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We describe the irreducible components of the jet schemes with origin in the singular locus of a two-dimensional quasi-ordinary hypersurface singularity. A weighted graph is associated with these components and with their embedding dimensions and their codimensions in the jet schemes of the ambient space. We prove that the data of this weighted graph is equivalent to the data of the topological type of the singularity. We also determine a component of the jet schemes (equivalent to a divisorial valuation on A 3 ), that computes the log canonical threshold of the singularity embedded in A 3 . This provides us with pairs X ⊂ A 3 whose log canonical thresholds are not computed by monomial divisorial valuations. Note that for a pair C ⊂ A 2 , where C is a plane curve, the log canonical threshold is always computed by a monomial divisorial valuation (in suitable coordinates of A 2 ).

Our aim is to construct some comparable complete invariants for all types of singularities. Since in general, we cannot have a parametrization, we search for such invariants in the jet schemes. For m ∈ N, the m-th jet scheme, denoted by X m , is a scheme that parametrizes morphisms Spec C[t]/(t m+1 ) -→ X. Intuitively

Introduction

By denition, a complex analytic quasi-ordinary singularity (X, 0) of dimension d comes with a nite projection p : X -→ A d , whose discriminant is a normal crossing divisor. These singularities appear in the Jungian approach to resolution of singularities (see [START_REF] Popescu-Pampu | Introduction to Jung's method of resolution of singularities[END_REF]). We are interested in irreducible quasi-ordinary surfaces X, dened by f ∈ C{x 1 , x 2 }[z]. Thanks to the Abhyankar-Jung theorem, we know that a hypersurface of this type is parametrized in the form x i = x i for i = 1, 2 and z = ζ(x 1 , x 2 ), where ζ is an element in C{x 1/n 1 , x 1/n 2 }, n being the degree of f as a polynomial in z. Moreover, some special exponents (called the characteristic exponents) which belong to the support of the series ζ, are complete invariants of the topological type of the singularity (see [START_REF] Gau | Embedded Topological classication of quasi-ordinary singularities[END_REF]). In particular, they determine invariants which come from resolution of singularities, like the log canonical threshold or the Motivic zeta functions ( [START_REF] Bartolo | Quasi-ordinary power series and their zeta functions[END_REF], [START_REF] Cobo Pablos | Geometric motivic Poincaré series of quasiordinary hypersurfaces[END_REF], [START_REF] Budur | Log-canonical thresholds of quasiordinary hypersurfaces singularities[END_REF], [START_REF] González Pérez | Motivic Milnor ber of a quasi-ordinary hypersurface[END_REF]). They also give insights about the construction of a resolution of singularities ( [START_REF] Ban | Canonical resolution of a quasi-ordinary surface singularity[END_REF], [START_REF] Ban | Simultaneous resolution of equisingular quasi-ordinary singularities[END_REF], [START_REF] Villamayor | On equiresolution and a question of Zariski[END_REF], [START_REF] González Pérez | Toric embedded resolutions of quasi-ordinary hypersurface singularities[END_REF]).

we can think of it as a scheme parametrizing arcs in an ambient space, which have contact at least m + 1 with X. We know already that some invariants which come from resolution of singularities are encoded in the jet schemes ( [START_REF] Mustaµa | Singularities of pairs via jets schemes[END_REF], [START_REF] Ein | Jet Schemes and Singularities, Algebraic geometry-Seattle[END_REF]).

We want to extract from the jet schemes information about the singularity, which can be expressed in terms of invariants of resolutions of singularities. For specic types of singularities, the knowledge of the irreducible components of the jet schemes X m of a singular variety X, together with some of their invariants, such as dimension or embedding dimension, allows us to determine deep invariants of the singularity of X: the topological type in the case of curves (see [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF]), and the analytical type in the case of normal toric surfaces (see [START_REF] Mourtada | Jet schemes of normal toric surfaces[END_REF]). Moreover, in the case of irreducible plane curves, the minimal embedded resolution can be constructed from the jet schemes ( [START_REF] Lejeune-Jalabert | Jet schemes and minimal embedded desingularization of plane branches[END_REF]), and the same holds for rational double point singularities ( [START_REF] Mourtada | Jet schemes and minimal toric embedded resolutions of rational double point singularities[END_REF]).

Understanding the structure of jet schemes for particular singularities is an interesting problem. It has been studied in [START_REF] Yuen | Jet schemes of determinantal varieties, Algebra, geometry and their interactions[END_REF] and [START_REF] Docampo | Arcs on determinantal varieties[END_REF] for determinantal varieties, in [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF] for plane curve singularities, in [START_REF] Mourtada | Jet schemes of normal toric surfaces[END_REF] for normal toric surfaces, in [START_REF] Mourtada | Jet schemes of rational double point surface singularities[END_REF] for rational double point surface singularities, and in [START_REF] Sethuraman | Jet schemes of the commuting matrix pairs scheme[END_REF] for commuting matrix pairs schemes.

In this paper, we study jet schemes of a two-dimensional, irreducible quasiordinary hypersurface singularity X = {f = 0}, with f ∈ C{x 1 , x 2 }[z]. We give a combinatorial description of the irreducible components of the set of m-jets with center in the singular locus of X, in terms of invariants of the singularity extracted from the characteristic exponents of X. We dene the candidates to be the irreducible components C ν m , but there are many inclusions among these candidates. We study these inclusions by dening on Z 2 ≥0 a subtle relation depending on m and expressed in terms of the invariants cited above. It reects the evolution of the singular loci of quasi-ordinary surfaces approximating our surface X.

Then, with the minimal elements with respect to this relation we dene a set F m ⊂ Z 2 , and for any ν ∈ F m , we have a component C ν m ⊂ X m . We prove that these are the irreducible components of m-jets through the singular locus. Theorem 1.1. Let X be a quasi-ordinary hypersurface of dimension two. For any m ∈ Z >0 , the scheme of m-th jet of X with center in its singular locus has the following decomposition into irreducible components ( π -1 m (X Sing )

) red = ∪ ν∈Fm C ν m ,
where π m : X m -→ X is induced by projection.

Note that if we choose an ane variety Y ⊂ C 3 which has a quasi-ordinary singularity at a point x, then after shrinking Y into a small enough neighbourhood of x, this gives us the decomposition of Y m into irreducible components, modulo adding the component obtained as the Zariski closure of the set of jets whose center is in the regular locus of Y.

In general, for any algebraic variety V, the irreducible components of the jet schemes V m t in natural projective systems, to which we associate a weighted graph. Graphs are a powerful tool for studying surface singularities (see [START_REF] Popescu-Pampu | From singularities to graphs[END_REF] for a nice and historical introduction on this topic). The vertices of our graph correspond to irreducible components, and to every vertex we attach the corresponding embedding dimension and codimension in the jet scheme of the ambient space. We will prove the following result.

Theorem 1.2. Let X be a quasi-ordinary hypersurface of dimension two. The weighted graph associated with the irreducible components of jets through the singular locus determines and it is determined by the topological type of the singularity.

This theorem achieves one of our goals for this type of singularities: constructing a complete invariant of the topological type of the singularity from its jet schemes; while the graph of the jet schemes is dened in general, the characteristic exponents, which are also a complete invariant of quasi-ordinary singularities, does not have a meaning for more general singularities for two reasons: 1) for a general singularity we only have parametrizations of parts of the singularity (wedges), 2) the shape of these parametrizations is more complicated than the shape of parametrizations of quasi-ordinary singularities.

It is also important to stress that other invariants involving arcs and jets, like motivic zeta functions, do not determine the topological type in the case of quasi ordinary singularities, see [START_REF] Cobo Pablos | Geometric motivic Poincaré series of quasiordinary hypersurfaces[END_REF] and [START_REF] González Pérez | Motivic Milnor ber of a quasi-ordinary hypersurface[END_REF].

We devote Section 4 to study in detail the case of quasi-ordinary surfaces with only one characteristic exponent, and in next section we deal with the general case.

In another direction, using Mustaµa's formula ( [START_REF] Mustaµa | Singularities of pairs via jets schemes[END_REF]), we determine an irreducible component of an m-th jet scheme, or equivalently a divisorial valuation on the ambient space A 3 , which computes the log canonical threshold of the pair X ⊂ A 3 (the log canonical threshold for such a pair has been computed in [START_REF] Budur | Log-canonical thresholds of quasiordinary hypersurfaces singularities[END_REF], looking at the poles of the motivic zeta function). This provides us with pairs X ⊆ A 3 whose log canonical threshold is not computed by a monomial divisorial valuation. The quasi-ordinary surface in A 3 dened by f = (z 2 -x 1 x 2 ) 2 -x 3 1 x 2 z is such a pair. Note that for a pair C ⊆ A 2 , where C is a plane curve, the log canonical threshold is always computed by a monomial valuation. See [START_REF] Bartolo | On the log-canonical threshold for germs of plane curves[END_REF] and [START_REF] Aprodu | Enriques diagrams and log-canonical thresholds of curves on smooth surfaces[END_REF] for the computation of the log canonical threshold for plane curves.

Using same ideas of [START_REF] Mourtada | Jet schemes and minimal generating sequences of divisorial valuations in dimension two[END_REF], it seems possible to construct an embedded resolution of singularities of X from the data of the graph constructed in this paper. We think that such a resolution would shed light on the resolution of singularities obtained by González Pérez in [START_REF] González Pérez | Toric embedded resolutions of quasi-ordinary hypersurface singularities[END_REF], and would make more precise his answer to the question of Lipman (see [START_REF] Lipman | Equisingularity and simultaneous resolution of singularities[END_REF]) on the construction of a canonical resolution of singularities of a quasi-ordinary hypersurface from its characteristic exponents. presentation of the paper. HC was supported by ERC Grant Agreement 246903 NMNAG, and HM was supported by ANR-17-CE40-0023.

Jet schemes

In this section we dene jet schemes of an ane scheme X, see [START_REF] Ein | Jet Schemes and Singularities, Algebraic geometry-Seattle[END_REF] and [START_REF] Ishii | Jet schemes, arc spaces and the Nash problem[END_REF] for details. Let X = Spec C[x 1 , . . . , x n ]/I be an ane scheme of nite type. For m ∈ Z >0 the functor F m : C-Schemes -→ Sets which, with an ane scheme dened by a C-algebra A, associates

F m ( Spec(A) ) = Hom C ( Spec(A[t]/(t m+1 )), X ) ,
is representable by a C-scheme, denoted by X m . This is the scheme of m-jets. Its closed points are morphisms of the form

γ : Spec(C[t]/(t m+1 )) -→ X.
Such a morphism γ is equivalent to a C-algebra homomorphism

γ * : C[x 1 , . . . , x n ]/I -→ C[t]/(t m+1 ).
If we x a set of generators f 1 , . . . , f r for the ideal I, the map γ * is determined by the image of the x i

x i → x (0) i + x (1) i t + • • • + x (m) i t m , 1 ≤ i ≤ n,
where the relations

f i ( x (0) 1 + • • • + x (m)
1 t m , . . . , x (0) n + • • • + x (m) n t m ) ≡ 0 mod t m+1 (1) must hold for each f i , with 1 ≤ i ≤ r. If we write

f i ( x (0) 1 + x (1) 1 t + • • • + x (m)
1 t m , . . . , x (0) n + x

(1)

n t + • • • + x (m) n t m ) = = ∑ m j=0 F (j) i (x (0) 
1 , . . . , x

(j) 1 , . . . , x (0) 
n , . . . , x

(j) n ) t j mod t m+1 , (2) 
we have that giving a closed point of X m is equivalent to giving a point in

V (F (j) l ) 0≤j≤m,1≤l≤r ⊂ A n m ,
where

A n m = Spec(C[x (0) i , . . . , x (m) i
] i=1,...,n ). Hence we can make the following identication

X m = Spec   C[x (0) i , . . . , x (m) i ] i=1,...,n ( F (j) l ) 0≤j≤m, 1≤l≤r   . ( 3 
)
We can give a useful relation among the F ) = 0 and δ(x (1) := δ(f ) and recursively f (m) = δ(f (m-1) ). By using the change of variables

(j) i ) = x (j+1) i for 0 ≤ j < m. For f ∈ C[x 1 , . . . , x n ] let f (0) = f (x (0) 1 , . . . , x (0) n ), f
ϕ : C[x (0) i , . . . , x (m) i ] 1≤i≤n -→ C[x (0) i , . . . , x (m) i ] 1≤i≤n x (r) i -→ r!x (r) i
we can prove that ϕ(f (r) ) = r!F (r) . Hence we have the following description of the jet schemes, equivalent to (3), coming from dierential algebra. Proposition 2.1. (See Proposition 2.3 in [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF]) Let X = Spec )

and m ∈ Z >0 , then

X m = Spec   C[x (0) i , . . . , x (m) i ] i=1,...,n ( f (j) i ) 1≤i≤r, 0≤j≤m   .
Corollary 2.2. Every polynomial F (l) is non-zero and quasi-homogeneous of degree

l in x (0) k , . . . , x (l) k , for 1 ≤ k ≤ n.
In F (0) , . . . , F (l) the variables x (l) k for 1 ≤ k ≤ n appear only in F (l) , and with exponent one.

Example 2.3. Let X be the quasi-ordinary surface dened by the polynomial f = z 3 -x 3 1 x 2 2 . The equations dening the 3-jets are (in both descriptions):

F (0) = z (0) 3 -x (0) 1 3 x (0) 2 2 = f (0)
F (1) = 3z (0) 2 z (1) -3x F (2) = 3z (0) 2 z (2) + 3z (0) z (1) 2 -6x

(0) 1 2 x (1) 1 x (0) 2 x (1) 2 -2x (0) 1 3 x (0) 2 x (2) 2 -3x (0) 1 2 x (2) 1 x (0) 2 2 -x (0) 1 3 x (1) 2 2 -3x (0) 1 x (1) 1 2 x (0) 2 2 
= 1 2 ϕ(f (2) ) = 1 2 ϕ(δ(f (1) ))

F (3) = z (1) 3 + 6z (0) z (1) z (2) + 3z (0) 2 z (3) -2x

(0) 1 3 x (0) 2 x (3) 2 -2x (0) 1 3 x (1) 2 x 
(2) 2 -6x

(0) 1 2 x (1) 1 x (0) 2 x (2) 2 -3x (0) 1 2 x (1) 1 x 
(1) 2

2

-6x

(0) 1 2 x (2) 1 x (0) 2 x (1) 2 -6x (0) 1 x (1) 1 2 x (0) 2 x (1) 2 -3x (0) 1 2 x (3) 1 x (0) 2 2 -6x (0) 1 x (1) 1 x 
(2)

1 x (0) 2 2 -x (1) 1 3 x (0) 2 2 = 1 3! ϕ(f (3) ) = 1 3! ϕ(δ 2 (f (1) ))
For m > n ≥ 0, we have a canonical projection π m,n : X m -→ X n induced by the projection C[t]/t m+1 -→ C[t]/t n+1 , and we denote π m,0 simply by π m : X m -→ X. Proposition 2.4. (see [START_REF] Denef | Geometry on arc spaces of algebraic varieties[END_REF] and [START_REF] Ein | Jet Schemes and Singularities, Algebraic geometry-Seattle[END_REF]) If X is a non-singular variety of dimension d then for any m ≥ 0 the projections π m+1,m : X m+1 -→ X m are locally trivial with ber A d . In particular X m is a non-singular variety of dimension (m + 1)d.

The above construction of jet schemes in the algebraic case can be done analogously in the analytic case. Indeed, as we will see in the next section, we will deal with f ∈ C{x 1 , x 2 }[z]. Then, for l ∈ Z ≥0 , denoting by

R (l) := C{x (0) 1 , x (0) 2 }[x (1) k , . . . , x (l)
k , z (0) , . . . , z (l) ] k=1,2 , we have that F (l) ∈ R (l) , and

X m = Spec ( R (m) ( F (0) , . . . , F (m)
)

)

.

We will anyway speak of the polynomials F (l) dening the space of m-jets.

Remark 2.5. To describe the components of

( π -1 m (X Sing )
)

red , since the level m is clear from the context, we will use the notation V (I) instead of the more accurate one Spec ( R (m)

I

) .

Quasi-ordinary surface singularities

In this section we collect some well known facts about quasi-ordinary hypersurface singularities of dimension two. We state everything for the case of surfaces, though the denitions and results hold in any dimension.

An equidimensional germ (X, 0), of dimension two, is quasi-ordinary (q.o. for short) if there exists a nite projection p : (X, 0) → (C 2 , 0) which is a local isomorphism outside a normal crossing divisor. If (X, 0) is a hypersurface there is an embedding (X, 0) ⊂ (C 3 , 0), where X is dened by an equation f = 0, and

f ∈ C{x 1 , x 2 }[z] is a quasi-ordinary polynomial; that is, a Weierstrass polynomial with discriminant ∆ z f of the form ∆ z f = x δ1 1 •x δ2
2 ϵ for a unit ϵ in the ring C{x 1 , x 2 } of convergent power series and (δ 1 , δ 2 ) ∈ Z 2 0 . In these coordinates the projection p is the restriction of the projection

C 3 → C 2 , (x 1 , x 2 , z) → (x 1 , x 2 ).
From now on we assume (X, 0) to be analytically irreducible, that is,

f ∈ C{x 1 , x 2 }[z]
is irreducible (see [START_REF] Assi | Irreducibility criterion for quasi-ordinary polynomials[END_REF] and [START_REF] García Barroso | Quasi-ordinary singularities: tree model, discriminant and irreducibility[END_REF] for criteria of irreducibility of q.o. polynomials). The Jung-Abhyankar theorem guarantees that the roots of a q.o. polynomial f , called q.o. branches, are fractional power series in C{x

1/n 1 , x 1/n 2 }, for n = deg f (see [1]). The dierence ζ (i) -ζ (j) of two dierent roots of f divides the discriminant of f in the ring C{x 1/n 1 , x 1/n 2 }. Therefore ζ (i) -ζ (j) = x λ (1) ij 1 x λ (2) ij 2 u ij where u ij is a unit in C{x 1/n 1 , x 1/n 2 }. The exponents λ ij = ( λ (1) ij , λ (2) ij )
are characterized in the following Lemma.

Lemma 3.1. (see [15], Prop. 1.3.) Let f ∈ C{x 1 , x 2 }[z] be an irreducible q.o. poly- nomial. Let ζ be a root of f with expansion:

ζ = ∑ β λ x λ . (4) There exists 0 ̸ = λ 1 , . . . , λ g ∈ Q 2 0 such that λ 1 ≤ λ 2 ≤ • • • ≤ λ g
, and if M 0 := Z 2 and M j := M j-1 + Zλ j for j = 1, . . . , g, then:

(i) β λi ̸ = 0 and if β λ ̸ = 0 then λ ∈ M j where j is the unique integer such that λ j λ and λ j+1 λ (where means coordinate-wise and we convey that

λ g+1 = ∞). (ii) For j = 1, . . . , g, we have λ j / ∈ M j-1 , hence the index n j = [M j-1 : M j ] is > 1. Moreover if ζ ∈ C{x 1/n 1 , x 1/n
2 } is a fractional power series satisfying the conditions above, then ζ is a quasi-ordinary branch. Denition 3.2. The exponents λ 1 , . . . , λ g in Lemma 3.1 are called characteristic exponents of the q.o. branch ζ. We denote by M the lattice M g and we call it the lattice associated to the q.o. branch ζ. We denote by N (resp. N i ) the dual lattice of M (resp. M i for i = 1, . . . , g). For convenience we set λ 0 := (0, 0) and n 0 := 1. Moreover we set λ g+1 = ∞.

In [START_REF] Gau | Embedded Topological classication of quasi-ordinary singularities[END_REF] Gau proved that the characteristic exponents determine and are determined by the embedded topological type of (X, 0).

As a consequence of Lemma 3.1 we have the following result:

Lemma 3.3. If ζ is a quasi-ordinary branch of the form (4) then the series ζ j-1 := ∑ λ̸ ≥λj β λ x λ is a quasi-ordinary branch with characteristic exponents λ 1 , . . . , λ j-1 , for j = 1, . . . , g. Denition 3.4. For 0 ≤ j ≤ g -1 we have the germ of quasi-ordinary hypersurface (X (j) , 0), where X (j) is parametrized by the branch ζ j . For convenience we also denote ζ by ζ g and X by X (g) .

Without loss of generality we relabel the variables x 1 , x 2 in such a way that if

λ j = ( λ (1) j , λ (2) j 
) ∈ Q 2 for j = 1, . . . , g, then we have:

( λ (1) 1 , . . . , λ (1) g ) lex ( λ (2) 1 , . . . , λ (2) g ) , ( 5 
)
where lex is lexicographic order. The q.o. branch ζ is said to be normalized if

λ 1 is not of the form ( λ (1) 1 , 0 ) with λ (1)
1 < 1. Lipman proved that the germ (X, 0) can be parametrized by a normalized q.o. branch (see [START_REF] Gau | Embedded Topological classication of quasi-ordinary singularities[END_REF], Appendix). We assume from now on that the q.o. branch ζ is normalized.

The semigroup Z 2 0 has a minimal set of generators v 1 , v 2 , which is a basis of the lattice M 0 . The dual basis, {w 1 , w 2 }, is a basis of the dual lattice N 0 , and it spans a regular cone

σ in N 0,R = N 0 ⊗ Z R. It follows that Z 2 0 = σ ∨ ∩ M 0 , where σ ∨ = R 2 0 is the dual cone of σ. The C-algebra C{x 1 , x 2 } is isomorphic to the Calgebra C{σ ∨ ∩ M 0 } = { ∑ c λ x λ | c λ ∈ C, λ ∈ σ ∨ ∩ M 0 } . The local algebra O X = C{x 1 , x 2 }[z]/(f ) of the singularity (X, 0) is isomorphic to C{σ ∨ ∩ M 0 }[ζ]
. By Lemma 3.1 the series ζ can be viewed as an element

∑ β λ x λ of the algebra C{σ ∨ ∩ M }.
The elements of M dened by:

γ 1 = λ 1 and γ j+1 -n j γ j = λ j+1 -λ j for j = 1, . . . , g -1, (6) span the semigroup Γ := Z 2 0 + γ 1 Z 0 + • • • + γ g Z 0 ⊂ σ ∨ ∩ M .
Analogously to λ 0 and λ g+1 , we set γ 0 = (0, 0) and γ g+1 = ∞, for convenience.

The semigroup Γ denes an analytic invariant of the germ (X, 0) (see [START_REF] González Pérez | The semigroup of a quasi-ordinary hypersurface[END_REF], [START_REF] Popescu-Pampu | On the analytical invariance of the semigroups of a quasi-ordinary hypersurface singularity[END_REF], [START_REF] Kiyek | Semigroup of a quasiordinary singularity[END_REF]).

Denition 3.5. The monomial variety associated to (X, 0) is the toric variety

X Γ := Spec C[Γ].
Moreover we associate with the characteristic exponents the following sequence of semigroups:

Γ j = σ ∨ ∩ M + γ 1 Z ≥0 + • • • + γ j Z ≥0 , for j = 0, . . . , g.
And we have the corresponding monomial varieties X Γj associated to Γ j . We denote by e i-1 := n i • • • n g for 1 < i ≤ g and set e g := 1. Notice that, by [START_REF] Assi | Irreducibility criterion for quasi-ordinary polynomials[END_REF] and the denition of γ 1 , . . . , γ g , we deduce that ( γ

(1) 1 , . . . , γ (1) g ) lex ( γ (2) 1 , . . . , γ (2) g ) . ( 7 
)
The following Lemma gathers some important facts about the generators γ j and the semigroups Γ j . Lemma 3.6. (see Lemma 3.3 in [START_REF] González Pérez | The semigroup of a quasi-ordinary hypersurface[END_REF]) (i) We have that γ j > n j-1 γ j-1 for j = 2, . . . , g, where < means ̸ = and ≤ coordinate-wise.

(ii) If a vector u j ∈ σ ∨ ∩ M j , then we have u j + n j γ j ∈ Γ j .

