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Abstract: Intraductal papillary mucinous neoplasms (IPMN) are common and one of the main
precursor lesions of pancreatic ductal adenocarcinoma (PDAC). PDAC derived from an IPMN is
called intraductal papillary mucinous carcinoma (IPMC) and defines a subgroup of patients with
ill-defined specificities. As compared to conventional PDAC, IPMCs have been associated to clinical
particularities and favorable pathological features, as well as debated outcomes. However, IPMNs
and IPMCs include distinct subtypes of precursor (gastric, pancreato-biliary, intestinal) and invasive
(tubular, colloid) lesions, also associated to specific characteristics. Notably, consistent data have
shown intestinal IPMNs and associated colloid carcinomas, defining the “intestinal pathway”, to be
associated with less aggressive features. Genomic specificities have also been uncovered, such as
mutations of the GNAS gene, and recent data provide more insights into the mechanisms involved in
IPMCs carcinogenesis. This review synthetizes available data on clinical-pathological features and
outcomes associated with IPMCs and their subtypes. We also describe known genomic hallmarks of
these lesions and summarize the latest data about molecular processes involved in IPMNs initiation
and progression to IPMCs. Finally, potential implications for clinical practice and future research
strategies are discussed.

Keywords: pancreatic cancer; PDAC; precursor; IPMN; Intraductal papillary mucinous carcinoma;
colloid carcinomas

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a
rising incidence in developed countries, and is projected to become the third and second
leading cause of cancer-related deaths by 2025 in Europe and by 2030 in the United States,
respectively [1,2]. Despite significant improvements in management of this malignancy
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over the last decade, its prognosis remains dramatically poor, with five-year survival rate
of <10% for all-stages combined [3,4].

Pre-malignant pancreatic lesions include pancreatic intraepithelial neoplasia (PanIN),
intraductal papillary mucinous neoplasms (IPMN), and mucinous cystic neoplasms. IPMNs
are grossly visible (typically > 5 mm) intraductal epithelial neoplasms of mucin-producing
cells, first recognized by the World Health Organization (WHO) in 1996 [5]. IPMNs, that
arise in the main pancreatic duct and/or their branches, are common lesions, with an
estimated prevalence of 3–6% in the general population and more than 10% in older
adults [6–8]. These tumors represent the most common pancreatic cystic neoplasms un-
dergoing resection [9,10]. Depending on the morphological features and mucin expres-
sion profile of the epithelial component, IPMNs are divided into gastric, intestinal, and
pancreato-biliary (PB) subtypes [11]. Intraductal oncocytic papillary neoplasms, consid-
ered as a fourth subtype over the past decades, carry distinct genomic and morphological
features. These are recognized a distinct entity apart from IPMNs since the 2019 WHO clas-
sification of tumors of the digestive system [12], and will not be discussed hereafter. These
lesions have the potential for malignant transformation, justifying surveillance protocols
and, in some cases, surgical resection, the modalities and indications of which have been
reviewed elsewhere [13].

When IPMN progresses to an invasive PDAC, it is referred to as “IPMN with an
invasive carcinoma” or “intraductal papillary mucinous carcinoma” (IPMC). IPMC account
for about 10% of resected pancreatic cancers of ductal origin [14–18] and define a subgroup
of patients with ill-defined specificities. As compared to conventional PDAC (cPDAC),
IPMC has been reported to harbor specific characteristics with respect to its clinical and
pathological features, as well as debated clinical outcomes. Although molecular specificities
of these lesions have been uncovered, understanding the molecular process that drives the
initiation and/or progression of IMPC remains extremely limited.

In this review, we comprehensively summarize available data regarding the specifici-
ties of resected IPMCs in terms of clinical presentation, pathological features, and survival
outcomes. We also describe the molecular characteristics of IPMCs and discuss the more
recent insights into the mechanisms of their onset and progression.

2. Non-Invasive IPMNs and Associated Carcinomas

In the clinical setting, IPMNs are classified according to their macroscopic features.
Based on imaging findings, three subtypes, i.e., main duct IPMN (MD-IPMN), branch duct
IPMN (BD-IPMN), and mixed type IPMN are recognized. MD-IPMN is characterized by
segmental or diffuse dilatation of the main pancreatic duct (MPD) of more than 5 mm
without other causes of obstruction, while BD-IPMN presents as a pancreatic cyst of
more than 5 mm that communicates with the MPD. Mixed type IPMNs meet both these
criteria [19].

