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Abstract: Vaccines represent one of the major advances of modern medicine. Despite the many suc-
cesses of vaccination, continuous efforts to design new vaccines are needed to fight “old” pandemics,
such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing
immunity, however assessing vaccine efficacy is still challenging and underscores the need for a
better understanding of immune protective responses. Identifying reliable predictive markers of
immunogenicity can help to select and develop promising vaccine candidates during early preclinical
studies and can lead to improved, personalized, vaccination strategies. A systems biology approach
is increasingly being adopted to address these major challenges using multiple high-dimensional
technologies combined with in silico models. Although the goal is to develop predictive models of
vaccine efficacy in humans, applying this approach to animal models empowers basic and trans-
lational vaccine research. In this review, we provide an overview of vaccine immune signatures
in preclinical models, as well as in target human populations. We also discuss high-throughput
technologies used to probe vaccine-induced responses, along with data analysis and computational
methodologies applied to the predictive modeling of vaccine efficacy.

Keywords: vaccines; systems immunology; predictive biomarkers; vaccine signatures; preclinical
models; high-throughput technologies; in vivo imaging; unsupervised analyses; machine learning

1. Introduction

Vaccines are the most effective preventive measure ever developed in the fight against
diseases. They have led to the eradication of smallpox and to a major reduction in the
incidence of diseases such as diphtheria, tetanus or poliomyelitis. Nevertheless, the need
for new vaccines has never been so critical as demonstrated by the recent SARS-CoV-2
pandemic. Novel vaccines are also required to fight against “old” diseases like malaria and
tuberculosis [1], which are still responsible for millions of new infections and hundreds
of thousands of deaths each year [2]. Improving existing vaccines is also important to
increase disease control and prevent outbreaks of re-emerging pathogens [3]. For example,
despite its high efficacy, the live-attenuated yellow fever (YF) vaccine cannot be safely
administrated to immunocompromised individuals, and its slow production can lead to
vaccine shortage and subsequent inadequate control of YF epidemics [4].

One of the main goals in vaccinology is to identify factors that reflect vaccine-induced
immune responses and thus provide biomarkers of vaccine immunogenicity and efficacy.
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A biomarker can be defined as “a characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention” [5]. By extension, a vaccine signature can be de-
fined as a set of biomarkers that statistically differ between vaccinated and non-vaccinated
individuals and are indicative of vaccine-induced biological responses.

The emerging field of systems vaccinology aims to identify biomarkers and immune
signatures that correlate with vaccine efficacy to decipher protective immune mechanisms.
A correlate of protection is defined as a biomarker or an immune mechanism that is
“statistically related to and responsible for protection” [6,7]. Thus, the possibility to predict
vaccine efficacy is tightly intertwined with the notion of correlates of protection which can
be characterized by various types of biomarkers.

High-throughput technologies have rapidly expanded over the last several years and
have been frequently employed in systems vaccinology studies, making it possible to
extend the range of biomarkers included in vaccine signatures [8–12]. New approaches
in data analysis methodologies and computational modeling take vaccine signatures a
step further by giving rise to the possibility of identifying immune responses that correlate
and/or predict vaccine efficacy.

Although systems vaccinology ultimately aims to develop predictive models of vac-
cine efficacy in human populations, applying the same approach to animal models, which
allow the use of a wide range of tools in controlled study designs, empowers vaccine
research and improves preclinical studies. Notably, high-throughput imaging technologies
can be used in preclinical models to characterize immune responses at the whole-body
and tissue levels [13,14] and to define more comprehensive vaccine signatures. In addition,
using systems vaccinology in models such as non-human primates (NHPs), which are
highly predictive of the human immune and vaccine responses, will increase the translation
of discoveries from animal studies to human clinics.

Here, we review approaches to identify biomarkers and signatures of vaccine re-
sponses in preclinical models and humans. We provide an overview of high-throughput
technologies used to probe vaccine-induced responses, including in vivo and in vivo imag-
ing technologies. We also present data analysis and computational methodologies used to
define signatures that correlate with and potentially predict vaccine efficacy.

2. Identification of Biomarkers and Signatures of Vaccine Responses

One of the main goals in systems vaccinology is to identify a strong and reliable vaccine
signature that statistically differs between immunized and non-immunized individuals
that can be easily measured in the blood and at a reasonable cost.

However, protection conferred by vaccination results from complex interactions be-
tween innate and adaptive immunity and there are considerable differences between
individuals in the response to immunization. Such variation, mediated by both host fac-
tors and vaccine properties, precludes the description of a universal marker of vaccine
efficacy (Figure 1).

Indeed, many studies have demonstrated the effects of sex on vaccine responses [15–17],
as well as the preexistent immunological background and non-immunological co-factors.
Host genetic background also modulates immune responses to vaccines, for example, several
studies [8,18] demonstrated that different signatures of the yellow fever 17D strain (YF-17D)
vaccine can be found between human cohorts and Pogorelyy et al. [11] even found differences
between monozygotic twins. In the past years, the influence of host genetic factors has
been investigated more precisely through vaccinomics [19,20]. Genome wide association
studies (GWAS) have identified several polymorphisms in the human leukocyte antigen (HLA)
gene associated to a poor or non-response to the hepatitis B virus (HBV) [21–24] and to the
measles, mumps, and rubella (MMR) [25] (REF) vaccines. Other genes encoding various
cytokines, Toll-like-receptors (TLR) and their signaling molecules have been associated to
increased or decreased HBV and MMR vaccine efficacy, as reviewed extensively by Omersel
and Kuzelicki [19].
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Similarly, vaccine composition influences the dynamics of immune parameters, such as
immune-cell migration to the injection site or the immune-cell transcriptional profile [26,27].
In addition, Li et al. demonstrated that the vaccine signature differs depending on the
type of immunogen, similarly to pathogens targeting cells and tissues through various
mechanisms [27].

Consequently, host- and vaccine-related factors, extensively reviewed by Zimmer-
mann and Curtis [28], may influence and shape biomarker expression by affecting immune
responses and, subsequently, vaccine signatures.

The characterization of extensive vaccine signatures is further influenced by the
different types and sources of biomarkers, as discussed hereafter.

2.1. What Types of Biomarkers Can Be Used to Define Vaccine Signatures?

Antibody responses are widely used to assess vaccine responses [29]. However, they
may not always represent the best biomarkers of vaccine efficacy, especially when vaccine-
induced protection is mediated by cellular immunity. In addition, effective neutralizing
antibody responses may take months or years to be induced, such as for broadly human
immunodeficiency virus (HIV)-neutralizing antibodies, and can jeopardize the use of anti-
bodies as early biomarkers of vaccine-induced protection [30]. Moreover, effective antibody
responses can also be induced through T-cell independent pathways, suggesting that un-
conventional or unknown biomarkers could correlate with and predict such responses [31].
Indeed, Chaudhury et al. showed that the sole use of such analysis is too reductive to
identify differences between immune responses. Indeed, their predictive model of the
malaria vaccine-induced immune response also integrates other immune parameters, such
as IL-4 and IL-6 levels, which are variables of importance in different tissues such as blood
or liver [32].

Years of immune system screening have demonstrated that immune responses to
pathogens and vaccines are highly multifactorial and involve numerous diverse actors.
Historically, the quality of the vaccine response has been closely related to adaptive lym-
phoid cell populations, including effector responses of CD8+ T cells and CD4+ T helper
cells, as well as immune memory. However, the role of innate cell populations has been
recently re-evaluated to consider their influence in initiating and orienting the adaptive
response. Consequently, innate cells are increasingly being studied as early biomarkers
of vaccine efficacy. Notably, several studies have shown that innate myeloid cells, such
as neutrophils, monocytes, and innate lymphoid cells (ILCs), such as natural killer (NK)
cells, are of interest in defining vaccine signatures [33–36]. The diverse innate and adaptive
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immune-cell subsets, including unconventional subsets such as Tγδ lymphocytes and ILCs,
represent a large source of potential biomarkers that could be used to define signatures of
vaccine response. Furthermore, it has also been shown that the route of immunization can
orient vaccine responses, suggesting that non-immunological cells within target tissues
could broaden the list of potential biomarkers of vaccine responses [26,37].

Until now, systems vaccinology studies have mainly used transcriptomic techniques to
investigate vaccine responses and identify biomarkers to define vaccine signatures [8,11,27].
However, the multitude of chain reactions induced by vaccine injection may affect cellular
activity at different levels, such as epigenetic modifications, protein levels, or enzyme
activity, which may also constitute a large reservoir of potential biomarkers [6,38]. Other
factors, such as cytokines or growth factors should not be excluded from the list of candidate
biomarkers of vaccine responses [32,39]. Finally, variations in the composition of the
gut microbiota have been shown to influence vaccine-induced responses, thus further
increasing the spectrum of possible immune biomarkers [40].

Thus, a biomarker can be based on the detection of gene transcripts, proteins, and
metabolites at the single cell or cell population level. Furthermore, data provided by
histology, tissue imaging, and even clinical metadata are still poorly represented in the
emerging field of systems vaccinology but would also empower holistic approaches aiming
to define comprehensive signatures of vaccine efficacy (Figure 2).Vaccines 2021, 9, x  5 of 38 
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Variations of these determinants, such as genetic polymorphisms, age, host microbiome or immu-
nization procedure, thus condition the definition of vaccine signatures. Systems immunology enables
the identification of biomarkers of vaccine responses at multiple scales, from whole-body to cellular
factors. Diverse high-throughput technologies, including in vivo imaging, allow the characterization
of vaccine immune signatures through various applications, such as immune-cell tracking, cell
immunophenotyping, and multiplex profiling. Combining and integrating data at different scales
will be of great value in identifying extensive vaccine immune signatures. (a) Positron emission
tomography-computed tomography (PET-CT) imaging of the YF preM mRNA vaccine in NHPs [41].
(b) Near-infrared fluorescence (NIR) imaging to follow an anti-Langerin-HIVGag fusion vaccine
from the injection site to the draining lymph node [42]. (c) Magnetic resonance imaging (MRI) of a
DC-based vaccine in the lymph node [43]. (d) In vivo tracking of Langerhans cells within the skin by
fibered confocal fluorescence microscopy (FCFM) [44]. (e) Tracking of fluorescently labeled HIV-1
envelope glycoprotein trimers in lymph nodes by immunohistofluorescence (IHF) [45].

