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Abstract

Background: Quantitative imaging of epithelial tissues requires bioimage analysis tools that are widely applicable
and accurate. In the case of imaging 3D tissues, a common preprocessing step consists of projecting the acquired 3D
volume on a 2D plane mapping the tissue surface. While segmenting the tissue cells is amenable on 2D projections, it
is still very difficult and cumbersome in 3D. However, for many specimen and models used in developmental and cell
biology, the complex content of the image volume surrounding the epithelium in a tissue often reduces the visibility
of the biological object in the projection, compromising its subsequent analysis. In addition, the projection may
distort the geometry of the tissue and can lead to strong artifacts in the morphology measurement.

Results: Here we introduce a user-friendly toolbox built to robustly project epithelia on their 2D surface from 3D
volumes and to produce accurate morphology measurement corrected for the projection distortion, even for very
curved tissues. Our toolbox is built upon two components. LocalZProjector is a configurable Fiji plugin that generates
2D projections and height-maps from potentially large 3D stacks (larger than 40 GB per time-point) by only
incorporating signal of the planes with local highest variance/mean intensity, despite a possibly complex image
content. DeProj is a MATLAB tool that generates correct morphology measurements by combining the height-map
output (such as the one offered by LocalZProjector ) and the results of a cell segmentation on the 2D projection, hence
effectively deprojecting the 2D segmentation in 3D. In this paper, we demonstrate their effectiveness over a wide
range of different biological samples. We then compare its performance and accuracy against similar existing tools.

Conclusions: We find that LocalZProjector performs well even in situations where the volume to project also contains
unwanted signal in other layers. We show that it can process large images without a pre-processing step. We study
the impact of geometrical distortions on morphological measurements induced by the projection. We measured very
large distortions which are then corrected by DeProj , providing accurate outputs.
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Background
Tissue morphogenesis and homeostasis emerge from the
integration of the properties and behaviors of a large num-
ber of cells (from hundreds to millions). This includes
the regulation and shaping of epithelia, essential tissue
barriers composed of one or several layer of cells tightly
bound to one another. The emergence of complex epithe-
lial shape relies quite often on the integration of local
mechanical and biochemical cues regulated at the cel-
lular levels [1]. For instance, during Drosophila pupal
development, local cell-to-cell interactions through adhe-
sion forces ensure tissue integrity, control cell shape and
cell division orientation, and affect tissue-wide cell death
probability [2, 3]. In the avian embryo during gastrula-
tion, mechanical properties of cells affect the emergent
tissue fluidity which is essential to form the first tis-
sue fold [4]. In vertebrate adult brains, neural stem cells
(NSCs) are organized in a pool forming an epithelium.
The architecture and size of the brain relies on the rate
of division and differentiation of stem cells which is in
part regulated by local cell-cell interactions [5]. All these
examples illustrates an essential challenge of tissue and
developmental biology: namely bridging the gap between
the cellular scales and emerging properties at the tissue
level. The capacity to image large tissues, while reach-
ing a single cell resolution amenable for the quantifi-
cation of cell scale parameters, is key to elucidate this
question.
Modern microscopy technologies can fulfill this imag-

ing challenge and microscopes that can acquire fluores-
cence images of the embryo and generate volumetric,
multi-channel, time-lapse datasets of a live sample are
now used routinely. They offer single-cell resolution on
a field-of-view large enough to encompass a significant
part of the tissue/embryo studied. However, the large size
of the data generated and the limited image signal-to-
noise ratio (SNR) imposed by preservation of the tissue
health during live-imaging call for optimized image anal-
ysis tools.
Epithelia are a continuous layer of cells forming a

smooth surface which may not be flat. When cells are
labeled with a junction marker (e.g., E-cadherin, ZO1),
the tissue resembles a manifold wrapped on a 3D sur-
face. A simple approach to visualization and analysis is
to perform a projection of the tissue 3D surface on a 2D
plane. This dimensionality-reduction approach proves to
be particularly convenient: First, the resulting data size
is considerably diminished. Second, the visualization of
the tissue layer content is immediate in 2D. Third, it may
enhance signal-to-noise ratio. Finally, most of the seg-
mentation algorithms that can extract cell shapes have a
better robustness and accuracy in 2D than in 3D so far,
and manual corrections can still be reasonably performed
in 2D.