(iii) The vector n j γ j belongs to the semigroup Γ j-1 for j = 1, . . . , g. Moreover, we have a unique relation

n j γ j = α (j) + r (j) 1 γ 1 + • • • + r (j) j-1 γ j-1 (8) such that 0 ≤ r (j) i ≤ n i -1 and α (j) ∈ M 0 for j = 1, . . . , g.
Denition 3.7. Given two irreducible q.o. polynomials f and g in C{x 1 , x 2 } [z] such that f g is a q.o. polynomial, we say that f and g have order of coincidence

α ∈ Q 2 if α is the largest exponent on the set { λ ij | f (ζ (i) ) = g(ζ (j) ) = 0 } ,
where ζ (i) and ζ (j) are roots of f g.

Denition 3.8. We associate to f a set of semi-roots

z = f 0 , f 1 , . . . , f g = f ∈ C{x 1 , x 2 }[z].
Every f j is an irreducible q.o. polynomial of degree n 0 • • • n j with order of coincidence with f equal to λ j+1 for j = 0, . . . , g.

They are parametrized by truncations of a root ζ(x

1/n 1 , x 1/n
2 ) of f in the following sense: Proposition 3.9. (see [START_REF] González Pérez | The semigroup of a quasi-ordinary hypersurface[END_REF]) Let q ∈ C{x 1 , x 2 }[z] be a monic polynomial of degree

n 0 • • • n j . Then q is a j-th semi-root of f if and only if q(ζ) = x γj+1 ϵ j for a unit ϵ j in C{x 1 , x 2 }[z].
Corollary 3.10. The quasi-ordinary polynomials f j ∈ C{x 1 , x 2 }[z] dening X (j) (see Denition 3.4) for j = 0, . . . , g -1 form a system of semiroots of f . More precisely f j is a j-th semiroot of f . Semi-roots play an important role in the understanding of quasi-ordinary singularities. In what follows we state some results about quasi-ordinary polynomials and semi-roots. Lemma 3.11. (See Lemma 35 in [START_REF] González Pérez | Toric embedded resolutions of quasi-ordinary hypersurface singularities[END_REF]) The expansion of semi-roots is of the fol- lowing form:

f j = f nj j-1 -c j x α (j) 1 1 x α (j) 2 2 f r (j) 1 0 • • • f r (j) j-1 j-2 + ∑ c α,r x α1 1 x α2 2 f r1 0 • • • f rj j-1 , (9) 
where c j ∈ C * , 0 ≤ r (j) i , r i < n i for i = 1, . . . , j, and n j γ j = (α

(j) 1 , α (j) 2 ) + r (j) 1 γ 1 + • • • + r (j) j-1 γ j-1 < (α 1 , α 2 ) + r 1 γ 1 + • • • + r j γ j .
As a consequence we have the following description of f . Lemma 3.12. For 0 ≤ l ≤ g -1 we have

f = f e l l -d l x β (l) 1 1 x β (l) 2 2 f s (l) 1 0 • • • f s (l) l l-1 + ∑ d β,s x β1 1 x β2 2 f s1 0 • • • f s l+1 l where d l ∈ C * , 0 ≤ s (l)
i , s i < e i , and

n l+1 e l+1 γ l+1 = (β (l) 1 , β (l) 2 ) + s (l) 1 γ 1 + • • • + s (l) l γ l ≤ (β 1 , β 2 ) + s 1 γ 1 + • • • + s l+1 γ l+1
Sometimes we will write

f = f e l l + ∑ d β,s x β1 1 x β2 2 f s1 0 • • • f s l+1 l , with n l+1 e l+1 γ l+1 ≤ (β 1 , β 2 ) + s 1 γ 1 + • • • + s l+1 γ l+1 , taking into account that for β = ( β (l) 1 , β (l) 2 
) and s = ( s

(l) 1 , . . . , s (l) l , 0 ) we have d β,s ̸ = 0.
Denition 3.13. We dene

Z i = X ∩ {x i = 0}, for i = 1, 2 Z 12 = X ∩ {x 1 = x 2 = 0}.
Moreover, the smallest number c ∈ {1, 2} with the property that λ (j) i = 0, for all 1 ≤ i ≤ g and c + 1 ≤ j ≤ 2 is called the equisingular dimension of the quasi-ordinary projection p.

By condition [START_REF] Assi | Irreducibility criterion for quasi-ordinary polynomials[END_REF] we have that c gives the number of variables appearing in the monomials x λ1 , . . . , x λg . In [START_REF] Lipman | Topological invariants of quasi-ordinary singularities[END_REF] Lipman proved that the spaces Z 1 , Z 2 and Z 12 are irreducible and described the singular locus of a q.o. singularity in terms of them. We state his result here for the particular case of surfaces. Theorem 3.14. (See Theorem 7.3 in [START_REF] Lipman | Topological invariants of quasi-ordinary singularities[END_REF]) Let X be a quasi-ordinary surface singularity with characteristic exponents λ 1 , . . . , λ g . Then we have:

(i) X Sing = Z 12 if and only if g = 1 and λ 1 = ( 1 n , 1 n ) . (ii) If c = 1 then X Sing = Z 1 . (iii) Otherwise c = 2, and since λ (1) 1 ̸ = 0, Z 1 ⊂ X is a component of X Sing . Moreover, if we do not have simultaneously λ (2) k = 0 for all 1 ≤ k ≤ g -1 and λ (2) g = 1
ng , the singular locus is reducible of the form

X Sing = Z 1 ∪ Z 2 .
Denition 3.15. Let X be a quasi-ordinary surface singularity with g ≥ 1 characteristic exponents. We dene the integers g 1 ≥ 0 and g 2 ∈ {g 1 , g 1 + 1} as follows:

if c = 1 we set g 1 = g 2 = g + 1,
otherwise (recall that we set γ 0 = (0, 0)),

γ (2) g1 = 0 and γ (2) g1+1 ̸ = 0, g 2 =      g 1 + 1 if γ (2) g1+1 = 1 ng 1 +1 g 1 otherwise
Remark 3.16. The integers g 1 and g 2 describe completely the singular locus of X (j) for 1 ≤ j ≤ g. Indeed, rst notice that

Z 1 = {x 1 = z = 0} Z 2 = {x 2 = f g1 = 0} Z 12 = {(0, 0, 0)}
and hence the singular locus of a quasi-ordinary surface singularity X is either a point, or a line, or two lines, or a line and a singular curve. Moreover, for 1 ≤ j ≤ g, we have

X (j) Sing =            Z 12 if j = 1 and λ 1 = ( 1 n1 , 1 n1 ) Z 1 if j ≤ g 2 Z 1 ∪ Z 2 if g 2 < j ≤ g (10)
Then, geometrically, the meaning of the integer g 2 is to measure the irreducibility of the singular locus of the semi-roots, since

X (j)
Sing is irreducible if and only if 1 ≤ j ≤ min{g 2 , g}. Now we dene a sequence of semi-open cones keeping track of the singular locus of the quasi-ordinary hypersurfaces X (j) for j = 1, . . . , g.

Denition 3.17. Recall that

σ = R 2 ≥0 . Let ρ 1 = (1, 0)R ≥0 and ρ 2 = (0, 1)R ≥0 be its one-dimensional closed faces. For 1 ≤ j ≤ g σ Sing,j =              • σ if X (j) Sing = Z 12 σ \ ρ 2 if X (j) Sing = Z 1 σ \ {(0, 0)} if X (j) Sing = Z 1 ∪ Z 2 ,
and σ Reg,j = σ \ σ Sing,j .

For convenience we dene σ Reg,j = ρ 1 ∪ ρ 2 for j = -1, 0. Moreover we denote σ Reg,g and σ Sing,g simply by σ Reg and σ Sing .

The sequence {σ Reg,-1 , . . . , σ Reg,g } is not very complicated, in the sense that most of the elements are the same. Since by denition γ

(2) g1+1 = λ (2)
g1+1 , it is clear by denition and by [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] 

that for -1 ≤ j ≤ g 2 σ Reg,j = { ρ 1 ∪ ρ 2 if j < 1 or if j = 1 and γ 1 = ( 1 n1 , 1 n1 ) ρ 2 otherwise for g 2 + 1 ≤ j ≤ g σ Reg,j = {(0, 0)}
Moreover notice that, by denition, we have σ Sing,j ⊆ σ Sing,j+1 .

Denition 3.18. Given ν ∈ σ ∩ N 0 , we dene the following integer

i(ν) =    g + 1 if ν ∈ N g min {1 ≤ i ≤ g | ν / ∈ N i } otherwise
We nish the section with another denition.

Denition 3.19. For ν ∈ σ ∩ N 0 we dene the ring

R ν =                      C{x (0) 1 , x (0) 2 } if ν = (0, 0) C{x (0) 1 }[x (ν2) 2 ] if ν ∈ ρ 2 C{x (0) 2 }[x (ν1) 1 ] if ν ∈ ρ 1 C[x (ν1) 1 , x (ν2) 2 
] otherwise 4. Jet schemes of q.o. surface singularities: the case of one characteristic exponent

We describe the irreducible components of the mjet schemes through the singular locus of a q.o. surface with one characteristic exponent. First we dene certain algebraic varieties C ν m and prove its irreducibility. Since they cover the whole ( π -1 m (X Sing )

) red , they are candidates to be the irreducible components of m-jets through the singular locus, and we have to study the inclusions among them.

Finally we construct a graph Γ representing the decomposition of ( π -1 m (X Sing )

)

red
for every m, with a suitable decoration. We prove that this graph is equivalent to the topological type of the singularity, i.e., to the characteristic exponent λ. All these results will be generalized in Section 5. Since in that section we will work with the generators of the semigroup Γ rather than with the characteristic exponents, we will use now the notation γ instead of λ (recall that by denition γ = λ).

In this section X is a q.o. surface dened by the polynomial

f = z n -x a 1 x b 2 + ∑ (i,j)+kγ>nγ c ijk x i 1 x j 2 z k , where γ = ( a n , b n )
with a ≥ b ≥ 0 is the characteristic exponent. We have that gcd(a, b, n) = 1 because we assume the q.o. surface to be irreducible. Moreover, if b = 0 then we have that a > n, since the branch is normalized. Remark 4.1. Note that f = z n -x a 1 x b 2 denes a toric surface, non-normal in general (it is normal if and only if a = b = 1). Therefore, in particular, in this section we describe the mjets through the singular locus of a family of non-normal toric surfaces.

Let us look at some examples.

Example 4.2. Let X be the surface dened by the q.o. polynomial

f = z 3 -x 4 1 + x 4 1 x 2 + x 3 1 z + x 2 1 x 2 z 2 with characteristic exponent γ = ( 4 3 , 0 ) . We have that X Sing = {z = x 1 = 0}, and then π -1 m (X Sing ) = V ( x (0)
1 , z (0) , F (1) , . . . , F (m) ) ,

since

F (0) ≡ 0 mod ( x (0)
1 , z (0) ) . Moreover

F (1) = 3z (0) 2 z (1) -4x (0) 1 3 x (1) 1 + 4x (0) 1 3 x (1) 1 x (0) 2 + x (0) 1 4 x (1) 2 + 3x (0) 1 2 x (1) 1 z (0) + x (0) 1 3 z (1) +2x (0) 1 x (1) 1 x (0) 2 z (0) 2 + x (0) 1 2 x (1) 2 z (0) 2 + 2x (0) 1 2 x (0) 2 z (0) z (1) ≡ 0 mod ( x (0) 1 , z (0)
) .

Analogously F (2) ≡ 0 mod ( x

(0) 1 , z (0) ) , but F (3) ≡ z (1) 3 mod ( x (0) 1 , z (0) )
. Hence we deduce that ( π -1 ℓ (X Sing )

) red = V ( x (0) 1 , z (0) ) , for ℓ = 1, 2 ( π -1 3 (X Sing ) ) red = V ( x (0)
1 , z (0) , z (1) ) Note that, though they are dened by the same ideal ( x Remark 2.5). For m = 4 we have

(0) 1 , z (0) ) , we have that ( π -1 1 (X Sing ) ) red ̸ = ( π -1 2 (X Sing ) ) red since ( π -1 1 (X Sing ) ) red ⊂ A 3 1 while ( π -1 2 (X Sing ) ) red ⊂ A 3 2 (see
F (4) ≡ -x (1) 1 4 + x (1) 1 4 x (0) 2 mod ( x (0)
1 , z (0) , z (1) ) .

Any jet through the singular locus has origin (0, x

2 , 0) ∈ X, and since we are dealing with a germ of q.o. surface X, we deduce that x (0) 2 is small enough so that -1 + x (0) 2 ̸ = 0, or in other words, -1 + x (0) 2 is a unit in the ring C{x 

) red = V ( x (0) 1 , x (1) 
1 , z (0) , z (1) ) .

Moreover, with analogous arguments we have

F (5) ≡ 0 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) )

F (6) ≡ z (2) 3 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) )

F (7) ≡ 0 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) , z (2) )

F (8) ≡ (-1 + x (0) 2 )x (2) 1 4 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) , z (2) )

F (9) ≡ z (3) 3 mod ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) )

F (ℓ) ≡ 0 mod ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) ) for ℓ = 10, 11

F (12) ≡ z (4) 3 -x (3) 1 4 + x (3) 1 4 x (0) 2 mod ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) )

Hence we deduce the following decomposition in irreducible components:

( π -1 5 (X Sing ) ) red = V ( x (0) 1 , x (1) 
1 , z (0) , z (1) ) ( π -1 ℓ (X Sing )

) red = V ( x (0) 1 , x (1) 
1 , z (0) , z (1) , z (2) ) for ℓ = 6, 7

( π -1 8 (X Sing ) ) red = V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) ) ( π -1 ℓ (X Sing )

) red = V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) ) for ℓ = 9, 10, 11

( π -1 12 (X Sing ) ) red = V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) , z (4) 3 -x

(3) 1 4 + x (3) 1 4 x (0) 2 )
For m ≤ 12 we have seen that

( π -1 m (X Sing ) ) red is irreducible (note that z 3 -x 4 1 + x 4
1 x 2 is an irreducible q.o. polynomial and therefore

( π -1 12 (X Sing )
) red is irreducible), but for m > 12 this is no longer true. Indeed, F (13) ≡ 3z (4) 2 z (5) -4x

(3) 1 4

x

(4) 1 + x (3) 1 4 x (1) 2 + 4x (3) 1 3 x (4) 1 x (0) 2 + x (3) 1 3 z (4) mod I,
where we set

I = ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) ) , and

( π -1 13 (X Sing )
) red has two irreducible components:

V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) , F (12) , F (13) ) ∩ {x

(3)

1 ̸ = 0} V ( x (0) 1 , x (1) 1 , x (2) 1 , x (3) 
1 , z (0) , z (1) , z (2) , z (3) , z (4) ) The irreducibility of the rst component follows by Proposition 2.4, since its generic part V ( x

(0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) , F (12) , F (13) ) ∩ {x

(3)

1 ̸ = 0} projects by π 13,12 into the non-singular locus

Reg ( V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) , F (12) )) .

Note that F (12) ≡ z (4) 3 -x

(3) 1 4 + x (3) 1 4 x (0) 2 mod ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) ) ,

and hence the regular part is contained in {x

1 ̸ = 0}. The same kind of argument implies that

V ( x (0) 1 , x (1) 1 , x (2) 
1 , z (0) , z (1) , z (2) , z (3) , F (12) , . . . , F (m)

) ∩ {x (3)
1 ̸ = 0}, is irreducible, and we will prove that it is indeed an irreducible component of ( π -1 m (X Sing )

)
red for any m ≥ 13.

In the example above we have components dened by the annihilation of hyperplane coordinates in

A 3 m = Spec C[x (i) 1 , x (i)
2 , z (i) ] i=0,...,m . They have the property of staying irreducible when lifted from level m to m + 1. We see next an example where this is not always the case. This dierence will turn out to be important later, when studying the graph in Lemma 4.19.

Example 4.3. Let X be the surface dened by the q.o. polynomial

f = z 4 -x 6 1 x 2 + x 5 1 x 2 z + x 3 1 x 2 z 2 + x 2 1 x 2 z 3 , with characteristic exponent γ = ( 6 4 , 1 4 
). We have that X Sing = {z = x 1 = 0}, and then

π -1 m (X Sing ) = V ( x (0)
1 , z (0) , F (1) , . . . , F (m) ) ,

since

F (0) ≡ 0 mod ( x (0) 1 , z (0) )
. We have that

F (1) = 4z (0) z (1) -6x (0) 1 5 x (1) 1 x (1) 1 x (0) 2 -x (0) 1 6 x (1) 2 + 5x (0) 1 4 x (1) 1 x (0) 2 z (0) +x (0) 1 5 x (1) 2 z (0) + x (0) 1 5 x (0) 2 z (1) + 3x (0) 1 2 x (1) 1 x (0) 2 z (0) 2 + x (0) 1 3 x (1) 2 z (0) 2 +2x (0) 1 3 x (0) 2 z (0) z (1) + 2x (0) 1 x (1) 1 x (0) 2 z (0) 3 + x (0) 1 2 x (1) 2 z (0) 3 +3x (0) 1 2 x (0) 2 z (0) 2 z (1) ≡ 0 mod ( x (0)
1 , z (0) ) Analogously we have that F (2) 

≡ 0 mod ( x (0) 1 , z (0) ) and F (3) ≡ 0 mod ( x (0) 1 , z (0) ) , but F (4) ≡ z (1) 4 mod ( x (0) 1 , z (0) ) . Moreover F (5) ≡ 0 mod ( x (0)
1 , z (0) , z (1) ) and

F (6) ≡ -x (1) 1 6 x (0) 2 mod ( x (0) 
1 , z (0) , z (1) ) , which implies that ( π -1 6 (X Sing )

) red = V ( x (0) 1 , x (1) 
1 , z (0) , z (1) )

∪ V ( x (0) 1 , x (0) 
2 , z (0) , z (1) ) .

Note how

V ( x (0)
1 , z (0) , z (1) )

is a component at level m = 5, and it is dened by hyperplane coordinates, but π -1 6,5

( V (x (0)
1 , z (0) , z (1) )

)
is no longer irreducible. Now, to lift these two components to level 7 we study the polynomial F (7) . We have that F (7) 

≡      0 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) ) -x

(1) 1 6

x

(1)

2 mod ( x (0) 1 , x (0) 
2 , z (0) , z (1) ) Then π -1

7,6 ( V ( x (0) 1 , x (0) 
2 , z (0) , z (1) ))

= V ( x (0) 1 , x (1) 1 , x (0) 
2 , z (0) , z (1) 

) ∪ ∪ V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) ) and since V ( x

(0) 1 , x (1) 1 , x (0) 
2 , z (0) , z (1) )

⊆ V ( x (0) 1 , x (1) 
1 , z (0) , z (1) ) we conclude that ( π -1 7 (X Sing )

) red = V ( x (0) 1 , x (1) 
1 , z (0) , z (1) )

∪ V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) ) At level m = 8 we have

F (8) ≡      z (2) 4 mod ( x (0) 1 , x (1) 
1 , z (0) , z (1) )

z (2) 4 -x (1) 1 6 x (2) 2 mod ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) ) and π -1

9,8 ( V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) , F (8) ))

red = = π -1 9,8 ( Sing(V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) , F (8) )

) ) ∪ ∪ π -1 9,8 ( Reg(V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) , F (8) )

)

) = = V ( x (0) 1 , x (1) 
1 , x

(0) 2 , x (1) 
2 , z (0) , z (1) , z (2) 

) ∪ ∪ V ( x (0) 1 , x (0) 2 , x (1) 
2 , z (0) , z (1) , F (8) , F (9) ) ∩ {x

(1)

1 ̸ = 0}.

We will describe the irreducible decomposition of mjets through the singular locus as ( π -1 m (X Sing )

) red = ∪ ν∈Fm C ν m
for a certain nite set F m ⊆ Z 2 and certain irreducible sets C ν m that we proceed to dene. First we recall, in the case of only one characteristic exponent, some objects described in Section 3 in general.

The notion of equisingular dimension c was given in Denition 3.13. By Theorem 3.14 we have the following description of the singular locus of X (recall that the characteristic exponent is γ =

( a n , b n ) with a ≥ b ≥ 0), X Sing =                    {z = x 1 = 0} if c = 1 ( i.e. b = 0 ) {(0, 0, 0)} if c = 2 and a = b = 1 {z = x 1 = 0} if c = 2 and a > 1, b = 1 {z = x 1 = 0} ∪ {z = x 2 = 0} if c = 2 and a, b > 1 (11) 
From Denition 3.17 we have that

σ Sing =            • σ if γ = ( 1 n , 1 n ) σ \ ρ 2 if γ = ( a n , 1 n ) or γ = ( a n , 0 ) σ \ {(0, 0)} otherwise
where recall that σ = R 2 ≥0 and ρ 1 = (1, 0)R ≥0 and ρ 2 = (0, 1)R ≥0 are its one dimensional faces.

Given γ(t) ∈ X m with x i •γ(t) ̸ = 0 for i = 1, 2, we have that ord t (x i •γ(t)) ≥ 0. Hence ν := ( ord t (x 1 • γ(t)), ord t (x 2 • γ(t)) ) ∈ σ ∩ N 0 . If we add the condition π m (γ(t)) ∈ X Sing then ν ∈ σ Sing ∩ N 0 . Moreover it is clear that 0 ≤ ν i ≤ m for i = 1, 2. Denition 4.4. Given a positive integer m and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 , we dene an algebraic variety C ν m ⊆ A 3 m as follows (recall Remark 2.5). • If m < ⟨ν, nγ⟩, C ν m := V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) ) Note that C ν m is a non-singular algebraic variety of A 3 m . • If m = ⟨ν, nγ⟩ and ν ∈ N , C ν ⟨ν,nγ⟩ := V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z (⟨ν,γ⟩-1) , F (⟨ν,nγ⟩) ) Note that C ν m is not well dened if ν ∈ N 0 \ N since ⟨ν, γ⟩ is not an integer. The polynomial F (⟨ν,nγ⟩) modulo the ideal ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z (⟨ν,γ⟩-1) )
is studied in Lemma 4.5, and it turns out that C ν ⟨ν,nγ⟩ is a singular algebraic variety of

A 3 m . • If m > ⟨ν, nγ⟩ and ν ∈ N , C ν m := π -1 m,⟨ν,nγ⟩ ( Reg (C ν ⟨ν,nγ⟩ ) )
where the overline denotes the Zariski closure and Reg stands for regular locus.

It turns out to be crucial to understand the variety C ν ⟨ν,nγ⟩ .

