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HAUSDORFF DIMENSION OF FREQUENCY SETS OF UNIVOQUE SEQUENCES

YAO-QIANG LI

ABSTRACT. We study the set Γ consisting of univoque sequences, the set Λ consisting of
sequences in which the lengths of consecutive zeros and consecutive ones are bounded,
and their frequency subsets Γa, Γa, Γa and Λa, Λa, Λa consisting of sequences respec-
tively in Γ and Λ with frequency, lower frequency and upper frequency of zeros equal
to some a ∈ [0, 1]. The Hausdorff dimension of all these sets are obtained by studying
the dynamical system (Λ(m), σ) where σ is the shift map and Λ(m) =

{
w ∈ {0, 1}N :

w does not contain 0m or 1m
}

for integer m ≥ 3, studying the Bernoulli-type measures
on Λ(m) and finding out the unique equivalent σ-invariant ergodic probability measure.

1. INTRODUCTION

Let N be the set of positive integers {1, 2, 3, · · · } and define

Γ :=
{
w ∈ {0, 1}N : w < σkw < w for all k ≥ 1

}
where σ is the shift map on {0, 1}N, 0 := 1, 1 := 0 and w := w1w2 · · · for all w = w1w2 · · · ∈
{0, 1}N.

The set Γ is strongly related to two well known research topics, iterations of unimodal
functions and unique expansions of 1 (see [4] for more details).

On the one hand, in 1985, Cosnard [8] proved that a sequence α = (αn)n≥1 ∈ {0, 1}N is
the kneading sequence of 1 for some unimodal function f if and only if τ(α) ∈ Γ′, where
τ : {0, 1}N → {0, 1}N is a bijection defined by τ(w) := (

∑n
i=1 wi (mod 2))n≥1 and

Γ′ :=
{
w ∈ {0, 1}N : w ≤ σkw ≤ w for all k ≥ 0

}
is similar to Γ in the sense that Γ′\{periodic sequences} = Γ. The structure of Γ′\{(10)∞}
was studied in detail by Allouche [1] (see also [3]). The generalizations of Γ and Γ′ (to
more than two digits) were studied in [1, 5].

On the other hand, expansions of real numbers in non-integer bases were introduced
by Rényi [29] in 1957 and then widely studied until now (see for examples [2, 6, 7, 22, 26,
27, 28, 30]). In 1990, Erdös, Joó and Komornik [16] proved that a sequence α = (αn)n≥1 ∈
{0, 1}N is the unique expansion of 1 in some base q ∈ (1, 2) if and only if α ∈ Γ. Thus we
call Γ the set of univoque sequences in this paper. Note that the term "univoque sequence"
is different in some other papers [9, 11, 12].

For any a ∈ [0, 1], the frequency subsets of Γ are defined by

Γa :=
{
w ∈ Γ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,
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Γa :=
{
w ∈ Γ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

Γa :=
{
w ∈ Γ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

and the frequency subsets of

Λ :=
{
w ∈ {0, 1}N : the lengths of consecutive 0’s and consecutive 1’s in w are bounded

}
are defined by

Λa :=
{
w ∈ Λ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

Λa :=
{
w ∈ Λ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

Λa :=
{
w ∈ Λ : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

where # denotes the cardinality. It is straightforward to check Γ ⊂ Λ. Let

U :=
{
q ∈ (1, 2) : 1 has a unique q-expansion

}
be the set of univoque bases. It is proved in [10, 21] that U is of full Hausdorff dimension.
That is,

dimH U = 1.

For more research on U , we refer the reader to [13, 23, 24].
On frequency sets, there is a well known result given by Eggleston [15] saying that for

any a ∈ [0, 1], the classical Eggleston-Besicovitch set has Hausdorff dimension

dimH

({
x ∈ [0, 1) : lim

n→∞

#{k : 1 ≤ k ≤ n, εk(x) = 0}
n

= a
})

=
−a log a− (1− a) log(1− a)

log 2
,

(1.1)
where ε1(x)ε2(x) · · · εn(x) · · · is the greedy binary expansion of x, and 0 log 0 := 0.

Motivated by the above mentioned results, correspondingly, we study the set of uni-
voque sequences Γ and the larger set Λ, study their frequency subsets Γa, Γa, Γa, Λa, Λa,
Λa and give the following theorem as the main result in this paper. Let dimH(·, d2) denote
the Hausdorff dimension in {0, 1}N equipped with the usual metric d2.

Theorem 1.1. (1) We have dimH(Γ, d2) = dimH(Λ, d2) = 1.
(2) For all a ∈ [0, 1] we have

dimH(Γa, d2) = dimH(Γa, d2) = dimH(Γa, d2)

= dimH(Λa, d2) = dimH(Λa, d2) = dimH(Λa, d2) =
−a log a− (1− a) log(1− a)

log 2
,

where 0 log 0 := 0.