2.2. From What Samples Can We Identify Vaccine Response Biomarkers?

In terms of where to look, the search for immune biomarkers is not only oriented by
the factors to be identified per se and existing knowledge on the immunological processes
involved but is also further constrained by practical aspects, including technical feasibility,
as well as ethical and financial restrictions. Given such limitations, blood constitutes the
main source of biomarkers, as it is the most accessible sample in humans, allowing the
study of circulating cells, soluble factors (plasma), and antibodies (serum). The diversity
and functionality of circulating immune cells have been extensively investigated, especially
since the rise of high-throughput technologies [46,47], providing a good snapshot of the
global immune state. Furthermore, peripheral blood mononuclear cells (PBMCs) may
also reflect immune activity in other tissues, as shown by DeGottardi et al. for circulatory
CXCR5+ CD4+ T cells and lymph node T follicular helper (TFH) activity [48]. Others
have also used blood samples to identify correlates of protection for several vaccines,
such as cell-mediated immunity for varicella-zoster virus (VZV) or humoral response for
smallpox [49–51]. Finally, predictive models have also been developed from PBMC samples,
such as that described by Querec et al., predicting the YF-17D CD8+ T cell response with
high accuracy [52].

However, immune responses imply cell mobilization and maturation processes within
various tissues, including lymphoid (lymph nodes, bone marrow) and non-lymphoid
organs (liver, skin, muscles, etc.). Contrary to peripheral blood, other human tissues are
not easy to access without invasive procedures or advanced imaging techniques and have
rarely been included in large-scale studies (see Section 4). However, certain tissues may be
accessible by performing small biopsies, such as fine-needle aspiration, commonly used for
tumor biopsies or skin explants [53], although the size of such samples may limit the use
of techniques that require large numbers of cells. On the other hand, preclinical models
allow much wider access to all organs and thus the identification of relevant biomarkers
that reflect tissue-based immune mechanisms.

Moreover, differences in immune-cell colonization between tissues have been demon-
strated and must be considered when searching for vaccine biomarkers [37,46]. Indeed,
the injection site may be used to identify early biomarkers, such as antigen uptake [42,45],
whereas biomarkers of immune memory can be detected in lymph nodes and/or bone
marrow [54,55]. Deep characterization of vaccine responses may also need to account for
pathogen tropism for the identification of biomarkers. For example, liver or spleen could
be a source of biomarkers in the case of YF-17D vaccination [56].

Furthermore, mucosal immunity can be crucial in the protection conferred by certain
vaccines. Darrah et al. demonstrated that intravenous immunization of Rhesus macaques
with bacille Calmette-Guérin (BCG) vaccine (Danish Strain 1331, Statens Serum Institute,
Copenhagen, Denmark) induced a higher CD4+ and CD8+ T cell responses in cells from
bronchoalveolar lavages than by other immunization routes [57]. Pattyn et al. reviewed
studies in which human papillomavirus (HPV)-specific antibodies were measured in
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cervicovaginal secretions in response to HPV vaccine [58], which implies that, similarly to
tissues, biological fluids may also represent a potential source of biomarkers.

In conclusion, various types of biological samples reflect different aspects of the
immune response and influence the biomarkers that can be identified. Thus, investigating
diverse types of samples leads to deeper characterization of vaccine responses and allows
unravelling of the vaccine biomarkers involved in various immune processes.

2.3. At What Time Should We Identify Vaccine Response Biomarkers?

Temporality is another important dimension to consider when identifying biomarkers
to define vaccine signatures, as they would vary in parallel with the stages of the immune
response, from the baseline to effector and memory stages.

Recently, a study aiming to better understand the impact of early innate parameters
on the adaptive response against modified vaccinia Ankara (MVA) identified cellular
and molecular events specifically activated by MVA immunization as early as six hours
post-vaccination [36]. Other studies have also shown that early time points, within 24 h
post-immunization, are of interest, as early innate biomarkers correlated with the adaptive
responses to the vaccine [8,33]. Furthermore, innate immune biomarkers can be detected
as late as two months after vaccination, as observed for granulocytes, monocytes, and
dendritic cells (DCs) from NHPs immunized with MVA [35]. Apart from innate immunity,
certain biomarkers may need weeks to appear, in particular those associated with adaptive
responses and maturation processes that lead to vaccine memory. In addition, the identifi-
cation of immune parameters that correlate with long-term memory induced by vaccines
may require searching for biomarkers several months after immunization. For example,
Bhaumik et al. investigated the long-term persistence of immune memory following one-
or two-dose inactivated poliovirus vaccine schedules. They showed that memory B cells
can be induced by both vaccine regimens, although this cell subset declined by five months
after a single immunization, whereas it persisted for more than one year with the two-
dose strategy [59]. Additionally, identifying predictive biomarkers at baseline, i.e., before
vaccination, has drawn interest from researchers who reported proof-of-concept results on
influenza [60,61], yellow fever [62], and hepatitis B [63] vaccines. Thus, the identification
of biomarkers will be highly dependent on the time of sampling.

However, sampling is not the only temporal component that influences vaccine sig-
natures. Indeed, several studies have highlighted the impact of the vaccine schedule on
the distribution of cell populations or antibody production [33,64]. Thus, differential post-
prime and post-boost vaccine signatures could be identified and characterized, which could
provide useful insights to the design of new vaccination strategies for human populations.

Temporal considerations thus represent an important source of biomarker variation
that need to be thoroughly investigated to fully understand the impact of time on the
immune responses and biomarker dynamics following vaccine injection.

Beyond considerations of nature, distribution and time, the identification of vac-
cine signatures is also conditioned by the technologies used to measure immune-related
biomarkers, as discussed in the following sections.

3. Conventional High-Throughput Technologies to Assess Vaccine Responses
3.1. High-Dimensional Flow and Mass Cytometry

Technologies for single cell analysis have become crucial in the field of vaccinol-
ogy. The advances in cytometric technologies over the last several years have allowed
researchers to obtain a comprehensive understanding of heterogeneity among immune
cells, cell function, cellular differentiation, and signaling pathways [65] and to apply this
knowledge to the discovery of biomarkers of vaccine responses [66].

Traditional fluorescent flow cytometry relies on fluorescent markers as a reporter. The
emission spectra overlap of the various fluorophores, auto-fluorescence, and compensation-
related issues limit the number of markers that can be simultaneously measured. On
the other hand, spectral flow cytometry is based on many of the fundamental aspects of
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conventional flow cytometry but has unique optical collection and analytical capabilities,
doubling the number of markers that can be simultaneously measured [67].

A format for flow cytometry has been developed that takes advantage of the precision
of mass spectrometry. This fusion of the two technologies, called mass cytometry, enables
the simultaneous measurement of up to 50 cellular features at single-cell resolution, sig-
nificantly augmenting the ability of cytometry to evaluate complex cellular systems and
processes [68,69]. These characteristics enable the investigation of complex and coordinated
cellular systems by observing the diversity of cellular phenotypes and behaviors in a single
sample [68]. This technology opens new possibilities in vaccinology, providing a tool
capable of simultaneously capturing diverse aspects of cellular behavior in millions of
individual immune cells.

Indeed, mass cytometry has since shown that there are hundreds of phenotypically
distinct cell types in the peripheral blood of humans and animal models [36,70,71]. The
ability to discriminate between these cell types is crucial to our understanding of cellular
immunity and vaccine responses, and mass cytometry has become a powerful tool for this
purpose. This can be illustrated by recent human and preclinical vaccine studies, which
provide evidence of the phenotypic diversity of both lymphoid and myeloid cells [46].

For example, Palgen et al. characterized qualitative and quantitative differences in the
recruitment of innate myeloid cells following MVA prime-boost immunization of NHPs [35].
Moreover, longitudinal mass cytometry analysis of NK cells after MVA vaccination revealed
key features of cell phenotype, suggesting that the innate response to the boost is more
highly coordinated between NK cells and innate myeloid cells than the response to the
prime [34]. Another study highlighted the phenotypic heterogeneity of vaccine-altered
circulating B cells of NHPs immunized twice with MVA, two months apart [72].

Mass cytometry has also been used to identify novel influenza vaccine-specific CD4+

T-cell subsets in humans [73]. In this study, the authors identified two cell clusters that
responded either to influenza peptide stimulation or influenza vaccination. One cluster
corresponded to pre-existing influenza virus-specific cells that presumably persisted from
previous vaccination(s) or infection(s), whereas the second cluster reflected CD4+ T cells
responding to influenza vaccination but not the specific peptides used for stimulation. Both
clusters appeared to be effector memory subsets with low CCR7 and CD45RA expression
and their cytokine expression profiles were distinct, as the first showed high IL-2, TNF-
α, and IFN-γ expression, whereas the second mainly expressed IL-17. These detailed
analyses underscore the role of CD4+ memory T-cell subsets in influenza virus infection
and highlight the huge potential of mass cytometry to distinguish and characterize very
specific cell subsets [73].

In a unique study, the ontogeny of various subsets of YF-17D-specific circulatory
CXCR5+ CD4+ T cells was accessed by unsupervised analysis of mass cytometry data. The
authors observed that YF virus-specific CXCR5+ T cells existed in multiple phenotypic
clusters and that one key population was mainly ICOS+ PD1+ CD38+. This population most
resembled germinal center T follicular helper (GC-TFH) cells, based on surface marker
expression, and exhibited delayed accumulation in the periphery, implying that these T cells
could be emigrants from lymph node germinal centers (GCs). The relative kinetics of their
emergence following vaccination suggests that these triple positive CXCR5+ cells transition
to become CD38+ ICOS−PD1+ and then CD38− ICOS−PD1+ cells before accumulating in
the periphery as CD38− ICOS−PD1−CCR7+ cells. Overall, these results imply that most
antigen-specific CXCR5+ T cells are derived from pre-TFH, and/or TFH cells [48].

Mass cytometry was also applied to comprehensively characterize the circulating
immune-cell populations in elderly individuals, both before and after administration of an
investigational adjuvanted protein vaccine against respiratory syncytial virus (RSV) in a
Phase 1a trial. Here, mass cytometry was used to characterize the cellular response profile
of enzyme-linked immunospot (ELISPOT) responders and non-responders. Principal
component analysis revealed baseline differences in activated (HLA-DR+) CD4+ and CD8+

T cells, which were more numerous in non-responders than responders. Higher expression
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of HLA-DR, CCR7, CD127, and CD69 was also found in non-responders than responders
using a viSNE algorithm to analyze RSV-responsive CD4+ and CD8+ T cells [74].

These studies demonstrate the potential of mass cytometry as a powerful technology
to enable comprehensive profiling of immune components, thus allowing the prediction of
responses to vaccines.