Lemma 4.5. For ν ∈ σ Sing ∩ N we dene

F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a x (ν2) 2 b + ∑ c ijk x (ν1) 1 i x (ν2) 2 j z (⟨ν,γ⟩) k
where the sum runs over i, j, k subject to the conditions: the monomial c ijk x i 1 x j 2 z k appears in the q.o. polynomial f and ⟨ν, (i, j)

+ kγ⟩ = ⟨ν, nγ⟩. Note that, if ν ∈ • σ, the sum ∑ c ijk x (ν1) 1 i x (ν2) 2 j z (⟨ν,γ⟩) k in F (⟨ν,nγ⟩) ν is zero. We have that F (⟨ν,nγ⟩) ≡ F (⟨ν,nγ⟩) ν mod ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2
, z (0) , . . . , z (⟨ν,γ⟩-1) ) ,

and hence

C ν ⟨ν,nγ⟩ = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z (⟨ν,γ⟩-1) , F (⟨ν,nγ⟩) ν ) .
In particular observe that

F (⟨ν,nγ⟩) ν is a q.o. polynomial in R ν [z (⟨ν,γ⟩) ] (see Denition 3.19). If ν ∈ σ Sing ∩ ( N 0 \ N ) we dene F (⟨ν,nγ⟩) ν = -x (ν1) 1 a x (ν2) 2 b + ∑ c ij0 x (ν1) 1 i x (ν2) 2 j where c ij0 x i 1 x j 2 is a monomial in f and ⟨ν, (i, j)⟩ = ⟨ν, nγ⟩. Then F (⟨ν,nγ⟩) ≡ F (⟨ν,nγ⟩) ν mod ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2
, z (0) , . . . , z ([⟨ν,nγ⟩]) )

The sum

∑ c ij0 x (ν1) 1 i x (ν2) 2 j is non-zero if and only if ν ∈ ρ 1 ∪ ρ 2 . Moreover, if ν ∈ ρ 1 ∪ ρ 2 F (⟨ν,nγ⟩) ν = -x (ν1) 1 a x (ν2) 2 b • U where U is a unit in R ν .
Proof. If ν ∈ N , we have by denition that the polynomial F (⟨ν,nγ⟩) modulo the ideal ( x

(0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z (⟨ν,γ⟩-1) ) is of the form z (⟨ν,γ⟩) n -x (ν1) 1 a x (ν2) 2 b + ∑ c ijk x (α) 1 i x (β) 2 j z (δ) k
where the sum runs subject to the conditions

(i, j) + kγ > nγ iα + jβ + kδ = ⟨ν, nγ⟩ α ≥ ν 1 , β ≥ ν 2 , δ ≥ ⟨ν, γ⟩
If there exists at least one c ijk ̸ = 0 under these conditions

⟨ν, nγ⟩ = iα + jβ + kδ ≥ iν 1 + jν 2 + k⟨ν, γ⟩ = ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩,
then all inequalities must be equalities and we deduce that

α = ν 1 , β = ν 2 and δ = ⟨ν, γ⟩.
Then, the condition iα + jβ + kδ = ⟨ν, nγ⟩ is ⟨ν, (i, j) + kγ⟩ = ⟨ν, nγ⟩, and this only holds

if ν ∈ ρ 1 ∪ ρ 2 . If ν ∈ N 0 \ N , rst note that [⟨ν, γ⟩] < ⟨ν, γ⟩ < [⟨ν, γ⟩] + 1.
By denition F (⟨ν,nγ⟩) mod ( x

(0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([⟨ν,γ⟩]) ) is of the form -x (ν1) 1 a x (ν2) 2 b + ∑ c ijk x (α) 1 i x (β) 2 j z (δ) k
where the sum runs subject to the conditions

(i, j) + kγ > nγ iα + jβ + kδ = ⟨ν, nγ⟩ α ≥ ν 1 , β ≥ ν 2 , δ ≥ [⟨ν, γ⟩] + 1
If there exists at least one c ijk ̸ = 0 with i, j, k under these conditions and moreover with k > 0, then

⟨ν, nγ⟩ = iα + jβ + kδ ≥ iν 1 + jν 2 + k([⟨ν, γ⟩] + 1) > ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩
Therefore we must have k = 0, and then

⟨ν, nγ⟩ = iα + jβ ≥ ⟨ν, (i, j)⟩ ≥ ⟨ν, nγ⟩ Hence α = ν 1 and β = ν 2 . As in the case ν ∈ N , the sum ∑ c ij0 x (ν1) 1 i x (ν2) 2 j is non- zero if and only if ν ∈ ρ 1 ∪ρ 2 since the conditions (i, j) > nγ and ⟨ν, (i, j)⟩ = ⟨ν, nγ⟩ are compatible if and only if ν ∈ σ Sing ∩ (ρ 1 ∪ ρ 2 ). If ν ∈ ρ 1 then F (⟨ν,nγ⟩) ν = -x (ν1) 1 a x (0) 2 b + ∑ c ij0 x (ν1) 1 i x (0) 2 j
with the conditions (i, j) > (a, b) and ⟨ν, nγ⟩ = ⟨ν, (i, j)⟩. Then i = a, and therefore j > b. Hence

F (⟨ν,nγ⟩) ν = -x (ν1) 1 a x (0) 2 b ( 1 + ∑ c ij0 x (0) 2 j-b ) and 1 + ∑ c ij0 x (0) 2 j-b is a unit in C{x (0) 2 }. If ν ∈ ρ 2 the
proof is analogous, simply noticing (by the denition of g 2 ) that, since ν ∈ σ Sing , we must be in the case b > 1.

Example 4.6. Consider the q.o. surface dened by

f = z 2 -x 4 1 x 3 2 + x 2 1 x 2 2 z, with characteristic exponent λ = ( 4 2 , 3 2 
)
. For ν = (2, 0) we have

F (8) ν = z (4) 2 -x (2) 1 4 x (0) 2 3 + x (2) 1 2 x (0) 2 2 z (4) .
Obviously we can not write

F (8) ν as z (4) 2 -x (2) 1 4 x (0) 2 3 
• U with U a unit, as we have proved in Lemma 4.5 that it is the case when ν / ∈ N . Notice however that (4) ̸ = 0}, this will turn out to be crucial (see Corollary 5.16 for a complete statement in the general case).

V ( F (8) ν ) ∩ {x (2) 1 ̸ = 0} ∩ {x (0) 2 ̸ = 0} ⊆ {z
To understand completely the sets C ν m for m > ⟨ν, nγ⟩, we need to study the regular part Reg

( C ν ⟨ν,nγ⟩
)

. It is closely related to the regular locus of X, described in [START_REF] Denef | Geometry on arc spaces of algebraic varieties[END_REF]. Lemma 4.7. For ν ∈ σ Sing ∩ N , let us denote

J ν = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2
, z (0) , . . . , z (⟨ν,γ⟩-1) )

We have:

(i) if γ = ( 1 n , 1 n ) , Reg ( C ν ⟨ν,nγ⟩ ) = C ν ⟨ν,nγ⟩
and, as a consequence, for m > ⟨ν, nγ⟩,

C ν m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) (ii) otherwise γ = ( a n , b n ) with a > 1 and Reg ( C ν ⟨ν,nγ⟩ ) =      C ν ⟨ν,nγ⟩ ∩ {x (ν1) 1 ̸ = 0} if b ∈ {0, 1} C ν ⟨ν,nγ⟩ ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2 ̸ = 0} otherwise
As a consequence, for m > ⟨ν, nγ⟩ and b = 0 or 1, we have that

C ν m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0}
while for m > ⟨ν, nγ⟩ and b ̸ = 0, 1,

C ν m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2 ̸ = 0}
Proof. We distinguish cases according to the description in [START_REF] Denef | Geometry on arc spaces of algebraic varieties[END_REF] of the singular locus.

(i) If γ = ( 1 n , 1 n )
the claim of the Lemma is clear, since the singular locus of such a q.o. surface is the origin.

(ii) If γ = ( a n , 0 )
we have to prove that, in C ν ⟨ν,nγ⟩ , the conditions x (ν1) 1 ̸ = 0 and z (⟨ν,γ⟩) ̸ = 0 are equivalent. By Lemma 4.5,

F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a + ∑ c ijk x (ν1) 1 i x (ν2) 2 j z (⟨ν,γ⟩) k is a dening equation of C ν ⟨ν,nγ⟩ . If the sum in F (⟨ν,nγ⟩) ν is empty the claim is obvious. Otherwise ν ∈ ρ 1 ∪ ρ 2 and, since ν ∈ σ Sing , we deduce that ν ∈ ρ 1 . Then F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a + ∑ c ijk x (ν1) 1 i x (0) 2 j z (⟨ν,γ⟩) k
with ⟨ν, (i, j) + kγ⟩ = ⟨ν, nγ⟩, or equivalently

ν 1 ( i + k a n ) = ν 1 n a n This implies that i + k a n = a,
and since 0 ≤ k < n and gcd(a, n) = 1, we deduce that i = a and k = 0. Then j > 0 for any c aj0 ̸ = 0 and we can write

F (⟨ν,nγ⟩) ν as F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a + ∑ j c aj0 x (ν1) 1 a x (0) 2 j = z (⟨ν,γ⟩) n -x (ν1) 1 a ( 1 + ∑ j c aj0 x (0) 2 j ) Since 1 + ∑ c aj0 x (0) 2 j is a unit in R ν = C{x (0) 2 }[x (ν1) 1
], it does not vanish, and the claim follows.

(iii) If γ = ( a n , 1 n )
, by Lemma 4.5 we have that

F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a x (ν2) 2 + ∑ c ijk x (ν1) 1 i x (ν2) 2 j z (⟨ν,γ⟩) k
where the sum runs over (i, j, k) such that (i, j) + kγ > (a, 1). Therefore we deduce that for any such (i, j, k)

we have i > 0 because 0 ≤ k < n. It follows that if x (ν1) 1 = 0 and F (⟨ν,nγ⟩) ν = 0 then we have that z (⟨ν,γ⟩) = 0. Hence Reg ( C ν ⟨ν,nγ⟩ ) = C ν ⟨ν,nγ⟩ ∩{z (⟨ν,γ⟩) ̸ = 0} ∪ C ν ⟨ν,nγ⟩ ∩{x (ν1) 1 ̸ = 0} = C ν ⟨ν,nγ⟩ ∩{x (ν1) 1 ̸ = 0} (iv) If γ = ( a n , b n ) with b > 1, we have that Reg ( C ν ⟨ν,nγ⟩ ) = C ν ⟨ν,nγ⟩ ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2 ̸ = 0} ∪ C ν ⟨ν,nγ⟩ ∩ {z (⟨ν,γ⟩) ̸ = 0}
and we claim that

C ν ⟨ν,nγ⟩ ∩ {z (⟨ν,γ⟩) ̸ = 0} = C ν ⟨ν,nγ⟩ ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2
̸ = 0}. Indeed, by Lemma 4.5 it follows that

F (⟨ν,nγ⟩) ν = z (⟨ν,γ⟩) n -x (ν1) 1 a x (ν2) 2 b + ∑ c ijk x (ν1) 1 i x (ν2) 2 j z (⟨ν,γ⟩) k is a dening equation of C ν ⟨ν,nγ⟩ . If the sum is zero, the claim is obvious. Otherwise ν ∈ ρ 1 ∪ ρ 2 . Let us suppose that ν ∈ ρ 1 (the case ν ∈ ρ 2
is completely analogous). The monomials on the sum are of the form

c ijk x (ν1) 1 i x (0) 2 j z (⟨ν,γ⟩) k with i + k a n = a and j + k b n > b. In particular we deduce that i, j > 0. Therefore if F (⟨ν,nγ⟩) ν = 0 and either x (ν1) 1 = 0 or x (0) 2 = 0 it follows that z (⟨ν,γ⟩) = 0. And conversely, if z (⟨ν,γ⟩) = 0, then F (⟨ν,nγ⟩) ν ( z (⟨ν,γ⟩) = 0 ) = -x (ν1) 1 a x (0) 2 b • U with U a unit in C{x (0)
2 } (because if we impose k = 0 on the conditions i + k a n = a and j + k b n > b we obviously obtain i = a and j > b). Then the result follows.

Denition 4.8. We dene the set

A m ∪ B m ⊆ σ Sing ∩ [0, m] 2 ∩ N 0 as A m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | ⟨ν, nγ⟩ > m} B m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | ⟨ν, nγ⟩ ≤ m} Moreover, we decompose the set B m as B m = B = m ∪ B < m , where B = m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | ⟨ν, nγ⟩ = m} B < m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | ⟨ν, nγ⟩ < m} Remark 4.9. Notice that, for m ∈ Z >0 , the set B m is B m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | aν 1 + bν 2 ≤ m} = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | aν1+bν2 n ∈ Z and aν 1 + bν 2 ≤ m}
For any m > 0 and any ν ∈ A m ∪ B m , we have dened an algebraic variety C ν m in Denition 4.4. These are the candidates to be the irreducible components of ( π -1 m (X Sing )

) red . To prove this assertion we need to make sure that these sets are irreducible, and that they cover 

( π -1 m (X Sing ) ) red . Lemma 4.10. For m ∈ Z >0 and ν ∈ A m ∪ B m we have that C ν m is irreducible. Moreover its codimension is: Codim ( C ν m ) =    ν 1 + ν 2 + [ m n ] if ν ∈ A m ν 1 + ν 2 + ⟨ν, γ⟩ + m -⟨ν, nγ⟩ + 1 if ν ∈ B m Proof. For ν ∈ A m ∪ B = m the
) red = ∪ ν∈Am∪Bm C ν m Proof. By denition we have that ∪ ν∈Am∪Bm C ν m ⊆ ( π -1 m (X Sing ) ) red . We have to prove that any m-jet γ(t) ∈ ( π -1 m (X Sing ) ) red belongs to certain C ν m with ν ∈ A m ∪ B m . • Suppose rst that x i • γ(t) ̸ = 0 for i = 1, 2. Then we set ν := ( ord t (x 1 • γ(t)), ord t (x 2 • γ(t))
)

. We have that ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 , and we only need to prove that if ⟨ν, nγ⟩ ≤ m then ν ∈ N . Indeed, let us suppose the contrary, that m ≥ ⟨ν, nγ⟩ and ν ∈ N 0 \ N . We dene the ideal

J = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 
) .

Note that γ(t) ∈ V (J)∩{x

(ν1) 1 ̸ = 0}∩{x (ν2) 2 ̸ = 0}. Using that f •γ(t) ≡ 0 mod t m+1 we deduce that γ(t) ∈ V ( J + (z (0) , . . . , z ([⟨ν,γ⟩]) ) ) ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2 ̸ = 0}
and that

F (⟨ν,nγ⟩) ≡ -x (ν1) 1 a x (ν2) 2 b + ∑ c ijk x (ν1) 1 i x (ν2) 2 j z ([⟨ν,γ⟩]+1) k mod J+ ( z (0) , . . . , z ([⟨ν,γ⟩]) )
where the sum runs under the conditions (i, j)+kγ > nγ and ⟨ν, (i, j)⟩+k([⟨ν, γ⟩]+ 1) = ⟨ν, nγ⟩. But, since ν / ∈ N we have [⟨ν, γ⟩] + 1 > ⟨ν, γ⟩, and then

⟨ν, (i, j)⟩ + k([⟨ν, γ⟩] + 1) > ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩
and we deduce that F (⟨ν,nγ⟩) ≡ -x

(ν1) 1 a x (ν2) 2 b mod J + ( z (0) , . . . , z ([⟨ν,γ⟩]) ) . Since we have that x (ν1) 1 a x (ν2) 2 b is non-zero, this contradicts the fact that γ(t) ∈ X m , because ⟨ν, nγ⟩ ≤ m. • Suppose that x 1 •γ(t) = 0 and x 2 •γ(t) ̸ = 0. We set ν 2 := ord t ( x 2 •γ(t) ) ≤ m. Note that ν := (m, ν 2 ) ∈ A m and since γ(t) ∈ C ν m we are done. • If x 1 • γ(t) ̸ = 0 and x 2 • γ(t) = 0 then we set ν := (ord t (x 1 • γ(t)), m).
We have that if b ̸ = 0 then ⟨ν, nγ⟩ > m and therefore ν ∈ A m . If b = 0 and aν 1 ≤ m we can prove, arguing as in the case

x i • γ(t) ̸ = 0 for i = 1, 2, that ν ∈ N . Then ν ∈ B m . In both cases (b = 0 and b ̸ = 0) we have that γ(t) ∈ C ν m . • If x i • γ(t) ̸ = 0 for i = 1, 2, we set ν := (m, m). We have that ν ∈ A m and γ(t) ∈ C ν m .
The description given in Lemma 4.11 is not the decomposition in irreducible components, we still have to study the inclusions among the sets C ν m . Let us denote by ≤ the coordinate-wise order:

ν ≤ ν ′ ⇐⇒ ν ′ ∈ ν + σ ⇐⇒ ν i ≤ ν ′ i for i = 1, 2 (12) 
Then, given ν, ν

′ ∈ A m ∪ B m such that ν ̸ ≤ ν ′ it is clear that C ν ′ m C ν m
, since for any ν, by denition, we have

C ν m ⊆ V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 
) .

Therefore we have to consider ν, ν ′ ∈ A m ∪ B m with ν ≤ ν ′ and study wether we have the inclusion

C ν ′ m ⊆ C ν m or not.
Denition 4.12. We dene, for m ∈ Z >0 , the relation ≤ m on A m ∪B m as follows,

ν ≤ m ν ′ if and only if    ν ′ -ν ∈ σ Reg,0 if ν, ν ′ ∈ A m ∪ B = m ν ′ -ν ∈ σ Reg,1 otherwise Remark 4.13. Note that if ν ≤ m ν ′ then ν ≤ ν ′ .
We have dened, for every m ∈ Z >0 , a partial order ≤ m on Z 2 ≥0 . Hence, given any subset R ⊆ Z 2 ≥0 , we may consider the set

min ≤m R = {v ∈ R | w ∈ R such that w ≤ m v}
Theorem 4.14. The decomposition of Proof. Notice rst that, for ν, ν 1 for a sketch of how the relation ≤ m acts on A m ∪ B m for the dierent cases depending on γ. Moreover, for any ν ∈ A m , by denition we have

( π -1 m (X Sing ) ) red in irreducible components is given by ( π -1 m (X Sing ) ) red = ∪ ν∈Fm C ν m where F m = min ≤m {A m ∪ B m }. γ = ( a n , 0) m = ⟨ν, nγ⟩ B < m ↓ A m ↓ ← γ = ( 1 n , 1 n ) d d d d d d m = ⟨ν, nγ⟩ B < m A m ↓ ← ↓ ← γ = ( a n , 1 n ) f f f f f f f f f A m B < m ↓ ↓ ← m = ⟨ν, nγ⟩ γ = ( a n , b n ) e e e e
′ ∈ A m , we have ν ≤ m ν ′ if and only if ν ≤ ν ′ , simply because A m ⊆ N 0 and σ Reg,0 = ρ 1 ∪ ρ 2 . See Figure
C ν m = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n])
) .

Then it is clear that, given ν, ν ′ ∈ A m ,

ν ′ ∈ ν + σ ⇐⇒ C ν ′ m ⊆ C ν m ,
and we deduce that

∪ ν∈Am C ν m = ∪ ν∈min ≤ Am C ν m
where recall that by denition ν ≤ ν ′ if and only if ν ′ ∈ ν + σ.

To prove the statement we distinguish cases depending on γ.

(i) If γ = ( 1 n , 1 n ), the relation is ν ≤ m ν ′ if and only if ν ′ -ν ∈ ρ 1 ∪ ρ 2 for any ν, ν ′ ∈ A m ∪ B m . Moreover σ Sing = • σ and A m = {ν ∈ • σ ∩[0, m] 2 ∩ N 0 | ν 1 + ν 2 > m} B m = {ν ∈ • σ ∩[0, m] 2 ∩ N | ν 1 + ν 2 ≤ m}
We distinguish two cases, m < n and m ≥ n.

If m < n then B m = ∅ (since ⟨ν, γ⟩ = ν1+ν2 n ∈ N and ν 1 + ν 2 ≤ m < n are incompatible conditions) and therefore F m = min ≤m A m = min ≤ A m = {ν ∈ • σ ∩N 0 | ν 1 + ν 2 = m + 1} = {(1, m), (2, m -1), . . . , (m, 1)} If m ≥ n, we have that B 0 := {(1, n -1), . . . , (n -1, 1)} ⊆ B m and A m ∪ B m ⊆ ∪ ν∈B 0 (ν + σ) Let ν ′ ∈ A m ∪ B m \ B 0 , we will prove that there exists ν ∈ B 0 such that C ν ′ m ⊆ C ν m .
There are two cases:

• If ν ′ ∈ A m , then C ν ′ m = V ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z ([m/n]) ) Let ν be any point in B 0 such that ν ′ ∈ ν + σ. Then C ν m = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , F (n) , . . . , F (m) ) We claim that C ν ′ m ⊆ C ν m . Indeed, rst it is clear that for i = 1, 2 x (0) i , . . . , x (νi-1) i , z (0) ∈ ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z ([m/n]) )
We have to prove that, for n ≤ l ≤ m

F (l) ∈ ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z ([m/n]) )
How does F (l) look like? It consists of monomials of the form:

z (a1) • • • z (an)
with a i ≤ l and

a 1 + • • • + a n = l x (b1) 1 x (b2) 2 with b 1 , b 2 ≤ l and b 1 + b 2 = l x (r1) 1 • • • x (rα 1 ) 1 x (s1) 2 • • • x (sα 2 ) 2 z (t1) • • • z (t k ) with r i , s i , t i ≤ l, and ∑ r i + ∑ s i + ∑ t 1 = l
with the condition (α 1 , α 2 ) + kγ > nγ (we are just deriving the equation F (0) l times and forgetting about the coecient of each monomial). Let us impose now the conditions

a i , t j ≥ [ m n ] + 1 b 1 , r i ≥ ν ′ 1 b 2 , s i ≥ ν ′ 2
which correspond to the fact that we are interested in the equation

F (l) modulo the ideal ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z ([m/n]) )
.

Then we have that

l = a 1 + • • • + a n ≥ n ( [ m n ] + 1 ) > m which is impossible. Moreover l = b 1 + b 2 ≥ ν ′ 1 + ν ′ 2 > m since ν ′ ∈ A m ,
and this is a contradiction. Finally

l = r 1 + • • • + r α1 + s 1 + • • • + s α2 + t 1 + • • • + t k ≥ ⟨ν ′ , (α 1 , α 2 )⟩ + k([ m n ] + 1) ≥ ⟨ν ′ , (1, 1) -kγ⟩ + k([ m n ] + 1) = (ν ′ 1 + ν ′ 2 )(1 -k n ) + k([ m n ] + 1) > m + k([ m n ] + 1 -m n ) > m Then we have proved that for l ≤ m F (l) ≡ 0 mod ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z ([m/n]) )
.

• If ν ′ ∈ B m , the strategy is the same, and we can prove that

C ν ′ m ⊆ C ν m for any ν ∈ B 0 such that ν ′ ∈ ν + σ. Indeed, C ν ′ m = V ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z (⟨ν ′ ,γ⟩-1) , F (⟨ν ′ ,nγ⟩) , . . . , F (m) )
and

C ν m = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , F (n) , . . . , F (m) )
We only have to prove that for n ≤ l < ⟨ν ′ , nγ⟩

F (l) ∈ ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z (⟨ν ′ ,γ⟩-1) )
In this case note that ν ′ 1 + ν ′ 2 ≤ m and ν ∈ N . The monomials of F (l) are described in the previous case, but now the conditions we impose are

a i , t i ≥ ⟨ν ′ , γ⟩ b 1 , r i ≥ ν ′ 1 b 2 , s i ≥ ν ′ 2 Then l = a 1 + • • • + a n ≥ n⟨ν ′ , γ⟩ which is impossible. Moreover l = b 1 + b 2 ≥ ν ′ 1 + ν ′ 2 = n⟨ν ′ , γ⟩ another contradiction. And nally, l = r 1 + • • • + r α1 + s 1 + • • • + s α2 + t 1 + • • • + t k ≥ α 1 ν ′ 1 + α 2 ν ′ 2 + k⟨ν ′ γ⟩ = ⟨ν ′ , (α 1 , α 2 ) + kγ⟩ ≥ n⟨ν ′ , γ⟩
Then we have proved that

F (l) ≡ 0 mod ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z (⟨ν ′ ,γ⟩-1) ) ,
and the claim follows.