Microscopically, IPMNs are characterized by a proliferation of columnar mucin-
producing cells, predominantly papillary with fibrovascular cores, or rarely flat, arising in
the main pancreatic duct or branch ducts. The papillae range from microscopic folds of
neoplastic epithelium to grossly visible finger-like projections. The intraductal nature of
these neoplasms can be appreciated by their involvement of the branching duct system.
The lesions may be focal, multifocal, or diffuse. IPMNs are classified according to a two-tier
grading system (low-grade or high-grade), based on the highest degree of cytoarchitectural
atypia in the epithelium. The former intermediate-grade category is now included in
the low-grade group [11]. Furthermore, three pathological subtypes are described based
on the predominant architectural and cell differentiation pattern. According to the lat-
ter, tumor cells express different types of mucins. Four types of mucins (MUC1, MUC2,
MUC5AC, and MUC6) are used to classify the different histological subtypes. Gastric
IPMNs are the most common, accounting for 50–60%, and usually present as BD-IPMN
with low-grade dysplasia. This subtype is characterized by a positive MUC5AC staining
and the absence of both MUC1 and MUC2 expression (MUC6 staining may be positive
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or not). The intestinal subtype is the second most common (20–30%) that typically occurs
in the MPD, with high-grade dysplasia in about 50% of cases. The immunohistochemical
profile of intestinal IPMNs is defined by MUC5AC and MUC2 positive staining and MUC1
and MUC6 negative staining. Finally, the PB is a less common subtype (10–15%). Most
PB-type IPMNs harbor high-grade dysplasia and express MUC5AC, MUC1, and MUC6,
but not MUC2 [11,20]. Besides this classification, it has long been suggested that gastric
and PB subtypes might represent the same entity with different grades of dysplasia, and
recent data suggest that intestinal IPMNs might also derive from gastric lesions by clonal
evolution [21,22]. Although all three subtypes of IPMN have the potential to progress
to invasive carcinoma, PB and intestinal subtypes are estimated to carry a higher risk of
tumor progression. Indeed, an invasive component is found in 60–70% of resected PB and
in 30–40% of intestinal IPMNs, but only in 15% of resected gastric IPMNs [19,23–25].

The invasive component of IPMCs is either of the tubular (ductal) or the colloid type.
The tubular type is the most common and presents a conventional ductal morphology with
neoplastic cells arranged in small tubular glands that infiltrate a desmoplastic stroma. This
type of carcinoma is preferentially associated with either PB or gastric-type IPMN [11]. In
25–30% of patients [26–29], the invasive component is of colloid type and is characterized
by extensive stromal pools of acellular mucin either lined by neoplastic epithelial cells
or containing floating neoplastic epithelial cells in more than 80% of the tumor [11]. In
contrast with tubular carcinomas, indistinguishable from PDAC arising from PanIN lesions,
colloid carcinomas are believed to derive almost exclusively from IPMNs of the intestinal
phenotype [20,26,30–32].

In IPMCs, the carcinoma arises in topological relationship with the IPMN. It is worthy
to note that a concomitant invasive carcinoma can also be observed in the setting of IPMN.
In this latter case, the carcinoma is not contiguous with the IPMN (almost always of the
branch duct type) and is typically a tubular adenocarcinoma. Emerging data, discussed
hereafter, suggest that these concomitant invasive carcinomas may be biologically and
prognostically distinct from IPMCs. Hence, thorough sampling of pancreatic tissue is
recommended to determine the relationship between the invasive carcinoma and the
IPMN [19]. The pathological aspects of the different precursor and invasive subtypes are
summarized in Figure 1.
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Figure 1. IPMN and IPMC subtypes. Pathological aspects of the three non-invasive IPMN subtypes: the gastric type
(A) forms tall columnar cells with basally oriented nuclei and pale mucinous cytoplasm reminiscent of gastric foveolar
epithelium; the pancreato-biliary type (B) has complex arborizing and interconnecting papillae composed of cuboidal
cells with amphophilic cytoplasm, enlarged nuclei and prominent nucleoli; the intestinal type (C) forms villous papillae
composed of tall columnar cells with cigar-shaped enlarged nuclei and basophilic cytoplasm with variable amount of apical
mucin; IPMC are either of the tubular type (D) or colloid type (E), described above.

3. Clinical Presentation of IPMCs

Unlike patients with cPDAC, those with IPMC are older at diagnosis (a difference of
1–5 years) and have a higher proportion of lesions located in the pancreatic tail (8% to 34%),
thereby justifying the higher rate of distal pancreatectomies [26,30,33–36]. A review of
data from studies of resected IPMC (Table 1) showed that 63–90% of patients present with
pre-operative symptoms. Woo et al. [37] demonstrated a significantly higher proportion of
asymptomatic patients in the IPMC cohort when directly compared with cPDAC cohort
(28% vs. 11%, p = 0.013). Just like cPDAC, abdominal pain, weight loss, and jaundice
were the most frequent symptoms, with the reported frequencies of 43–56%, 33–53%, and
28–38%, respectively (Table 1). However, controversy still exists about the association of
IPMC with acute pancreatitis with reported incidence varying from 3% to 24% [38–41].

Table 1. Summary of studies presenting data on symptoms in large cohorts (n > 50) of resected IPMCs.