The biological significance of the information extracted
from these manifolds prompted for the development of
several tools that can perform 2D projection. Morpho-
GraphX [6] and ImSAnE [7] belong to a first class of tools,
where a reference surface is built as a mesh mapping the
sample boundary. The fluorescence intensity is then col-
lected at or a few microns away from the boundary into
the sample, in a direction perpendicular to the surface.
This approach is particularly adequate for images of sam-
ples with complex, possibly closed boundaries. A second
class of tools perform a projection of the 3D volume along
the Z-axis of the 3D image. The resulting projection cre-
ated by these tools is a 2D plane that has the same width
and height as the source 3D volume. They cannot harness
samples where the tissue layer folds, since there must be
at most one surface Z value per (X,Y ) position. They are
however particularly convenient with classical confocal
microscopy. Indeed, the point-spread-function (PSF) of a
microscope is the most elongated along the Z-axis. This
causes some larger blurring of structures in this direction
compared to along the X and Y axes. By projecting along
the Z-axis, the projections given by these techniques are
devoid of this large blurring. The most simple projection
technique in this class consists in taking the largest pixel
value along a Z column for each (X,Y ) position. As noted
in [8], this maximum intensity projection (MIP) technique
is the most commonly used by biologists. An important
drawback is that this projection incorporates noise from
throughout the sample, in particular inside cells, and may
compromise segmentation based on the membrane sig-
nal. To address this limitation, several projection tools
have been developed that aim at including in the projec-
tion only the signal coming from the tissue layer. Among
them are StackFocuser [9], PreMosa [10], Extended
Depth-of-Field (EDF) [11], SurfCut [12],MinCostZSurface
[13–15], the Smooth Manifold Extraction (SME) tool [8]
and a new implementation of the latter: FastSME [16].
In [17], authors also proposed an approach based on
Deep-Learning for the projection along the Z-axis, but it
requires for its training and along with the source images
a possibly large set of images pre-projected by an other
method or manually. While these approaches have been
proven to work well for tissue imaging, they left open
some challenges. First, bright or noisy structures out-
side of the cell layer might compromise the extraction of
a meaningful reference surface, in turn strongly affect-
ing the quality of the projection. Second, most of those
approaches will be very time-consuming for large volume
and may even not be working when the volume to project
has a size larger than the available computer memory.
Third, the tissue surface and the XY plane may have in
some regions a large angle. Beyond 30◦, the morphologi-
cal features of cells measured on the 2D projection will be
significantly altered, as noted in [12].
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Our toolbox fits into this second class of tools, and
builds upon them to address several challenges they left
open. LocalZProjector is its first component, and is a
user-friendly and widely configurable projection tool that
can be tuned to detect the right reference surface. Its
maneuverability makes it amenable to a wide range of
samples and image qualities, as well as to images of large
size beyond the size of the available computer memory.
DeProj, its second component, can correct for the dis-
tortions induced by the projection of tissue even if they
are very curved, hence deprojecting the 2D segmentation
results in 3D. We illustrate below these capacities using
three different samples: the Drosophila pupal notum, the
quail embryo and the adult zebrafish telencephalon. We
also compare the toolbox features, performance and accu-
racy to existing tools.

Implementation
The software toolbox we present is made of two compo-
nents: LocalZProjector and DeProj (Fig. 1). It is built for
accurate morphology measurements on epithelial tissues.
LocalZProjector performs the projection of a curved

surface from a 3D stack on a single 2D plane by only
including the signal of the planes with local highest vari-
ance/mean intensity, corresponding to the signal of inter-
est (Fig. 2a). It is an ImageJ2 [18] plugin distributed
within Fiji [19] that focuses on usability and is designed
to be adaptable to many different cases and image qual-
ity (Fig. 2b). It can work with 3D time-lapses, multiple
color channels, takes advantage of computers with multi-
ple cores, can be used in scripts and can process images
too large to fit in memory using the virtual stack feature of

ImageJ. The local Z projection processes as follow: First it
extracts a reference surface that maps the epithelial layer
(Fig. 2c, Additional File 1: Figure S1). The reference sur-
face is represented by the height-map, which consists in
a single 2D image per time-point of the source image,
that specifies for every (X,Y ) position the Z position of
the layer of interest. Second, the height-map is used to
extract projections of the different channels from the 3D
image, according to their relative, sometimes different,
offset with this reference surface.
LocalZProjector relies on a few parameters set by the

user. The height-map is determined by applying a 2D fil-
ter on each plane of the 3D source image, chosen and
configured to yield a strong response for the layer of inter-
est (either mean or standard deviation filter). To speed-up
computation and reduce the effect of pixel noise, each 2D
plane can be first binned. Noise can be further reduced
through filtering with a Gaussian kernel. The height-map
is then regularized using a median filter with a large win-
dow and rescaled to the original width and height. It is
then used to extract a projection from the 3D image. A
fixed offset can be specified separately for each chan-
nel, and is used to collect intensity in planes above or
below the reference surface. Several planes, specified by
a last parameter �z, can be accumulated to generate a
better projection, averaging the pixel values or taking the
maximum value of these planes (Fig. 2c, Additional File 2:
Movie S1).
Once the 3D volume has been projected on a single