(ii) If γ = ( a n , 0), we have that gcd(a, n) = 1 and a > n (recall that the q.o. surface is irreducible and the branch is normalized). We have that

A m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | aν 1 > m} B m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | aν 1 ≤ m}
Then, in this case, min ≤m A m consists of a single element, and

∪ ν∈Am C ν m = C ν * m where ν * = ([ m a ] + 1, 0) is the smallest element (with respect to ≤) in A m . For ν, ν ′ ∈ B < m with ν ′ -ν ∈ ρ 2 we have that C ν ′ m ⊆ C ν m
. Indeed, we have that ν ′ = ν + (0, r) with r ∈ Z >0 , and then ⟨ν, γ⟩ = ⟨ν ′ , γ⟩. Then (recall the notation

J ν = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2
, z (0) , . . . , z (⟨ν,γ⟩-1) ) )

C ν m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0} C ν ′ m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0}
and the claim follows. Therefore,

∪ ν∈B < m C ν m = ∪ ν∈min ≤m B < m C ν m
and using that in this case

ν ∈ N if and only if ν + r(0, 1) ∈ N, with r ∈ Z we deduce that min ≤m B < m ⊆ N × {0}
So far we have that ( π -1 m (X Sing ) 

) red = ∪ ν∈{ν * }∪B = m ∪ min ≤m B < m C ν m Given ν, ν ′ ∈ min ≤m B < m with ν ≤ ν ′ , then ν = (ν 1 , 0) and ν ′ = (ν ′ 1 , 0) with ν 1 < ν ′ 1 and ν 1 a n , ν ′ 1 a n ∈ Z,
(C ν m ) -Codim(C ν ′ m ) = (ν ′ 1 -ν 1 ) ( a -1 - a n
) and since a > n > 2 we have that an > a + n and we deduce that 

Codim(C ν m ) > Codim(C ν ′ m ) and therefore C ν ′ m C ν m . • If B = m = ∅, it is because m ̸ ≡ 0 mod a,
(C ν m ) -Codim(C ν * m ) = ν 1 + ν 1 a n + m -ν 1 a -[ m a ] -[ m n ] = m -ν 1 an-a-n n -[ m a ] -[ m n ] = m a + m n + m(1 -1 a -1 n ) -ν 1 an-a-n n -[ m a ] -[ m n ] = m a -[ m a ] + m n -[ m n ] + ( m a -ν 1 ) an-a-
• ≤ ν * . We claim that C ν * m ⊆ C ν • m . Indeed, we have C ν * m = V ( x (0) 1 , . . . , x (m/a) 1 , z (0) , . . . , z (m/n) ) C ν • m = V ( x (0) 1 , . . . , x (m/a-1) 1 , z (0) , . . . , z (m/n-1) , F (m) )
and, by Lemma 4.5,

F (m) ≡ z (m/n) n -x (m/a) 1 a + ∑ c ijk x (m/a) 1 i x (0) 2 j z (m/n) k mod J ν •
Since there are no monomials of the form c 0j0 x

(0) 2 j , F (m) ≡ 0 mod J ν * and the inclusion C ν * m ⊆ C ν • m follows. Then F m = {ν • } ∪ min ≤m B < m
This is the description in irreducible components, or in other words, there are no more inclusions among the sets C ν m . We only need to prove that for

any ν ∈ B < m we have C ν • m C ν m . And this follows since Codim(C ν m ) -Codim(C ν • m ) = ( m a -ν 1 ) an -a -n n > 0 (iii) If γ = ( a n , 1 n ), we have A m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | aν 1 + ν 2 > m} B m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | aν 1 + ν 2 ≤ m} If ν, ν ′ ∈ B < m with ν ≤ m ν ′ , then ν ′ = ν + (0, rn). Let us prove that C ν ′ m ⊆ C ν m .
We have

C ν m = V ( J ν , F (⟨ν,nγ⟩) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0} C ν ′ m = V ( J ν ′ , F (⟨ν ′ ,nγ⟩) , . . . , F (m) ) ∩ {x (ν ′ 1 ) 1 ̸ = 0} and since ν ′ 1 = ν 1 , ν ′ 2 > ν 2 and ⟨ν ′ , γ⟩ > ⟨ν, γ⟩, it is enough to prove that for ⟨ν, nγ⟩ ≤ l < ⟨ν ′ , nγ⟩, F (l) ∈ ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z (⟨ν ′ ,γ⟩-1) )
The monomials in F (l) are of the form

z (c1) • • • z (cn) with c i ≤ l and c 1 + • • • + c n = l x (b1) 1 • • • x (ba) 1 x (ba+1) 2 with b i ≤ l and b 1 + • • • + b a+1 = l x (r1) 1 • • • x (rα 1 ) 1 x (s1) 2 • • • x (sα 2 ) 2 z (t1) • • • z (t k ) with r i , s i , t i ≤ l and ∑ r i + ∑ s i + ∑ t i = l
with the condition (α 1 , α 2 ) + kγ > nγ. Imposing the conditions

c i , t j ≥ ⟨ν ′ , γ⟩ b i , r j ≥ ν ′ 1 b a+1 , s j ≥ ν ′ 2
on the monomials of F (l) , we have

l = c 1 + • • • + c n ≥ ⟨ν ′ , nγ⟩ l = b 1 + • • • + b a + b a+1 ≥ aν ′ 1 + ν ′ 2 = ⟨ν ′ , nγ⟩ l = r 1 + • • • + r α1 + s 1 + • • • + s α2 + t 1 + • • • + t k ≥ α 1 ν ′ 1 + α 2 ν ′ 2 + k⟨ν ′ , γ⟩ = ⟨ν ′ , (α 1 , α 2 ) + kγ⟩ ≥ ⟨ν ′ , nγ⟩
and hence we have proved that for ⟨ν, nγ⟩ ≤ l < ⟨ν ′ , nγ⟩

F (l) ≡ 0 mod ( x (0) 1 , . . . , x (ν ′ 1 -1) 1 , x (0) 2 , . . . , x (ν ′ 2 -1) 2 , z (0) , . . . , z (⟨ν ′ ,γ⟩-1) ) If there exists ν • ∈ B = m and ν * ∈ min ≤m A m such that ν • ≤ ν * , we claim that C ν * m ⊆ C ν • m . Indeed, C ν • m = V ( x (0) 1 , . . . , x (ν • 1 -1) 1 , x (0) 2 , . . . , x (ν • 2 -1) 2 , z (0) , . . . , z (⟨ν • ,γ⟩-1) , F (m) ) C ν * m = V ( x (0) 1 , . . . , x (ν * 1 -1) 1 , x (0) 2 , . . . , x (ν * 2 -1) 2 , z (0) , . . . , z [m/n] )
and since m = ⟨ν • , nγ⟩, and

ν • i ≤ ν * i , for i = 1, 2 ⟨ν • , γ⟩ -1 < [ m n ] = ⟨ν • , γ⟩ by Lemma 4.5 it follows that F (m) ≡ 0 mod ( x (0) 1 , . . . , x (ν * 1 -1) 1 , x (0) 2 , . . . , x (ν * 2 -1) 2
, z (0) , . . . , z (⟨ν * ,γ⟩) )

.

To nish we have to prove that given ν, ν

′ ∈ F m with ν ≤ ν ′ we have that C ν ′ m C ν m . Notice that the only choice is that ν ∈ B < m , while ν ′ ∈ A m ∪B m . First consider ν ∈ B < m and ν ′ ∈ B m . By the denition of ≤ m we have that ν 1 ̸ = ν ′ 1 and ν 2 , ν ′ 2 < n (since ν ∈ N if and only if ν -(0, n) ∈ N ). By Lemma 4.10, Codim(C ν m ) -Codim(C ν ′ m ) = ⟨ν ′ -ν, nγ -γ -(1, 1)⟩ = (ν ′ 1 -ν 1 ) an-a-n n -(ν ′ 2 -ν 2 ) 1 n and we have Codim(C ν m ) -Codim(C ν ′ m ) ≥ 0 since ν ′ 2 -ν2 n < 1, ν ′ 1 -ν 1 > 0 and an-a-n n ≥ 0, and Codim(C ν m ) -Codim(C ν ′ m
) is an integer. Suppose now that ν ′ ∈ A m . By the inequality above it is enough to prove that

C ν ′ m C ν m for ν ∈ B < m with ν 2 maximal. Then ν ′ 2 -ν 2 ≤ n. If ν ′ = (ν 1 , 0) then ν = (ν 1 , 0) and the proof goes as in case (ii). Otherwise ν ′ -(1, 0) / ∈ A m ∪ B m , and then ⟨ν ′ -(1, 0), nγ⟩ ≤ m, therefore ⟨ν ′ , nγ⟩ = m + 1 since ν ′ ∈ A m . We have Codim(C ν m ) -Codim(C ν ′ m ) = ⟨ν ′ -ν, nγ -γ -(1, 1)⟩ + 1 = (ν ′ 1 -ν 1 ) an-a-n n -(ν ′ 2 -ν 2 ) 1 n + 1 (iv) If γ = ( a n , b n ) with b > 1, we have A m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | aν 1 + bν 2 > m} B m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N | aν 1 + bν 2 ≤ m} If ν, ν ′ ∈ A m ∪ B = m we have that C ν ′ m ⊆ C ν m if and only if ν ≤ ν ′ ,
as in the other cases. Moreover, since σ Reg,1 = {0}, we have

min ≤m B < m = B < m . For any ν, ν ′ ∈ B < m with ν ≤ ν ′ , we have (13) Codim(C ν m ) -Codim(C ν ′ m ) = (ν ′ 1 -ν 1 ) an -a -n n + (ν ′ 2 -ν 2 ) bn -b -n n ≥ 0, since an ≥ a + n and bn ≥ b + n. Hence C ν ′ m C ν m . We still have to prove that for ν ∈ B < m and ν ′ ∈ min ≤m A m ∪ B = m with ν ≤ ν ′ , Codim(C ν m ) -Codim(C ν ′ m ) ≥ 0.
Note that, by equation ( 13), it is enough to prove it for ν ∈ B < m maximal with respect to ≤ m . We set m 0 := ⟨ν, nγ⟩ < m. We have that ν

∈ B = m0 and ( π -1 m0+1,m0 (C ν m0
)

) red = C ν m0+1 ∪ C ν+(1,0) m0+1 ∪ C ν+(0,1) m0+1
where

Codim ( C ν m0+1 ) = Codim ( C ν+(1,0) m0+1 ) = Codim ( C ν+(0,1) m0+1
)

Since we have

C ν m = V ( J ν , F (m0) , . . . , F (m) ) ∩ {x (ν1) 1 ̸ = 0} ∩ {x (ν2) 2 ̸ = 0} then Codim ( C ν m ) = ν 1 + ν 2 + ⟨ν, γ⟩ + m -m 0 + 1 = Codim ( C ν m0 ) + m -m 0 .
The component associated to ν ′ (i.e. C ν ′ m ) must come from either ν + (1, 0) or ν + (0, 1) (or even both). More precisely, when lifting the component, say C ν+(1,0) m0 , to higher levels we will pass from ν + (1, 0) to ν ′ as follows, if we set m 1 := m 0 + 1 and ν (1) 

:= ν + (1, 0), C ν (1) m1 -→ C ν (2) m2 -→ • • • -→ C ν (r)
mr with m r = m and ν (r) = ν ′ ,

m 0 + 1 = m 1 < m 2 < • • • < m r = m and ν (i) ∈ A mi . Moreover we have Codim ( C νi mi ) = Codim ( C ν (i-1)
mi- 1) + 1

Here we use that ν is maximal in B < m and ν ′ minimal in A m ∪ B = m , and therefore there may not exists ν ∈ B m such that

ν ≤ ν ≤ ν ′ Hence Codim ( C ν ′ m ) ≤ Codim ( C ν+(1,0) m0+1 ) + m -m 0 -1 = Codim ( C ν m0+1 ) + m -m 0 -1 = Codim ( C ν m0 ) + m -m 0 = Codim ( C ν m )
Remark 4.15. This result is to be compared with the case of plane curves with one characteristic pair studied in [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF] (Corollary 4.4), and with the case of A n singularities studied in [START_REF] Mourtada | Jet schemes of rational double point surface singularities[END_REF].

Remark 4. [START_REF] González Pérez | The semigroup of a quasi-ordinary hypersurface[END_REF].

If γ = ( 1 n , 1 n )
we have just proved that

( π -1 m (X Sing ) ) red =      ∪ ν∈ • σ,ν 1 +ν2=m+1 C ν m if m < n ∪ ν∈ • σ,ν 1 +ν2=n C ν m if m ≥ n that is, the number of irreducible components of ( π -1 m (X Sing )
) red is m if m < n and n -1 otherwise. In particular, observe that this number stabilizes.

If γ ̸ = ( 1 n , 1 n
) , the cardinal of F m does not stabilize. has to be compared with some particular cases in [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF] and in [START_REF] Mourtada | Jet schemes of rational double point surface singularities[END_REF]. In those papers it was proved that the structure of the jet schemes determines the topological type of the singularity. We devote this section to prove the same result, for any q.o. surface with only one characteristic exponent. Denition 4.17. We construct a graph Γ by representing each irreducible com-

ponent of ( π -1 m (X Sing )
) red by a vertex V i,m , and joining two vertices V i,m and V j,m+1 if π m+1,m induces a map between the corresponding irreducible components (see Denition 5.34 for the general denition). We weight the graph by giving the embedding dimension (e) and the codimension (c) of any component. Then a vertex at level m is denoted by V m (e, c).

We say that there is a splitting in the graph at level m whenever there is more that one vertex at level m projecting to the same vertex V m-1 (e, c) at level m -1. If e + c = 3m then we say that the splitting is of rst type, and otherwise the splitting is of second type. Remark 4.18

. Notice that if C ν m is a component of ( π -1 m (X Sing ) ) red such that ( π -1 m+1,m (C ν m )
) red is reducible, there is a splitting only if the components of the lifting

( π -1 m+1,m (C ν m )
) red are also components of

( π -1 m+1 (X Sing )
) red . For instance, let f = z 5 -x 3 1 x 2 be the q.o. polynomial with exponent γ =

( 3 5 , 1 5 
) . At level m = 3 we have ( π -1 3 (X Sing )

) red = V ( x (0) 1 , x (1) 1 , z (0) ) ∪ V ( x (0) 1 , x (0) 2 , z (0) ) = C (2,0) 3 ∪ C (1,1) 3 
,

and ( π -1 4,3 (C (1,1) 3 
)

) red = V ( x (0) 1 , x (1) 
1 , x

(0) 2 , z (0) ) ∪ V ( x (0) 1 , x (0) 2 , x (1) 2 , z (0) ) = C (2,1) 4 ∪ C (1,2) 4
. But this does not correspond to a splitting in Γ, since

( π -1 4,3 (C (2,0) 3 
)

) red = V ( x (0) 1 , x (1) 
1 , z (0) ) = C

(2,0) 4

and C

(2,1) 4

⊆ C

(2,0) 4

. Therefore ( π -1 4 (X Sing )

) red = C (2,0) 4 ∪ C (1,2) 4
.

We prove next how these splittings permit to extract information about the q.o. singularity, more concretely, about the characteristic exponent. Proof. First note that if Γ is the graph describing the jets through the singular locus of a q.o. surface with one normalized exponent γ, then in Γ there must be splittings. Indeed, it follows by Remark 4.16. Suppose rst that γ =

( 1 n , 1 n ) , then at level m = 1 there is only one irreducible component V ( x (0) 1 , x (0) 
2 , z (0) ) , and for m big enough there are n ≥ 2 irreducible components. When

γ ̸ = ( 1 n , 1 n )
we have one or two irreducible components at level m = 1 and the number of components is not bounded as m grows.

Note also that with the data of the weights we can deduce that the vertex

V m (e, c) corresponds either to a component C ν m with ν ∈ A m (if e + c = 3(m + 1)) or ν ∈ B m (otherwise).
Hence we can also dene the types of splittings as follows, if there is a splitting at level m projecting to a vertex V m-1 (e, c) corresponding to the component C ν m-1 , we have:

• splitting of the rst type if and only if ν ∈ A m-1 ,
• splitting of the second type if and only if ν ∈ B m-1 .

First we prove that if a ≥ b > 1 there are always splittings (necessarily of second type) where three vertices project into one vertex of the graph. Later we will see that this only occurs in this case. Since the relation ≤ m on B < m in this case is ν ≤ m ν ′ if and only if ν = ν ′ , we deduce that for m big enough, there exists ν ∈ B < m (and therefore ν ∈ F m ) of the form ν = (ν 1 , 0). Set m 0 = ⟨ν, nγ⟩, then ν ∈ B = m0 and π -1 m0+1,m0

( C ν m0 ) = C ν m0+1 ∪ C ν+(1,0) m0+1 ∪ C ν+(0,1) m0+1
We clearly have ν ∈ F m0+1 , and the question is whether ν + (1, 0) and ν + (0, 1) belong to F m0+1 or not, to know whether we have a true splitting or not (see Remark 4.18). We have that ν + (1, 0), ν + (0, 1) ∈ A m0+1 , since

⟨ν + (1, 0), nγ⟩ = m 0 + a > m 0 + 1 ⟨ν + (0, 1), nγ⟩ = m 0 + b > m 0 + 1
Moreover we have that ν + (0, 1) ∈ F m0+1 since there is no ν ′ ∈ A m0+1 with ν ′ ≤ ν because ν = (ν 1 , 0), and there is no

ν ′ = (ν ′ 1 , 0) ∈ B = m0+1 with ν ′ 1 < ν 1 , since this would contradict that ν ∈ B = m0 .
To nish we have to prove that ν + (0, 1) ∈ F m0+1 . Suppose there exits r > 0 such that

ν ′′ = ν + (0, 1) -(r, 0) ∈ A m0+1 ∪ B = m0+1 (this would imply that C ν+(0,1) m0+1 ⊆ C ν ′′ m0+1 ), then m 0 + b -ra ≥ m 0 + 1 or equivalently b ≥ ra + 1, which is impossible if r > 0.
To study the splittings at level m + 1, we have to study the irreducibility of 

π -1 m+1,m (C ν m ) with ν ∈ F m ⊆ A m ∪ B m . We distinguish cases: (i) If ν ∈ F m ∩ A m ,
π -1 m+1,m (C ν m ) = C ν m+1 irreducible Indeed, by denition C ν m = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) ) . Then π -1 m+1,m (C ν m ) = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) , F (m+1) )
where

F (m+1) mod ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) ) ≡ ≡    z ([m/n]+1) n if m + 1 ≡ 0 mod n 0 otherwise since m + 1 < ⟨ν, nγ⟩. Notice that if m + 1 ≡ 0 mod n then [ m n ] + 1 = m+1 n . (b) If m + 1 = ⟨ν, nγ⟩ and ν ∈ N , then ν ∈ B = m+1 and π -1 m+1,m (C ν m ) = C ν m+1 irreducible since π -1 m+1,m (C ν m ) = V ( J ν , F (m+1) )
and by Lemma 4.5 we have

F (m+1) ≡ F (m+1) ν mod ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 
, z (0) , . . . , z (⟨ν,γ⟩-1) )

where

F (m+1) ν is an irreducible polynomial. (c) If m + 1 = ⟨ν, nγ⟩ and ν / ∈ N , then ν / ∈ A m+1 ∪ B m+1 and ( π -1 m+1,m (C ν m ) ) red =    is reducible (i.e. splitting) if b ̸ = 0 is irreducible otherwise Indeed, rst note that [ m + 1 n ] = [ m n ] = [⟨ν, γ⟩]
We have that

π -1 m+1,m (C ν m ) = V ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) , F (m+1) ) ,
and, by Lemma 4.5

F (m+1) ≡ F (m+1) ν mod ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 , z (0) , . . . , z ([m/n]) )
where

F (m+1) ν = -x (ν1) 1 a x (ν2) 2 b • U
where U is a unit in R ν . Therefore, whenever b ̸ = 0, ( π -1 m+1,m (C ν m )

) red = C ν+(1,0) m+1 ∪ C ν+(0,1) m+1
, and to have a splitting of rst type we need to argue that ν + (1, 0), ν + (0, 1) ∈ F m+1 , and the splitting is of the form two vertices projecting to one vertex.

(ii) If ν ∈ F m ∩ B = m , then ( π -1 m+1,m (C ν m ) ) red =    irreducible if γ = ( 1 n , 1 n ) reducible otherwise Indeed, if γ = ( 1 n , 1 n ) , then π -1 m+1,m (C ν m ) = V ( x (0) 1 , . . . , x (ν1) 1 , x (0) 2 , . . . , x (ν2-1) 2 
, z (0) , . . . , z (⟨ν,γ⟩-1) , F (m) , F (m+1) )

and by Lemma 4.7 we have that π

-1 m+1,m (C ν m ) = C ν m+1 , with ν ∈ B < m+1 . By Lemma 4.10 π -1 m+1,m (C ν m ) is irreducible. Suppose then that γ ̸ = ( 1 n , 1 n ) , i.e. a > 1.
Then, from Lemma 4.7 we deduce

( π -1 m+1,m (C ν m ) ) red =      C ν m+1 ∪ C ν+(1,0) m+1 if b = 0, 1 C ν m+1 ∪ C ν+(1,0) m+1 ∪ C ν+(0,1) m+1 if b > 1
Hence if b = 0, 1 we have two vertices projecting to one vertex, while if b > 1 we have three vertices projecting to one vertex.

(iii) If ν ∈ F m ∩ B < m , then π -1 m+1,m (C ν m ) = C ν m+1 irreducible. To nish, notice that if γ = ( a n , 1 n )
and n divides a then F m ⊆ Z × {0} and for every ν ∈ F m ∩ A m we have ν ∈ N , therefore we never have the situation described in (c).

Remark 4.20. The splittings of second type at level m + 1 correspond to the following situation, there is a component Proof. Recall that λ = γ. By Lemma 4.19, looking at the splittings in Γ, we are able to distinguish the four cases:

C ν m with ν ∈ B = m , such that π -1 m+1,m (C ν m ) is reducible. Then,
(i) γ = ( a n , 0 ) or γ = ( a n , 1 n ) with a ≡ 0 mod n (ii) γ = ( 1 n , 1 n ) (iii) γ = ( a n , 1 n ) with a ̸ ≡ 0 mod n (iv) γ = ( a n , b n ) with a ≥ b > 1
Now we recover γ on each case. We will see how, roughly speaking, the splittings of the rst type give information about a and b, while the splittings of the second type give information about n. Recall that with the data of the codimension and the embedding dimension we can deduce if a vertex V m (c, e) corresponds to a component C ν m with ν ∈ A m or with ν ∈ B m .

(i) Case γ = ( a n , 0

) or γ = ( a n , 1 n )
with a ≡ 0 mod n. At level m = 1 we have only one vertex. Looking at its codimension as m grows, we know that at level m = n the codimension grows for the rst time. If this vertex corresponds to a component C ν m with ν ∈ B m then it must be a = n and then

γ = ( 1, 1 n 
) Otherwise, we have recovered the multiplicity n and we know that a > n.

If γ = ( a n , 0

) with gcd(a, n) = 1, for ν = (n, 0) ∈ N and level ⟨ν, nγ⟩ = an we have ν ∈ F an , with

C ν an = V ( x (0) 1 , . . . , x (ν1-1) 1
, z (0) , . . . , z (a-1) , F (an) )

Then at level an + 1 we have the rst splitting, and it splits as

( π -1 an+1,an (C (n,0) an ) ) red = ( V ( x (0) 1 , . . . , x (ν1-1) 1
, z (0) , . . . , z (a-1) , F (an) , F (an+1) ))

red = C (n,0) an+1 ∪ C (n+1,0) an+1
We can read the number an from the graph, and since we know n, we recover a too.

If γ = ( a n , 1 n ) with a ≡ 0 mod n, we have, for ν = (1, 0) ∈ N and level ⟨ν, nγ⟩ = a, that ν ∈ F a , with C ν a = V ( x (0)
1 , z (0) , . . . , z (⟨ν,γ⟩-1) , F (a) ) At level a + 1 we have the rst splitting, as follows ( π -1 a+1,a (C ν a )

) red = ( V ( x (0)
1 , z (0) , . . . , z (⟨ν,γ⟩-1) , F (a) , F (a+1) )) red = C

(1,0)

a+1 ∪ C (2,0) a+1
and we can read the number a.

Note that in both cases the rst splitting is of second type. How do we distinguish these two cases? We have at level m = 1 only one component and of codimension 2. In the second case we have at level m = a -1 only one component, of codimension ⟨ν, γ⟩ + 1 = a n + 1 > 2. Hence we must have jumps in codimension, but all are level m ≡ 0 mod n, more precisely, at level m = n when passing from the component V ( x

(0) 1 , z (0) ) to V ( x (0)
1 , z (0) , z (1) ) , at level m = 2n when passing to the component

V (x (0) 
1 , z (0) , z (1) , z (2) ) , and so on. However, in the case γ = ( a n , 0

) we have at level an -1 the component C (n,0)
an-1 of codimension n + a > 2, and there must jumps in codimension at certain levels m ̸ ≡ 0 mod n, more precisely, when passing from C ) with a ̸ ≡ 0 mod n. Let us look at the rst part of the graph, before there is a splitting. Let m 0 be the level at which we nd the rst splitting. By Lemma 4.19 the splitting can be of rst or second type. We recover a as follows. We claim that the splitting is of rst type and at level m 0 = a. Indeed, notice that (1, 0) / ∈ N , since a ̸ ≡ 0 mod n. Then

C (1,0) a-1 = V ( x (0) 1 , z (0) , . . . , z ([ a-1 n ]) ) and π -1 a,a-1 (C (1,0) a-1 ) = V ( x (0) 1 , z (0) , . . . , z ([ a-1 n ]) , F (a)
) where, by Lemma 4.5,

F (a) ≡ -x (1) 1 a x (0) 2 ( 1 - ∑ c aj0 x (0) 2 j-1 ) mod ( x (0) 1 , z (0) , . . . , z ([ a-1 n ]) )
And since 1 -

∑ c aj0 x (0) 2 j-1 is a unit in C{x (0)
2 }, we deduce that at level a there is a splitting

π -1 a,a-1 (C (1,0) a-1 ) = C (2,0) a ∪ C (1,1)
a of rst type.