3.2. Cytokine Profiling

Immune-based assays are widely used to assess vaccine responses and since the rise
of systems vaccinology, numerous studies have shown correlations between transcriptomic
and cytokine signatures to various vaccines. Various technologies are currently avail-
able, from single-plex to multiplex analysis, allowing the identification of soluble vaccine
biomarkers. Some have been reviewed by D. Furman and MM. Davis [75].

Most immunoassays are based on enzyme-linked immunosorbent assays (ELISAs),
widely used for the robust and reliable detection of soluble components at low concentra-
tion (ng to pg/mL) by the measurement of absorbance. ELISPOT and fluoro-immunospot
(FLUOROSPOT) are very sensitive ELISA-derived techniques designed to study the cy-
tokine production capacity of cells upon specific stimulation. Contrary to ELISA, FLUO-
ROSPOT allows the identification of poly-secreting cells by the simultaneous detection of
up to four analytes using fluorescent antibodies. Despite their sensitivity, these techniques
are restricted to a small number of analytes and multiplying tests to increase soluble factor
detection requires larger sample volumes and is time consuming.

Therefore, multiplex immunoassays have been developed that allow rapid simultane-
ous quantification of a wide diversity of soluble proteins combined with high sensitivity
(down to pg/mL and even fg/mL for SIMOA®, Quanterix, Billerica, MA, USA) with
very small biological samples (down to 1 µL). ELISA-based multiplexing technologies,
such as Quantibody® microarrays (MSD) or xMAP® Technology (Luminex®, Austin, TX,
USA), are commonly used for cytokine profiling and immunological studies. For example,
multiplex profiling of 24 cytokines/chemokines was performed on healthy individuals
and tuberculosis patients and identified seven differentially expressed biomarkers between
the two groups [76]. Such techniques might also reveal biomarkers in vaccine studies.
These techniques rely on capture antibodies coated on slides with a spatial specificity (MSD,
Quantibody® microarrays) or on microbeads in suspension (xMAP® Technology, Luminex®

assays), with a detection method related to flow cytometry. Another high-throughput multi-
plexing immunoassay with a sensitive detection method, based on quantitative polymerase
chain reaction (qPCR) amplification of DNA oligonucleotides coupled to antibodies, has
been developed: the proximity extension assay (PEA, Olink®, Uppsala, Sweden). PEA
has demonstrated a robust ability in proteomic profiling in various diseases, including
SARS-CoV-2 infection [77], and is yet another powerful tool to explore biomarkers of
vaccine responses.

Cytokine measurement can also be performed using flow or mass-cytometry by intra-
cellular cytokine staining (ICS). This method allows characterization of the cell secretion
profile after their potential stimulation, along with their surface phenotype. However,
despite precise identification of the producing cells, the sensitivity of ICS is generally lower
than that of other immunoassays [78].

Systems vaccinology studies have embedded multiplexing technologies in the identi-
fication of soluble biomarkers of vaccine responses. Huttner et al. defined an Ebola vaccine
(recombinant vesicular stomatitis virus-vectored Zaire Ebola vaccine, rVSV-ZEBOV) cy-
tokine signature associated with biological and clinical outcomes [79]. An early IP-10
signature correlating with the antibody response was also identified after immunization
with rVSV-ZEBOV [12]. More recently, several soluble factors, including IP-10, were identi-
fied using a 27-plex assay and shown to be important biomarkers of immune responses to
tularemia vaccines [39].

Large-scale profiling techniques of soluble factors are thus appropriate for the deep
characterization of cell secretion in response to immunogens.
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3.3. OMICS Technologies

In addition to immune-cell phenotyping using multiparameter cytometry (flow or
mass) and immunoproteomics, gene expression is widely used to identify signatures
and predictors of vaccine-induced specific antibody and T-cell responses. Furthermore,
transcriptomic and genomic data (using next-generation sequencing) allow to capture
the diversity of the immune repertoire induced by vaccines [80], with a comprehensive
quantification of full-length T cell receptor (TCR) and B cell receptor (BCR) variable region
sequences [81]. Additional layers of information, including epigenomic (using ChIP-Seq
or ATAC-Seq), metabolomic (using nuclear magnetic resonance spectroscopy and mass
spectrometry), and that from the microbiome (using 16S rRNA or shotgun metagenomic
sequencing) can be used to further characterize vaccine responses, as appropriate technolo-
gies are becoming available [38,82].

Transcriptomics (using RNA microarrays or RNA-Seq) analyzes sets of RNA tran-
scripts. Microarrays are based on a fixed probe technology, whereas RNA-Seq quantifies
the abundance of all transcripts (any sequence). Epigenomics studies the set of chemical
modifications of the DNA and histone proteins, of which the type and position determine
the chromatin structure and accessibility to the transcriptional machinery. These are key
for the regulation of gene expression. Metabolomics studies the set of metabolites present
in biofluids, cells, and tissues. Metabolites can be the substrates or products of metabolism.
They can also originate from microorganisms, xenobiotic exposure, or the diet. The micro-
biome refers to the genomes of all microorganisms in our body (gut, skin, lungs, and other
epithelial surfaces). The microbiota modulates host immune responses locally and globally.

Transcriptomes and chromatin states can also be studied at the single-cell level and
even simultaneously. Bulk measurements, such as whole blood or PBMC RNA-Seq, are
indeed sensitive to changes in the most abundant cell subsets (changes in gene expression
and/or cell composition), but do not capture changes in rare cell populations. Recently,
single-cell -omics technologies have been used successfully to study the immune cell re-
sponses triggered by BCG [57], HIV [83] and SARS-CoV2 [84] vaccines. Similarly, TCR and
BCR sequencing have been applied at the single-cell level to characterize the immune reper-
toire of human individuals immunized with YF-17D [85], and influenza [86,87] vaccines
and in HIV-vaccinated Rhesus macaques [88]. Similarly, Waickman et al. used single-cell
RNA-Seq in combination with longitudinal TCR clonotype analysis to study T cell immu-
nity in response to immunization with a recombinant, tetravalent dengue virus (DENV)
vaccine [89]. Precisely, they were able to identify a set of biomarkers which characterize
the most persistent vaccine-reactive memory CD8+ T cells. These studies illustrate how
single-cell transcriptomic analyses can provide insights into the molecular mechanisms
implicated in the regulation of immune memory and more generally, in immune responses
to vaccines.

However, there are many challenges associated to the use of -omics technologies. The
sample size for both discovery and validation cohorts needs to be sufficient to overcome the
risk of high type 1 and 2 errors due to the large number of markers that are measured using
omics technologies and the low contributing effect size of individual markers. Moreover,
the integration of multi-omics data is far from being straightforward (see Section 5).

In addition to these high-throughput technologies, conventionally used in systems
vaccinology studies, preclinical models offer the possibility to enrich vaccine signatures
with imaging data.

4. Imaging Technologies to Refine and Expand Vaccine Signatures
4.1. In Vivo Imaging of Vaccine Trafficking and the Immune Response

The monitoring of vaccine components and the assessment of immune-cell dynamics
at injection sites and lymph nodes allows better understanding of the immune response to
vaccines. A variety of in vivo imaging modalities, including optical imaging (fluorescence
and bioluminescence), magnetic resonance imaging (MRI), and nuclear imaging (positron
emission tomography (PET), single photon emission computed tomography (SPECT)) can
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be used to study such dynamics. Thus, in vivo non-invasive imaging techniques are widely
used to visualize the location and distribution of molecules, antigens, and inflammatory
immune cells. The advantages, limitations, and applications of these imaging modalities
have been well reviewed in the literature [90–92].

4.1.1. Whole Body Imaging of Vaccine Distribution and the Immune Response

Fluorescence imaging allows the in vivo visualization of the dynamics of vaccines and
their interaction with immune cells in real time, facilitating the understanding of vaccine-
induced immune-response mechanisms in preclinical models. For example, Romain et al.
assessed the migration kinetics of a vaccine based on DCs expressing HIV-Gag protein from
the injection site to draining lymph nodes (DLNs) in macaques by NIR (near infrared) fluo-
rescence imaging [93]. Furthermore, Salabert et al. studied the development of in vivo and
in vivo approaches to track vaccine-targeted Langerhans cells (LCs) following intradermal
injection in NHPs [42].

Magnetic resonance imaging (MRI), widely used in clinical practice, makes it possible
to obtain high whole-body anatomical resolution and is particularly suited for the analysis
of both vaccine biodistribution and the associated immune response. This is achieved using
various contrast agents and probes to label the vaccines and cells for MRI tracking [94]. For
example, the in vivo longitudinal biodistribution of a vaccine labeled with superparam-
agnetic iron oxide (SPIO) was assessed in a mouse HPV16 tumor model and showed the
presence of the antigen for several weeks post-vaccination in the DLNs [95]. The efficacy
of DC-based vaccines is limited in patients and may be due to insufficient delivery of the
vaccine to the lymph nodes. The tracking of iron nanoparticle-labelled DCs to the lymph
nodes by MRI is possible in mice [96] and can be safely performed in patients [43], allowing
the improvement of vaccine design.

The ability to directly image myeloid and lymphoid cells, and changes in their distri-
bution in vivo is crucial to achieving a better understanding of the processes of the immune
response. Several studies have demonstrated the ability to track and visualize immune
cells by in vivo imaging (e.g., MRI and PET imaging) in various applications following
either the reinjection of previously ex vivo labeled cells or the direct in vivo administration
of specific labeled ligands [92].

The labeling of macrophages for the evaluation of inflammatory processes by MRI has
been performed directly in situ after the phagocytosis of injected iron oxide contrast agents.
This method has been shown to allow the visualization of tumor-associated macrophages
(TAMs) or monocyte infiltration in various animal models [97–100]. Tremblay et al. [101]
evaluated whether MRI can be used to track immune-cell populations in response to a
lipid-based vaccine immunotherapy in a mouse model of human papillomavirus-based
cervical cancer. They were able to track the increased recruitment of SPIO labeled CD8+

cytotoxic T cells and the decreased recruitment of myeloid-derived suppressor cells and
regulatory T cells to the tumor with hypo-intensities due to the clearing of iron-labeled
cells. However, the sensitivity of MRI is relatively low, limiting the possible detection of a
low number of cells.

Nuclear imaging, PET, and SPECT are highly sensitive imaging modalities used in the
clinic, based on the biodistribution of radiotracers within the body. SPECT imaging was
proposed to investigate the biodistribution and kinetics of reinjected [111In] adiolabeled
NK cell-based vaccines in patients with renal carcinoma. The authors observed the accu-
mulation of 50% of the activity in the lesions, but a high level of circulating activity was
also observed, caused by the released Indium-111 [102].