2D plane, many tools are available that can segment the
individual cells in the tissue. Several of them offer an
intuitive user interface, allowing for immediate usage and

Fig. 1. Presentation of LocalZProjector and DeProj. The toolbox is made of two tools, LocalZProjector a Fiji tool that generates 2D projections from 3D,
multi-channel time-lapse images, and DeProj, a MATLAB function that uses the height-map output of LocalZProjector and the segmentation results
on the projection output to measure accurately the morphology metrics of the cells in the projected tissue
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Fig. 2. The LocalZProjector component. a Comparing the output of the maximum intensity projection (MIP) output with the LocalZProjector output
on the Drosophila pupal notum expressing E-cadherin-GFP. The MIP incorporates signal from other layers (cuticle, fat body) in the projection that
compromises its subsequent analysis. The use of a local projection that only includes the signal around a reference surface yields better quality
projections. b Example of a single Z-plane from the same dataset showing E-cad::GFP (green) and UAS-nlsRFP (red, nuclear signal). This section
crosses the cell layer in a region of high-curvature. Only a band of two cell diameters can be seen in focus in this slice. The red and green stripe at
the bottom left corresponds to the auto-fluorescence of the cuticle layer. The white line is used to generate the sagital section in c. c Illustration of
the LocalZProjector method. A 2D filter applied on each Z-plane is configured to generate a strong response at the layer of interest. Here the filter is
a standard-deviation filter of window size 21×21. For each (X, Y) position, the Z-plane at which this filter has the strongest response is used to build
a reference surface (white segmented line) around which intensity will be collected, possibly with an offset and a Z-range. All scale bars are 10 μm

user interaction. For instance, EpiTools [20] is a toolbox
with MATLAB and Icy [21] components built to study the
dynamics of Drosophila imaginal discs. Its segmentation
algorithm relies on region growing from seeds deter-
mined automatically and merged based on region areas.
SEGGA [22] is a standalone application written with
MATLAB proposed for the investigation of Drosophila
embryo germband epithelium. Recognizing that a small
number of mistakes in segmentation can havemajor nega-
tive impact on cell tracking accuracy for long time-lapses,
the authors propose several approaches to increase the
robustness of segmentation and have a near perfect track-
ing results. TissueAnalyzer [23] is a tissue segmentation
tool, distributed along TissueMiner [24] and the combi-
nation of these two softwares offers a framework that
let end-users implement their own analyses using the R
software and custom commands. EPySeg, a Python soft-
ware that relies on deep-learning for the segmentationwas
recently made available in [25].
But these tools operate on 2D images only, which

implies that the epithelium is a flat plane and parallel
to XY. When this is not the case, most morphological

measurements made on the 2D segmentation results will
be corrupted by geometrical distortions induced by the
projection (Fig. 3a). Indeed, almost all morphology met-
rics, such as area, eccentricity and orientation will be
affected when they are measured on the 2D projection of a
curved or angled surface. DeProj aims at correcting these
artifacts. It is a MATLAB tool that combines segmen-
tation results and height-maps or 3D meshes to correct
morphology measurements made on the 2D projection.
DeProj returns corrected metrics, as if they were mea-
sured on the reference surface in the original 3D image
(Fig. 3b).

Results
LocalZProjector is an accurate, fast, and convenient tool to
generate projections of 3Dmanifolds on 2D planes
One of our recent study involves long-term 3D time-
lapses imaging of a Drosophila pupal notum [3, 26]. To
follow the cells dynamics in the tissue, we relied on gen-
erating an accurate 2D projection of the cell monolayer
(adherent junctionsmarked with E-Cadherin signal, Ecad-
GFP), taken from the epithelium surface, and at the same
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Fig. 3. DeProj. a DeProj is the second component of the toolbox and works by combining the tissue surface obtained e.g. via the height-map (gray
line) and the segmentation of cells obtained on the 2D projection (green) to make measurements on the real cell contour in 3D (red). b Example
DeProj outputs, from left to right and top to bottom: the local mean curvature of the epithelium experienced by the cells; a 3D visualization of the
epithelium 2D projection mapped on its 3D surface; the cell eccentricity measured in their oblique apical surface plane; the error (1 − l2D/l3D)