We still have to nd the value of n from the graph. Notice that, since X Sing = {x 1 = z = 0} irreducible, and since a > n, we have that ( π -1 m (X Sing )

) red = V ( x (0)
1 , z (0) ) for 1 ≤ m < n, and ( π -1 n (X Sing )

) red = V ( x (0)
1 , z (0) , z (1) ) . Therefore the number n is the rst time in the graph where the codimension grows.

(iv) Case γ = ( a n , b n ) with a ≥ b > 1.
It is clear that a = b if and only if the graph is symmetric. Suppose we have a = b, then gcd(a, n) = 1, and, as in the previous cases, the rst time we have a jump in codimension without splittings, is necessarily at level n. While the rst splitting is at level a = b.

Suppose now that a > b. First we recover the multiplicity n. At level m = n it is the rst time in the graph that we have a jump in codimension in all components at this level (there might be more than two components if a < n). Indeed, at level m = n there must be a jump in every component since z (1) n appears in F (m) . Of course, there might be jumps in codimension in previous components, but since b ̸ = a, there may not be in every component. Now we will distinguish in which component the graph projects to {x = z = 0} and which to {y = z = 0} (recall that in this case the singular locus of X is reducible and has two components, therefore the graph has two components, one describing the lifting of V ( x

(0) 1 , z (0)
) and the other describing the lifting of V ( x

(0) 2 , z (0) )
). Again, it is crucial that b < a. At level m = 1 we have in both components one vertex and with codimension 2. The rst time that this situation changes (meaning, at least one component either splitts or its codimension jumps), must occur in the branch projecting to {z (0) = x (0) 2 = 0} and at level m = b (if the splitting is of rst type, or if there is a jump in codimension) or at level m + 1 = b (if the splitting is of second type).

Looking at the other component of the branch, we recover analogously, the number a.

We end this section with a couple of examples illustrating the previous result. We will draw an arrow in the graph at level m 0 , when a component associated with certain ν, gives rise to a component for every m ≥ m 0 , i.e., ν ∈ F m for every m ≥ m 0 .

Example 4.22. Consider the graph Γ drawn in Figure 2, representing the structure of m-jet schemes through the singular locus of a q.o. singularity. Recall that the vertices are weighted with e the embedded dimension and c the codimension. Since there are splittings of both types, but it never happens that one component splits into three components, we deduce that γ = ( a n , 1 n ) with a > n. The rst splitting is of rst type at level m = 5, hence a = 5. To compute n it is enough to nd the rst time we have a jump in the codimension. Therefore we have

m = 1 • (4, 2) m = 2 • (7, 2) m = 3 • (9, 3) m = 4 • (12, 3) d d m = 5 ( 14 
γ = ( 5 
3 , 1 3 
) .

Example 4.23. In Figure 3 the graph associated with the jet schemes of a q.o.

singularity is drawn. Since the graph is more complicated than the one in the previous example, we will only decorate it with the codimension, but instead we will say the type of splitting whenever there is one (recall that for this we use the embedding dimension). Let us recover the data of the characteristic exponent.

There are splittings of second type where three vertices at level m project into one

m = 1 2 • • 2 m = 2 2 • • 3 m = 3 2 • • 3 m = 4 2 • • 4 m = 5 2 • • 4 m = 6 3 • • 5 m = 7 3 • • 6 ↗ Splitting of second type m = 8 3 • • 7 m = 9 4 • • 4 • 7 d d
Splitting of rst type

m = 10 4 • • 4 • 8 m = 11 4 • • 5 • 8 m = 12 5 • • 6 • 9 m = 13 5 • • 7 • 10 ↗ Splitting of second type m = 14 5 • • 7 • 11 m = 15 5 • • 8 • 11 m = 16 5 • • 8 • 12 m = 17 5 • • 9 • 12 m = 18 6 • • 10 • 13 m = 19 7 • 7 • • 11 • 14 r r r ↗ ↗
Two splittings of second type . . . . . . . . . . . . vertex at level m -1 (we can see one at level 19 in Figure 3). Therefore the characteristic exponent is of the form

γ = ( a n , b n ) with a ≥ b > 1.
Since the graph is obviously asymmetric, we deduce that a > b.

The multiplicity is n = 6 because at level 6 we can see the rst jump in codimension in all components. Since the rst jump in codimension is at level m = 2 and only in one of the components of the graph, we deduce that b = 2, because b < a. Now, we recover a looking at the rst splitting in the other component of the graph, it occurs at level m = 9 and it is a splitting of rst type, therefore a = 9, and the graph represented in Figure 3 describes the structure of irreducible components through the singular locus of a q.o. surface with characteristic exponent

γ = ( 9 
6 , 2 6 
) .

Jet schemes of quasi-ordinary surface singularities: the general case

We generalize the results of the previous section to the case of any number of characteristic exponents. Let X be a q.o. surface dened by a polynomial f with g characteristic exponents. We describe the decomposition of ( π -1 m (X Sing )

) red in irreducible components as ( π -1 m (X Sing ) ) red = ∪ ν∈Fm C ν m
analogously as for the case of one characteristic exponent. First we will dene the candidates C ν m , we prove its irreducibility and nally study the inclusions among them, to dene the set F m .

Let us look rst at some examples.

Example 5.1. Consider the q.o. surface X dened by f = (z 2 -x 3 1 ) 3 -x 10 1 x 4 2 . The generators of the semigroup are γ 1 = ( 32 , 0) and γ 2 = ( 10 3 , 4 3 ), and the singular locus is

X Sing = {x 1 = z = 0} ∪ {x 2 = z 2 -x 3 1 = 0}.
Let us look at the component

Z 2 = {x 2 = z 2 -x 3 1 = 0} of the singular locus. If we lift Z 2 to level m we have π -1 m (Z 2 ) = V ( x (0) 2 , z (0) 2 -x (0) 1 3
, F (1) , . . . , F (m) )

since

F (0) = ( z (0) 2 -x (0) 1 
3) 3 -x (0) 1 10 x (0) 2 4 ≡ 0 mod ( x (0) 2 , z (0) 2 -x (0) 1 3) 
. This last congruence is easier to handle if we use the rst approximated root

f 1 = z 2 -x 3 1 .

It is clear that we can write

F (0) = F (0) 1 3 -x (0) 1 10 x (0) 2 4 ≡ 0 mod ( x (0) 2 , F (0) 1
) .

What it is not that clear is that

F (1) = 3F (0) 1 2 F (1) 1 -10x (0) 1 9 x (1) 1 x (0) 2 4 -4x (0) 1 10 x (0) 2 3 x (1) 2 .
In the example above we are, roughly speaking, considering f 1 as a variable in the expansion of f :

f = f 1 3 -x 10 1 x 4 2
Let us formalize this idea. Consider the following embedding of A 3 in A 3+g with coordinates (x, u 0 , . . . , u g ). The embedding is dened in terms of the semi-roots as follows. Let us denote, for 0 ≤ j ≤ g -1 (see Lemma 3.11),

h j = -u j+1 + u j nj+1 -c j+1 x α (j+1) u r (j+1) 1 0 • • • u r (j+1) j j-1 + ∑ c (j+1) α,r x α u r1 0 • • • u rj+1 j
We can embed A 3 in A 3+g as V (h 0 , . . . , h g-1 ), and, if we set h g = u g , then (see [START_REF] González Pérez | Toric embedded resolutions of quasi-ordinary hypersurface singularities[END_REF]) the embedding of X in A 3+g is dened by

V (h 0 , . . . , h g )
We abuse of notation and denote by X the embedding of our q.o. surface in A 3+g . Note that we are not dealing with a hypersurface anymore. The jet scheme X m is now dened by

X m = Spec ( C{x (0) 1 , x (0) 2 }[x (1) i , . . . , x (m) i , u (0) 0 , . . . , u (m) 0 , . . . , u (0) g , . . . , u (m) g ] i=1,2 ( H (0) 0 , . . . , H (m) 0 , H (0) 1 , . . . , H (m) 1 , . . . , H (0) g , . . . , H (m) g ) ) We denote, for 0 ≤ j ≤ g -1, q j+1 ∈ C{x 1 , x 2 }[u 0 , . . . , u j ] such that h j = -u j+1 + q j+1 (x 1 , x 2 , u 0 , . . . , u j )
holds. Then (recall notations in Section 2, where we used capital letters for polynomials, but not for variables) we have that, for 0 ≤ j < g and l ≥ 0

H (l) j = -u (l) j+1 + Q (l) j+1
Consider the ring

R (l) j = C{x (0) 1 , x (0) 2 }[x (1) 1 , . . . , x (l) 1 , x (1) 2 , . . . , x (l) 2 , u (0) 0 , . . . , u (l) 0 , . . . , u (0) j , . . . , u (l) j ]
for 0 ≤ j ≤ g and l ≥ 0. We can identify R (l) 0 with R (l) (see Section 2). Since the elements Q (l) j belong to the ring R (l) j , it makes sense to dene the following evaluation map dened by giving suitable values to the variables:

ev j : C{x 1 , x 2 }[u 0 , . . . , u j ] -→ C{x 1 , x 2 }[z] x i → x i , for i = 1, 2 u i → f i , for i = 0, . . . , j
(recall that f 0 = z), and at the level of jets:

ev (m) j : R (m) j -→ R (m) x (l) i → x (l) i , for i = 1, 2 and 0 ≤ l ≤ m u (l) i → F (l)
i , for i = 0, . . . , j and 0 ≤ l ≤ m

We have then the following result.

Lemma 5.2. For 0 ≤ j ≤ g and 0 ≤ l ≤ m

F (l) j = ev (m) j ( Q (l) j
) .

This permits to describe the equations of the jets using derivations and considering the approximated roots as variables, as illustrated in Example 5.1.

Remark 5.3. As Corollary 2.2 shows the linearity of equations

F (l) i ( x (0) 1 , . . . , x (l) 1 , x (0) 2 , . . . , x (l) 2 , z (0) , . . . , z (l) ) in x (l) 1 , x (l)
2 and z (l) , by Lemma 5.2 we deduce the linearity of

F (l) i ( x (0) 1 , . . . , x (l) 1 , x (0) 2 , . . . , x (l) 2 , z (0) , . . . , z (l) , F (0) 1 , . . . , F (l) 1 , . . . , F (0) i-1 , . . . , F (l) i-1 ) in x (l) 1 , x (l) 2 , z (l) , F (l) 1 , . . . , F (l)
i-1 , meaning that they appear in F 

Z 2 = {x 2 = f 1 = 0} at level 3, we have that π -1 3 (Z 2 ) = π -1 3 ( V (x (0) 2 , F (0) 1 
)

) = V ( x (0) 2 , F (0) 
1 , F (1) , F (2) , F (3) ) ,

where

F (0) 1 = z (0) 2 -x (0) 1 3 
. We can easily check that

F (1) = 3F (0) 1 2 F (1) 1 -10x (0) 1 9 x (1) 1 x (0) 2 4 -4x (0) 1 10 x (0) 2 3 x (1) 2 ≡ 0 mod ( x (0) 2 , F (0) 1
)

F (2) = 2F (0) 1 2 F (2) 1 + F (0) 1 F (1) 1 2 + • • • ≡ 0 mod ( x (0) 2 , F (0) 1 
)

F (3) ≡ F (1) 1 3 mod ( x (0) 2 , F (0) 1
) ,

and then

( π -1 3 (Z 2 
)

) red = V ( x (0) 2 , F (0) 1 , F (1) 1 
)

. Notice that it is not irreducible. Indeed, it decomposes as

( π -1 3 (Z 2 
)

) red = π -1 3,2 ( Sing(V ( x (0) 2 , F (0) 1 ) ) ) ∪ π -1 3,2 ( Reg(V ( x (0) 2 , F (0) 1 
)

)

) = V ( x (0) 1 , x (0) 2 , z (0) ) ∪ V ( x (0) 2 , F (0) 1 , F (1) 1 ) ∩ {x (0) 1 ̸ = 0} But, since V ( x (0) 1 , z (0) ) is an irreducible component projecting to Z 1 = {z = x 1 =
0} and we have that V ( x

(0) 1 , x (0) 2 , z (0) ) ⊆ V ( x (0) 1 , z (0) )
, we deduce that is not an irreducible component of

( π -1 3 (X Sing ) ) red .
We denote by D(h) the open set

D(h) = Spec R h where R is the ring R = C{x (0) 1 , x (0) 2 }[x (j) 1 , x (j)
2 , z (0) , z (j) ] j>0 . Recall that, for l > 0 we denote by R (l) the subring

R (l) = C{x (0) 1 , x (0) 2 }[x (j) 1 , x (j)
2 , z (0) , z (j) ] 0<j≤l .

We need to introduce the articial notation of γ -1 , e -1 and e -2 to be able to dene j ′ (m, ν) = -1, which will cover the range 0 ≤ m < n for any ν. Now, for any ν and m, the integers j(m, ν) and j ′ (m, ν) are dened.

With the denition of the integer j ′ (m, ν) we can write in a compact form, the relation ≤ m given in Denition 4.12, for the case of one characteristic exponent, as

ν ≤ m ν ′ if and only if ν ′ -ν ∈ σ Reg,j ′ (m,ν) ,
because if g = 1, we have that:

• ν ∈ A m ∪ B = m is equivalent to j ′ (m, ν) ≤ 0 • ν ∈ B < m is equivalent to j ′ (m, ν) = 1
We are going to prove that this is the relation that controls the inclusions among the candidates C ν m to be irreducible components also in the general case, but the proof is much more involved. First we have to dene the candidates to be the irreducible components. Denition 5.6. For m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 we set (recall Remark 2.5)

D ν m =            V (J ν m ) if σ Reg,j ′ (m,ν) = ρ 1 ∪ ρ 2 V (J ν m ) ∩ D(x (ν1) 1 ) if σ Reg,j ′ (m,ν) = ρ 2 V (J ν m ) ∩ D(x (ν1) 1 ) ∩ D(x (ν2) 2 ) if σ Reg,j ′ (m,ν) = {(0, 0)}
where j ′ = j ′ (m, ν). Moreover we dene C ν m = D ν m its Zariski closure. Note that D ν m is reduced since the ideals J ν l are radical.

With these sets C ν m we can cover

( π -1 m (X Sing ) ) red . Indeed, given a jet γ ∈ X m , if x i • γ ̸ = 0 for i = 1, 2, the vector ν = ( ord t (x 1 • γ), ord t (x 2 • γ) ) belongs to σ ∩ N 0 and 0 ≤ ν i ≤ m. Moreover it is clear that γ ∈ D ν m ⊆ C ν m ,

and we deduce

X m = ∪ ν∈σ∩[0,m] 2 ∩N0 C ν m ,
where [0, m] denotes the closed interval, and [0, m] 2 the square [0, m] × [0, m]. We are interested in m-jets with origin at the singular locus, and this introduces some constraints in the possible values of ν.

Lemma 5.7. For m ∈ Z >0 we have that

( π -1 m (X Sing ) ) red = ∪ ν∈σSing∩[0,m] 2 ∩N0 C ν m . Proof. Given γ(t) ∈ ( π -1 m (X Sing ) ) red , suppose rst that x i • γ(t) ̸ = 0 for i = 1, 2. Then we dene ν := ( ord t (x 1 • γ(t)), ord t (x 2 • γ(t)) ) ∈ [0, m] 2 ∩ N 0 and obviously γ(t) ∈ D ν m ⊆ C ν m .
We have to prove that ν ∈ σ Sing ∩ N 0 , and this follows easily from Denition 3.17, by distinguishing cases. Now we deal with the other cases. If

x i • γ(t) = 0 for i = 1, 2, then γ(t) ∈ C ν m for any ν ∈ σ Sing ∩ N 0 with 0 ≤ ν i ≤ m for i = 1, 2. If x 1 • γ(t) = 0 and x 2 • γ(t) ̸ = 0, then we denote α := ord t (x 2 • γ(t)). We have 0 ≤ α ≤ m, and γ(t) ∈ C ν m for any ν ∈ σ Sing ∩ N 0 , with 0 ≤ ν i ≤ m for i = 1, 2, and ν 2 ≤ α.
The left case x 1 • γ(t) ̸ = 0 and x 2 • γ(t) = 0 is analogous to the last one. We prove the other inclusion. If γ(t) ∈ X m \ π -1 m (X Sing ), then γ(0) / ∈ X Sing . Again distinguishing cases depending on the singular locus, we can prove that ν =

( ord t (x 1 • γ(t)), ord t (x 2 • γ(t)) ) / ∈ σ Sing .
The examples at the beginning of this section together with the discussion in Section 4 for the case of one characteristic exponent, illustrate that the main point is to study carefully the equations dening the m-jets. More concretely, we have to study

F (l) mod J ν l-1 for ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 and l ≥ 0.
We have seen in the examples how the semi-roots f i appear in the sequence F (0) , . . . , F (m) modulo the ideal J ν m-1 . By denition

F (l) i ∈ R (l) = C{x (0) 1 , x (0) 2 }[x (1) k , . . . , x (l)
k , z (0) , . . . , z (l) ] k=1,2 .

However, by Lemma 3.11 and Lemma 5.2, we can see

F (l) i
as an element in

C{x (0) 1 , x (0) 2 }[x (1) k , . . . , x (l) k ] k=1,2 [F (0) r , . . . , F (l) r ] 0≤r<i .
Denition 5.8. For ν ∈ σ Sing ∩ N 0 and l ∈ Z ≥0 , we dene F (l) 0,ν = F (l) 0 , and, for 1 ≤ i ≤ g we dene, by recurrence,

F (l) i,ν as the polynomial F (l) i once we set x (0) k = • • • = x (ν k -1) k = 0, k = 1, 2, F (rj ) j,ν = 0 for 0 ≤ j < i and 0 ≤ r j < ⟨ν, γ j+1 ⟩.

By denition we have

F (l) i ≡ F (l) i,ν mod ( J ν -1 , F (rj ) j,ν ) 0≤j<i, 0≤rj <⟨ν,γj+1⟩ (14) 
Let us study carefully the polynomials F (l) i,ν , since they are the interesting equations in J ν m , the dening equations of the sets C ν m . The next result is the generalization of Lemma 4.5 to the case of g ≥ 1 characteristic exponents. Lemma 5.9. For any ν ∈ σ Sing ∩ N 0 and 1 ≤ i ≤ g, we have that

F (l) i,ν = 0 for 0 ≤ l < ⟨ν, n i γ i ⟩. For l ≥ ⟨ν, n i γ i ⟩, the polynomial F (l)
i,ν is non-zero and quasi-homogeneous of degree l. More precisely, for l = ⟨ν, n i γ i ⟩ we have the following description of

F (⟨ν,niγi⟩) i,ν . (i) If ν ∈ • σ, then, for 1 ≤ i ≤ i(ν), the polynomial F (⟨ν,niγi⟩) i,ν is        F (⟨ν,γi⟩) i-1,ν ni -c i x (ν1) 1 α (i) 1 x (ν2) 2 α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 , if i < i(ν) -c i(ν) x (ν1) 1 
α (i(ν)) 1 x (ν2) 2 
α (i(ν)) 2 F (⟨ν,γ1⟩) 0,ν r (i(ν)) 1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2,ν r (i(ν)) i(ν)-1 if i = i(ν) (ii) If ν ∈ ρ 1 ∪ ρ 2 , the description of F (⟨ν,niγi⟩) i,ν is more complicated. We have, for 1 ≤ i ≤ i(ν),        F (⟨ν,γi⟩) i-1,ν ni -c i x (ν1) 1 α (i) 1 x (ν2) 2 α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 + G (⟨ν,niγi⟩)) i,ν , -c i(ν) x (ν1) 1 α (i(ν)) 1 x (ν2) 2 α (i(ν)) 2 F (⟨ν,γ1⟩) 0,ν r (i(ν)) 1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2,ν r (i(ν)) i(ν)-1 + G (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν where, for 1 ≤ i < i(ν), G (⟨ν,niγi⟩) i,ν = ∑ c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γi⟩) i-1,ν ri ,
c α,r are the coecients appearing in the expansion of f i given in Lemma 3.11, such that

⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i γ i ⟩ = ⟨ν, n i γ i ⟩, while when i = i(ν), G (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν = ∑ r=(r1,...,r i(ν)-1 ,0) c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2,ν r i(ν)-1 ,
subject to the same conditions as before. Moreover, in this case the polynomial

F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν
can be written as

F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν = -c i(ν) x (ν1) 1 α (i(ν)) 1 x (ν2) 2 
α (i(ν)) 2 F (⟨ν,γ1⟩) 0,ν r (i(ν)) 1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2,ν r (i(ν)) i(ν)-1 • U
where U is a unit in R ν .

For i > i(ν) we can sometimes describe some polynomials

F (⟨ν,niγi⟩) i,ν
.

There exists an integer r(ν) ≥ 0 (which is always 0 when ν ∈

• σ) such that ⟨ν, n i(ν) • • • n i(ν)+r(ν) γ i(ν) ⟩ = ⟨ν, n i(ν)+r(ν) γ i(ν)+r(ν) ⟩ < ⟨ν, γ i(ν)+r(ν)+1 ⟩
and then, for i(ν

) < i ≤ i(ν) + r(ν) the polynomial F (⟨ν,niγi⟩) i,ν
has the form described above for i < i(ν).

Before proving the Lemma we illustrate the content in the next example.

Example 5.10. Let us consider the q.o. polynomial f =

( (z 2 -x 2 1 x 2 ) 3 -x 7 1 x 3 2 ) 2 -
x 15 1 x 17 2 , with characteristic exponents

γ 1 = ( 1, 1 2 
) , γ 2 = ( 7 
3 , 1 
) , γ 3 = ( 15 
2 , 7 2 
)
Then n 1 = 2, n 2 = 3 and n 3 = 2. For ν = (0, 1), we have that i

(ν) = 1, since ν / ∈ N 1 . Moreover r(ν) = 1, because 3 = ⟨ν, n 1 n 2 γ 1 ⟩ = ⟨ν, n 2 γ 2 ⟩ < ⟨ν, γ 3 ⟩ = 7 2 We have that F (⟨ν,n1γ1⟩ ) 1,ν = F (1) 1,ν = -x (0) 1 2 x (1) 2 F (⟨ν,n2γ2⟩) 2,ν = F (3) 2,ν = F (1) 1,ν 3 -x (0) 1 7 x (1) 2 3 
and the polynomial F

2,ν can be written as

F (3) 2,ν = -x (0) 1 6 x (1) 2 3( 1 + x (0) 1 
)

with 1 + x (0) 1 a unit in C{x (0)
1 }, as the Lemma above claims. Notice that, despite the fact that ν ∈ ρ 1 ∪ ρ 2 , we have

G (1) 1,ν = G (3)
2,ν = 0. This is due to the fact that the q.o. polynomial f is very simple, it is enough to consider the following polynomial with the same characteristic exponents

h = ( (z 2 -x 2 1 x 2 + 5x 3 1 x 2 ) 3 -x 7 1 x 3 2 + 2x 6 1 x 3 2 z ) 2 -x 15 1 x 17 2 . to have non-zero polynomials G (l) i,ν .
Proof of Lemma 5.9. For 1 ≤ i ≤ i(ν) we will use the expansion of the semiroot f i given in Lemma 3.11. Notice that by denition, F (l) i consists of monomials of the form

F (a1) i-1 • • • F (an i ) i-1 x (b1) 1 • • • x (bα 1 ) 1 x (c1) 2 • • • x (cα 2 ) 2 F (s (0) 1 ) 0 • • • F (s (0) r 1 ) 0 • • • F (s (i-1) 1 ) i-1 • • • F (s (i-1) r i ) i-1 with 0 ≤ a 1 ≤ • • • ≤ a ni ≤ l and a 1 + • • • + a ni = l, with 0 ≤ b 1 ≤ • • • ≤ b α1 ≤ l, 0 ≤ s (j) 1 ≤ • • • ≤ s (j) rj+1 ≤ l and with b 1 + • • • + b α1 + c 1 + • • • + c α2 + s (0) 1 + • • • + s (0) r1 + • • • + s (i-1) 1 + • • • + s (i-1) ri = l. Setting x (l) k = 0 and F (rj )
j,ν = 0, as in Denition 5.8, amounts to impose the conditions

a j ≥ ⟨ν, γ i ⟩ b j ≥ ν 1 c j ≥ ν 2 s (k) j ≥ ⟨ν, γ k+1 ⟩
Then, the rst type of monomials have order

l = a 1 + • • • + a ni ≥ n i ⟨ν, γ i ⟩
while the second type of monomials have order

l = b 1 + • • • + b α1 + • • • + • • • + s (i-1) 1 + • • • + s (i-1) ri ≥ α 1 ν 1 + α 2 ν 2 + r 1 ⟨ν, γ⟩ + • • • + r i ⟨ν, γ i ⟩ ≥ ⟨ν, n i γ i ⟩
Hence we are left with the monomials of order ≥ ⟨ν,

n i γ i ⟩. Therefore F (l) i,ν = 0 for 0 ≤ l < ⟨ν, n i γ i ⟩ as claimed.
The expression of F (⟨ν,niγi⟩) i,ν

for i < i(ν) follows since these are the monomials of order exactly ⟨ν, n i γ i ⟩. For i = i(ν) we have to notice that ⟨ν, n i(ν) γ i(ν) ⟩ ∈ Z but ⟨ν, γ i(ν) ⟩ / ∈ Z, and since in F

(⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν
we have to set

F (r) i(ν)-1,ν = 0 for 0 ≤ r < ⟨ν, γ i(ν) ⟩, the term f ni i-1
does not contribute at level ⟨ν, n i(ν) γ i(ν) ⟩, because n i(ν) ⌈⟨ν, γ i(ν) ⟩⌉ > ⟨ν, n i(ν) γ i(ν) ⟩ (where ⌈x⌉ denotes the smallest integer bigger or equal than x).