Author, Year [Ref.] Ethnicity N
Any

Symptom
(%)

Abdominal
Pain (%)

Weight Loss
(%)

Jaundice
(%)

AP
(%)

Hirono 2017 [38] Asian 96 63 - - - 23
Rezaee 2016 [27] Caucasian 183 80 46 43 38 -

Marchegiani 2015 [25] Caucasian 84 66 - - - -
Mino 2011 [30] Caucasian 61 72 43 38 28 -
Yopp 2011 [42] Caucasian 59 88 53 39 - -

Partelli 2010 [41] Caucasian 104 87 51 53 33 3
Turrini 2010 [39] Caucasian 98 90 56 33 34 23
Sohn 2004 [40] Caucasian 52 - 54 44 33 12

AP: acute pancreatitis.

4. Pathological Features and Survival of IPMCs
4.1. IPMC Versus cPDAC

In 2014, Koh et al. [36] performed the first meta-analysis comparing the pathological
features of IPMC and cPDAC. They found IPMC to have a lower likelihood of T3 and T4
tumors, a significantly lower rate of nodal metastasis, and less TNM stage II and III tumors.
Other adverse features such as incomplete resection (R1), perineural invasion, and vascular
invasion were also less frequent in IPMC. A recent meta-analysis has confirmed these data
and also found IPMC to be associated with a better differentiation of the tumor [43]. Of
note, these data must be interpreted with caution knowing that the distinction between
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IPMC and PDAC concomitant with an IPMN was not reliably assessed. The principal
differences between the main pathological features of IPMC and cPDAC are summarized
in Figure 2.
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IPMC shows a particularly high frequency of tumors with a minimal invasive compo-
nent often referred to as “minimally invasive IPMN”. This subset has long been defined
with a great variability of diagnostic criteria, based on morphological characteristics, tumor
size, or the percentage of the invasive component [16,24,44,45]. In order to allow repro-
ducible and comparable classifications, the 2012 international consensus guidelines [19]
recommended a size-based only approach with substaging of the T1 category into T1a
(<5 mm), T1b (5 mm–1 cm), and T1c (1–2 cm) lesions, while abandoning the non-specific
“minimally invasive” term. Thus, according to the AJCC TNM 8th edition, T1 lesions
account for 25% to 60% of IPMC and T1a for 13% to 27% [17,22,30,44,46–48]. Contrarily,
cPDAC are categorized as T1 in only 12–14% of cases, among which less than 5% are
T1a [49–52] (Figure 2).

Because of its association with favorable pathologic features, the better prognosis of
IPMC compared with cPDAC has long been a matter of debate. The first reports of resected
IPMC documented favorable outcomes with the five-year overall survival (OS) rates of 40%
to 60%, which were significantly superior to that of unmatched comparative cPDAC cohorts
(about 20%) [53,54]. The question whether this difference, besides pathological differences,
could reflect a distinct tumor behavior resulted in matched studies comparing IPMCs to
cPDAC, and the data were conflicting. Two studies, using age and tumor stage as matching
parameters, reported a trend towards a superior five-year OS in IPMC patients (36%
and 31% versus 21% and 24% in patients with cPDAC) [55,56]. However, this difference
reached only statistical significance in the study of Maire et al. [56]. Using a more accurate
matching process, based on a previously described nomogram for resected pancreatic
cancer [57], Yopp et al. [42] found a significantly superior survival in IPMC (the 5-year
OS of 68% versus 23% in cPDAC). However, this study did not include vascular invasion
and perineural invasion, which are two main accepted prognostic factors for resected
cPDAC [58,59], in matching parameters. Contrarily, in the study by Duconseil et al. [60],
patients were matched by perineural invasion, tumor stage, lymph node ratio, and margin
status and no statistical differences in survival were observed. Of six studies evaluating
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survival using multivariate regression analysis, five reported a significantly better OS in
IPMC patients [16,30,33,35,61] and one, by Poultsides et al. [26], found no evidence of a
survival difference. Nonetheless, these studies pointed toward a survival advantage for
IPMC limited to early-stage tumors, frequently stage I or node negative [16,26,30,33,35,61].
Similarly, Poultsides et al. [26] showed a substantial survival difference only in the absence
of any adverse pathological factors such as poor tumor differentiation, involved margin,
vascular invasion, or perineural invasion.

Altogether, these data leave unanswered the question of whether IPMC may have an
inherently favorable prognosis. Moreover, we cannot exclude that the reported differences
result mainly from an earlier diagnosis. Several reasons may explain the earlier presentation
of IPMC such as the presence of a large benign component associated with a smaller
invasive component leading to more frequently fortuitous diagnosis or earlier symptoms
leading to prompt exploration. It should be noted that available data mostly come from
specialized centers in which the proportion of asymptomatic patients with fortuitous
diagnosis of cystic lesions might be overestimated. Although these hypotheses should
apply equally to all IPMC lesions, further discrepancies of pathologic findings and survival
outcomes are observed among different subgroups of IPMC.

4.2. Colloid Versus Tubular IPMC

All of eight studies investigating colloid type and tubular type IPMC for the main
pathological characteristics (Table 2) reported significant or almost significant trend towards
less nodal metastasis in colloid carcinomas (16–29% versus 37–63% in tubular type). In
addition, perineural, vascular and lymphatic invasion, poor differentiation, and margin
involvement were reported in lower frequencies in colloid tumors (Table 2). Of note,
two studies also reported an overrepresentation of colloid carcinomas among “minimally
invasive IPMNs” [24,44].