PET is mainly used in oncology for the visualization of sites of inflammation [90].
To date, only a few studies describing the use of PET for the tracking of vaccines have been
published. Among them, Yuki et al. developed a PET imaging approach associated with
MRI or CT (computed tomography) to study the biodistribution of an intranasal botulism
antigen vaccine (Bo-Hc/A) labelled with [18F] in mice and NHPs [103]. In addition,
Lindsay et al. developed an innovative dual radionuclide-near-infrared probe that allowed
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the longitudinal monitoring of an mRNA vaccine at the injection site and the lymph nodes,
as well as its uptake by the immune cells, by PET and NIR fluorescence in macaques [41].

The visualization of inflammatory processes by PET imaging is an approach appli-
cable to the monitoring of vaccine responses. Several studies have shown cell activation
in lymphoid tissues, such as lymph nodes, by [18F]-FDG PET imaging after the adminis-
tration of vaccines in mice [104] and humans [105]. Darrah et al. [57] described the use of
[18F]-FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose to track granuloma formation after My-
cobacterium tuberculosis infection, as a correlate of active disease after BCG immunization.
[18F]-FDG PET imaging can also be used for the monitoring of the inflammation related to
vaccination, such as that induced by influenza vaccines [106–108].

Aarntzen et al. [109] showed the interest of using a radiolabeled thymidine analog,
[18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]-FLT), to assess the proliferative immune
cell response in lymph nodes after vaccination with an antigen-loaded DC vaccine. The
authors showed a better correlation of [18F]-FLT than [18F]-FDG PET imaging with immune
reactivity. However, theses imaging methods, lack the specificity and discriminatory power that
antibodies or their fragments provide to specifically target immune cells in vivo [14,110–112].

Several studies aiming to track immune cells have used ex vivo v cell labeling to
visualize them by nuclear imaging [113,114]. PET-CT imaging allowed the visualization of
adoptively-infused NK cells, previously labeled with [89Zr]-oxine, in rhesus macaques.

Ex vivo cell labeling shows certain drawbacks, such as the need of autologous transfer,
especially in the case of clinical applications, or the potential loss of cell properties by ex
vivo manipulation. Thus, other strategies have been used to directly label cells in vivo.
Certain strategies have been recently developed to specifically target, track, and visualize
disease-specific antigens, as well as immune-cell subsets, after injection of the antibody or
derived fragments coupled with metal chelators, such as [64Cu], [68Ga], or [89Zr] [115,116]
for PET (so called immuno-PET) or coupled with MRI contrast agents [117] or fluorophores
for in vivo optical imaging [44,118].

Full-sized antibodies have been widely and successfully used for immuno-PET imag-
ing [119–121]. However, the size and the long half-life of intact antibodies can be a limi-
tation for their use as imaging agents. Many of these issues have been addressed by the
use of smaller antibody fragments (Fabs, diabodies, single-domain antibody fragments
(nanobodies), etc.) [112,116,122].

Among the strategies for imaging innate myeloid inflammatory cells, entire anti-
CD11b, anti-class II major histocompatibility complex (MHC), and anti-macrophage man-
nose receptor antibodies or antibody fragments have been widely used to character-
ize inflammation by immuno-PET, mainly in mice [14,111,119,123,124]. For example,
Cao et al. [119] developed the radiotracer [64Cu]-labeled anti-CD11b for longitudinal moni-
toring of the mobilization of CD11b+ myeloid cells from the bone marrow to the spleen
and to local inflammatory lesions in mice.

Imaging of macrophages has already been performed in various applications to
study inflammatory processes by targeting folate receptors [125] with radioligands. The
macrophage mannose receptor has largely been used to track macrophages, especially with
nanobodies specifically developed for SPECT and PET imaging to target the receptor in
various preclinical models [123,126,127].

The presence of CD8+ T cells has also been monitored by immunoPET in preclinical
tumor models, specifically in the context of immunotherapies using checkpoint-blockade
inhibitors against the PD-1/PD-L1 and CTLA-4 axes [111]. Strategies can vary according
to the injected radiolabeled antibody fragment [14,128–131]. An even higher specificity can
be achieved by targeting and visualizing antigen-specific T cells in vivo [132].

Thus, whole-body immunoPET combines the sensitivity of PET with the high speci-
ficity and affinity of monoclonal antibodies. Furthermore, the use of antibody-derived
fragments allows better tissue penetration, a lower background, and a smaller radiation
burden for the patient.
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4.1.2. In Vivo Microscopic Imaging of the Interactions between Vaccines and Immune Cells

The complexity of the immune system, particularly when vaccines are involved,
requires real-time, high-resolution imaging to visualize immune-cell interactions at the
microscopic level. Intravital microscopy (fibered confocal fluorescence microscopy (FCFM),
two-photon imaging) provides the detailed visualization of vaccines and their behaviors in
the injection sites or lymph nodes.

Fibered confocal fluorescence microscopy (FCFM) was limited to preclinical applica-
tions due to the lack of human validated fluorescent tracers. FCFM is developed notably
for the visualization of tumor growth and angiogenesis [133,134], as well as the tracking of
vaccines and immune cell behavior. For example, Mahe et al. tracked percutaneous injected
MVA expressing green-fluorescent protein (eGFP) in mice, its uptake by antigen presenting
cells (APCs), and their transport to lymph nodes using FCFM [135]. Later, Rosenbaum et al.
evaluated the kinetics of the arrival of MVA-eGFP-expressing cells in the skin by repeated
in vivo imaging using FCFM (CellVizio Dualband®, Mauna Kea Technologies, France)
in NHPs [36]. FCFM has also been used to study the in vivo effect of electroporation on
antigen expression and APC behavior after intradermal injection of DNA-SIV vaccine
expressing eGFP in macaques [118].

Two-photon microscopy (2PM) has been adopted to study single-cell dynamics at
high spatial resolution at a depth of several hundred microns [136]. The available adapted
2PM devices allow ex vivo studies of tissue and in vivo studies in small animals. After
vaccination, Rattanapack et al. studied the kinetics of in vivo uptake of a peptide anti-
gen delivered within a lipid nanosystem by dermal DCs over time in mice [137]. It is
also possible to track T- and B-cell motility in isolated lymph nodes from mice following
antigen stimulation [138]. Bousso et al. used 2PM to directly examine the cellular dy-
namics of fluorescently labeled CD8+ T cells and DCs in vivo in the lymph node before
and during antigen recognition in mice [139]. Although this approach is only limited to
preclinical studies, intravital microscopy of the skin or surgically exposed internal organs
offers excellent resolution for studying individual cells or even subcellular structures and
microorganisms [140,141].

4.2. Ex Vivo Multiparametric Analyses

To provide the most advanced technologies for characterization of the complexity
of the immune response to vaccination in relevant tissues, it is necessary to complement
and strengthen in vivo imaging methods with state-of-the-art technologies for in situ
multiplexed characterization of cellular and subcellular markers of the immune response.
Despite the considerable advantages of available imaging techniques, one of the main
drawbacks is the small number of parameters that can be simultaneously analyzed.

Immunohistochemistry (IHC) and immunohistofluorescence (IHF) are currently the
most common and suitable techniques to gain insights on changes in the spatial immune
phenotype in various tissues. Immunofluorescence is widely used to detect multiple
immune and inflammatory cell populations, as well as pathogens or vaccines in ex-vivo
samples. It allows the assessment of innate and adaptive immune responses, especially their
effectors in lymphoid organs or infected sites after pathogen challenge or immunization.
For example, Darrah and al. [57] observed differences in immune-cell activation in the
lungs of rhesus macaques depending on the route of BCG immunization.

Epifluorescence and confocal microscopy allow the observation of cellular and subcel-
lular compartments. However, the number of observable markers is limited using such
devices due to fluorophore spectra overlap. This can be partially resolved by the use of
white laser confocal microscopy, spectral imaging, or cyclic immunofluorescence [142].

Tissue clearing, by reducing light-scattering and light-absorbing components, over-
comes the limits of light penetration and thus allows deep imaging [143]. Three-dimensional
imaging can then be performed by confocal, super-resolution confocal, multiphoton, and
light-sheet microscopy [144]. For example, Li et al. [145] showed the interest of this method
in characterizing the distribution of fluorescent vaccine constructs and the structural com-
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position of tissues using an endothelial marker (CD31), T (CD8) and B (B220) lymphocyte
markers. Although multiplex analyses can be performed at high spatial resolution using
IHF approaches, the revelation of the diversity of the visualized markers can be limited.

Mass spectrometry imaging (MSI), the combination of molecular mass analysis and
spatial information, can provide information on the spatial distribution of endogenous and
exogenous species in tissue sections, without the need to disrupt sample integrity [146,147].
It enables both untargeted and direct targeted investigations for the discovery of dis-
ease or host immune response-related biomarkers, although the sensitivity for intact
macromolecules, such as proteins, is still limited [148,149]. Matrix-assisted laser desorp-
tion/ionization (MALDI) is the most popular ionization technique for MSI due to its ability
to image a wide range of molecular weights and molecular species (e.g., metabolites and
proteins). To further analyze tissue specimens, multimodal studies combining MRI, 3D-
MALDI-MSI, and histology [150] allow rapid correlation between molecular information
and anatomical annotation. Combining MSI with liquid chromatography coupled to tan-
dem mass spectrometry (LC-MS/MS) has also allowed the multiparametric analysis of
proteins, lipids, metabolites, and mRNA to explore early immune events following vacci-
nation [53]. The combination of MSI and histology is of particular interest for providing a
snapshot of the tissue microenvironment and enables the correlation of drugs, metabolites,
lipids, peptides, and proteins with histological/pathological features [151,152].

One of the major recent advances of MSI is associated with the introduction of mass
cytometry imaging (MCI), a label-based MSI technique to follow protein markers at the
cellular and subcellular level that combines mass cytometry and immunocytochemistry
(ICC), IHC or IHF techniques, a high-resolution laser ablation system, and a low-dispersion
laser ablation chamber [153,154]. MCI is a multiplex method for tissue phenotyping,
signaling pathway imaging, and cell marker assessment at sub-cellular resolution (1 µm)
that allows up to 40 parameters to be visualized in a single tissue section [155]. They
offer the opportunity to investigate the heterogeneity of tissues and to understand disease
development using disease-related probes [153,156,157]. MCI is currently more compatible
with common sample preservation methods (formalin fixation or embedding in optimal
cutting temperature compound (OCT)) [158]. It is being extensively used for the analysis
of immune-cell composition, interactions, and localization in tissues. For example, this
method allowed mapping of the anatomical location of myeloid cell subsets in human
tonsil tissue [159] and the spatiotemporal relationship between memory B cells and the
marginal zone [156].

