) 83.9 81.4 68.7 62.8 45.6 28.7
SR(rmax) 74.8 73.3 72.3 70.3 61.6 52.0 44.7 38.3 43.1 25.3 17.4 13.8

12.8 rmax −0.1 −0.1 0.0 +0.1 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 74.7 73.2 70.2 50.0 42.4 37.5 41.7 22.8 15.4 11.8
SR(rmax) 50.4 48.5 45.0 41.5 29.6 20.6 14.3 10.2 13.6 4.2 2.2 0.9

8.9 rmax 0.0 −0.1 −0.1 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 47.8 44.6 27.8 16.3 11.2 6.7 8.3 1.6 0.8 0.5

Latency τ = T
r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 82.3 79.4 74.6 64.4 72.7 61.6 50.0 39.4 58.8 36.6 23.4 18.1

16.3 rmax 0.0 0.0 −0.1 −0.1 0.0 −0.1 −0.1 −0.1 0.0 −0.1 −0.1 −0.1
SR(r = 0) 74.1 64.1 60.4 47.8 37.8 35.9 21.6 16.9
SR(rmax) 72.0 66.1 58.7 47.8 57.7 41.7 30.1 21.6 36.9 19.2 10.2 6.4

12.8 rmax −0.1 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 71.8 57.7 44.3 56.4 39.6 26.9 20.2 35.9 13.9 9.2 5.0
SR(rmax) 46.5 38.0 29.9 20.5 24.4 12.7 6.8 3.8 9.6 1.9 0.5 0.3

8.9 rmax −0.2 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 45.9 37.4 26.8 19.0 21.1 10.2 4.9 2.2 7.9 0.8 0.4 0.2

Latency τ = 2T
r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 80.4 68.7 48.8 37.5 69.7 49.3 31.3 22.6 53.8 28.2 15.7 10.2

16.3 rmax 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 0.0 0.0 −0.1 −0.1 0.0
SR(r = 0) 67.2 44.3 36.5 49.1 46.2 30.9 27.0 15.5
SR(rmax) 68.4 51.1 31.3 22.5 52.5 31.5 16.8 9.7 30.9 12.5 5.5 3.2

12.8 rmax −0.1 −0.1 −0.2 −0.1 −0.1 −0.1 −0.1 0.0 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 67.9 47.6 28.6 21.5 51.1 25.2 14.7 30.6 9.6 4.2 2.1
SR(rmax) 40.4 24.6 11.2 6.0 19.9 7.3 2.9 1.2 6.6 0.9 0.3 0.1

8.9 rmax −0.1 −0.1 −0.2 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 0.0
SR(r = 0) 39.4 20.1 10.7 5.9 18.5 4.9 1.5 0.8 4.9 0.4 0.2

Notes. rmax: setpoint at which the maximum SR is obtained for a given parameter set. SR(rmax): maximum SR reached. SR(r = 0): SR reached for
a null setpoint when rmax , 0.
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Table C.3. Identical to Table C.2 for the PWFS8M simulation setup as defined in Table C.1.

Simulation setup: PWFS8M
Latency τ = 0

r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 83.4 83.3 82.8 81.9 76.9 73,7 70.4 67.0 68.4 61.2 54.1 48.4

16.3 rmax 0.0 +0.1 +0.2 +0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 83.2 82.4 81.0
SR(rmax) 75.0 74.9 73.9 72.7 66.0 61.3 56.8 52.8 54.0 44.8 38.0 31.4

12.8 rmax −0.1 +0.1 +0.2 +0.2 −0.1 0.0 −0.1 0.0 0.0 −0.1 −0.1 −0.1
SR(r = 0) 74.9 74.8 73.4 71.7 65.3 56.7 44.4 36.5 30.7
SR(rmax) 55.3 55.0 52.9 51.5 41.7 36.6 30.3 25.9 28.0 19.5 13.5 9.2

8.9 rmax −0.1 +0.1 +0.1 +0.2 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
SR(r = 0) 55.1 54.9 52.7 50.8 40.6 35.3 29.2 24.8 25.8 17.5 11.8 8.4

Latency τ = T
r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 82.4 81.1 78.3 73.3 74.9 69.1 62.4 54.4 66.1 55.0 45.7 36.2

16.3 rmax 0.0 +0.1 +0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 81.0 78.1
SR(rmax) 73.5 71.4 67.0 59.9 63.1 55.5 46.9 37.7 51.2 38.5 29.0 20.4

12.8 rmax 0.0 0.1 0.1 0.0 −0.1 0.0 0.0 0.0 0.0 −0.1 0.0 −0.1
SR(r = 0) 71.3 66.8 63.0 38.3 20.3
SR(rmax) 52.9 49.3 42.3 33.7 38.9 29.2 20.3 13.2 24.6 14.2 7.5 4.2