Table 2. Pathological features of colloid versus tubular type IPMC.

Author, Year [Ref.] N %
Colloid

N+ PNI VI LI PD R1

Tubular/Colloid

Poultsides 2010 [26] 127 26 59/29 * 69/48 42/7 * - 28/11 * 18/0
Yopp 2011 [42] 59 41 49/17 17/17 20/12 - 17/12 14/4
Mino 2011 [30] 54 30 41/27 68/25 26/6 29/19 16/19 -

Waters 2011 [16] 113 24 49/29 - - - - -
Rezaee 2016 [27] 183 24 63/20 * 65/36 * 40/9 * - - -
Morales 2018 [29] 409 33 56/20 * - - - - -
Hirono 2020 [28] 197 29 37/16 * - - - - -

Rodrigues 2020 [48] 97 34 42/24 53/27 * - - 19/13 18/9

* p < 0.05; N+: nodal invasion; PNI: perineural invasion; VI: vascular invasion; LI: lymphatic invasion; PD: poor differentiation; R1: resection
margin positive for invasive carcinoma.

Although possibly biased by these unbalanced pathological features, several studies
reported better outcomes for colloid type IPMC than for tubular type, with a five-year
OS ranging from 57–87% to 24–55% [26,30,40,42,46]. Recently, Rodrigues et al. found the
survival advantage of colloid type over tubular type carcinomas to remain significant after
multivariate analysis [48]. Furthermore, when separately compared to cPDAC, colloid
type IPMCs were associated with significantly better outcomes, while no difference was
observed between tubular type IPMC and cPDAC [16,30].

Altogether, these data highlight the importance of distinguishing pathological sub-
types when comparing IPMC to cPDAC. Indeed, it could be hypothesized that only colloid
IPMC is a more indolent entity, associated with both favorable pathological features and
a significantly better prognosis truly reflective of a lower invasive potential. Contrarily,
tubular IPMC could represent a subgroup closer, if not identical, to cPDAC that present a
similar evolutionary profile.
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5. Molecular Features
5.1. Mutationnal Landscape
5.1.1. GNAS and KRAS

Mutations of the proto-oncogene GNAS have been shown to be highly specific of
IPMNs as these are not found in any other type of pancreatic neoplasia [62–68]. In
IPMNs, these mutations are almost exclusively found at codon 201, the most frequently
observed being R201H and R201C, while R201S, R201Y or Q227L mutations were rarely de-
scribed [68–70]. GNAS mutations alter the structure of GTPase domain in the α-stimulatory
subunit of the G protein (Gsα) and vastly decrease GTPase activity. As a consequence, Gsα
fails to hydrolyze GTP and release phosphoric acid, remaining in activated status, which
constantly stimulates downstream molecules. This is responsible for the activation of the
cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway [71]. The
cAMP-PKA signaling has been associated to tumor-promoting effects in several cancer
types via the activation of diverse downstream targets [72]. In particular, cAMP-PKA
signaling has been shown to drive tumorigenesis and promote cell proliferation and mi-
gration in breast cancer through the activation of Src, PI3K/AKT, and GSK3/βcathenin
pathways [73–75]. In pancreatic carcinogenesis, salt inducible kinases (SIK) were recently
identified as critical tumor suppressors inhibited by GNAS signaling [76].

Although present in all IPMN subtypes, GNAS mutations are significantly associated
with the intestinal subtype (approximately 75% of cases) [77] and invasive colloid type
lesions (found in 80–90% versus 15–30% in tubular carcinomas) [18,64,70]. Consistent
with the favorable features and outcomes associated to intestinal IPMN and colloid type
carcinomas, some studies reported a better survival or lower neural invasion [67,69,70] in
GNAS-mutated patients. Interestingly, Felsenstein et al. [18] reported a higher prevalence of
R201C mutations among colloid lesions (73%) and of R201H in tubular carcinomas (75%).

In a meta-analysis reported by Lee et al. [77], which included 11 studies, the pooled
prevalence of GNAS mutations in IPMN cases was 56%, irrespective of the presence or
absence of an associated carcinoma, with similar mutation rates among the different grades
of dysplasia in non-invasive IPMNs. In the same work, no significant difference was
reported between non-invasive IPMNs and IPMCs [77]. However, fewer patients were
included for the latter comparison and the results of several studies suggest a lower
prevalence of GNAS mutations among invasive lesions, ranging from 19% to 61% (Table 3).
Noteworthy, the studies reporting 50% or more GNAS mutated IPMC were also those that
included notably high proportions of intestinal type and/or colloid carcinomas.

Table 3. Studies evaluating GNAS and KRAS mutations in IPMC +/- IPMN (tissue analysis, >10 IPMC cases).