Progress in the development of these high-multiplex techniques has allowed the
identification of various cell populations that comprise the immune system, but they
still present certain limitations. Gerner et al. developed an approach, histocytometry,
which associates the spatial information that can be obtained using histology with the
phenotypic data provided by flow cytometry [160]. They showed that the positioning of
DC subsets within lymph nodes defines different levels of T-cell activation in response to
vaccination [161]. Histocytometric analysis of human lymph nodes during HIV infection
led to the identification of potent CD8 T cells within the germinal center, which could be
considered as an effective component for the development of HIV cures [162]. Nevertheless,
the non-uniform distribution of cells in the organ and the low density of certain populations
compromise this analysis, performed on individual tissue sections. To overcome these
limitations, Li et al. proposed methods to enable quantitative visualization of cells in their
microenvironment within large tissue volumes, allowing better exploration of cellular
relationships in various tissues [145,163]. Recent automation has allowed high-throughput
image analysis, making histocytometry more useful for immunology applications [164].

High multiplexing methods have prompted the need for the development of image
processing and analysis tools using complex machine-learning algorithms.
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5. Bioinformatics and Statistical Tools to Build Predictive Models of
Vaccine Responses
5.1. Analysis of High-Dimensional Biological Data

The ability to efficiently use or design analytical pipelines for interpreting -omics
data has emerged as a critical element for modern vaccinology research. Such analytical
pipelines are generally developed using one or more programming languages (usually
including R or Python). Their aim is to handle a large panel of analytical steps, ranging
from data preprocessing to data integration. Proper analytical pipelines should be suffi-
ciently flexible to tackle various studies but also sufficiently focused on certain methods to
answer immunological questions specific to each study. Bioinformatics pipelines used to
interpret high-dimensional immunological data should follow the FAIR principles (that is
to say that data collected and handled within these pipelines must be findable, accessible,
interoperable, and reusable) [165]. The use of paradigms derived from computer science,
such as code versioning and the writing of extended documentation, are fundamental
when developing pipelines, as it allows them to be reusable over time. Machine-learning
methods and algorithms that comprise analysis pipelines can generally be classified into
unsupervised or supervised approaches. Unsupervised algorithms aim to analyze datasets
without major a priori assumptions, especially in terms of the biological conditions to which
the samples belong. The most commonly used unsupervised algorithms are clustering
(kmeans, hierarchical clustering), dimensionality reduction (principal component analysis
(PCA), multidimensional scaling (MDS)), and association rules learning (a priori algorithm).
On the other hand, supervised algorithms aim to analyze datasets with direct consideration
of the metainformation available for each sample. The most commonly used supervised
algorithms are discriminant analyses, decision trees with random forests, and, more gener-
ally, all classification or regression approaches. Although supervised analyses are critical
for identifying biomarkers for an immunization, unsupervised analyses are critical for
revealing unexpected characteristics of a dataset (such as subgroups of responders/non-
responders and the heterogeneity of the conditions). Both unsupervised and supervised
approaches are extremely complementary when analyzing -omics responses to vaccines
and immunizations.

Due to its development in the early 21st century, transcriptomics analysis now benefits
from an outstanding variety of algorithms, methods, software, and dedicated databases.
Despite the large set of available data analysis approaches, differential expression anal-
ysis is still the gold-standard for interpreting transcriptomic profiles [166]. Differential
expression analysis aims to identify genes or transcripts that are significantly differentially
expressed between conditions to identify biomarkers of the immune response. Volcano-
plot representations are informative graphs used to visualize the magnitude (quantified
using the relative fold-change of expression) and statistical significance (quantified using
p-values) of differentially expressed genes. Once identified, the ability of one or multiple
gene signatures to segregate the biological conditions of interest is tested using multivariate
representations. Among them, heatmaps combined with dendrograms show the relative
levels of gene expression for the gene signature in all samples using unsupervised hierarchi-
cal clustering at both the gene and sample level. Dimensionality reduction methods, such
as PCA and MDS, are also useful in determining the quality of a signature and its ability to
separate conditions in a multivariate manner. Venn diagrams are common representations
that show the amount of overlap between multiple gene signatures. Due to their length
(generally ranging from a few hundred to a few thousand genes), gene signatures cannot
be interpreted manually, gene by gene, in relation to the literature and must be interpreted
using specific methods. Functional enrichment analysis gathers a large set of methods
and databases and aims to identify over-represented biological functions or pathways in a
gene signature of interest. Statistical tests, generally based on Fisher’s exact test, make it
possible to determine which pathways are significantly over-represented. The most widely
used databases for functional enrichment analysis are Gene Onthology [167], KEGG, and
WikiPathways. Other databases, such the Human Gene Atlas database [168], are of in-
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terest in systems immunology as they aim to deconvolute transcriptomic profiles from
PBMCs or whole blood samples into the cell populations that comprise them. The EnrichR
database [169] is a meta-database for functional enrichment analysis that is composed of
more than 170 different databases of pathways, function, and biological properties. Such a
large spectrum of covered databases is useful for the discovery of functions associated with
identified gene signatures. Gene co-expression networks, created by algorithms such as
WGCNA [170], can be used to identify sets of genes with similar expression patterns in the
datasets to complement the analysis of transcriptomic profiles. In such networks, each dot
corresponds to a gene and genes are linked if there is a significant correlation between their
expression profiles in the dataset. Such approaches are especially useful when integrating
transcriptomics data with other -omics or clinical information.

The development of algorithms for analyzing cytometry profiles is still an active area
of research. Although automatic gating approaches mimic cytometry experts by posi-
tioning gates in cytogram plots (two-dimension (2D) representations in which each axis
corresponds to the expression of one cell parameter), automatic cell clustering algorithms
identify groups of cells that have similar phenotypes (also called cell clusters). SPADE [171]
and FlowSOM [172] were among the first widely adopted automatic cell clustering al-
gorithms. Dimensionality reduction methods combined with unsupervised clustering
are now commonly used, especially the tSNE [173] and UMAP [174] algorithms, which
generate 2D representations of cytometry profiles and have become increasingly popular
in recent years in immunology and vaccinology. In such 2D representations, each dot
corresponds to a cell and cells are positioned based on their similarity of expression for
selected markers. Once generated, UMAP or tSNE representations can be overlaid with
the expression of specific markers using a color gradient to annotate cells and define sets
of cell subpopulations. Clustering algorithms can be used to automatically identify these
groups of cells. Such algorithms are essential, as they can identify complex phenotypes
of cell populations that cannot be characterized using regular manual gating approaches.
Importantly, these algorithms can also identify cell populations that have distinct pheno-
types, as well as those that show continuous differences in marker expression (especially
important in the context of cell differentiation and activation states). Once cellular clusters
have been determined, the aim of subsequent analyses is to identify clusters that are statisti-
cally differentially abundant between conditions. Topological data analysis algorithms are
currently used to unravel the characteristics of cell differentiation or kinetics to a stimulus.
The annotation of determined cell clusters (also called cell cluster labeling) is currently a
major challenge. The aim of such approaches is to annotate the cell clusters based on their
levels of marker expression and existing knowledge about the cell populations. The exact
classification of cell populations into a well-defined nomenclature does not yet exist and
represents a major limitation for applying these annotation algorithms. In addition, the
complexity and heterogeneity of the cell populations involved in vaccination are yet to be
fully explored.

Single cell sequencing will have for sure a pivotal role in modern biology to decipher
both molecular and cellular events involved in vaccination. Thanks to this technique, key
internal mechanisms responsible for cell activation, proliferation, and differentiation will
be characterized at unprecedented level of detail allowing more rational when designing
vaccines. While most of the recent efforts have been done for applying this technique on
transcriptomics, the characterization of B and T cell repertoires at the single cell levels is of
great interest. The analysis challenge for single cell sequencing data is important as methods
created for the analysis of bulk transcriptomics and high dimensional cytometry must be
combined for handling them. The Cell Ranger suite developed by 10X Genomics allow
bioinformaticians a straightforward way to analyze single cell sequencing data, especially
regarding the preprocessing steps. The first analysis step consists of the alignment of
sequenced reads of a reference genome. The filtering of cell events with abnormal number
of mapped transcripts or associated with aberrant mitochondrial activities is done at this
step. Once the reads have been aligned on the reference and transcript expressions are
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quantified for each cell of each sample, an analysis step consisting in a dimensionality
reduction is done. As for cytometry data, tSNE or UMAP algorithm are commonly used
for that purpose. Of note, the Loupe browser also developed by 10X Genomics offers the
possibility to graphically handle UMAP and tSNE representation for a processed dataset.
Different R packages or approaches, such as Seurat [175] are complementary to cell ranger
and Loupe browser for interpreting these data. Efforts are now done to create methods and
algorithms able to integrate events of different structure together, allowing then a holistic
characterization at a single cell resolution.

5.2. Machine Learning and In Silico Models

Machine learning is “the study of computer algorithms that improve automatically
through experience”, as defined by Tom Mitchell [176], by learning from the data to make
predictions about the data. Machine learning is widely used in various applications in
biology. It allows the solving of complex problems using observations or data. Machine-
learning algorithms can be classified into three types: supervised learning, unsupervised
learning, and reinforcement learning. Various supervised machine-learning algorithms
can be used to predict the immunogenicity, efficacy, or reactogenicity of vaccines, either by
performing classification, which is a predictive modeling approach in which the output
of data is composed of class labels (discrete values), or by performing regression, which
is also a predictive modeling approach, but the output is in the form of quantities (con-
tinuous values). There are a large number of algorithms available that can be used to
predict biomarkers of vaccine responses. However, choosing one over another can be
challenging, as the choice depends on various considerations, such as the amount of data,
its interpretability and accuracy, training time, number and type of features, and many
other factors. Thus, to conduct a scientific study using machine-learning algorithms, one
must prioritize the considerations that are the most relevant to the study and questions
addressed and proceed by implementing the most pertinent algorithms and comparing
them. Importantly, before using any machine-learning algorithm for prediction, a process
of data cleaning and processing and feature selection is required. This is a key step but is
not the focus of this review. However, this topic has been recently reviewed elsewhere [177].
Table 1 summarizes the principles of several machine learning methods and their respective
pros and cons (Table 1).