The special form of the polynomial

F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν
as a monomial times a unit, is proved with the same kind of arguments. Notice that the formula for G (⟨ν,niγi⟩) i,ν still holds for i = i(ν), and it is straightforward to prove that for any term appearing in G

(⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν
we must have r i(ν) = 0. Suppose now that ν ∈ ρ 1 (the case ν ∈ ρ 2 is completely analogous), then again with the same kind of arguments as before, and using the condition

⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i(ν)-1 γ i(ν)-1 ⟩ = ⟨ν, n i(ν) γ i(ν) ⟩ we can prove that α 1 > α (i(ν)) 1 r j = r (i(ν)) j
, for 1 ≤ j ≤ i(ν) -1 and the result follows.

Finally, we have to prove the claim for

F (⟨ν,n i(ν)+l γ i(ν)+l ⟩) i(ν)+l,ν for i(ν) < l < i(ν) + r(ν) when ν ∈ ρ 1 ∪ ρ 2 and r(ν) > 0. Notice that the condition dening r(ν) is equivalent to the set of r(ν) + 1 conditions ⟨ν, n i(ν) γ i(ν) ⟩ = ⟨ν, γ i(ν)+1 ⟩ ⟨ν, n i(ν)+1 γ i(ν)+1 ⟩ = ⟨ν, γ i(ν)+2 ⟩ . . . ⟨ν, n i(ν)+r(ν)-1 γ i(ν)+r(ν)-1 ⟩ = ⟨ν, γ i(ν)+r(ν) ⟩ ⟨ν, n i(ν)+r(ν) γ i(ν)+r(ν) ⟩ < ⟨ν, γ i(ν)+r(ν)+1 ⟩ and therefore ⟨ν, γ i(ν)+l ⟩ ∈ Z >0 for 1 ≤ l ≤ r(ν), even though ν / ∈ N i(ν)+l .
And the proof goes as in the case i < i(ν).

Corollary 5.11. In the same spirit of Remark 5.3 we have that, for r > 0 and

1 ≤ i ≤ g, F (⟨ν,niγi⟩+r) i,ν is linear in x (ν1+r) 1 , x (ν2+r) 2 , z (⟨ν,γ1⟩+r) , F (⟨ν,γ2⟩+r) 1 , . . . , F (⟨ν,γi⟩+r) i-1,ν Proposition 5.12. Given ν ∈ σ Sing ∩ N 0 , for 0 ≤ l ≤ ⟨ν, e i(ν)-1 γ i(ν) ⟩, we have that, F (l) ≡      F ( l e j(l,ν) ) j(l,ν),ν e j(l,ν) mod J ν l-1 if l ≡ 0 mod e j(l,ν) 0 mod J ν l-1
otherwise Before proving this result we deduce an interesting consequence, where we give a smaller set of generators of the ideal J ν m .

Corollary 5.13.

Given m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 such that m ≤ ⟨ν, e i(ν)-1 γ i(ν) ⟩, we have that J ν m = ( J ν -1 , F (⟨ν,niγi⟩+ri) i,ν ) 0≤i≤j(m,ν) , for 0 ≤ r i < ⟨ν, γ i+1 -n i γ i ⟩ if 0 ≤ i < j(m, ν), and for i = j(m, ν) and 0 ≤ r j(m,ν) ≤ [ m-⟨ν,e j(m,ν)-1 γ j(m,ν) ⟩ e j(m,ν)
].

Proof. By Proposition 5.12 we have that

F (⟨ν,niγi⟩+ri) i,ν ∈ J ν ei(⟨ν,niγi⟩+ri) . Since, by denition, J ν l-1 ⊆ J ν l , it is enough to notice that for 0 ≤ i < j(m, ν) and 0 ≤ r i < ⟨ν, γ i+1 -n i γ i ⟩, and for i = j(m, ν) and 0 ≤ r j(m,ν) ≤ [ m-⟨ν,e j(m,ν)-1 γ j(m,ν) ⟩ e j(m,ν) ] we have that e i (⟨ν, n i γ i ⟩ + r i ) ≤ m.
If we consider the analogous denition of J ν m and D ν m for each of the approximated roots f j (which are q.o. themselves) and the corresponding surfaces X (j) (see Denition 3.4), then we can dene the sets D ν j,m , and we have the following result, which is a consequence of Proposition 5.12 and can be seen as its geometric counterpart.

Proposition 5.14.

For m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 such that m ≤ ⟨ν, e i(ν)-1 γ i(ν) ⟩, we have that D ν m = ( π a m,[ m e j ] ) -1 ( D ν j,[ m e j ] )
where j = j(m, ν), for q > p, π a q,p : A 3 q -→ A 3 p is the projection on the jet schemes of the ane ambient space.

Proof. It follows by Proposition 5.12 and the fact that if j(m, ν) = j then ⟨ν, n j γ j ⟩ ≤ m ej < ⟨ν, γ j+1 ⟩.

Hence, for m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 with m ≤ ⟨ν, e i(ν)-1 γ i(ν) ⟩, if j(m, ν) = j, the geometry of C ν
m is determined by the geometry of the j-th semi-root.

Proof of Proposition 5.12. Note that we have j(l, ν) ≤ i(ν), and then ⟨ν,

n i γ i ⟩ ∈ Z for 1 ≤ i ≤ j(l, ν).
• We start by dealing with the case ν / ∈ ρ 1 ∪ ρ 2 , which is the easiest. In this case we have for any

0 ≤ i < g ⟨ν, n i γ i ⟩ < ⟨ν, γ i+1 ⟩.
We proceed by induction on l. For l = 0 we have

F (0) = F (0) 0 n + ∑ (i,j)+kγ1≥nγ1 d ijk x (0) 1 i x (0) 2 j F (0) 0 k since f = z n + ∑ (i,j)+kγ1≥nγ1 d ijk x i 1 x j 2 z k .
We have ν 1 , ν 2 > 0, and in the previous expansion of f we have that (i, j) ̸ = (0, 0), since k < n. Therefore we deduce that

F (0) ≡ F (0) 0,ν n mod J ν -1 .
Recall that

F (l) 0,ν = F (l) 0 and that J ν -1 = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 
2 , . . . ,

)

. As a consequence F (0) 0 ∈ J ν 0 ⊆ J ν i for any i ≥ 0, and therefore for any

γ(t) ∈ D ν i with i ≥ 0, ord t ( f 0 • γ(t) ) > 0.
Suppose that the claim is true for F (0) , . . . , F (l) . Then, by induction hypothesis, for any i ≥ l we have

F (⟨ν,nsγs⟩) s,ν , . . . , F (⟨ν,γs+1⟩-1) s,ν ∈ J ν i , for 0 ≤ s < j F (⟨ν,nj γj ⟩) j,ν , . . . , F (⟨ν,nj γj ⟩+r) j,ν ∈ J ν i with r = [ l-⟨ν,ej-1γj ⟩ ej
] and j = j(l, ν). By ( 14) the same holds for

F (l)
s , and we deduce that for any γ(t)

∈ D ν i with i ≥ l, ord t ( f s • γ(t) ) ≥ ⟨ν, γ s+1 ⟩, for 0 ≤ s < j, ord t ( f j • γ(t) ) > ⟨ν, n j γ j ⟩ + [ l-⟨ν,ej-1γj ⟩ ej ] = [ l ej ]
where j = j(l, ν). The last equality implies that ord t (

f j • γ(t) ) ≥ l+1 ej .
There are two cases:

(i) If j(l + 1, ν) = j(l, ν) = j, i.e. ⟨ν, e j-1 γ j ⟩ ≤ l < l + 1 < ⟨ν, e j γ j+1 ⟩. Then l + 1 = ⟨ν, e j-1 γ j ⟩ + α with α > 0. We have two possibilities:

(a) If l + 1 ≡ 0 mod e j , then we can write l + 1 = ⟨ν, e j-1 γ j ⟩ + re j with r > 0. By Lemma 3.12

f = f ej j -d j x β (j) 1 1 x β (j) 2 2 f s (j) 1 0 • • • f s (j) j j-1 + ∑ d β,s x β1 1 x β2 2 f s1 0 • • • f sj+1 j
, and then, for any γ(t)

∈ D ν i with i ≥ l + 1 we have ord t ( f ej j • γ(t) ) = e j ord t ( f j • γ(t) ) ≥ l + 1 ord t ( d j x β (j) 1 1 x β (j) 2 2 f s (j) 1 0 • • • f s (j) j j-1 • γ(t) ) ≥ ⟨ν, ( β (j) 1 , β (j) 2 ) + s (j) 
1 γ 1 + • • • + s (j) j γ j ⟩ = ⟨ν, e j γ j+1 ⟩ > l + 1
Suppose that there exists certain coecient d β,s ̸ = 0 such that

ord t ( d β,s x β1 1 x β2 2 f s1 0 • • • f sj+1 j • γ(t) ) ≤ l + 1. Then l + 1 ≥ ⟨ν, (β 1 , β 2 )⟩ + s 1 ord t ( f 0 • γ(t) ) + • • • + s j+1 ord t ( f j • γ(t) ) ≥ ⟨ν, (β 1 , β 2 ) + s 1 γ 1 + • • • + s j γ j ⟩ + s j+1 ord t ( f j • γ(t) ) ≥ ⟨ν, e j γ j+1 ⟩ -s j+1 ⟨ν, γ j+1 ⟩ + s j+1 ord t ( f j • γ(t) ) ≥ ⟨ν, e j γ j+1 ⟩ -s j+1 ⟨ν, γ j+1 ⟩ + s j+1 l+1 ej
Then ⟨ν, (e j -s j+1 )γ j+1 ⟩ ≤ (l + 1)(1 -sj+1 ej ), and, since s j+1 < e j+1 < e j , we deduce ⟨ν, e j γ j+1 ⟩ ≤ l + 1 which is a contradiction. Then we have proved that

F (l+1) ≡ F (⟨ν,nj γj ⟩+r) j,ν ej mod J ν l . (b) If l + 1 ̸ ≡ 0 mod e j , then we have ord t ( f ej j • γ(t) ) > l + 1
and arguing as before we deduce that

F (l+1) ≡ 0 mod J ν l (ii) If j(l + 1, ν) = j(l, ν) + 1 = j + 1, i.e.
⟨ν, e j-1 γ j ⟩ ≤ l < ⟨ν, e j γ j+1 ⟩ ≤ l + 1 < ⟨ν, e j+1 γ j+2 ⟩, then l + 1 = ⟨ν, e j γ j+1 ⟩, and j < g. Hence ord t (

f j • γ(t)
) ≥ ⟨ν, γ j+1 ⟩ and l + 1 ≡ 0 mod e j+1 . By Lemma 3.11,

f j+1 = f nj+1 j - c j x α (j+1) 1 1 x α (j+1) 2 2 f r (j+1) 1 0 • • • f r (j+1) j j-1 + ∑ s α,r x α1 1 x α2 2 f r1 0 • • • f rj+1 j
. By induction hypothesis ord t ( f

nj+1 j • γ(t) ) ≥ n j+1 l+1 ej = ⟨ν, n j+1 γ j+1 ⟩ ord t ( c j x α (j+1) 1 1 x α (j+1) 2 2 f r (j+1) 1 0 • • • f r (j+1) j j-1 • γ(t) ) ≥ ⟨ν, n j+1 γ j+1 ⟩
If there were c α,r ̸ = 0 such that ord t (

x α1 1 x α2 2 f r1 0 • • • f rj+1 j •γ(t) ) < ⟨ν, n j+1 γ j+1 ⟩, then ⟨ν, n j+1 γ j+1 ⟩ > ⟨ν, (α 1 , α 2 )⟩ + r 1 ord t ( f 0 • γ(t) ) + • • • + r j+1 ord t ( f j • γ(t) ) ≥ ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r j γ j ⟩ + r j+1 ord t ( f j • γ(t) ) > ⟨ν, n j+1 γ j+1 ⟩ -r j+1 ⟨ν, γ j+1 ⟩ + r j+1 ord t ( f j • γ(t) ) ≥ ⟨ν, n j+1 γ j+1 ⟩ -r j+1 ⟨ν, γ j+1 ⟩ + r j+1 ⟨ν, γ j+1 ⟩ = ⟨ν, n j+1 γ j+1 ⟩ which is a contradiction. Hence ord t ( f j+1 • γ(t) ) ≥ ⟨ν, n j+1 γ j+1 ⟩. Now consider the expansion f = f ej+1 j+1 -d j+1 x β (j+1) 1 1 x β (j+1) 2 2 f s (j+1) 1 0 • • • f s (j+1) j+1 j + ∑ d β,s x β1 1 x β2 2 f s1 0 • • • f sj+2 j+1
given in Lemma 3.12. With the same argument as in the previous case we prove that F (l+1) ≡ F (⟨ν,nj+1γj+1⟩) j+1,ν ej+1 mod J ν l .

• Now we consider the case ν ∈ ρ 1 ∪ ρ 2 .

(i) If ν = (ν 1 , 0). Then we have

F (0) ≡ F (0) 0 n + ∑ (0,j)+kγ1≥nγ1 d 0jk x (0) 2 j F (0) 0 k mod J ν -1
but since the condition (0, j) + kγ 1 ≥ nγ 1 with k < n is impossible, we deduce

F (0) ≡ F (0) 0 n mod J ν -1
and the proof goes as in the case ν / ∈ ρ 1 ∪ρ 2 , with the dierence that it might be that j(l, ν) = i while j(l + 1, ν) > i + 1. This is because even though γ i+1 > n i γ i , if ν = (ν 1 , 0), we may have the equality ⟨ν, n i γ i ⟩ = ⟨ν, γ i+1 ⟩.

(ii) If ν = (0, ν 2 ), then by denition ⟨ν, e g1-1 γ g1 ⟩ = 0 < ⟨ν, e g1 γ g1+1 ⟩, and

F (0) ≡ F (0) g1,ν eg 1 + ∑ d β,s x (0) 1 β1 F (0) 0,ν s1 • • • F (0) g1,ν sg 1 +1 mod J ν -1
with ⟨ν, e g1 γ g1+1 ⟩ ≤ ⟨ν, (β 1 , 0) + s 1 γ 1 + • • • + s g1+1 γ g1+1 ⟩ = s g1+1 ⟨ν, γ g1+1 ⟩, and no matter whether s g1+1 is zero or not, since ⟨ν, γ g1+1 ⟩ ̸ = 0, we deduce e g1 ≤ s g1+1 , which is impossible, since s g1+1 < e g1+1 . Hence F (0) ≡ F (0) g1,ν eg 1 mod J ν -1 , and the rst step of induction is proved. The rest of the proof goes as the case ν / ∈ ρ 1 ∪ ρ 2 with the dierences explained in the case ν ∈ ρ 1 .

By the congruence in [START_REF] García Barroso | Quasi-ordinary singularities: tree model, discriminant and irreducibility[END_REF] we deduce that for m ∈ Z >0 , ν ∈ σ Sing ∩[0, m] 2 ∩N 0 and 0 ≤ i ≤ j(m, ν), [START_REF] Gau | Embedded Topological classication of quasi-ordinary singularities[END_REF] ord t (

f i • γ(t) ) ≥ ⟨ν, n i γ i ⟩
for any γ(t) ∈ D ν m . But we can be more precise, as the following result claims.

Lemma 5.15.

Given m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 , for any m-jet γ(t) ∈ D ν m , ord t ( f i • γ(t) ) = ⟨ν, γ i+1 ⟩, for 0 ≤ i < j(m, ν) ord t ( f i • γ(t) ) > m ei , for j(m, ν) ≤ i ≤ g
Proof. By [START_REF] García Barroso | Quasi-ordinary singularities: tree model, discriminant and irreducibility[END_REF] (2), where

G (⟨ν,niγi⟩) i,ν (1) = ∑ c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γi-1⟩) i-2,ν ri-1 with ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i-1 γ i-1 ⟩ = ⟨ν, n i γ i ⟩, and G (⟨ν,niγi⟩) i,ν (2) = ∑ c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γi⟩) i-1,ν ri with ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i γ i ⟩ = ⟨ν, n i γ i ⟩ and r i ̸ = 0.
Then we can write

F (⟨ν,niγi⟩) i,ν = ( F (⟨ν,γi⟩) i-1,ν ni + G (⟨ν,niγi⟩) i,ν (2) 
) + + ( -c i x (ν1) 1 
α (i) 1 x (ν2) 2 
α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 + G (⟨ν,niγi⟩) i,ν (1) 
)

where in the second part F (⟨ν,γi⟩) i-1,ν does not appear.

First step of induction. We distinguish two cases. . Suppose that F (⟨ν,γ1⟩) 0,ν

• If min {1 ≤ i ≤ g | ⟨ν, n i γ i ⟩ < ⟨ν, γ i+1 ⟩} = 1,
∈ J ν m , then -c 1 x (ν1) 1 α (1) 1 x (ν2) 2 α (1) 2 + G (⟨ν,niγ1⟩) 1,ν (1) ∈ J ν m If G (⟨ν,n1γ1⟩) 1,ν (1) = 0 then -c 1 x (ν1) 1 α (1) 1 x (ν2) 2 α (1) 2 ∈ J ν m
, which is a contradiction, since it can not be a dening equation of D ν m . Otherwise, ν ∈ ρ 1 ∪ ρ 2 and we have the equation

-c 1 x (ν1) 1 α (1) 1 x (ν2) 2 α (1) 2 + ∑ c α,0 x (ν1) 1 α1 x (ν2) 2 α2 = 0
where (α 1 , α 2 ) > n 1 γ 1 and ⟨ν, (α 1 , α 2 )⟩ = ⟨ν, n 1 γ 1 ⟩.

(i) If ν ∈ ρ 1 , then the condition ⟨ν, (α 1 , α 2 )⟩ = ⟨ν, n 1 γ 1 ⟩ gives α 1 = α (1)
1 , and hence the equation is

x (0) 2 α (1) 2 + ∑ c α,0 x (0) 2 α2 = 0 since x (ν1) 1 ̸ = 0. But this equation is invertible in C{x (0)
2 } and it can not be zero.

(ii) If ν ∈ ρ 2 the same argument holds.

We have proved that -c 1 x

(ν1) 1 α (1) 1 x (ν2) 2 α (1) 2 +G (⟨ν,n1γ1⟩) 1,ν (1) 
/ ∈ J ν m and hence F (⟨ν,γ1⟩) 0,ν / ∈ J ν m . Therefore we have that ord t

( f 0 • γ(t) ) = ⟨ν, γ 1 ⟩. • If min {1 ≤ i ≤ g | ⟨ν, n i γ i ⟩ < ⟨ν, γ i+1 ⟩} > 1, then we have that ν ∈ ρ 1 ∪ ρ 2 . Denoting m 0 (ν) = min {1 ≤ i ≤ g | ⟨ν, n i γ i ⟩ < ⟨ν, γ i+1 ⟩} we have that F (⟨ν,n m 0 (ν) γ m 0 (ν) ⟩) m0(ν),ν
is the rst non-monomial equation among the generators of J ν m . Moreover for 1 ≤ l < m 0 (ν) 

F (⟨ν,γ l+1 ⟩) l,ν = F (⟨ν,n l γ l ⟩) l,
G(x (ν1) 1 , x (ν2) 2 ) = 0
where the monomials of G are of the form x Suppose that ord t (

(ν1) 1 α1 x (ν2) 2 α2 with ⟨ν, (α 1 , α 2 )⟩ = ⟨ν, n m0(ν) γ n(ν) ⟩ = n m0(ν) • • • n l ⟨ν, γ l ⟩ for 1 ≤ l ≤ m 0 (ν). If ν = (ν 1 , 0) ∈ ρ 1 , then ν 1 α 1 = ν 1 n m0(ν) • • • n l γ ( 1 
f i • γ(t) )
= ⟨ν, γ i+1 ⟩ for 0 ≤ i < j and we will prove it for j < j(m, ν). We distinguish two cases.

• If ⟨ν, γ j+2 ⟩ > ⟨ν, n j+1 γ j+1 ⟩, then by Corollary 5.13 we have F

(⟨ν,nj+1γj+1⟩) j+1,ν ∈ J ν m . Suppose that F (⟨ν,γj+1⟩) j,ν ∈ J ν m , then -c j+1 x (ν1) 1 α (j+1) 1 x (ν2) 2 α (j+1) 2 F (⟨ν,γ1⟩) 0,ν r (j+1) 1 • • • F (⟨ν,γj ⟩) j-1,ν r (j+1) j + G (⟨ν,nj+1γj+1⟩) j+1,ν (1) ∈ J ν m .
This is a contradiction if G (⟨ν,nj+1γj+1⟩) j+1,ν

(1) = 0. Otherwise we have that ν

∈ ρ 1 ∪ρ 2 . If ν = (ν 1 , 0) ∈ ρ 1 , then G (⟨ν,nj+1γj+1⟩) j+1,ν (1) = ∑ c α,r x (ν1) 1 α1 x (0) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γj ⟩) j-1,ν rj with α 1 + r 1 γ (1) 1 + • • • + r j γ (1) j = n j+1 γ (1) j+1 α 2 + r 1 γ (2) 1 + • • • + r j γ (2) j > n j+1 γ
(2) j+1 [START_REF] González Pérez | The semigroup of a quasi-ordinary hypersurface[END_REF] Recall that n j+1 γ j+1 = (α

)+r

(j+1) 1 γ 1 +• • •+r (j+1) j
γ j , where the integers

(α (j+1) 1 , α (j+1) 2 ), r (j+1) 1 
, . . . , r (j+1) j are unique by Lemma 3.6. Then we deduce from ( 16) that

α 1 = α (j+1) 1 r l = r (j+1) l for 1 ≤ l ≤ j α 2 > α (j+1) 2
and we are done, since -c j+1 x (ν1) 1

α (j+1) 1 x (0) 2 α (j+1) 2 F (⟨ν,γ1⟩) 0,ν r (j+1) 1 • • • F (⟨ν,γj ⟩) j-1,ν r (j+1) j + G (⟨ν,nj+1γj+1⟩) j+1,ν
(1) can be written as

x (ν1) 1 α (j+1) 1 x (0) 2 α (j+1) 2 F (⟨ν,γ1⟩) 0,ν r (j+1) 1 • • • F (⟨ν,γj ⟩) j-1,ν r (j+1) j P (x (0)
2 ) which is never zero, by induction hypothesis, and by the fact that P (0) = -c j+1 and since we consider germs of quasi-ordinary singularities P (x

(0) 2 ) is invertible in C{x (0) 2 }. If ν = (0, ν 2 ) ∈ ρ 2 the
proof is completely analogous.