comparing the cell perimeter measured on the 2D projection versus its real value inferred by DeProj. Scale bar: 10 μm

time collecting the RFP signal from cell nuclei a few μm
below this surface (nls-RFP). Imaging relevant signal in
this tissue brings a few difficulties. First, the epithelium is
not flat. Sampling a large portion of the tissue requires the
acquisition of about 40–60 μm thick optically-sectioned
volumes. Second, the cuticle (the exoskeleton of the fly) is
located apically to the epithelium and is auto-fluorescent
on a large spectrum (green to far red). Third, below the
epithelial layer lie large cells called fat bodies which are
also highly fluorescent. In the GFP channel, the resulting
3D images display mainly three layers. The top one (low
Z values) corresponds to the auto-fluorescent signal col-
lected from the cuticle. The middle one corresponds to
the epithelial cell layer, where the cell membranes build
a manifold with a large curvature (Fig. 2b). Below these
two layers, the fat bodies generate punctate, bright struc-
tures. If not properly excluded from the projection, these
unwanted structures in the imaged volume will degrade
its quality and complicate or even forbid the subsequent
segmentation task.
As the problem introduced here with the pupal notum

is frequent in epithelium tissue imaging, we used it to
validate the performance of the LocalZProjector plugin
by comparing it to currently available projection tools
(Table 1). We generated the user-expected 2D projec-
tion of the epithelium (ground truth) by manually select-
ing the junctional signal of epithelial cells in each plane
(see Additional File 1: Supplemental Note 1 for details).
We then calculated several metrics measuring the accu-
racy and performance of the projection generated by the
LocalZProjector tool, and compared the results to 7 other
methods (Additional File 1: Supplemental Note 2 [27,
28]): the standard maximal-intensity-projection (MIP),
the StackFocuser tool [9], SurfCut [12], PreMosa [10], the

Extended Depth-of-Field (EDF) tool [11], the Mininum-
Cost-Z-Surface (MinCostZ) approach of [13, 14], imple-
mented in [15] and the Smooth Manifold Extraction tool
[8, 16]. We first assessed how close the resulting projec-
tion was to the ground-truth projection using the root-
mean square error (RMSE). This metrics proves useful
in two aspects. First, because it allows for quantitatively
comparing several methods and assessing how useful the
projections will be in a subsequent analysis step. Sec-
ond, because it offers a way to systematically search for
optimal parameters for the 8 methods tested. For the
comparison to be robust and fair, we ran indeed an
extensive parameter sweep for each method, searching
for the parameter set that gives the absolute best pro-
jection by minimizing the RMSE over a wide range of
values (Additional File 1: Supplemental Note 2A). We
then used this optimal projection for each method for
the comparison. We find that the LocalZProjector pro-
jection is favored (Table 1, Additional File 1: Figure S3a
and Additional File 1: Supplemental Note 2B) because it
is robust against noise and can be configured to deal with
regions of high-curvature. The accuracy of the height-map
output is also important for the subsequent correction
of the cell morphology measurements made by DeProj.
We therefore calculated the RMSE of the height-maps
compared with the ground-truth (Additional File 1: Sup-
plemental Note 2C), for the projection tools that can
return a height-map of the cell layer (LocalZProjector,
StackFocuser, PreMosa, EDF, MinCostZ and FastSME).
We find again that LocalZProjector offers the height-map
with the lowest RMSE (Additional File 1: Figure S3b).
Because LocalZProjector aims at being a tool possibly
used on very long time-lapse movies, the time needed
to generate a projection is important, we confirmed it
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is fast in comparison to most of the other methods
(Additional File 1: Figure S3c). Finally, the projection accu-
racy of such a dataset is relevantmainly for its use in a sub-
sequent analysis. We chose to focus on cell segmentation,
as DeProj will be used to measure accurate and unbiased
cell morphology.We therefore derived a simple, fully auto-
mated segmentation workflow on the projections, and
compared segmentation results against a ground-truth
segmentation (Additional File 1: Figure S3d, Additional
File 1: Supplemental Note 3 [29–31]). We repeated the
comparison presented in this table on a high quality image
of a Drosophila pupa notum (Additional File 1: Table S1),
and on an adult zebrafish brain image (Additional File 1:
Table S2). The data, methodology and tools that support
these comparisons are available online [32, 33]. These
results exemplify the usefulness of LocalZProjector, both
for accuracy and performance.
Finally, in this study, we wanted to generate projections

of the E-cadherin channel but also needed to visualize
the nuclei reporter of some of these cells localized a few
micrometers just below the reference surface, and follow
it over time. This was easily feasible as LocalZProjec-
tor can handle multiple-channel long time-lapse images
in a user-friendly manner. We compared some of the
LocalZProjector capabilities with other tools in Table 1.
We also proved qualitatively that LocalZProjector can be
used on a wide-range of images coming from very differ-
ent samples and we especially validated it on a large set
of example images introduced in [16], taken from samples
ranging from Neuroscience to Cell Biology and synthetic
images. In Additional File 1: Figure S12 we present the
projections obtained successfully with LocalZProjector on
this dataset.