It is known that by defining Bernoulli measures, and then calculating the lower local
dimension of the measures and using Billingsley Lemma [18, Proposition 2.3], the Haus-
dorff dimension of classical Eggleston-Besicovitch sets mentioned above can be obtained.
But this is based on the fact that only expansions in integer bases are considered in clas-
sical Eggleston-Besicovitch sets, there are no forbidden words in the symbolic space and
the Bernoulli measures are invariant and ergodic with respect to the shift map. Ergodic-
ity garuantees that classical Eggleston-Besicovitch sets have positive Bernoulli measures,
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which is a condition needed for applying Billingsley Lemma to get the lower bound of the
Hausdorff dimension. If there are forbidden words, such as expansions in non-integer
bases [25], the corresponding Bernoulli-type measures are not ergodic (actually not in-
variant). This makes some difficulties to be overcome. In [25], after defining Bernoulli-
type measures, the authors found out the equivalent invariant ergodic measures, studied
the relation between the equivalent measures and the original measures and obtained the
Hausdorff dimension of Eggleston-Besicovitch (frequency) sets for a class of non-integer
bases (see [25, Theorem 1.2]) by applying an avatar of the Billingsley Lemma. This paper
follows a similar framework and construction, but most of the details we need to confirm
are different.

For any a ∈ [0, 1] we define the global frequency sets in {0, 1}N by

Ga :=
{
w ∈ {0, 1}N : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

Ga :=
{
w ∈ {0, 1}N : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

Ga :=
{
w ∈ {0, 1}N : lim

n→∞

#{k : 1 ≤ k ≤ n,wk = 0}
n

= a
}
,

for any integer m ≥ 3 we define

Λ(m) :=
{
w ∈ {0, 1}N : w does not contain 0m or 1m

}
,

and we let
Λ(m)
a := Λ(m) ∩Ga.

Here we give an outline for the proof of Theorem 1.1 (2) to explain how the concepts in
this paper interact. Following the simple argument at the beginning of the Proof of Theo-
rem 1.1 in Section 5, we know that it suffices to consider the lower bound of dimH(Γa, d2).
Since (5.2) says that dimH(Γa, d2) ≥ dimH(Λ

(m)
a , d2) for any integer m ≥ 3, we only need to

find a good lower bound for dimH(Λ
(m)
a , d2). Hence the main we need to prove is Lemma

5.3. By the Billingsley Lemma in metric space (Proposition 2.6), this can be done by con-
structing a suitable measure on (Λ(m), d2) such that Λ

(m)
a has positive measure. Thus we

define the Bernoulli-type measure µp in Section 4. To guarantee that Λ
(m)
a has positive

measure, we want ergodicity (see (2) 2© in the Proof of Lemma 5.3). Hence we find out
the unique σ-invariant ergodic measure λp equivalent to µp in Section 4, and calculate
its value on the cylinder [0] in Lemma 5.2, which is in fact a relation between µp and λp.
Finally we apply Billingsley Lemma to obtain Lemma 5.3.

This paper is organized as follows. In Section 2, we give some basic notation and
preliminaries on dynamical systems and measure theory. In Section 3, we study related
digit occurrence parameters and their properties which will be used later. In Section 4
we study Bernoulli-type measures, and finally we prove our main result in Section 5.

2. NOTATION AND PRELIMINARIES

Let {0, 1}∗ :=
⋃∞
n=1{0, 1}n and {0, 1}N be the sets of finite words and infinite sequences

respectively on two digits {0, 1}. For any integer m ≥ 3, recall

Λ(m) =
{
w ∈ {0, 1}N : w does not contain 0m or 1m

}
,
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and define
Λ(m),∗ :=

{
w ∈ {0, 1}∗ : w does not contain 0m or 1m

}
and

Λ(m),n :=
{
w ∈ {0, 1}n : w does not contain 0m or 1m

}
where n ∈ N. For a finite word w ∈ {0, 1}∗, we use |w|, |w|0 and |w|1 to denote its length,
the number of 0’s inw and the number of 1’s inw respectively. Besides, w|k := w1w2 · · ·wk
denotes the prefix of w with length k for w ∈ {0, 1}N or w ∈ {0, 1}n where n ≥ k.

Let σ : {0, 1}N → {0, 1}N be the shift map defined by

σ(w1w2 · · · ) = w2w3 · · · for w ∈ {0, 1}N

and d2 be the usual metric on {0, 1}N defined by

d2(w, v) := 2− inf{k≥0:wk+1 6=vk+1} for w, v ∈ {0, 1}N,
where 2−∞ = 0. Then σ is continuous on ({0, 1}N, d2). By σ(Λ(m)) = Λ(m), we know that
(Λ(m), σ) is a dynamical system. It is straightforward to check that the natural projection
map π2 : {0, 1}N → [0, 1], defined by

π2(w) :=
∞∑
n=1

wn
2n

for w ∈ {0, 1}N,

is surjective and continuous. Besides, we need the following concepts and notation.

Definition 2.1 (Cylinder). Let m ≥ 3 be an integer and w ∈ Λ(m),∗. We call

[w] :=
{
v ∈ Λ(m) : v begins with w

}
the cylinder in Λ(m) generated by w.