Author, Year [Ref.] Ethnicity Detection
Method N Total

Intestinal
IPMN (%)

N
IPMC

Colloid (%)
GNAS

Mutation
KRAS

Mutation

IPMN vs. IPMC (%)

Chang 2020
[69] Asian Sequencing 61 48 28 NA 63 vs. 61 52 vs. 64

Gaujoux 2019 [67] Caucasian PCR 159 41 31 22 44 vs. 19 53 vs. 68
Tan 2015

[70] Caucasian Sequencing 38 47 38 50 NA vs. 50 NA vs. 61

Hosoda 2015 [64] Asian Sequencing,
PCR 91 30 30 20 64 vs. 37 59 vs. 77

Kuboki 2015
[68] Asian Sequencing 172 33 49 43 50 vs. 41 54 vs. 59

Furukawa 2011 [63] Asian Sequencing 118 34 47 NA 42 vs. 28 45 vs. 38

NA: not available.

KRAS mutations, present in more than 90% of cPDAC [62], are also found in about 65%
of IPMCs and are associated with the gastric subtype [77] (Table 3). KRAS mutations results
in a constitutively-active GTPase that locks the protein in its GTP-bound and results in its
constitutive interaction with downstream signaling pathways. Activating mutation of the
KRAS oncogene is involved in numerous cellular processes by interconnected regulation
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of signaling pathways such as PI3K/AKT/mTOR or Raf-MEK-ERK, which have been
thoroughly rewieved elsewhere [78]. Deregulation of these pathways results in increased
cell growth, and prevention of apoptosis [79]. Mutations at codon 12, mainly G12D and
G12V (30–40% each), are the most prevalent in IPMCs, while G12R and G12C mutations
are rare (about 5% each) [69,70,80]. KRAS mutations are more prevalent in tubular IPMC
than in colloid carcinomas (80–90% versus 30–50%) [65–68,70]. However, no report has
shown the association between KRAS mutations and survival [67,69].

KRAS and GNAS mutations are not mutually exclusive since double-mutant IPMCs
are found in 25–35% of cases [68,70]. GNAS only mutated tumors are almost all of the
intestinal subtype and GNAS mutated colloid carcinomas harbor way less KRAS mutations
than GNAS mutated tubular lesions (40–50% versus 80%) [67,68,70]. Both GNAS and KRAS
mutations are found at similar rates across all grades of dysplasia [77], suggesting that they
represent the very early events in the carcinogenesis of IPMNs underlying the initiation
of these neoplasms in most cases. Hence, these mutational events are thought to play a
critical role in the diverging evolution between GNAS mutated lesions of intestinal subtype
(and commonly wild-type KRAS) evolving into a colloid carcinoma and KRAS-mutated
lesions of the gastric type evolving into tubular invasive lesions similar to cPDAC.

5.1.2. Other Mutations

Inactivating mutations of RNF43, involved in cell cycle control through the negative
regulation of the Wnt signaling pathway [81,82], have also been reported in about 20%
of IPMNs [77]. Unlike KRAS and GNAS, no definite hotspot exists for mutations of
RNF43 (nonsense mutations, missense mutations, or frameshift mutations that lead to a
decrease or loss of function) [83,84]. The RNF43 mutations might represent a later event as
found mainly in high-grade lesions (20–75% versus 0–10% in low-grade IPMNs) [66,83].
Moreover, they are also significantly associated with GNAS mutations and the intestinal
subtype, suggesting a synergistic role of these two events, particularly in the progression
of the intestinal pathway [69,70,84,85]. However, RNF43 mutations might be involved
mainly in the low grade—high grade transition since these alterations does not seem to
be selected during progression to an invasive carcinoma [86,87]. Otherwise, mutations
of KLF4 have recently been reported as a new driver gene, found in more than 50% of
low-grade IPMNs but in only 15% of high grade lesions, suggesting a specific role in early
stages of tumorigenesis [88].

Other main alterations found in cPDAC such as TP53, SMAD4, and CDKN2A seem
also frequent in IPMC particularly of the tubular type, with more than 50% of TP53-
mutated tumors and about 20–40% of SMAD4 and CDKN2A alterations, but are much less
common in colloid carcinomas [18,87]. Furthermore, although these are almost absent in
the vast majority of low-grade IPMNs, both mutations are more prevalent in high-grade
and invasive lesions, suggesting their late onset in IPMN carcinogenesis and their role in
the progression to invasive lesions rather than in initiation [66,68,70]. Figure 3 summarizes
the main genomic features of IPMNs and IPMCs.
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5.2. Carcinogenesis
5.2.1. Murine Models of IPMN Initiation

Despite the specific association of IPMNs with early GNAS alteration, the results
of murine experiments reported by two studies [76,89] have shown GNAS mutations
alone to be insufficient to induce the occurrence of IPMN-like lesions. This observation
calls into question the hypothesis of a strictly GNAS-mediated carcinogenesis pathway.
However, the association of KRAS and GNAS mutations led to the occurrence of mouse
IPMN lesions [76,89]. In another work by Ideno et al. [90], the induction of GNAS mutation
in adult mice with constitutive KRAS mutant background produced the same results.
Notably, despite the association of GNAS mutations to intestinal type IPMNs in humans,
the mouse IPMN lesions observed in those models were reminiscent of gastric and PB
type IPMNs without any MUC2 expression, whether of modeling R201H or R201C GNAS
alterations. Moreover, no invasive component was observed with associated KRAS and
GNAS mutations, but the addition of P53, P16, or SMAD4 mutations led to the development
of invasive lesions [76,90]. Among these, no colloid carcinomas were observed, but GNAS
mutated PDACs showed better differentiation than controls [90].