Projecting large images with LocalZProjector
In toto imaging of developing embryos allows for inves-
tigating the dynamics of tissues at a large spatial scale.
For instance when analyzing gastrulation in entire avian
embryos, we showed that it is driven by the graded con-
traction of a large-scale supracellular actomyosin ring
at the margin between the embryonic and extraembry-
onic territories [4]. For this study we relied on particle
image velocimetry (PIV) to measure the tissue displace-
ment field. This technique does not require the segmen-
tation and tracking of individual cells. However, several
key mechanisms at large scales emerge from the dynam-
ics of single cells [34]. The need to segment all the cells
in a whole embryo prompts for imaging at high resolu-
tion and special microscopes [35]. But such acquisition
setups generate in turn very large images. Also some imag-
ing modalities that enable imaging large specimen at high
resolution, such as Light-Sheet Fluorescence Microscopy
(LSFM), may bring additional distortions in the image.
In order to image a quail embryo at high resolution,

we relied on LSFM using an inverted selective plane
illumination microscope [35, 36]. While the light-sheet is
held stationary at 45◦ of the embryo surface, the embryo
is translated horizontally through the light-sheet. The 2D
planes acquired for each translation are then concatenated
in a 3D stack. Because the axis of the embryo translation
and the light-sheet plane are at a 45◦ angle, the stack needs
to be post-processed to remove the induced skew. The
resulting is a 8669 ×2285 ×1067 image, amounting to a
42 GB file for a single time-point.
The 2D projection of such an image is very relevant as

the epithelium of interest is a smooth and thin cell layer
within a large 3D volume. It would also reduce the image
size by 1067 and make it much more amenable to analy-
sis and compact storage. To tackle the challenges coming
with such large datasets, we use the Fiji Virtual Stack
importer, which only loads one Z-slice in memory at a
time. This allows for the opening and to some extent the
processing of images much larger than RAM. While the
MIP works well with virtual stacks, the resulting projec-
tion is corrupted by projection artifacts.Moreover, in such
images the point-spread function (PSF) is not aligned with
Z-axis of the image. The elongation of the PSF generates
marked distortions and blurs the membrane signal in the
projection, up to the point where cells cannot be outlined
by eye (Fig. 4a), even on a source image with little signal
coming from spurious structures.
To improve the projection quality, we developed the

LocalZProjector so that it can work with virtual stacks as
well, granting it the ability to project images larger than
the available memory amount and without having to do
any pre-processing or resaving of the image. LocalZPro-
jector works with two passes through the image data,
one to compute the reference surface, one to perform
the local projection (Additional File 3: Movie S2), ensur-
ing that individual planes are read from disk at most
twice. This still comes at a time penalty. LocaLZprojec-
tor takes 8.5 min per time-point, against 1.3 min for the
MIP. But the LocalZProjector result is completely devoid
of the defects observed with the MIP and is amenable to
segmentation and quantification (Fig. 4b).

Accurate measurements of cell morphology: DeProj
In vertebrates, adult neural stem cells (NSCs) are respon-
sible for adult neurogenesis [37] and, in some vertebrates,
regeneration post-injury [38]. NSCs are organized as an
epithelial-like structure lining ventricles that has to be
maintained functional for very long periods of time (often
over years). To understand NSC population homeosta-
sis, it is essential to integrate large-scale and long-term
imaging of the NSC pool and the zebrafish telencephalon
has recently emerged as a unique model for these stud-
ies [39, 40]. To study cellular and mechanical functions of
NSCs over the entire dorsal telencephalon (pallium) we
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Fig. 4. Projection of a large quail embryo (Coturnix japonica) imaged
with LSFM. Projection results using the maximum intensity projection
(a) and the LocaLZProjector plugin (b). Bottom: details of the two
insets outlined in yellow in the top panels. Scale bars: top: 100 μm,
bottom: 20μm. The two dark horizontal lines correspond to
bleaching happening during the setup phase of the experiment. The
intensity display range is the same on the 6 images