8.9 rmax 0.0 0.0 0.0 0.0 −0.1 −0.1 −0.1 0.0 0.0 −0.1 −0.1 −0.1
SR(r = 0) 37.9 28.2 19.8 12.9 7.1 4.1

Latency τ = 2T
r0 MR 12 15 16

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 81.4 76.6 65.5 51.2 72.9 63.3 50.2 37.6 63.5 48.4 35.3 25.3

16.3 rmax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0)
SR(rmax) 71.7 64.2 50.1 34.8 60.7 47.5 33.6 21.5 48.0 31.2 19.6 12.0

12.8 rmax 0.0 0.0 0.0 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 33.2
SR(rmax) 49.7 38.9 24.0 12.7 35.1 21.5 10.9 5.3 20.9 9.1 4.1 1.9

8.9 rmax 0.0 0.0 −0.1 0.0 −0.1 −0.1 −0.1 0.0 −0.1 0.0 0.0 0.0
SR(r = 0) 23.9 34.7 21.4 10.7 20.7

A41, page 18 of 19



V. Deo et al.: A correlation-locking adaptive filtering technique for minimum variance integral control in adaptive optics

Table C.4. Identical to Table C.2 for the SH8M simulation setup as defined in Table C.1.

Simulation setup: SH8M
Latency τ = 0

r0 MR 8 11 12

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
16.3 SR(rmax) 80.8 80.8 81.1 80.9 76.3 74.0 72.3 71.1 63.7 56.3 50.9 47.7

rmax +0.3 +0.5∗ +0.5∗ +0.5∗ 0.0 0.0 0.0 +0.1 0.0 0.0 0.0 0.0
SR(r = 0) 80.7 80.3 79.9 78.7 70.8
SR(rmax) 73.0 73.1 73.4 73.2 68.1 65.6 63.8 62.7 55.1 47.0 43.0 39.5

12.8 rmax +0.4 +0.5∗ +0.5∗ +0.5∗ 0.0 0.0 0.0 +0.1 0.0 0.0 0.0 0.0
SR(r = 0) 72.9 72.3 71.8 70.3 62.1
SR(rmax) 57.2 57.4 57.8 57.5 52.0 49.6 48.7 47.4 40.4 32.9 29.1 26.2

8.9 rmax +0.3 +0.5∗ +0.5∗ +0.5∗ 0.0 0.0 +0.1 +0.1 0.0 0.0 0.0 0.0
SR(r = 0) 57.0 56.4 55.5 53.4 48.1 46.4

Latency τ = T
r0 MR 8 11 12

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 80.2 79.1 77.4 74.0 74.9 70.4 66.4 62.8 61.6 51.9 44.4 39.3

16.3 rmax +0.3 +0.3 +0.2 +0.1 0.0 0.0 0.0 0.0 +0.1 0.0 0.0 0.0
SR(r = 0) 80.1 78.6 76.9 73.9 61.5
SR(rmax) 72.2 70.9 68.7 64.3 66.2 61.3 57.3 52.9 52.4 42.6 35.8 30.3

12.8 rmax +0.3 +0.3 +0.2 +0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 72.0 70.2 67.9 64.1
SR(rmax) 56.1 54.3 51.4 45.6 50.1 45.1 40.9 35.9 37.5 28.2 22.5 18.2

8.9 rmax +0.3 +0.3 +0.2 +0.1 0.0 +0.1 +0.1 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 55.8 53.4 50.4 45.3 45.0 40.7

Latency τ = 2T
r0 MR 8 11 12

(cm) V (m s−1) 10 20 30 40 10 20 30 40 10 20 30 40
SR(rmax) 79.2 74.6 66.3 58.0 73.1 65.8 57.0 49.0 59.4 46.6 37.3 30.2

16.3 rmax +0.2 +0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 79.0 74.5
SR(rmax) 70.9 65.0 54.4 44.5 64.2 55.5 46.2 37.4 49.8 36.3 28.0 21.1

12.8 rmax +0.2 +0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 70.5 74.9
SR(rmax) 54.3 46.7 33.8 23.6 47.6 38.4 27.6 19.2 34.6 22.7 14.8 9.6

8.9 rmax +0.2 +0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(r = 0) 53.7 46.4

Notes. Values with an asterisk “rmax = +0.5∗” indicate that the actual maximum was beyond our probing range, and thus only guarantees that
rmax ≥ 0.5. In these cases, the value reported as SR(rmax) was achieved for r = +0.5 and is not the actual maximum.
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