Collectively, data coming from murine models suggest a weak oncogenic potential for
isolated GNAS mutations and a synergistic effect of combined RAS and GNAS alterations on
induction of IPMN formation. The progression to invasive carcinoma seems to require the
later implementation of other mutational events. Furthermore, the GNAS signal does not
seem sufficient to initiate the differentiation toward the intestinal pathway. In a recent study
including 60 intestinal-type IPMN specimens, Omori et al. [85] observed a histological
transition from gastric-type epithelia to intestinal-type epithelia in 48 cases (80%). This
transition was driven by CDX2, which expression seems to precede the acquisition of
intestinal features and MUC2 expression [85]. The authors suggested that intestinal type
IPMNs might develop from gastric-type lesions after induction of CDX2, which could
be related to the GNAS signaling and additional molecular events including RNF43 and
ß-catenin.

Beyond tumor initiation, contradicting roles of the GNAS signaling have been reported
on tumor growth and maintenance, which may be influenced by the timing of different
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mutational events. By activating the GNAS signaling on an already established KRAS-
induced PDAC model, Ideno et al. [90] showed an attenuation of growth and invasiveness,
related to an epithelial tumor differentiation. Contrarily, in the setting of lesions induced
by concurrent KRAS and GNAS mutations, Patra et al. [76] highlighted a critical role of
the GNAS signaling for tumor growth and maintenance. These data suggest a unique
molecular program for tumors developed with GNAS mutation as an initiating event.
Moreover, oncogenic GNAS signaling in the latter model was associated with a broad
rewiring of lipid metabolism distinct from that of KRAS-driven pancreatic cancer [76].

In other murine models, the association of KRAS mutations with other mutations
such as LKB1 or PTEN, in the absence of GNAS mutations, made it possible to induce the
development of IPMN-like lesions. These possibly represent some alternative molecular
pathways involved in the non-intestinal pathway [91,92]. Figure 4 presents hypothetical
pathways of IPMNs initiation and progression.
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5.2.2. IPMN to IPMC Sequence
PDAC Derived from and Concomitant with an IPMN

To analyze the progression pattern of IPMN lesions, two categories of IPMN-related
PDACs need to be distinguished, carcinomas derived from an IPMN, and PDAC concomi-
tant with an IPMN [93]. These entities have been well defined by Yamagushi et al. [34]
in 2011, using the topological relationship and the presence of a histological transition
between the two lesions. Based on these criteria, 67% of 183 cases in their initial work
were classified as carcinomas derived from an IPMN, 17% as concomitant carcinomas,
and 16% with undetermined relationship to the associated IPMN. Noteworthy, all col-
loid carcinomas were derived from IPMNs. Although concomitant carcinomas might be
thought to represent a coincidental collusion of both cPDAC and IPMN, these lesions
had favorable pathological and survival features significantly distinct from cPDAC and
closer to IPMN-derived lesions. Subsequent studies characterizing these concomitant
carcinomas highlighted an association with branch-duct and gastric type IPMNs and the
lower prevalence of GNAS mutations [94–96].

Pathways of Progression

The genetic relatedness between precursor and invasive lesions has been shown to
be highly correlated to the morphological classification. In the work by Hosoda et al. [64],
93% of genetically related IPMC-IPMN couples were classified as carcinomas derived
from an IPMN, while 75% of cases with discrepant genetic results were either concomitant
carcinomas or carcinomas of undetermined relationship. All colloid carcinomas were ge-
netically related to their associated precursor lesion, confirming their exclusive association
with IPMNs.

The relevance of this distinction has also been evidenced by Omori et al. [86]. In their
work, all IPMN-derived PDACs harbored a concordant mutational profile of GNAS and
KRAS between the precursor and invasive components. In addition, mutations in P16,
P53, or SMAD4 were accumulated in invasive lesions indicating progression through an
accumulation of such alterations. The authors called this pattern of progression as the
“sequential” subtype. Conversely, half of concomitant PDACs harbored a clearly distinct
mutational profile and were called “de novo” subtype as developed independently from the
related IPMN. The remaining lesions were named the “branch-off” subtype. These lesions
shared the identical KRAS mutations and common sequence variation or methylation
profiles demonstrating a common origin and suggesting the development of both PDACs
and IPMNs from the same founder clone. The classification proposed by Omori et al. [86]
showed a clinical interest, with a significantly better disease-free survival for the branch-off
subtype compared to the de-novo subtype. Importantly, the mutational analysis of other
precursor lesions in pancreata of these patients revealed a higher burden of GNAS mutant
clones in those of the sequential subtype. These results were also consistent with those
demonstrated by Felsenstein et al. [18], showing a substantial proportion of IPMCs with a
distinct mutational status compared to the associated precursor, and invasive lesions with
a partially shared genetic profile.