can image whole-mount immunostainings against ZO1
(a component of tight junctions [5]), highlighting apical
domains of the NSCs. However, since the pallial hemi-
spheres are highly curved, we so far could not extract the
geometrical parameters of many NSCs (falling in periph-
ery, in sulci, etc.).
DeProj is a MATLAB app specifically built to address

this issue. DeProj requires the reference surface that gives
the shape of the tissue in the form zt = f (x, y). The refer-
ence surface can be specified as the height-map which is
the secondary output of LocaLZProjector and several oth-
ers projection tools, or as a mesh that extends over the
epithelium surface. It is smoothed by a Gaussian filter with
a σ equals to the median diameter of the cells, to miti-
gate step-wise patterns, happening for instance when the
height-map is made of integer Z-slice positions. DeProj
then takes the 2D output of the segmentation results, and
creates cell objects as closed polygons. For each point
of the polygon, a z position is determined from its (x, y)
coordinates from the reference surface function. A new
3D polygon is then created, that represents the cell api-
cal surface in 3D, effectively deprojecting it on the tissue
surface. The cells segmentation can be specified as a black
and white mask, or as a MATLAB structure returned e.g.
by TissueMiner [24] or the tool of [41], and documented
online. Several morphological metrics (area, perimeter,
orientation, eccentricity, number of neighbors, fit by an
ellipse in 3D, Euler angles, local curvatures) are then com-
puted and saved, along with the cell contour mapped
on the tissue surface. The generated DeProj data object
is used to store the analysis results and offer exporting
facilities and several visualizations of the results.
On the telecephalon image, a 3D view generated by

DeProj shows the shape of the epithelium. We can see
several regions where the tissue is very curved, particu-
larly at its borders and in the sulcus separating the regions
(Fig. 5a). A visual representation of the cell area does not
show a salient difference between a measurement made
on the proper 3D epithelium surface (Fig. 5b) or on the 2D
projection (Fig. 5c). However the histogram of the error
metric ea = (1 − a2D/a3D) between these two quantities
shows that for a large number of cells, using the 2D mea-
surement induces an error greater than 20% (Fig. 5d, 22%
of the 3000 cells in this epithelium have an error larger
than 20%). The cells with a large error are found at the
epithelium border and in the sulcus (Fig. 5e), which are
regions where the angle between the cell apical planes and
the XY plane is especially large (Fig. 5f ). Without surprise,
we find that a large slope correlates with a large error
(Fig. 5g). If a cell would be a square of side a, with one
side making an angle θ with the XY plane, then its real
area measured in 3D is a2. The 2D projection of this cell
contour on the XY plane generates a rectangle of sides a
and a × cos θ , so that the error ea is equal to 1 − cos θ for
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Fig. 5. Getting accurate cell morphology measurements in non-flat samples with DeProj. a 3D visualization of the NSC population on the zebrafish
telencephalon generated by DeProj. The cells are drawn with their approximate contour, their color encoding the number of neighbor cells (from
dark blue to yellow: 2 to 16 neighbors). b Cell apical area, measured on the 3D surface, a3D. c Cell apical area measured on the 2D projection, a2D.
The color scale is identical in b and c. d Histogram of the error metric on area (1− a2D/a3D) for all the cells of the epithelial-like surface. e Rendering
of this error on the epithelial-like surface. f Rendering of the slope of the apical plane of each cell with the XY plane. g Correlation between the slope
of the apical plane and the error on cell area for all cells of the epithelial-like surface. Red line: 100 × (1 − cosθ)
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this cell. Because real cells have complex shapes and have
a contour that is not necessarily contained in a plane, we
find that this expression constitutes a lower bound for ea
(Fig. 5g, red line).
The correction offered by DeProj is only accurate if the

height-map or the tissue mesh follow the tissue surface
accurately. We have seen above that projection methods
can return height-maps that deviate from the ground-
truth (Table 1). Of course, a uniform error in the Z posi-
tions returned by the height-map won’t impact the cells
morphology measurements. Similarly, an error that is uni-
form over a spatial scale larger than a cell will have only a
limited effect. We must therefore consider a difficult sce-
nario, where individual cells are deformed by an erroneous
height-map. To assess the impact of such a situation, we
took the data of Fig. 5 and artificially moved the Z position
of half the points along the boundary of each cell by one
Z-slice, keeping the other half in place.We then compared
the 3D area and 3D perimeter measurements made with
and without altering the cell contour. We found that the
error induced is 4.2± 3.5% on the area measurements and
2.4 ± 2.0% on the perimeter. This error range is smaller
than what we aim at correcting for with DeProj (Fig. 5d),
but is important enough to recommend checking for the
accuracy of the height-maps with the same scrutiny than
for the projections.