Several vaccines have been studied with the goal to identify predictors of immuno-
genicity after delineating signatures that correlate with immunogenicity, mainly in healthy
adults (Table 2). In most cases, it consists of predicting the magnitude of the antibody
response, which is often a correlate of protection, with early predictors induced within
the first week following immunization. However, certain studies have aimed to find
pre-existing predictors before immunization [60,62,178,179], or predictors of the intensity
of specific T-cell responses [52,180], protection after experimental human challenge infec-
tion [181], or reactogenicity [182,183]. Most studies identified predictive genes or gene
sets (from PBMC/whole microarray or RNA-Seq). However, more recent studies have
used additional molecular data, such as metabolite clusters and cytokines, as well as cell
populations, in addition to gene transcripts to predict the antibody and T-cell responses
to the live-attenuated VZV vaccine for example [180]. Variables appeared to be highly
connected or even overlapping in the so-called multiscale, multifactorial response network
(MMRN) that was constructed to integrate the multi-omics data. The authors proposed that
the MMRN approach increases the statistical prediction beyond linear models by network
connections that accommodate indirect steps and temporal developments.
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Table 1. Principle, advantages and drawbacks of common machine learning algorithms.

Machine Learning Algorithm Principle Advantages Drawbacks

Linear regression

It assumes a linear relationship between input variables and output and thus, attempts to
model this relationship by fitting a linear equation to the observed data

There are several implementations of this model, of which the most commonly used is
ordinary least squares, which tends to minimize the residual sum of the squares between

the observed and predicted targets.

• Simplicity
• Ease of implementation

• It assumes that the input variables
are independent

• It risks generating biased models
due to oversimplification

Linear discriminant analysis (LDA)

It is used to identify to which class samples belong to, certain statistical properties of the
data are first calculated and then substituted into the LDA equation. The statistical

properties consist of the mean and variance for the case of a single input and the means
and covariance matrix for multiple inputs.

• Simplicity
• Robust and interpretable

classification results

• Does not perform well when the
discriminant information is not present in
the mean

• It cannot be applied to non-linear problems

Random Forest

It builds a number of decision trees on bootstrapped training sets and considers a
random sample of m predictors to be split candidates from the full set of p predictors to
overcome the problem of high variance. Therefore, on average, the strong predictor is

not considered and other predictors have a better chance. This process can be thought of
as decorrelating of the trees, thereby making the average of the resulting trees less

variable and hence more accurate and reliable.

• Reduced variation.
• Accurate and reliable
• It works well for both classification and

regression problems

• It requires considerable computational
power and time for training

• It suffers from interpretability

Support vector machine

It converts a non-linear separable problem by transforming it onto another higher
dimensional space and thus, the problem becomes linearly separable. This is

accomplished using various types of so-called kernel functions. Then, classification is
performed by finding the hyperplane that well separates the classes of samples.

• It can solve any complex problem with
the appropriate kernel function

• Less risk of overfitting

• Choosing the appropriate kernel function is
not easy

• It does not work well with large or
noisy datasets

Discriminant analysis via mixed integer
programming (DAMIP)

It is a classification model based on a very powerful supervised-learning approach used
primarily in the biomedical field. It is a discrete support vector machine coupled with a

powerful embedded feature-selection module [176].

• It reduces noise and errors.
• It applies constraints that result in

superior classification accuracy
• Universally consistent.
• Handles well imbalanced data

• This algorithm is mainly used in the
biomedical field, little is known about its
drawbacks in literature
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Table 2. Machine learning methods to predict vaccine immunogenicity and efficacy. Different machine learning algorithms can be used. The quality of the model needs to be evaluated,
and there are different metrics to assess a model performance, such as accuracy (defined as the number of correct predictions divided by the total number of input data), Area Under the
Receiver Operator Characteristic curve (AUROC) or Root Mean Squared Error for regressions. It depends on the machine learning method itself. (Ab, antibody; ClaNC, classification
to nearest centroid; DAMIP, discriminant analysis via mixed integer programming; HAI, hemagglutination-inhibition; CHMI, Controlled Human Malaria Infection; * accuracy except
otherwise mentioned).

Vaccine Vaccinees Predicted Responses Predictors Machine Learning Method Performance * Reference

Yellow fever vaccine (YF-17D) Healthy adults
The magnitude of the activated

CD8+ T cell and neutralizing
Ab responses

Early blood
transcriptional signatures ClaNC and DAMIP Up to 90%

and 100% respectively [52]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV)

Patients 50–89 years old
suffering from multiple

chronic medical conditions

The magnitude of plasma HAI
Ab response

Baseline signatures among 26 input
continuous or categorical variables

inc. previous vaccination, low
grade chronic inflammation,

chronic infections, blood cell counts

Neural network (multilayer perceptron (MLP),
radial-basis function network (RBFN) and

probabilistic network (PNN)) and Logistic regression

72.5% of average hit rate across
10 samples [184]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) Healthy adults The magnitude of plasma HAI

Ab response
Early blood

transcriptional signatures DAMIP Up to 90% [185]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV)

Healthy adults, inc. young
(20–30 years) and older
subjects (60 to 89 years)

The magnitude of plasma HAI
Ab response

Baseline blood transcriptional,
cytokines and cell

populations signatures
Logistic regression 84% [178]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) and

pandemic H1N1
(pH1N1) vaccine

Healthy adults The magnitude of the
Ab response

Baseline HAI titer, blood cell
populations, transcripts and

pathways signatures

Diagonal linear discriminant analysis (for cell
frequency data and when cell frequency and pathway
status were combined); or partial least square (for data
dimension reduction due to the large number of genes)

followed by linear discriminant analysis (PLS-LDA)
for transcript data alone

0.86 of AUROC [60]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) over

5 seasons

Human adults, inc. elderlies
(>65 years)

The magnitude of plasma HAI
Ab response

Early blood
transcriptional signatures DAMIP and artificial neural network classifier >80% [10]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV)

Healthy adults
(50 to 74 years)

The magnitude of the B-cell
ELISPOT and plasma HAI

Ab responses

Early blood cell composition,
mRNA-Seq, and DNA
methylation signatures

The ensemble learner (inc. Generalized linear
models, Recursive Partitioning, and Regression

Trees), and random forest models
0.64–0.79 of AUROC [186]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) Healthy adults The magnitude of plasma HAI

Ab response
Baseline HAI titer and blood

transcriptional signatures Gaussian Mixture Model (GMM)
R2 = 0.64 for the correlation

between observed and
predicted data

[187]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) Healthy adults The magnitude of the

Ab response
Early blood

transcriptional signatures Logistic Multiple Network-constrained Regression 69% [188]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) over

8 seasons
Healthy adults The magnitude of the specific

Ab response
Baseline blood cell

populations signatures

128 machine learning algorithms suitable for
classification using Sequential Iterative Modeling

“OverNight” (SIMON), inc. Diagonal Discriminant
Analysis, Partial Least Squares, Linear Discriminant

Analysis, Logic Regression, Neural Network,
Random Forest

Up to 0.92 of AUROC [179]
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Table 2. Cont.

Vaccine Vaccinees Predicted Responses Predictors Machine Learning Method Performance * Reference

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) given

transcutaneously, intradermally
or intramuscularly

Healthy adults The magnitude of the specific T
CD8+ and Ab responses

Early blood transcriptional and
serum cytokines signatures Logistic regression 0.93 to 0.96 of AUROC [189]

Seasonal Trivalent Inactivated
influenza Vaccine (TIV) and

23-valent pneumococcal
polysaccharide vaccine

Old patients (>65 years) with
chronic kidney disease with

or without non-dialysis

The magnitude of the HAI Ab
and anti-PnPS IgG responses

Baseline signatures among
30 input continuous or categorical

variables inc. previous
vaccinations, low grade chronic
inflammation, chronic infections,

blood cell counts

Multivariable linear regression model p < 0.05 [190]

RTS,S malaria vaccine Healthy adults The protection against CHMI Early blood
transcriptional signatures DAMIP >80% [181]

Candidate malaria vaccine
composed of a Self-Assembling

Protein Nanoparticles
presenting the malarial

circumsporozoite protein (CSP)
adjuvanted with three different

liposomal formulations:
liposome plus Alum, liposome

plus QS21, or both

Rhesus macaques Adjuvant condition

Vaccine-induced immune
response signatures among many
variables inc. serology, fluorospot,

ICS from blood, liver, LN
and spleen

Random forest followed by
Linear regression analysis 92% [32]

Live-attenuated varicella zoster
virus (VZV) vaccine

Healthy adults, inc. younger
(25–40 years) and older

(60–79 years)

The magnitude of the specific T
and IgG responses

Early blood transcriptional,
metabolite clusters, cytokines,

and cell populations signatures
Multivariate regression model (Partial least square) p < 0.05 [180]

Monovalent oral polio vaccine
type 3 (mOPV3) Infants aged 6–11 months

Seroconversion or shedding of
vaccine virus as a marker of

vaccine “take”

Baseline enteric pathogens blood
cell populations, and plasma

cytokines signatures
Random forest 58% [191]

Two distinct live attenuated
Tularemia vaccine administered

by scarification
Healthy humans

The magnitude of the specific
Ab and activated CD4 and CD8

T cell responses

Early blood
transcriptional signatures Logistic regression 26% of mean

misclassification error [39]

rVSV-ZEBOV Healthy adults The magnitude of the Ab
response

Early blood transcriptional,
plasma cytokine and cell
populations signatures

Sparse partial least-squares followed by
multivariable linear regression

0.77 of root square residuals
leave-one-out explaining 55%

of the variability
[12]

DNA/rAd5 HIV-1 preventive
candidate vaccine Healthy adults HIV infection Magnitude and quality of CD4

and CD8 T cells
PCA followed by Cox proportional hazards

regression model, and Logistic regression with lasso Up to 0.75 of AUROC [192]

Seven preventive HIV-1 vaccine
regimens (inc. DNA, NYVAC,

ALVAC, MVA, AIDSVAX)
Healthy adults The magnitude of long-term

immune responses
Baseline demographic variables

and peak immune responses
Regularized random forest and linear

regression models

R = 0.91 for the correlation
between observed
andpredicted data

[193]

41 different vaccine vectors all
expressing the same antigen Mice The quality of late

T-cell responses
Early transcriptome of

dendritic cells Random forest Up to 98% [194]
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The most popular vaccine models for immunologists include the YF-17D and flu
vaccines. YF-17D represents an ideal vaccine to understand and mimic because it induces
life-long protection after a single injection. There are two major types of influenza vac-
cine: a live attenuated vaccine, which is delivered intranasally, and an inactivated vaccine,
which is injected intramuscularly, both providing protection through distinct mechanisms.
Adjuvanted versions or higher doses are also available for specific populations, such as
the elderly, and thus represent the first personalized vaccines. However, these traditional
seasonal flu vaccines do not provide long lasting and broad protection. They are based
on yearly predictions of the circulating viruses, and they confer protection only when
strains do match the circulating viruses. A key challenge is to develop pan-influenza
viruses vaccines targeting conserved regions that would protect against seasonal, future
drifted and pandemic strains. Anyway, not surprisingly, YF-17D and seasonal trivalent
inactivated influenza vaccines (TIVs), likely because of practical reasons (annual immu-
nizations of adults with a safe, albeit imperfect vaccine and identified immune correlate of
protection), are over-represented among studies to define predictors of immunogenicity.
Of note, predictors of the antibody and T-cell responses [52,180] and baseline and early
predictors [60,185] of a given vaccine and study differ. Among the genes present in the
various DAMIP gene signatures predictive of the antibody response to vaccination with
TIV and YF-17D, seven are shared [52,185]. Finally, the predictive signatures have also
differed for TIVs, depending on the season, the age and health status of those vaccinated,
and the machine-learning method.