Overall, these data demonstrate a direct transition from IPMNs to invasive PDACs
in some cases. These are well identified by the IPMN-derived morphological category
and by the association with GNAS mutations and include all cases of colloid carcinomas.
A significant proportion of concomitant cases is also genetically related to the IPMN but
seems to arise from a common founder clone. The shared clonal origin might explain the
observed pathological and clinical proximity of this category with IPMN-derived PDACs.

5.2.3. Tumor Heterogeneity

Recent research, however, highlighted a high molecular heterogeneity among a single
IPMN lesion, challenging the interpretation of previous genetic characterization of IPMNs
and genetic relatedness studies. Fischer et al. [97] demonstrated a striking heterogeneity of
mutational profiles among 20 IPMN lesions using multi-region sequencing. Most lesions
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harbored multiple mutations within the same driver genes and many IPMNs did not have
any mutation present across every region. Low-grade IPMNs had the greatest heterogeneity
among early driver genes KRAS and GNAS, with up to six distinct mutations among the
same lesion. High-grade IPMNs were characterized by a common early driver mutation
and high heterogeneity of late occurring mutations such as RNF43 or P53. Accordingly, a
recent study used whole exome sequencing to analyze the evolution from precursor lesions
to IPMC [87], confirming the presence of multiple clones with independent evolution
among a single IPMN. Multiple instances of clear driver mutations, such as RNF43, limited
to the non-invasive component, were observed, suggesting unique selective processes at
different time points in tumorigenesis, such that mutations selected in the precancerous
lesion are not selected for (or are even selected against) in the invasive cancer. Furthermore,
multiple separate invasion events could be identified in one IPMN [87].

These data challenge the traditional model of pancreatic tumor progression by demon-
strating the polyclonal origin of some IPMNs. At early stages, IPMNs contain multiple
independent clones harboring distinct driver mutations in KRAS and GNAS; a single clone
can further acquire additional mutations leading to clonal expansion and progression. In
addition, the spatial heterogeneity among IPMN lesions shows that one-region sequencing
approaches cannot accurately capture the complete genetic landscape of these lesions,
which calls into question the accuracy of previous data on mutation prevalence and genetic
relatedness.

6. Therapeutic Implications
6.1. Adjuvant Therapy

At this day, no specific therapeutic strategy for IPMC is recommended. These patients
are managed following guidelines proposed for cPDAC, with adjuvant therapy recom-
mended in all patients after resection, regardless of T, N, and R status. Preferred regimens
are modified FOLFIRINOX in ECOG 0–1 patients, and gemcitabine monotherapy, 5-FU, or
gemcitabine plus capecitabine in those not eligible for FOLFIRINOX [98,99]. There is only
limited evidence of the beneficial effect of adjuvant therapy in resected IPMC and this is
mostly derived from the results of phase III clinical trials using pooled data of cPDAC and
IPMC [100,101]. The distinct features and outcomes associated to IPMC raise the question
about the interest of a specific therapeutic strategy for these patients.

Retrospective comparisons of survivals in IPMC patients with or without adjuvant
therapy are inevitably biased by the non-randomized attribution of post-operative treat-
ments and the consequent imbalances in tumor characteristics. In five studies that we
analyzed and summarized in Table 4, multivariate analysis to mitigate this bias was used.
Of note, these included patients over a long period of time since the late 1990s, during
which treatment guidelines have evolved considerably. Four studies reported on patients
receiving adjuvant chemotherapy, with gemcitabine being the most widely used agent and
30% to 69% receiving additional chemoradiation [33,48,102,103]. The fifth included only
patients who received 5-FU based chemoradiation followed by 5-FU based chemother-
apy alone [104]. In the study by Rodrigues et al. [48], no beneficial effects of adjuvant
gemcitabine-based chemotherapy in the cohort of 103 IPMC neither in any subgroup were
observed. The remaining studies reported a significant survival benefit limited to the
subgroup of node-positive patients [33,102–104]. Likewise, the beneficial effect of adjuvant
therapy in resected IPMC has also been reported in the presence of other adverse pathologic
features such as stage II-IV disease, tubular histology, and poorly differentiated or margin
positive tumors [25,33,104].

These data, although not reporting on currently recommended treatment modalities,
suggest that adjuvant therapy might be indicated in patients after resection for IPMC
that present only adverse pathologic features, while those patients who have early-stage
tumors without node metastasis do not seem to benefit from it. Moreover, tubular histology
has been linked to adjuvant therapy benefit [105]. Noteworthy, a recent work by Shaib
et al. [106] also questioned the relevance of adjuvant therapy in T1a/bN0 PDACs, for which
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no survival benefit was observed. Prospective studies dedicated to IPMC are needed in
the future to better address the question of a specific adjuvant strategy, with particular
attention paid to the histological subtype.