Discussion
As can be noted in the comparative study of this work,
there exists already several tools that perform projec-
tion of tissues in 2D from a 3D image. Their number
demonstrates the importance of the information that can
be extracted from the resulting images. This, and the
still popular usage of MIP despite its shortcomings, also
points out the difficulty of having a tool that can address
all types and qualities of images to project, despite the
similarity in tissues staining and shape. Yet the quality
of projection dictates the subsequent step in analysis, as
demonstrated in Additional File 1: Figure S3d. Some of
these tools have the advantage of being parameter-free
[8, 13–16]. LocalZProjector takes another approach and
requires several parameters to be tuned. In turn, this con-
figuration step allows it to work even with difficult 3D
images containing spurious structures and confers it a
greater adaptability. It is also to our knowledge the only
one that can process large images without pre-processing.
DeProj allows for the correction of geometrical distor-

tions caused by the projection onmorphological measure-
ments. These artifacts remain often overlooked, despite
possibly compromising the measurements accuracy when
the local angle of the tissue with the XY plane is large. It
works as the final step in our bioimage analysis pipeline
and combine the cell segmentation results with the
original shape of the sample, such as a height-map, to

yield various corrected tissue visualizations and accurate
morphological measurements on cells. Typically micro-
scopists prepare samples in such a way that the orientation
of the tissue is favorable for imaging, with itsmain orienta-
tion parallel to the XY plane. Yet, we found that in a tissue
like the pallium, the slope can exceed 40◦ in the regions
of interest. But even a more moderate slope yields dra-
matic errors on measurements taken directly on the 2D
projection (Fig. 5g).DeProj offers robustness against these
distortions, and makes it possible to accurately access the
morphology of cells in highly curved samples while taking
advantage of a simplified 2D dimensionality to segment
the tissue morphology.

Conclusions
The flexibility of LocalZProjector enables obtaining high-
quality 2D projections even when the source image display
spurious structures, a high curvature, low signal-to-noise
ratio, and is of large size. High-quality projections are
required for the robustness of subsequent analysis such
as cell segmentation. DeProj is an ideal companion tool
in a cell segmentation pipeline, as it allows for retriev-
ing accurate morphology measurements, even on the
2D projections of highly curved samples. LocalZProjec-
tor and DeProj constitute together a useful toolbox to
get accurate cell morphology measurements on epithelial
tissues.

Methods
Drosophila imaging
Notum live imaging was performed as described previ-
ously [3]. Briefly, the pupae were collected at the early
stage (0–6 h after pupal formation), aged at 29 ◦C, glued
on double sided tape on a slide and surrounded by two
metal spacers of approx. 0.650 mm. The pupal case was
opened up to the abdomen using forceps and mounted
with a 20 × 40 mm #1.5 coverslip where we buttered
halocarbon oil 10S. The coverslip was then tapped on
the spacers using regular tape. Pupae were collected 48
or 72 h after clone induction and dissected 16-18h after
pupae formation (APF). Pupae were imaged at 29◦C for
22 h on a LSM 880 scanning laser confocal microscope
(Carl Zeiss A.G.) equipped with a fast Airyscan module
using an oil 40X objective (NA 1.3), Z stacks (1 μm/slice),
every 5 min using autofocus. The autofocus was per-
formed using the autofluorescence of the cuticle in far
red (using a Zen Macro developed by Jan Ellenberg labo-
ratory, MyPic). Movies were performed in the nota close
to the scutellum region containing the midline and the
aDC and pDC macrochaetae. The experiment presents a
pupae with endoCad::GFP signal and groups of cell over-
expressing UAS-yorkie S11A S168A S250A V5 clones and
nuclei in red over the control of the GAL80TS thermosen-
sitive. The cross and the progeny were kept at 18 ◦C, and
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the pupae were switched to 29 ◦C 8 h prior to the movie
for conditional activation.

Quail embryo imaging
Fertilized quail eggs (Coturnix japonica) were purchased
from Cailles de Chanteloup. The embryos were collected
at stage XI, fixed in 4% formaldehyde/PBS for 3 h at 4 ◦C
and washed / blocked in PBS / 0.1% Triton X-100 / 2%
BSA (from Roche)/10% FBS (from Gibco). The primary
antibody used was ZO-1 (Invitrogen ZO1-1A12) at 1:200
and the secondary antibody was goat anti-mouse Alex-
aFluor 488 (A28175) at 1:500. The embryos were mounted
with DAPI-containing Fluoromount-GTM (eBioscience)
between slide and coverslip and sealed with commercial
nail polish.
Fixed quail embryos were imaged using a Dual Inverted