It is expected that predictors of vaccine-induced antibodies could be clinically useful
by predicting suboptimal immune responses to certain vaccines to stratify them, for exam-
ple those requiring a booster. However, the robustness and predictive accuracy depend on
the sample size and the identification of solid predictors requires extensive validation in
multiple clinical trials. A cost-effective PCR-based ‘vaccine chip’ that focused on a set of
predictive genes was successfully developed for flu vaccines [185]. It is admittedly more
challenging [195], but predictors can also provide insight about key players (molecules
or cells) and uncover new mechanisms to target to more rationally improve vaccines.
Several studies to identify predictors of vaccine immunogenicity included or were fol-
lowed by mouse studies to evaluate the mechanistic relevance of the predictors, including
Camk4 [185] and apoptosis [178] for flu vaccines and Gcn2 (also known as Eif2ka4) for
YF-17D [196].

The purpose of mechanistic mathematical modeling differs from that of machine
learning. It aims to mimic biological mechanisms through observations of and assumptions
about the phenomenon of interest. This type of modeling uses mathematical formulations
that seek to identify a mechanistic relationship between inputs and outputs of the phe-
nomenon of interest [197,198]. These approaches are complementary to machine-learning
approaches, which seek to establish statistical relationships and correlations between in-
puts and outputs. Due to the oversimplified assumptions and extremely specific nature of
mechanistic mathematical models, they are limited to establishing universal predictions,
which are achievable by machine learning. However, mechanistic modelling may be more
suitable for studying certain phenomena than machine-learning approaches, depending
on the research objectives. Therefore, these two approaches should not be considered as
competing with each other but rather as complementary [199].

6. Vaccine Signatures in Preclinical Models to Improve Human Vaccination Strategies

Although reducing and refining animal experiments require permanent efforts from
the scientific community, assessing vaccine responses in animal models is still, for now, a
necessary step in the vaccine registration process [200]. Currently, preclinical trials often
provide key decisional points to pursue vaccine development [201], as it has been the case
for SARS-CoV-2 vaccine candidates [202]. Indeed, they allow to design robust, controlled
studies with a wider range of tools and samplings than the ones available in clinical
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trials. Plus, some models, such as NHPs, are highly predictive of the human immune and
vaccine responses.

Applying systems vaccinology approaches to animal models assuredly provides a
way to improve preclinical studies, accelerate vaccine development, and increase our
knowledge of vaccine-induced protective responses, as discussed below.

6.1. Defining New Correlates of Protection

Through the use of diverse high-throughput technologies, systems immunology can
lead to the identification of multiple biomarkers, combined into complex signatures that can
be used to build predictive models of vaccine-induced responses. Being able to predict the
efficacy of a vaccine with the identification of early biomarkers could considerably facilitate
preclinical and clinical trials. Currently, vaccine development starts with an exploratory
phase that addresses basic scientific questions and ideally leads to proof-of-concept studies
that validate the efficacy of the vaccine in experimental—usually small animal—models.
Translational research then follows with immunogenicity and efficacy studies in preclinical
models, which guide subsequent clinical trials in humans [203].

The evaluation of vaccine efficacy can be challenging and partially relies on the
possibility to define reliable correlates of protection. According to Plotkin and Gilbert, a
correlate of protection can be defined as a marker of immune function that statistically
correlates with protection after vaccination [204]. As mentioned previously, antibody titers
have been used as correlates of protection for many vaccines. For example, a protective
level of antibody measured by ELISA has been defined for vaccines against hepatitis A virus
(HAV) and HBV [205]. For other vaccines, such as rabies or YF vaccines, neutralization
titers have been linked to protection [206,207]. While antibodies can be considered as
reliable correlates of protection for genetically stable pathogens, they cannot be properly
used in the case of viruses with high mutational capacities and that can escape humoral
responses, as we observe in the still on-going SARS-CoV-2 pandemic [208]. In addition,
well-defined correlates of protection are still lacking for multiple vaccines, including those
against malaria and tuberculosis [209], and serological measurements are probably not the
only or relevant immune correlates.

Defining accurate correlates of protection is pivotal in the vaccine development pro-
cess, as it allows the rapid assessment of vaccine efficacy. Hence, applying systems im-
munology approaches to clinical trials has been proposed to accelerate the discovery of
early predictive markers of vaccine efficacy [210]. Additionally, systems vaccinology could
be integrated into preclinical studies and further empower translational vaccine research.
Cellular immunity will need to be explored thoroughly to enable better prediction of
vaccine immunogenicity. As already discussed, local cellular events shape subsequent
protective responses [36,211–213]. Thus, their characterization can provide a way to rapidly
assess the quality of vaccine-induced immunity. In-depth studies of immune cells involved
at the site of vaccination, such as skin DCs or LCs, is achievable in preclinical models due to
the use of multiple and complementary exploratory approaches (Figure 2) and can provide
very early predictive markers of vaccine immunogenicity. Elsewhere, in addition to anti-
body responses, exploring T cell responses will certainly provide key biomarkers of efficacy
for vaccines targeting mutating pathogens. For example, T lymphocytes seem to play a key
role after SARS-CoV-2 infection and vaccination [214,215]. Precisely, a study on Rhesus
macaques showed a strong decrease of the protection induced by natural immunization
after depletion of CD8+ T cells thus indicating that CD8+ T cell responses could be used to
define more accurate correlates of protection for SARS-CoV-2 infection [216]. Additionally,
preclinical models are often instrumental in appraising long-term immune memory, as
longitudinal studies can be initiated and conducted more easily and rapidly than in human
populations. For example, NHPs have been successfully used to study memory responses
induced by vaccines against SIV, tuberculosis, and or polio [59,217–219]. Implementing
systems vaccinology techniques in prolonged longitudinal preclinical studies [72] could
link initial and long-term responses and generate early signatures of immune memory.
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Applying these approaches to human studies could therefore provide a way to reduce
the time and cost of vaccine efficacy trials.

6.2. Stepping up Personalized Vaccinology

Presently, validated correlates of protection are generally based on results obtained
from cohorts of vaccinated healthy adults, whereas target human populations are often
highly heterogeneous, and defining a universal response to vaccination is probably im-
possible [220]. Indeed, many host-related factors can modulate immune responses to
vaccination, including age, gender, infectious history, comorbidities, genetic background,
and microbiota composition (Figure 2) [28].

In vulnerable populations, such as infants and young children, pregnant women, and
elderly and immunocompromised individuals, immune responses to vaccination are often
under characterized and assessing vaccine efficacy in these specific populations remains
a major challenge. Preclinical models are well-suited for in-depth studies on population
subsets with specific attributes, especially animal models with the most predictive value for
human vaccine efficacy studies, such as NHPs. Although systems vaccinology approaches
have already been used in human cohorts of aged individuals [63,221,222], high-throughput
characterization of vaccine-induced responses in children are still rare [9,223] and awaited
for newborns [224]. Importantly, NHPs provide a highly relevant pediatric model to test
vaccine efficacy, as they share many similarities with humans in terms of immune system
development [225–228].

Infant NHPs have been frequently used in studies to evaluate vaccines against My-
cobacterium tuberculosis [229–231] and HIV [232–234]. Recently, Han et al. used high-
throughput technologies, including single-cell RNA sequencing of PBMCs, to perform
an in-depth comparison of neonatal and adult immune responses to HIV immunization
in macaques [235]. More specifically, they were able to show higher activated circulating
TFH cell frequencies in Env-immunized neonatal macaques than in adults. This study
also revealed distinct post-immunization transcriptome profiles between infant and adult
macaques, with elevated B-cell lymphoma 2 (BCL2) transcript levels in T cells and lower
interleukin-10 (IL-10) receptor alpha (IL10RA) transcript levels in T, B, and NK cells and
monocytes of macaque neonates. This study illustrates how systems vaccinology in preclin-
ical models can guide and help human vaccine efficacy trials. Moreover, identifying vaccine
signatures in preclinical models of vulnerable populations would allow investigation of
the influence of host factors on responses to immunization.

Pharmacogenomics and vaccinomics also contribute to improve personalized medicine
and vaccination, respectively [19,20]. Indeed, identifying genetic polymorphisms associ-
ated to increased or decreased vaccine efficacy before administration of the vaccine may
allow to adapt the vaccination strategy to particular individuals or to sub-groups of dif-
ferent ethnic ancestry. However, human GWASs require large cohorts of thousands of
individuals to detect true genotype-phenotype associations [236] and are thus limited to
the retrospective study of licensed vaccines. Vaccinomic studies in preclinical models could
provide a way to rapidly assess the influence of host genetic factors on the efficacy of
newly developed vaccines. For ethical and financial reasons, vaccine preclinical studies
in NHPs commonly use limited numbers of individuals and are thus not powered for
genetic association studies. However, alternative models such as genetically diverse mouse
populations are well-suited for this application. For example, the Collaborative Cross con-
stitutes a new experimental platform to investigate the influence of host genetic factors in
the susceptibility to infectious diseases [237] and starts to be used to study vaccine-induced
responses [148].