Table 4. Main studies evaluating adjuvant therapy in IPMC patients using multivariate analysis.

Author, Year [Ref.] N IPMC N AT (%) AT Type Survival Benefit

Global N− N+ Other
Subgroups

Mungo 2020 [102] 492 225 (48) AC+/−RT - No Yes -
Rodrigues 2020 [48] 103 34 (33) AC+/−RT No No No -
McMillan 2016 [33] 1220 541 (44) AC+/−RT Yes No Yes Stage II-IV, PD
Caponi 2013 [103] 64 33 (52) AC+/−RT Yes No Yes -
Swartz 2010 [104] 70 40 (57) CRT Yes - Yes R1

AT: adjuvant therapy; AC: adjuvant chemotherapy; RT: radiotherapy; CRT: chemoradiotherapy; PD: poor differentiation; R1: resection
margin positive for invasive carcinoma.

6.2. Future Therapeutic Strategies

Better characterization of the molecular pathways specifically involved in IPMC will
provide opportunities for the development of targeted therapeutic strategies for these
tumors. In this way, the intestinal pathway probably represents a truly distinct entity to
focus on. GNAS mutations, which are the only molecular specificity identified to date,
might guide the developments of effective treatments. Downstream effectors of the cAMP-
PKA pathway such as SIKs can represent potential targets [107]. In addition, the specific
metabolic features of GNAS mutated tumors represent other potential research subjects.
Nevertheless, the presence of a GNAS mutation alone cannot be considered sufficient to cor-
rectly identify tumors with a distinct molecular program and a better understanding of the
distinct oncogenic processes involved is still necessary to accurately select patients. The yet
unknown factors associated with the intestinal pathway induction might in the near future
help to guide the development of targeted strategies. Moreover, new markers of the intesti-
nal pathway have been recently reported such as GPA33 [108], which is already evaluated
in colorectal cancer for targeted cytotoxic delivery or photoimmunotherapy [109,110].

Furthermore, evaluating the prevalence of already stablished relevant alterations in
cPDAC among IPMCs, such as microsatellite instability (MSI) [111], could provide further
opportunities for precision oncology in this subgroup. Importantly, Lupinacci et al. [14]
found a significantly higher prevalence (6.9% vs. 1.4%) of the MSI phenotype in IPMC
patients, and colloid carcinomas, known to arise exclusively with IPMNs, are significantly
associated with microsatellite instability in PDAC [112]. Numerous approaches are investi-
gated to expand the use of immunotherapy beyond MSI patients, including checkpoint
blockade or vaccine therapy [113], and the identification of specific immune features as-
sociated with IPMCs might also lead to targeted strategies. Otherwise, the prevalence of
BRCA mutations or BRCAness phenotype, associated to known or suspected therapeutic
implications [114,115], has not been reliably assessed in IPMCs. However, Skaro et al. [116]
showed a significant proportion of IPMC patients harboring germline mutations other than
BRCA involving genes related to DNA damage repair (ATM, FANC family, PALB2, BRIP1,
NBN). In addition, somatic mutations of ARID1A and ATM have been reported in about
10% and 10–15% of IPMCs, respectively [18,70,87].

7. Conclusions

IPMCs account for about 10% of resected PDACs and represent a subgroup of tumors
with specific features. Two histologic types are to be recognized: (1) colloid IPMCs that
present with distinct morphology, favorable pathologic features, and significantly better
outcomes, and (2) tubular IPMCs, morphologically indistinguishable from cPDACs with
whom they share most of pathological and clinical features. The question of a distinct
prognosis in tubular IPMC, therefore, is still unanswered.



Int. J. Mol. Sci. 2021, 22, 6756 14 of 19

Consistent with this dichotomy, molecular data confirm a distinct mutational profile
of intestinal type and related colloid carcinomas, characterized mainly by the higher
prevalence of GNAS mutations and lower rate of KRAS alterations. Altogether, the available
data support the idea of a specific oncogenic intestinal pathway, correlated with GNAS
mutations and yet unknown initiating events, leading to a clearly distinct molecular
program and less-aggressive tumors. Contrarily, tubular IPMCs probably arise from the
common KRAS-driven carcinogenesis pathway. Growing insights into the mechanisms of
initiation and progression of IPMNs evidenced both a direct precursor to invasive lesion
sequence related to the intestinal pathway and alternative mechanisms with a separate
onset of IPMN and PDAC from a common origin.

As an entirely distinct entity, IPMC might offer opportunities for specific therapeutic
options in the future. The role of adjuvant therapy in early-stage IPMC and/or tumors with
colloid histology remains an unsolved issue and requires dedicated prospective studies.
The specific molecular features associated with the intestinal pathway could also lead
to targeted therapeutic options, but further characterization of the molecular pathways
involved will be needed to refine patient selection.
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