• If ⟨ν, γ j+2 ⟩ = ⟨ν, n j+1 γ j+1 ⟩, we are in the case ν ∈ ρ 1 ∪ρ 2 , and analogously as we did with m 0 (ν) in the rst step of induction, we dene the integer m j+2 (ν) = min{j + 2 < i ≤ g | ⟨ν, n i γ i ⟩ = ⟨ν, γ i+1 ⟩}. Then, by Corollary 5.13 we have 

F (⟨ν,n m j+2 (ν) γ m j+2 (ν) ⟩) mj+2(ν),ν ∈ J ν m ,
) + r 1 γ 1 + • • • + r j γ j ⟩ = ⟨ν, n mj+2(ν) γ mj+2(ν) ⟩ = ⟨ν, n mj+2(ν)-1 n mj+2(ν) γ mj+2(ν)-1 ⟩ . . . = ⟨ν, n j+1 • • • n mj+2(ν) γ j+1 ⟩.
If ν = (ν 1 , 0) ∈ ρ 1 , we deduce that α 1 , r 1 , . . . , r j are xed and α 2 varies. Hence we have that x

(ν1) 1 α1 x (0) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γj ⟩) j-1,ν rj P (x (0) 
2 ) = 0 is one dening equation of D ν m , and this is a contradiction. The case ν ∈ ρ 2 is analogous. Now we prove the second part of the statement of the Lemma. By Corollary 5.13, for any γ(t)

∈ D ν m , ord t ( f j(m,ν) • γ(t) )
> m e j(m,ν) . To prove the claim for j(m, ν) + 1 consider the expansion, denoting j(m, ν) by j to simplify notation,

f j+1 = f nj+1 j -c j+1 x α (j+1) 1 1 x α (j+1) 2 2 f r (j+1) 1 0 • • • f r (j+1) j j-1 + ∑ c α,r x α1 1 x α2 2 f r1 0 • • • f rj+1 j with n j+1 γ j+1 = (α (j+1) 1 , α (j+1) 2 
) + r

(j+1) 1 γ 1 + • • • + r (j+1) j γ j < (α 1 , α 2 ) + r 1 γ 1 + • • • + r j+1 γ j+1 . Then, ord t ( f nj+1 j • γ(t) ) > m ej+1 ord t ( x α (j+1) 1 1 x α (j+1) 2 2 f r (j+1) 1 0 • • • f r (j+1) j j-1 • γ(t) ) = ⟨ν, (α (j+1) 1 , α (j+1) 2 ) + ∑ j i=1 r (j+1) i γ i ⟩ = ⟨ν, n j+1 γ j+1 ⟩ > m ej+1
Suppose that there exists c α,r ̸ = 0 such that ord t ( c α,r x α1

1 x α2 2 f r1 0 • • • f rj+1 j • γ(t) ) ≤ m ej+1 , then m ej+1 ≥ ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r j γ j ⟩ + r j+1 ord t ( f j • γ(t) ) > ⟨ν, (n j+1 -r j+1 )γ j+1 ⟩ + r j+1 ord t ( f j • γ(t) ) > ⟨ν, (n j+1 -r j+1 )γ j+1 ⟩ + r j+1 m ej Therefore ⟨ν, (n j+1 -r j+1 )γ j+1 ⟩ < (1 - rj+1 nj+1
) m ej+1 , and since r j+1 < n j+1 , we deduce that ⟨ν, γ j+1 ⟩ < m ej , which contradicts the denition of j(m, ν). Then we have proved that ord t (

f j+1 • γ(t) ) > m e j+1
Recursively we prove the rest of the inequalities for j(m, ν) + 1 < k ≤ g.

For the other implication, suppose that m ≥ ⟨ν, e i(ν)-1 γ i(ν) ⟩ and σ Reg,j ′ (m,ν) ̸ = ρ 1 ∪ ρ 2 . We have by Proposition 5.12 that F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν ∈ J ν m , and by Lemma 5.9 that

F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν = -c i(ν) x (ν1) 1 α (i(ν)) 1 x (ν2) 2 α (i(ν)) 2 F (⟨ν,γ1⟩) 0,ν r (i(ν)) 1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2 r (i(ν)) i(ν)-1 + +G (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν = x (ν1) 1 α (i(ν)) 1 x (ν2) 2 α (i(ν)) 2 F (⟨ν,γ1⟩) 0,ν r (i(ν)) 1 • • • F (⟨ν,γ i(ν)-1 ⟩) i(ν)-2 r (i(ν)) i(ν)-1 • U
where U is a unit in R ν . Now, applying Corollary 5.16 to ν and m = ⟨ν, e i(ν)-1 γ i(ν) ⟩-1 we deduce that

D ν m ⊂ V ( F (⟨ν,niγi⟩) i,ν ) 1≤i≤j(m,ν),⟨ν,γi+1-niγi⟩>0 ∩ D(M ) ⊂ j(m,ν)-1 ∩ i=0 D ( F (⟨ν,γi+1⟩) i,ν ) where j(m, ν) = i(ν) -1 and M = x (ν1) 1 if j(m, ν) ≤ g 1 and M = x (ν1) 1 x (ν2) 2 otherwise. Then F (⟨ν,n i(ν) γ i(ν) ⟩) i(ν),ν
can not be zero (note that α

(i(ν)) 2 = 0 if i(ν) ≤ g 1 ) and therefore D ν m = ∅. Remark 5.19. For m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 , if D ν m ̸ = ∅ then ν ∈ N j(m,ν) .
Denition 5.20. Given m ∈ Z >0 we dene the set:

L m = {ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 | m < ⟨ν, e i(ν)-1 γ i(ν) ⟩} and for 0 ≤ j ≤ g L (j) m = {ν ∈ L m | j(m, ν) = j} Remark 5.21. By Corollary 5.16, if ν ∈ L (0)
m , the ideal J ν m is monomial, more precisely

J ν m = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν2-1) 2 
, z (0) , . . . , z ([m/n])

) .

Lemma 5.22. For m ∈ Z >0 , we have that L m ̸ = ∅, and

π -1 m (X Sing ) = ∪ ν∈Lm C ν m .
Proof. It follows by Lemma 5.7 and Lemma 5.18, since we have that

∪ ν∈σSing∩[0,m] 2 ∩N0 D ν m = ∪ ν∈Lm D ν m
where the unions are nite, and therefore it is enough to take the Zariski closure.

Notation 5.23. For 0 ≤ i < g, we denote k i (ν) = ⟨ν, γ i+1 -n i γ i ⟩, or simply k i if ν is clear in the context.

Remark 5.24. For m ∈ Z >0 and ν ∈ L m , we have that k j(m,ν) (ν) > 0 and

k j ′ (m,ν) (ν) > 0.
Now we can prove the irreducibility of the sets C ν m .

Proposition 5.25. For any m ∈ Z >0 and ν ∈ L m , the set C ν m is irreducible and

Codim(C ν m ) = ν 1 +ν 2 + j(m,ν)-1 ∑ k=0 ⟨ν, γ k+1 -n k γ k ⟩+ [ m e j(m,ν) ] -⟨ν, n j(m,ν) γ j(m,ν) ⟩+1
Proof. We will denote along this proof j(m, ν) just by j.

The irreducibility follows by Proposition 2.4 and the denition of C ν m . Let us prove the formula of the codimension.

•

If ν ∈ L (0) m it follows from Remark 5.21 that C ν m = V ( J ν -1 , z (0) , . . . , z ([m/n]) )
. The claim about the codimension follows trivially.

• If ν ∈ L (j) m with j > 0, then

J ν m = ( x (0) 1 , . . . , x (ν1-1) 1 , x (0) 2 , . . . , x (ν-1) 2 , F (⟨ν,niγi⟩+ri) i,ν ) 0≤i≤j
for 0 ≤ r i < k i (ν) if i < j and 0 ≤ r j ≤ [m/e j ] -⟨ν, n j γ j ⟩. It is not a monomial ideal. We divide the set of non-monomial generators in two sets:

C 1 = { F (⟨ν,niγi⟩) i,ν } 1≤i≤j, ki>0 C 2 = { F (⟨ν,niγi⟩+r) i,ν } (i,r)∈A2
where

A 2 = {(i, r) | 1 ≤ i < j, 0 < r < k i } ∪ {(j, r) | 0 < r ≤ [ m ej ] -⟨ν, n j γ j ⟩}. We claim that V (⟨C 1 ⟩) ≃ Z Γ ν m
, the toric variety dened by the semigroup Γ ν m generated by

{γ i } 1≤i≤j(m,ν), ki>0 If ν / ∈ ρ 1 ∪ ρ 2 then any k i > 0 and hence Γ ν m = Γ j(m,ν) . Then V (⟨C 1 ⟩
) is isomorphic to the monomial variety associated to X (j(m,ν)) (see Denition 3.5).

To deal with C 2 we need to study the elements F (⟨ν,niγi⟩+ri) i,ν

with r i > 0 (note that we do not describe those in Lemma 5.9). For i such that k i (ν) > 0 we know that F (⟨ν,niγi⟩) i,ν ∈ J ν m , and we can write, as we did in the proof of Lemma 5.15,

F (⟨ν,niγi⟩) i,ν = ( F (⟨ν,γi⟩) i-1,ν ni + G (⟨ν,niγi⟩) i,ν (2) 
) + + ( -c i x (ν1) 1 
α (i) 1 x (ν2) 2 
α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 + G (⟨ν,niγi⟩) i,ν (1) 
)

where

G (⟨ν,niγi⟩) i,ν (1) = ∑ c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γi-1⟩) i-2,ν ri-1 with ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i-1 γ i-1 ⟩ = ⟨ν, n i γ i ⟩, and G (⟨ν,niγi⟩) i,ν (2) = ∑ c α,r x (ν1) 1 α1 x (ν2) 2 α2 F (⟨ν,γ1⟩) 0,ν r1 • • • F (⟨ν,γi⟩) i-1,ν ri with ⟨ν, (α 1 , α 2 ) + r 1 γ 1 + • • • + r i γ i ⟩ = ⟨ν, n i γ i ⟩ and r i ̸ = 0. Then in the second part of F (⟨ν,niγi⟩) i,ν the F (⟨ν,γi⟩) i-1,ν
does not appear, and, by the denition of the derivation δ, that we can write

F (⟨ν,niγi⟩+r) i,ν = P • F (⟨ν,γi⟩+r) i-1,ν + Q where F (⟨ν,γi⟩+r) i-1,ν
does not appear neither in P nor in Q. Moreover we have that P ̸ = 0, or in other words, P / ∈ J ν m . Indeed, in the proof of Lemma 5.15 we have showed that

F (⟨ν,niγi⟩) i,ν = F (⟨ν,γi⟩) i-1,ν ni + G (⟨ν,niγi⟩) i,ν (2) / ∈ J ν m
where f i denotes the part of f i depending on f i-1 , i.e.,

f i = f ni i-1 + ∑ ri̸ =0 c α,r x α1 1 x α2 2 f r1 0 • • • f ri i-1 .
Hence . Now, using that ⟨ν, γ i ⟩+r = ⟨ν, n i-1 γ i-1 ⟩+k i-1 (ν)+r, we prove by recurrence that

( * ) x (ν1+k0+•••+ki-1+r) 1 , z (⟨ν,γ1⟩+k0+•••+ki-1+r) appear the rst time in F (⟨ν,niγi⟩+r) i,ν
Note that this is true also for x 2 whenever g 1 = 0.

Then we have proved that any F (⟨ν,niγi⟩+r) i,ν ∈ C 2 is linear with respect to at least one of the variables described in ( * ), which appears for the rst time on this equation, and with non-zero coecient over D(x

(ν1) 1 ) ∩ D(x (ν2) 2
), by Corollary 5.16. Since any of these equations in C 2 is linear in a dierent variable, and, by ( * ) we have that it appears for the rst time in C 2 , we deduce

V (J ν -1 , F (0) 0,ν , . . . , F (⟨ν,γ1⟩-1) 0,ν , C 2 ) ∩ D(x (ν1) 1 ) ∩ D(x (ν2) 2 ) ≃ A α(m,ν) where α(m, ν) = 3(m + 1) -ν 1 -ν 2 -⟨ν, γ 1 ⟩ -|A 2 |, because V (J ν -1 , F (0) 0,ν , . . . , F (⟨ν,γ1⟩-1) 0,ν , C 2 ) ⊆ A 3 m ≃ A 3(m+1) . Clearly the cardinal of A 2 is |A 2 | = ∑ m(ν)≤i<j, ki>0 (k i -1)+[ m ej ]-⟨ν, n j γ j ⟩. Hence D ν m ≃ ( Z Γ ν m ∩ D(x (ν1) 1 ) ∩ D(x (ν2) 2 
)

) × A α(m,ν)
The toric variety Z Γ ν m is complete intersection, hence its codimension equals the cardinal of C 1 . Therefore

Codim(C ν m ) = |C 1 | + ν 1 + ν 2 + ⟨ν, γ 1 ⟩ + ∑ 1≤i<j, ki>0 (k i -1) + [ m ej ] -⟨ν, n j γ j ⟩ = ν 1 + ν 2 + ∑ 0≤i<j k i + [ m ej ] -⟨ν, n j γ j ⟩ + |C 1 | -|{1 ≤ i < j | k i > 0}| since k 0 = ⟨ν, γ 1 ⟩. Note that |C 1 | = |{1 ≤ i ≤ j, k i > 0}| = |{1 ≤ i < j, k i > 0}| + 1,
since k j > 0 by denition of j(m, ν). Then the formula of the codimension follows.

To nish we prove the claim. For 1 ≤ i ≤ j(m, ν) with k i > 0 we have by Proposition 5.12 that F (⟨ν,niγi⟩) i,ν ∈ J ν m . Recall that in the proof of Lemma 5.15 we proved that whenever k i (ν) > 0, we have

-c i x (ν1) 1 α (i) 1 x (ν2) 2 α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 + G (⟨ν,niγi⟩) i,ν (1) / ∈ J ν m
Hence we have

F (⟨ν,γi⟩) i-1,ν ni + G (⟨ν,niγi⟩) i,ν (2) / ∈ J ν m and since F (⟨ν,γi⟩) i-1,ν ni / ∈ J ν m and c i x (ν1) 1 
α (i) 1 x (ν2) 2 
α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 / ∈ J ν m we can write F (⟨ν,niγi⟩) i,ν = F (⟨ν,γi⟩) i-1,ν ni • U 1 -c i x (ν1) 1 
α (i) 1 x (ν2) 2 
α (i) 2 F (⟨ν,γ1⟩) 0,ν r (i) 1 • • • F (⟨ν,γi-1⟩) i-2,ν r (i) i-1 • U 2 with U 1 , U 2 ̸ = 0. Then we deduce that V (⟨C 1 ⟩) ≃ V (h i ) 1≤i≤j(m,ν), ki>0
where

h i = w ni i-1 -x α (i) 1 1 x α (i) 2 2 z r (i) 1 w r (i) 2 1 • • • w r (i) i-1 i-2 , with the relation n i γ i = (α (i) 1 , α (i) 2 )+ r (i) 1 γ 1 + • • • + r (i) i-1 γ i-1 . And V (h i ) 1≤i≤j(m,ν), ki>0 is isomorphic to the toric variety Z Γ ν m .
In particular we have the following variation of the codimension of C ν m as m grows.

Corollary 5.26. For

ν ∈ L m such that ν ∈ L m-1 we have that Codim(C ν m ) =    Codim(C ν m-1 ) + 1 if m ≡ 0 mod e j(m-1,ν) Codim(C ν m-1 ) otherwise 5.1. Inclusions among the C ν m . The collection of irreducible sets {C ν m | ν ∈ L m } covers ( π -1 m (X Sing )
) red , but in general it is not its decomposition in irreducible components. We have to study the inclusions

C ν ′ m ⊆ C ν m for dierent ν, ν ′ ∈ L m . We will describe a set F m ⊂ L m such that {C ν m | ν ∈ F m } is the set of irreducible components of ( π -1 m (X Sing ) ) red . Proposition 5.27. Given m ∈ Z >0 and ν, ν ′ ∈ L m , if ν ′ -ν ∈ σ Reg,j ′ (m,ν) then C ν ′ m ⊆ C ν m . Proof.
The key point is the following observation. By [START_REF] García Barroso | Quasi-ordinary singularities: tree model, discriminant and irreducibility[END_REF] we deduce that for l ∈ Z >0 and ν, ν

′ ∈ L m with ν k ≤ ν ′ k for k = 1, 2, we have F (l) i,ν = F (l) i,ν ′ + H (l) i,ν ′ -ν where H (l) i,ν ′ -ν ∈ ( x (ν k ) k , . . . , x (ν ′ k -1) k , F (sj ) j,ν ) k=1,2,0≤j<i,⟨ν,γj+1⟩≤sj <⟨ν ′ ,γj+1⟩
. Note that by denition, equivalently we have that

H (l) i,ν ′ -ν ∈ ( x (ν k ) k , . . . , x (ν ′ k -1) k , F (sj ) j,ν ′ ) k=1,2,0≤j<i,⟨ν,γj+1⟩≤sj <⟨ν ′ ,γj+1⟩ . When ν ′ -ν ∈ σ Reg,j ′ (m,ν) , we have that ν k ≤ ν ′ k for k = 1, 2. Then σ Reg,j ′ (m,ν) ⊇ σ Reg,j ′ (m,ν ′ ) and then we only have to prove that J ν m ⊆ J ν ′ m . Let then F (l) i,ν ∈ J ν m
and let us prove that it belongs to J ν ′ m . Notice that j(m, ν ′ ) ≤ j(m, ν). We distinguish the following cases:

• If j(m, ν ′ ) = j(m, ν) we have F (l) i,ν ′ , H (l) i,ν ′ -ν ∈ J ν ′ m . • If j(m, ν ′ ) = j(m, ν) -1 we have H (l) i,ν ′ -ν ∈ J ν ′ m . Moreover F (l) i,ν ′ ∈ J ν ′ m for i < j(m, ν). Then we have to study F (l) j(m,ν),ν ′ with ⟨ν, n j(m,ν) γ j(m,ν) ⟩ ≤ l ≤ [ m e j(m,ν)
]. Note that (denoting j(m, ν) simply by j) by denition we have

⟨ν, e j-1 γ j ⟩ ≤ m < ⟨ν, e j γ j+1 ⟩ ⟨ν ′ , e j-2 γ j-1 ⟩ ≤ m < ⟨ν ′ , e j-1 γ j ⟩ Hence ⟨ν, e j-1 γ j ⟩ ≤ le j ≤ e j [ m ej ] ≤ m < ⟨ν ′ , e j-1 γ j ⟩, which implies that l < ⟨ν ′ , n j γ j ⟩ and therefore F (l) j(m,ν),ν ′ = 0 • If j(m, ν ′ ) < j(m, ν) -1, we claim that then σ Reg,j ′ (m,ν) = {(0, 0)} and there is nothing to prove. Indeed, if σ Reg,j ′ (m,ν) = ρ 1 ∪ ρ 2 then j ′ (m, ν) < 1 or j ′ (m, ν) = 1 = g and γ 1 = (1/n, 1/n). While if σ Reg,j ′ (m,ν) = ρ 2 then 1 ≤ j ′ (m, ν) ≤ g 2 and ν ′ = ν +(0, α). We have j(m, ν) ≤ g 2 +1 but j(m, ν ′ ) ≥ g 1 because ⟨ν, γ i ⟩ = ⟨ν ′ , γ i ⟩ for 1 ≤ i ≤ g 1 .
Denition 5.28. We consider the order relation in N 0 , depending on m and de- noted by ≤ m , given by ν ≤ m ν ′ if and only if and ν ′ -ν ∈ σ Reg,j ′ (m,ν) .

We dene the set

F m = min ≤m L m . Remark 5.29. Notice that if ν ≤ m ν ′ then in particular ν i ≤ ν ′ i for i = 1, 2.
It is worth pointing out that the inclusions described in Proposition 5.27, can be explained by the fact that even though a curve may be in the singular locus of a quasi-ordinary surface, it may not be part of the singular locus of its rst approximate quasi-ordinary surfaces. And as Proposition 5.14 explains, the geometry of C ν m is only determined by the geometry of one of its semi-roots, for m small enough. Hence, the jets which project to the singular locus of the surface but not to the singular locus of the approximate surfaces will not give rise to irreducible components of the jet schemes for m small enough, and they will be included in other components. Now we prove that all possible inclusions among the C ν m are controlled by the relation dened in Denition 5.28, that is, in the set F m . Proposition 5.30. Given m ∈ Z >0 and ν, ν ′ ∈ F m we have that C ν ′ m ̸ ⊆ C ν m . Proof. First notice that the claim is clear if ν ν ′ (coordinate-wise). Indeed, suppose that ν and ν ′ are not comparable. Then we can assume that ν ). Then we deduce that j ′ (m, ν) > 0. It is not easy to study the inequality directly by using the formula in Proposition 5.25, therefore we will prove by induction on m the inequality [START_REF] González Pérez | Toric embedded resolutions of quasi-ordinary hypersurface singularities[END_REF] Codim(C ν ′ m ) ≤ Codim(C ν m ) for ⟨ν, e 0 γ 1 ⟩ + e 1 ≤ m < ⟨ν, e i(ν)-1 γ i(ν) ⟩. First step of induction, m = ⟨ν, e 0 γ 1 ⟩ + e 1 and obviously j ′ (m, ν) = 1. We have that γ 1 = ( a1 n1 , b1 n1 ) with a 1 > 1 (because σ Reg,j ′ (m,ν) ̸ = ρ 1 ∪ ρ 2 ). To study the set (ν + σ) ∩ F m we distinguish two cases: ), where

1 < ν ′ 1 and ν 2 > ν ′ 2 . Then, since C ν m ⊆ V (J ν -1 ), and C ν ′ m ⊆ V (J ν ′ -1 ), it follows that C ν m C ν ′ m and C ν ′ m C ν m . Let then ν, ν ′ be two dierent elements of F m such that ν i ≤ ν ′ i for i = 1,
• If b 1 = 0,
F (⟨ ν,n i( ν) γ i( ν) ⟩) i( ν), ν = x ( ν1) 1 α (i( ν)) 1 x ( ν2) 2 α (i( ν)) 2
z (⟨ ν,γ1⟩) r (i( ν)) = 0 because i( ν) -2 < g 2 . And, as before, if g 2 = g 1 + 1 and i( ν) = g 2 + 1 then we have that ν ′ = ν + (0, α) with α = min{n g1+1 , ⟨ ν, γ g1+2 -n g1+1 γ g1+1 ⟩}. Otherwise ν ′ = ν + (0, 1), and in both cases we have g . In [START_REF] Mourtada | Jet schemes of complex plane branches and equisingularity[END_REF] the second author describes the irreducible components of jets through the origin for plane curves.

The previous remark is the simplest evidence of the fact that the irreducible components are only aected by the topological type. This is proved in Theorem 5.35.

An alternative way to describe the irreducible components of the jet schemes through the singular locus is by representing the crucial information in a graph. To any quasi-ordinary surface singularity we can associate a weighted graph, containing information about the irreducible components of jet schemes and how they behave under truncation maps. Denition 5.33. The weighted graph of the jet schemes of X is the leveled weighted graph Γ dened as follows:

• for m ≥ 1 we represent every irreducible component of π -1 m (X Sing ) by a vertex V m , the sub-index m being the level of the vertex;

• we join the vertices V m+1 and V m if the canonical morphism π m+1,m induces a morphism between the corresponding irreducible components; • we weight each vertex by the codimension of the corresponding irreducible component.