Single Plane Imaging Microscope (DiSPIM, 3i Marianas
Light sheet). The system geometry consists in two iden-
tical arms containing an illumination path composed of
laser light output directed to a XY scanner for generat-
ing the light sheet and a detection path where an sCMOS
camera (Hamamatsu Orca Flash 4) is fitted. Both arms are
assembled at 90 degrees and alternate from stimulating
the embryo to detecting its opposite side. This ensem-
ble is rotated by 45 degrees which allows to work on
flat mounted sample [36]. Those arms are fitted with 40x
0.8NA water immersion objective (Nikon CFI Apo NIR
40xW) with a 3.5-mmworking distance. The field of view
of the objective is 330 mm and the depth detection is lim-
ited to scattering and absorption of the light within the
sample (around 30 μm in our sample). The embryo was
irradiated with 561 nm excitation light and the stage was
scanned through both light-sheets simultaneously across
1.408 mm with a step size of 0.42 mm. The resulting
acquired stacks dimensions are 1024 × 2048 × 3339 pix-
els. The image stack produced by this system was then
de-skewed and rotated by 45◦ to yield a proper geo-
metrical representation of the sample. After de-skewing
and rotation, the final image dimension are 8669 ×2285
×1067 pixels.

Adult zebrafish brain imaging
Brains were dissected in 1X solution of phosphate
buffered saline (PBS - Fisher Bioreagents) and directly
transferred to a 4% paraformaldehyde solution in PBS for
fixation. They were fixed for 2 to 4 h at room tempera-
ture (RT) under permanent agitation. After four washing
steps in PBS, brains were dehydrated through 5 min series
of 25%, 50% and 75% methanol diluted in 0.1% tween-
20 (Sigma Life Science – P9416) PBS solution and kept
in 100% methanol (Sigma-Aldrich, 322415) at − 20 ◦C.
The whole-mount immunohistochemistry (IHC) started
by the rehydration of the telencephali. Then, the brains
were subjected to an antigen retrieval step using Histo-VT

One (Nacalai Tesque) for an hour at 65 ◦C. Brains were
rinsed in a 0.1% DMSO and 0.1% Triton X-100 (Sigma
Life Science– 1002135493) PBS 1X solution (PBT) and
then blocked with 4% normal goat serum in PBT (blocking
buffer) 4 h at RT. The blocking buffer was later replaced
by the primary antibodies solution, and the brains were
kept overnight at 4 ◦C on a rocking platform. The next
day, brains were rinsed over 24 h at room temperature
with PBT and incubated in a solution of secondary anti-
bodies diluted in PBT overnight, in the dark, and at
4 ◦C on a rocking platform. After several washes, the
telencephali were mounted in PBS on slides using a 0.7-
mm-thick holder. The primary antibody anti-ZO1 was
used at 1:200 (Mousemonoclonal IgG1 anti-ZO1, Thermo
Fisher, cat. #33-9100, RRID: AB_2533147) and the sec-
ondary antibody anti IgG was used at 1:1000 (Goat anti-
Mouse IgG (H+L) Alexa633 conjugated, Thermo Fisher,
cat. #A-21052, RRID : AB_2535719).
Images of whole-mounted immunostained telencephali

were acquired on confocal microscope (LSM700, Carl
Zeiss A.G), using a 40X oil objective. We acquired images
with a z-step of 0.65μm.We averaged each line four times
with an image resolution of 1024 ×1024 pixels with a
bit-depth of 12-bits. The power of the lasers was kept con-
stant for all of the acquisitions and the gain was adjusted
for each experiment. We recorded mosaics with a 15%
overlap to image an entire hemisphere per fish.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12915-021-01037-w.

Additional file 1: Supplementary information for “LocalZProjector and
DeProj: A toolbox for local 2D projection and accurate morphometrics of
large 3D microscopy images.”

Additional file 2: Movie S1: Capture of a local projection process of the
drosophila pupal notum. Top, from left top right: Individual Z-slices of the
3D stack of the Cadherin-GFP channel. Mask indicating what part of the
current Z-slice belongs to the reference surface. Part of the current Z-slice
within the mask. Bottom, from left to right: Resulting local projection of the
Cadherin-GFP channel (left), of the miniCic ERK biosensor (middle, Scarlet
fluorescent protein), and of a nuclear far red protein (right, iRFP1.0
fluorescent protein) centered 3 μm below the reference plane (for the
middle and right projections).

Additional file 3: Movie S2: Capture of the local projection process for
the quail embryo image shown in Fig. 4b.
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