Consequently, the various approaches of systems vaccinology empower personalized vac-
cination strategies, which should improve efficient vaccination coverage in target populations.
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6.3. Improving Vaccine Formulation and Administration

Another way to increase global vaccine efficacy in highly diverse human populations
is to improve vaccine formulation with adjuvants and refine administration routes and
schedules. Systems immunology offers powerful tools to investigate the effects of adjuvants
and vaccine regimens on human immune responses [9,181] and can lead to reference
signatures to which new vaccine candidates can be compared. Additionally, preclinical
models are still highly valuable for the development and evaluation of innovative adjuvants,
new administration routes, and various vaccine regimens.

As previously stated, applying systems biology technologies in this context will further
improve preclinical studies and enhance innovation and progress in the field of vaccinology.
For example, transcriptomics was first used in mouse models to characterize the molecular
and cellular signatures of clinically tested human vaccine adjuvants [26,238]. These studies
provided new insights about the modes of action of vaccine adjuvants by identifying both
common transcriptional differences and adjuvant-specific responses associated with either
germinal-center reactions or the orientation of helper T cell responses [26,238]. Systems
vaccinology studies performed in NHP preclinical models can further guide the rational
development of vaccine adjuvants for clinical use. Kasturi et al. studied the capacity of TLR
agonists to promote durable protective immunity against SIV [239], whereas Thompson
et al. investigated the effect of such TLR-based adjuvants on immune responses induced
by a vaccine against Plasmodium falciparum [240]. In a huge leap forward, Chaudhury et al.
combined extensive immuno-profiling of three adjuvant formulations in Rhesus macaques
with multivariate analysis and machine learning [32]. This study identified adjuvant-
specific immune “fingerprints” that could be used as rudiments to define correlates of
protection and immunogenicity in human vaccine trials.

The mode of vaccine administration is another important parameter that modulates
immune responses, as illustrated in a recent study of Cirelli et al. on the effect of slow
delivery of HIV antigens in Rhesus macaques [88]. They showed that slow-delivery immu-
nization improves neutralizing antibody production and leads to increased frequencies
of antigen-specific GC-TFH cells using a combination of high dimensional techniques,
such as scRNA sequencing, BCR sequencing, and whole lymph node imaging. In another
study, Adam et al. investigated the early mechanisms that occur in the skin after intrader-
mal injection and electroporation of SIV immunogens in Cynomolgus macaques. They
used flow cytometry, cytokine profiling, and transcriptomics of skin cells to demonstrate
that electroporation has a strong adjuvant effect mediated by inflammatory cell recruit-
ment and LC mobilization [212]. Finally, studying how the vaccine regimen influences
immune signatures could be critical to improving vaccination strategies in human pop-
ulations. For example, mass cytometry was used to perform in-depth phenotyping of
innate immune cell populations differentially induced by MVA vaccine prime and boost
immunizations [34,35]. Similarly, multi-parameter flow or mass cytometry were success-
fully used to study the effects of heterologous prime-boost combinations of tuberculosis
vaccination in mice [241], and the influence of the interval between MVA immunizations in
Cynomolgus monkeys [33].

Overall, these results illustrate how systems vaccinology can strengthen preclinical
findings on vaccine formulation and administration, and thus support vaccine develop-
ment processes.

6.4. Deciphering Mechanisms That Underly Immune Protective Responses

Finally, the use of systems vaccinology in preclinical models will provide mechanistic
insights on immune responses triggered by vaccines. Because of the constraints on collect-
ing tissue samples in human clinical trials, most studies have strived to define signatures
of myeloid and lymphoid responses in the blood [8,10,61,62,142,189]. However, immune
processes are highly orchestrated in time and space and thus occur in multiple tissues and
organs of the body (Figure 2).
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As mentioned previously, early local events in the skin following immunization can
shape subsequent immune responses and vaccine efficacy [36,211–213]. In other respects, the
acquisition of immune memory characterizes adaptive responses and is of critical importance
for vaccines to confer long-lasting protection. Specifically, activated B and CD4+ T cells differ-
entiate into memory cells within lymph nodes and spleen GCs, and then migrate to the bone
marrow, which represents their main homing site [242,243]. Thus, a major challenge for human
vaccine studies is to identify signatures in the blood that would truly reflect the magnitude
and persistence of tissue-specific immune events. Recent efforts have been undertaken to
investigate vaccine-induced immune events in human skin explants [53] or in human lymph
node fine-needle aspirates [86,244]. However, preclinical models are still instrumental to
comprehensively studying the mechanisms of vaccine-induced immune responses at the tissue
and whole-body levels (Figure 2). For example, immunogens slow delivery administration,
described by Cirelli et al., triggered higher frequencies of HIV-specific GC B cells and altered
their BCR repertoire compared to conventional bolus immunization [88]. In another recent
study, Eslamizar et al. examined NHP lymph node-derived cells after immunization with
HIV Env protein encoded either by a plasmid DNA, a recombinant MVA, or a recombinant
VSV vector [245]. They demonstrated that recombinant MVA was the most potent vector to
induce GC-TFH cells expressing high levels of ICOS (inducible T cell co-stimulator), a key
receptor of TFH help to GC B cells. The investigation of how mucosal immunity is modulated
by immunization and contributes to vaccine-induced protection is another field of research
in vaccinology that warrants the exploration of tissue-based immune processes. For example,
systems immunology approaches have been used to characterize the molecular signatures of
vaginal tissues of macaques immunized with a TLR-adjuvanted SIV vaccine [239] and to show
that vaginal HIV Env-specific antibody and cellular responses presumably confer auxiliary
mechanisms of protection against viral challenge in NHPs [83].

In addition, animal models are also particularly appropriate for assessing and dissect-
ing immune responses to a combination of vaccines and/or pathogens. Indeed, exposition
to pathogens and the vaccination history of animals are strictly monitored and recorded
in laboratory settings. Such controlled experimental conditions facilitate the study of
interactions between antigenically unrelated pathogens or immunogens. Recently, much
attention has been given to the importance of non-specific effects of vaccines with a grow-
ing body of evidence suggesting that live-attenuated vaccines such as BGC, measles and
oral polio vaccines overall improve childhood health [246]. Indeed, several randomized
trials and population-based cohort studies led in young children revealed a significant
decrease in infectious disease mortality rate in BGC-vaccinated newborns in low-income
regions and a reduction of the risk of admissions for infectious diseases in BGC-vaccinated
babies in high-income settings [246]. Several hypotheses have been formulated to explain
the underlying mechanisms, including cross-protection conferred by heterologous T cell
responses and the development of a kind of innate immune memory now referred to as
“trained immunity” [247–249]. However, much remains to be done to fully understand the
precise mechanisms underpinning non-specific effects of vaccines. To this end, preclinical
models can greatly contribute to increasing our knowledge on trained immunity processes,
as recently reviewed by Palgen et al. [250], and systems vaccinology will also endorse
such studies.

Finally, although NHPs most likely provide the best model of human vaccine re-
sponses in terms of prediction, small animal models can be used to further investigate
the functional mechanisms underlying predictive biomarkers identified in preclinical and
clinical studies. Notably, transgenic mice have been instrumental in elucidating the func-
tions of genes implicated in immune responses to pathogens or vaccines [251,252]. For
example, Querec et al. identified general control non-derepressible 2 kinase (GCN2) as
a biomarker that correlates with CD8+ T-cell responses to YF-17D vaccination in one of
the earliest systems vaccinology studies [52]. They used mice carrying constitutional or
conditional knock-out deletion of Gcn2 to demonstrate that GCN2 leads to increased au-
tophagy and antigen presentation in DCs in response to YF-17D immunization and thus
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revealed a connection between a vaccine-induced stress response in DCs and adaptive
immune responses [253].

To conclude, preclinical models are invaluable for expanding our knowledge of immune
mechanisms underlying vaccine protection and for improving rational vaccine development.

7. Conclusions

Systems immunology approaches used in preclinical studies and clinical trials are
invaluable in vaccine biomarker discovery through the analysis and statistical modeling of
large datasets.

Despite the outstanding development of high-throughput technologies and computa-
tional methodologies, many challenges still remain to be tackled to realize the full promise
of systems vaccinology. Indeed, most recent studies in the field of vaccinology have re-
stricted their findings to a description of vaccine biomarkers without further exploring
the correlative, predictive, or explanatory aspects of these signatures. Furthermore, being
able to discriminate between markers of immunogenicity and protection is not an easy
task as illustrated by many clinical trials of HIV vaccines [254]. The application of systems
immunology, in particular systems serology, to preclinical and clinical trials of HIV vaccines
offers a means to specify new correlates of protection, though we are still at the beginning
of this process [29].

In this review, we highlighted numerous technological and biological aspects useful
to study vaccine responses and to the development of future vaccines. Nevertheless, limi-
tations inherent to research techniques or to animal models question the methods currently
employed in vaccine studies. First, the inherent differences in data formats generated by
immunophenotyping platforms are a major impediment to the integration of large data
sets. For instance, mRNA expression levels do not always represent intracellular protein
expression levels and may not either reflect extracellular marker expression detected by
cytometry [255]. Second, the measurement of diverse immunological parameters usually
implicates multiple platforms and/or laboratories, standardization efforts are thus required
to reduce technical and analytical variability and improve the robustness of predictive
models [256,257]. Third, collaborations between vaccinologists and researchers with ex-
pertise in bioinformatics and computational and mathematical modeling also need to be
strengthened to create predictive algorithms that are transposable to clinical applications.

Although human clinical trials of vaccine efficacy increasingly rely on systems im-
munology approaches, preclinical studies are lagging behind. Nonetheless, preclinical
models harbor rare assets to explore vaccine-induced responses, including the possibility
to investigate immune processes in tissues and the whole organism. The future of defining
comprehensive vaccine signatures will likely rely on extended data analyses, including data
obtained through imaging technologies, similarly to what has already been implemented
in the field of cancerology [258,259]. In the near future, we believe that it will be possible to
optimize and standardize several high-dimensional technologies so that they can be used
conjointly on a regular basis in preclinical and clinical trials. For example, mass cytometry
and imaging mass cytometry employ the same reagents, rely on the same detection method
and generate datasets which can be analyzed with the same bioinformatic pipelines while
providing complementary biological information on vaccine responses. Finally, applying
high-throughput technologies to preclinical studies will expand our knowledge of the
immune processes induced by vaccines in experimental models and hopefully improve the
rate of translation of discoveries from animal studies to human trials [219].

Overall, application of systems biology concepts to preclinical and clinical studies
promises great advancements in our understanding of vaccine-induced immune protective
responses and provides unprecedented opportunities for the development of new vaccines.
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