We dene EΓ to be the weighted graph that we obtain from Γ by adding to any vertex of Γ the weight given by the embedding dimensions of the corresponding irreducible component.

Recall that if ν ∈ L (0) m the ideal J ν m is monomial, and moreover generated by hyperplane coordinates (see Remark 5.21), then we will say that C ν m is hyperplane component. Otherwise ν ∈ L (j) m for j > 0, and we will say that C ν m is a lattice component (because ν ∈ N j ). Notice that the data of the codimension together with the embedding dimension permits to distinguish when the vertex corresponds to a hyperplane or a lattice component. Indeed, given a vertex of the graph, let e be the embedding dimension and c the codimension, then the vertex corresponds to a hyperplane component if and only if e + c = 3(m + 1). Therefore we can extract from EΓ a subgraph Γ ′ as follows.

Denition 5.34. We dene a weighted subgraph Γ ′ of EΓ by adding the condition that we join the vertices V m (corresponding to a certain component, say C ν ′ m ) and V m-1 (corresponding to C ν m-1 ) only if • if ν ∈ L m-1 with 0 < j(m -1, ν) ≤ g 2 then ν ′ = ν + (0, α) with α minimal among the elements in F m . • if ν ∈ L m-1 with j(m -1, ν) > g 2 then ν ′ = ν.

The important thing about this new graph Γ ′ is that, with the weights, we are able to detect when we pass from a hyperplane component at level m to a lattice component at level m + 1, as we also do in the graph EΓ, but now we can follow this component in a unique path in the graph as m grows. This will be useful to prove the following result.

Theorem 5.35. The graph Γ ′ determines and it is determined by the topological type of the singularity.

Proof. The graph is determined by the semigroup, and therefore, by [START_REF] Gau | Embedded Topological classication of quasi-ordinary singularities[END_REF], by the topological type. Now we prove the converse.

We prove rst that we can read the number of characteristic exponents in the graph, in the following way. Any vertex V m on the graph comes with the codimension c(V m ) and the embedding dimension e(V m ). Take an innite branch (which we know that must correspond to ν ∈ N g ), and consider the nite part that starts at m 0 = max {m | V m-1 is a hyperplane component and V m is a lattice component}, and ends at m 1 = min {r | c(V m ) = c(V m-1 ) + 1 for all m > r}.

In the case X Sing = Z 1 ∪ Z 2 (which is the case with two components at level m = 1) we have to make sure that moreover the component corresponds to ν ∈ • σ, and this can be done by choosing a component which projects to both Z 1 and Z 2 (it always exists for m big enough). Note that then we deduce m 0 = ⟨ν, e 0 γ 1 ⟩ and m 1 = ⟨ν, e g-1 γ g ⟩, and we can read e 0 , . . . , e g-1 by using Corollary 5.26. Indeed, going backwards we look for the biggest m ′ such that c(V m ′ ) = c(V m0 ) -1. Then n = m 0 -m ′ . Now, going from level m 0 to m 1 , we know that the codimension grows by one exactly every e 1 steps at rst, after every e 2 steps, and so on. Since e 1 > e 2 > • • • > e g = 1 we can read these numbers on the graph. Notice that equivalently we get n 1 , . . . , n g , and in particular we have g, the number of characteristic exponents.

Suppose now that the number of generators of the semigroups is the same, say g. We will prove by induction on g that the graphs corresponding to dierent sets of generators, are dierent. We denote the vertices at level m by V m (c(V m ), e(V m )). The case g = 1 was treated in Theorem 4.21. Now, suppose it is true for g -1 characteristic exponents, and we will prove it for g. From Proposition 5.14 we deduce that is sucient to prove that the graphs associated to the sets {γ 1 , . . . , γ g-1 , γ g } and {γ 1 , . . . , γ g-1 , γ ′ g } are dierent, since otherwise it holds by induction hypothesis. Moreover, since we read the integers n 1 , . . . , n g in the graph, we assume that n ′ g = n g . As in the case g = 1, by looking at the singular locus (which is seen at m = 1) we just have to consider the case γ )

e1l α 2 n 1 n 2 = 1+ 1 n 1 + α 2 n 1 n 2 -1 e2 α 2 n 1 = 1+ α 2 n 2 e1 α 2 n 2
. This coincides with the statement since λ 2 = ( α2 n1n2 -n1-1 n1 , β2 n1n2 -n1-1 n1 ).

We now deduce a family of examples whose log canonical threshold can not be computed by a monomial valuation.

Corollary 5.37. Let X be a quasi-ordinary surface singularity with g > 1 characteristic exponents, and such that λ 1 = ( 1 n1 , 1 n1 ). Then lct(X, A 3 ) can not be contributed by monomial valuations in any variables.

Proof. It follows from Corollary 5.36 that lct(X, A 3 ) is contributed by C ν ⟨ν,e0γ1⟩ , for ν as is made precise in the above statement. This is equivalent to say that the valuation

V C ν ⟨ν,e 1 γ 2 ⟩-1 : C[[x 1 , x 2 , z]] -→ N h -→ ord t (h • η)
where η is the generic point of (Ψ A 3 ⟨ν,e1γ2⟩-1 ) -1 (C ν ⟨ν,e1γ2⟩-1 ) and

Ψ A 3 m : A 3 ∞ -→ A 3 m
is the map induced by truncation. Note that ν can take all the values described in Corollary 5.36 but since z (⟨ν,γ1⟩) n1 -x (ν1) 1

x (ν2) 2

= 0 is one of the dening equations of C ν ⟨ν,e1γ2⟩-1 , then V C ν ⟨ν,e 1 γ 2 ⟩-1 (z n1 -x 1 x 2 ) > n 1 V C ν ⟨ν,e 1 γ 2 ⟩-1 (z) and V C ν ⟨ν,e 1 γ 2 ⟩-1 (z n1x 1 x 2 ) > V C ν ⟨ν,e 1 γ 2 ⟩-1 (x 1 )+V C ν ⟨ν,e 1 γ 2 ⟩-1 (x 2 ). Therefore V C ν ⟨ν,e 1 γ 2 ⟩-1 is not a monomial valuation. 5.4. Examples. We nish by looking at some examples, to illustrate once more the arguments we use in proving the description of ( π -1 m (X Sing )

) red in irreducible components.

Example 5.38. Let X be the q.o. surface dened by f = (z 2 -x 3 1 x 2 ) 3 -x 10 1 x 4 2 , whose generators of the semigroup are γ 1 = ( 3 2 , 1 2 ) and γ 2 = ( 10 3 , 4 3 ). We have that g 1 = 0 and g 2 = 1. The singular locus is

X Sing = {z = x 1 = 0} ∪ {z = x 2 = 0} Z 1 Z 2 m = 1 • • m = 2 • • . . . . . . . . . m = 25 • • m = 26 • • • m = 27 • • ↗ $ $ $ $ $ $ m = 28 • • • . . . . . . . . . . . . m = 37 • • • m = 38 • • • • m = 39 • • • m = 40 • • • m = 41 • • • ↗ m = 42 • • • . . . . . . . . . . . . m = 49 • • • m = 50 • • • • m = 51 • • • • m = 52 • • • • • ↗ m = 53 • • • • Figure 4.
The graph of the surface dened by f = ((z 2 -x 3 1 ) 2x 7 1 x 3 2 ) 2 -x 11 1 x 5 2 (z 2 -x 3 1 ).

  derivations. Let δ be the C-derivation on C[x

(

  C[x1,...,xn] (f1,...,fr)

Figure 1 .

 1 Figure 1. A sketch of the dierent orderings ≤ m in the case of one characteristic exponent.

  n n which is positive since m > aν 1 and an-a-n n > 0. Hence dim(C ν * m ) > dim(C ν m ) and therefore C ν * m C ν m . • Suppose now that B = m ̸ = ∅ (i.e. m ≡ 0 mod a) and let us denote ν • = (m/a, 0) its smallest element. Then ν * = (m/a + 1, 0) and ν

4. 1 .

 1 The graph. As we pointed out in Remark 4.15, the result in Theorem 4.14

Lemma 4 .

 4 19. Let Γ be the graph describing the jet schemes through the singular locus of a q.o. surface with one normalized characteristic exponent ( If there are splittings where three vertices at level m+1 project into a vertex at level m, then b > 1. (ii) Otherwise b ∈ {0, 1} and we have the following possibilities. (ii.a) If every splitting is of rst type, then a = b = 1. (ii.b) If every splitting is of second type then either we have b = 0 or we have b = 1 and n divides a. (ii.c) If there are both types of splittings then b = 1 and n does not divide a.

  we have the following possibilities. (a) If m + 1 < ⟨ν, nγ⟩, then ν ∈ A m+1 , and

  m+1 and so on. Here it is crucial that gcd(a, n) = 1. 4.16, the number of irreducible components stabilizes at value n -1 at level m = n -1. Then we read easily n from the graph. (iii) Case γ = ( a n , 1 n

Figure 2 .

 2 Figure 2. The graph of the irreducible components of jets through the singular locus of a q.o. surface singularity.

Figure 3 .

 3 Figure 3. The graph of the irreducible components of jets through the singular locus of a q.o. surface singularity, decorated only with the codimension.

4 .

 4 We continue with Example 5.1. If we lift the component of the singular locus

  ν and hence we can write F (⟨ν,n m 0 (ν) γ m 0 (ν) ⟩) m0(ν),ν as a function on x m , then we have an equation

) l and hence α 1 ) 1 ̸

 11 is xed in all monomials of G. Then, since x (ν1= 0, we can write the equation as an equation in x (0) 2 , which is invertible in C{x

2 }

 2 and hence not zero. If ν = (0, ν 2 ) ∈ ρ 2 the proof is analogous.

2 .

 2 We will prove thatC ν ′ m ̸ ⊆ C ν m by showing that Codim(C ν ′ m ) ≤ Codim(C ν m ). Notice that σ Reg,j ′ (m,ν) ̸ = ρ 1 ∪ ρ 2 , since otherwise (ν + σ) ∩ F m = {ν} (recall that σ = R 2 ≥0

1 then g 1 >) = ν 1 + ν 2 +

 112 0 and σ Reg,j ′ (m,ν) = ρ 2 . Note that ⟨ν + (1, 0), e 0 γ 1 ⟩ = ⟨ν, e 0 γ 1 ⟩ + a 1 e 1 > m and then j(m, ν + (1, 0)) = 0. By Proposition 5.27 we haveC σ) ∩ F m = {ν, ν + (1, 0)} By Proposition 5.25 we have that Codim(C ν+(1,0) m ⟨ν, γ 1 ⟩ + 2 = Codim(C ν m ).and it is not dicult to see that(π -1 m,m-1 (C ν m-1 )) red = C ν ′ m ∪ C ν m , where ν ′ = ν + (0, α), with α = { 1 if g 2 = g 1 min{n g1+1 , k g1+1 ( ν)} otherwiseIn both cases we have, by Proposition 5.25, that Codim(Cν ′ m ) = Codim(C ν m-1 )+1 = Codim(C ν m ). • If ν / ∈ L m , the reason is that m = ⟨ ν, e i( ν)-1 γ i( ν) ⟩ with i( ν) ≤ g 2 + 1, since j ′ (m -1, ν) ≤ g 2 . We have that (π -1 m,m-1 (D ν m-1 )) red = V (J ν m-1 , F (⟨ ν,n ν γ i( ν)

(π - 1 m

 1 ,m-1 (C ν m-1 )) red = C ν ′ m with Codim(C ν ′ m ) = Codim(C ν m-1 ) + 1. Since ν ∈ (ν + σ) ∩ F m-1 , it follows that j(m -1, ν) > j(m -1, ν) = i( ν) -1and by Corollary 5.26 we have that Codim(C ν m ) = Codim(C ν m-1 ) + 1, which nishes the proof. 5.2. Description of the m-jets through the singular locus. Now we can prove the main theorem of this section. Theorem 5.31. For m ∈ Z >0 the decomposition of π -1m (X Sing ) in irreducible components is given by(π -1 m (X Sing )) red = ∪ ν∈Fm C ν m .Proof. The irreducibility of the sets C ν m was proven in Proposition 5.25. And by Proposition 5.27 and Proposition 5.30 we have that ∪Hence the result follows by Lemma 5.22.Remark 5.32. When the equisingular dimension is c = 1 (see Denition 3.13), then g 1 = g 2 = g. Moreover we have the following properties for1 ≤ i ≤ g ⟨ν, e i-1 γ i ⟩ = ⟨ν + (0, r), e i-1 γ i ⟩, for all r ∈ Z if ν ∈ N i then ν + (0, r) ∈ N i , for all r ∈ ZHence we deduce that for any m ∈ Z >0 and ν ∈ L m we have σ Reg,j ′ (m,ν) = ρ 2 , and thereforeF m = L m ∩ ρ 1 .The behaviour of the jet schemes is exactly as the plane curve dened by the Puiseux pairs λ

= 0 for 1 ≤ i ≤ g - 1 .

 11 Therefore the graphs are the same till we get to level m = min {n g ⟨ν, γ g ⟩, n g ⟨ν, γ ′ g ⟩}, where ν = (ν 1 , 0) ∈ σ Sing ∩ N g-1 with ν 1 smallest with this property. Since ⟨ν, γ g ⟩ ̸ = ⟨ν, γ ′ g ⟩ the graphs must dier atm = ⟨(l, 0), e 0 γ 1 ⟩-1 and Codim(C ν m ) = l+[ m n ]+1, and since j(m, ν) > 0, (l, 0) ∈ N 1 and therefore Codim(C ν m ) = l + l a1 n1 , which implies thatCodim(C ν m ) m+1 = a1+n1 na1 . If γ 1 = ( 1 n1 , 1 n1 ) and g > 1,what happens is that when m = ⟨ν, e 0 γ 1 ⟩ there is no subdivision of the component and σ Reg,1 = ρ 1 ∪ ρ 2 . If we denote the second exponent by γ 2 = ( α2 n1n2 , β2 n1n2 ), we look for ν of the form (l, 0) such that m+ 1 = ⟨ν, e 1 γ 2 ⟩ with ν ∈ N 2 . Then Codim(C ν m ) = l + ⟨ν, γ 1 ⟩ + [ m e1 ] -⟨ν, n 1 γ 1 ⟩ + 1 = l + ⟨ν, γ 1 ⟩ + ⟨ν, γ 2 -n 1 γ 1 ⟩,and thereforeCodim(

  and by Lemma 4.10 we have Codim

  and Corollary 5.13 we have that for l ∈ Z >0

	F Hence we will use the following equivalence, for any jet γ(t) ∈ D ν (l) i,ν ≡ F (l) i mod J ν m . m we have ord t γ(t) ) ≤ l if and only if F (l) i / ∈ J ν m , or equivalently F (l) i,ν / ∈ J ν m . Note that, ord t ( f i • γ(t) ) ≥ ⟨ν, γ i+1 ⟩, for 0 ≤ i < j(m, ν).	( f i •
	Indeed, it follows by Corollary 5.13 if ⟨ν, γ i+1 -n i γ i ⟩ > 0, and by (15) otherwise.
	Now we prove by induction on i < j(m, ν) that F equality ord t ( f i • γ(t) ) = ⟨ν, γ i+1 ⟩ follows. We can divide the part G (⟨ν,γi+1⟩) i,ν / ∈ J ν m and hence the (⟨ν,niγi⟩) i,ν of
	F	(⟨ν,niγi⟩) i,ν	as G (⟨ν,niγi⟩) i,ν	= G (⟨ν,niγi⟩) i,ν	(⟨ν,niγi⟩) (1) + G i,ν

  then, by Corollary 5.13, F

	(⟨ν,n1γ1⟩) 1,ν	∈ J ν m , i.e., the rst non-monomial equation among the generators of J ν m
	is F	(⟨ν,n1γ1⟩) 1,ν

  and we can write it as a polynomial in x

		F	(⟨ν,γj+1⟩) j,ν	are of the form	
							x	(ν1) 1	α1	x (ν2) 2	α2	F 0,ν (⟨ν,γ1⟩)	r1	j-1,ν • • • F (⟨ν,γj ⟩)	rj
		with the conditions			
				⟨ν, (α 1 α 2			
										(ν1) 1	, x	(ν2) 2	,
	F	(⟨ν,γ1⟩) 0,ν	, . . . , F	(⟨ν,γj+1⟩) j,ν	. Suppose that F	(⟨ν,γj+1⟩) j,ν	∈ J ν m . Then the monomials in

  F

		(⟨ν,niγi⟩+r) i,ν	= P • F	(⟨ν,γi⟩+r) i-1,ν	/ ∈ J ν m . Therefore P / ∈ J ν m and we deduce that
	F	(⟨ν,γi⟩+r) i-1,ν	appears for the rst time in F	(⟨ν,niγi⟩+r) i,ν

Acknowledgments. We are grateful to P.D. González Pérez and a number of referees, for comments and suggestions which improved enormously the content and

Let us denote by

) ∩ {x (0)

1 ̸ = 0}, and set

) red . We have that C 4 is irreducible, because

1 , F (4) ) ∩ {x (0)

1 ̸ = 0}, with F (4) ≡ -x

(1) 1 10

x

)

and hence

2 , F

) ∩ {x

With the same arguments it is not dicult to see that if we lift to level 12, we have

)

2 , F

1 , F

1 , F

1 , F (12) ) ∩ {x (0)

1 ̸ = 0} where F (12) ≡ F 

2 , F

1 , F

1 , F

)

is irreducible, but if we lift to next level, we have that ( π - 1 13,12 (C 12 )

2 , F

1 , F

1 , F

1 , F (12) , F (13) ) ∩ {x (0) 1 ̸ = 0}, which is not irreducible, since it splits through the singular locus of the variety

1 , F

1 , F (12) ) . Then ( π -1 13,12 (C 12 )

, where

2 , F

) ∩ {x

2 , F

1 , F (12) , F (13) ) ∩ {x

To formalize all the ideas illustrated in the examples we need to introduce some notation. Denition 5.5. For ν ∈ σ ∩ N 0 and m ∈ Z ≥0 we dene the ideal

) .

For convenience we set

Moreover we dene the integer j(m, ν) ∈ {0, . . . , g}, dened by the inequalities ⟨ν, e j-1 γ j ⟩ ≤ m < ⟨ν, e j γ j+1 ⟩,

where we have to set γ -1 := (0, 0), e -1 := 0, e -2 := 0

Recall that we convey γ g+1 = ∞.

Corollary 5.16. For m ∈ Z >0 and ν ∈ σ Sing ∩ [0, m] 2 ∩ N 0 , such that m < ⟨ν, e i(ν)-1 γ i(ν) ⟩, we have the following. If 1 ≤ j(m, ν) ≤ g 1 , then we have

) , while if g 1 < j(m, ν) ≤ g we have

) 1≤i≤j(m,ν),⟨ν,γi+1-niγi⟩>0 ∩D(x (ν1) 1

)∩D(x

) .

Example 5.17. Let X be a quasi-ordinary surface dened by f = ((z 2 - 

2 , z (0) , z (1) , z (2) , F

2 ), where

2 ) ∩ D(z (3) ), we have that

This example illustrates the fact that we are looking at jet schemes of a germ of quasi-ordinary singularity, instead of jet schemes of the whole ane surface. If we looked at the whole surface there would be other irreducible components that we do not consider here. This is expectable because the components we consider are determined by the invariants of the topological type at the origin, so they describe only what happens in a small neighbourhood of the origin. Actually the other components that may appear when looking at the whole ane surface, will project on closed points, dierent from the origin, of the singular locus. Lemma 5.18.

Proof. Notice that, by denition,

⟩, then we will prove in Proposition 5.25 that D ν m is non-empty. . Hence

Suppose that the claim is true for m -1 and we prove it for m. We distinguish two cases: 

), and again as in (i), since ν ν then j(m, ν) ≥ j(m, ν) and therefore Codim(C ν m ) ≤ Codim(C ν m ). Now we are going to prove that Codim(C ν ′ m ) ≤ Codim(C ν m ). We have two possibilities, either ν ∈ L m or ν / ∈ L m .

, z (0) , . . . , z (⟨ ν,γ1⟩-1) , , F

) ,

where

where H is a polynomial in the variables

).

Then

), some moment. Finally, when γ ̸ = γ ′ with γ

(2)

, again by Proposition 5.14, the graphs must be the same for {γ 1 , . . . , γ g } and {γ 1 , . . . , γ g-1 , γ ′ g }, till the last semi-root, that is, f , starts playing a role in the denition of a component, say C ν . Since ⟨ν, γ g ⟩ ̸ = ⟨ν, γ ′ g ⟩ we will see the dierence on the graphs at level m = min {n g ⟨ν, γ g ⟩, n g ⟨ν, γ ′ g ⟩}.

5.3. Log-canonical threshold. In [START_REF] Mustaµa | Singularities of pairs via jets schemes[END_REF], Mustaµa gave a formula of the log-canonical threshold in terms of the codimension of jet schemes, which in our setting can be stated as

Then, as an application to Theorem 5.31, we can recover, for the case of surfaces, the result in [START_REF] Budur | Log-canonical thresholds of quasiordinary hypersurfaces singularities[END_REF].

Corollary 5.36. The log-canonical threshold of a quasi-ordinary surface singularity is given by:

) and g = 1

2 ) e1(n1(1+λ

2 )-1)

) and g > 1

Moreover, the components that contribute to the log canonical threshold are

) and g = 1 behaves as an A n -singularity, and then lct(f ) = 1. For the rest of the cases, by Corollary 5.26, the codimension of a component grows faster as m grows, for bigger j(m, ν). Therefore, the smaller codimension will be attached for ν

we deduce that the minimal codimension among the elements in

We want to minimize not just the codimension, but the quotient Codim(Xm) m+1 . That is, to nd the biggest m such that ν still belongs to

), this is attached for m = ⟨ν, e 0 γ 1 ⟩ -1 such that ν ∈ L m+1 with j ′ (m, ν) = 0 and j(m, ν) > 0. Then and then σ Sing = σ \ {(0, 0)}. Then ( π -1 1 (X Sing )

2 , z (0) ) or, described with our notation, F 1 = {(1, 0), (0, 1)}. Note that σ Sing ∩[0, 1] 2 ∩N 0 = {(1, 0), (0, 1), (1, 1)}, and since

) and

)

2 , z (0) , F

)

where

2 . We can check that (0, 1) ∈ F 6 and that it is indeed an irreducible component of ( π -1 6 (X Sing )

) red . To illustrate typical behavior of this case we have to lift the components much higher.

Straightforwardly it can be checked that ( π -1 20 (X Sing )

as Theorem 5.31 claims. Let us lift the component

2 , z (0) , z (1) , z (2) , F

)

We have that, if ν = (0, 6),

2 , z (0) , z (1) , z (2) , F

1,ν , F

)

where

(2)

This is not irreducible, since it decomposes as

2 , z (0) , z (1) , z (2) , z (3) )

2 , z (0) , z (1) , z (2) , F

1,ν , F

) ∩ {x

(1)

2 , z (0) , z (1) , z (2) , z (3) ) does not give rise to an irreducible component, since it is contained in C 

). We draw the graph in Figure 4. The semigroup is generated by the vectors γ 1 = ( 3 2 , 0), γ 2 = ( 7 2 , 3 2 ) and γ 3 = ( 29 4 , 13 4 ). We have that g 1 = g 2 = 1. The singular locus is reducible, of the form

Then σ Sing = R 2 ≥0 \ {0} and σ Reg,1 = ρ 2 , σ Reg,2 = σ Reg,3 = {(0, 0)}. The set F m describing the irreducible components is the following, for some m:

F m = {(1, 0), (0, 1)}, for 1 ≤ m < 6

F m = {(1, 0), (0, 2)}, for 6 ≤ m < 12

, 0), (0, 4), (0, 5)} and the result can be checked by lifting the components Z 1 and Z 2 of the singular locus to level m as the following graph shows (we did not draw the weights of the vertices for clearness). Note how at this level ν = (0, 1) does no longer give rise to an irreducible component, since ⟨(0, 1), e 1 γ 2 ⟩ = 6 and (0, 1) / ∈ N 2 . Then we have that (0, 2) ∈ F 6 and the vertex associated with C (0,1) 5 and the one associated with C (0,2) 6 are joined in the graph Γ ′ .