Definition 2.2 (Absolute continuity and equivalence). Let µ and ν be measures on a mea-
surable space (X,F). We say that µ is absolutely continuous with respect to ν and denote
it by µ � ν if, for any A ∈ F , ν(A) = 0 implies µ(A) = 0. Moreover, if µ � ν and ν � µ
we say that µ and ν are equivalent and denote this property by µ ∼ ν.

Definition 2.3. Let C be a family of certain subsets of a set X .
(1) C is called a monotone class on X if

1© {An}n≥1 ⊂ C and A1 ⊂ A2 ⊂ · · · ⇒
⋃∞
n=1An ∈ C;

2© {An}n≥1 ⊂ C and A1 ⊃ A2 ⊃ · · · ⇒
⋂∞
n=1An ∈ C.

(2) C is called a semi-algebra on X if
1© ∅ ∈ C;
2© A,B ∈ C ⇒ A ∩B ∈ C;
3© A ∈ C ⇒ Ac ∈ CΣf

where Ac := X \ A and CΣf :=
{⋃n

i=1 Ci : C1, · · · , Cn ∈ C are disjoint, n ∈ N
}

.
(The subscript Σf means finite disjoint union.)

(3) C is called an algebra on X if
1© ∅, X ∈ C;
2© A ∈ C ⇒ Ac ∈ C;
3© A,B ∈ C ⇒ A ∩B ∈ C.

(4) C is called a sigma-algebra on X if
1© ∅, X ∈ C;
2© A ∈ C ⇒ Ac ∈ C;
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3© A1, A2, A3 · · · ∈ C ⇒
⋂∞
n=1 An ∈ C.

The following useful approximation lemma follows from [31, Theorem 0.1 and 0.7].

Lemma 2.4. Let (X,B, µ) be a probability space, C be a semi-algebra which generates the sigma-
algebra B and A be the algebra generated by C. Then

(1) A = CΣf :=
{⋃n

i=1Ci : C1, · · · , Cn ∈ C are disjoint, n ∈ N
}

;
(2) for each B ∈ B and each ε > 0, there is some A ∈ A with µ(A4B) < ε.

In order to extend some properties from a small family to a larger one in some proofs in
Section 4, we recall the following well known Monotone Class Theorem (see for example
[20, Page 66]).

Theorem 2.5 (Monotone Class Theorem). Let A be an algebra. Then the smallest monotone
class containing A is precisely the smallest sigma-algebra containing A.

Let B(x, r) denote the closed ball centered on x with radius r. The following version
of the Billingsley Lemma in metric space follows in the same way as the classical one in
Euclidean space.

Proposition 2.6 ([17, 18]). Let (X, d) be a metric space, E ⊂ X be a Borel set, µ be a finite Borel
measure on X and s ≥ 0. If

µ(E) > 0 and lim
r→0

log µ(B(x, r))

log r
≥ s for all x ∈ E,

then the Hausdorff dimension of E in (X, d) is no less than s.

3. DIGIT OCCURRENCE PARAMETERS

The digit occurrence parameters and their properties studied in this section will be
used in Sections 4 and 5.

Definition 3.1 (Digit occurrence parameters). Letm ≥ 3 be an integer. For anyw ∈ Λ(m),∗,
define

N (m)
0 (w) :=

{
k : 1 ≤ k ≤ |w|, wk = 0 and w1 . . . wk−11 ∈ Λ(m),∗

}
,

N (m)
1 (w) :=

{
k : 1 ≤ k ≤ |w|, wk = 1 and w1 . . . wk−10 ∈ Λ(m),∗

}
,

and let
N

(m)
0 (w) := #N (m)

0 (w) and N
(m)
1 (w) := #N (m)

1 (w)

where #N denotes the cardinality of the set N .

Proposition 3.2. Let m ≥ 3 be an integer and w, v ∈ Λ(m),∗ such that wv ∈ Λ(m),∗. Then

(1) N (m)
0 (w) +N

(m)
0 (v)− 1 ≤ N

(m)
0 (wv) ≤ N

(m)
0 (w) +N

(m)
0 (v);

(2) N (m)
1 (w) +N

(m)
1 (v)− 1 ≤ N

(m)
1 (wv) ≤ N

(m)
1 (w) +N

(m)
1 (v).

Proof. Let a = |w| and b = |v|.
(1) 1© Prove N (m)

0 (wv) ≤ N
(m)
0 (w) +N

(m)
0 (v).

It suffices to prove N (m)
0 (wv) ⊂ N (m)

0 (w) ∪ (N (m)
0 (v) + a), where N (m)

0 (v) + a := {j + a :

j ∈ N (m)
0 (v)}. Let k ∈ N (m)

0 (wv).

i) If 1 ≤ k ≤ a, then wk = 0, w1 · · ·wk−11 ∈ Λ(m),∗ and we get k ∈ N (m)
0 (w).
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ii) If a + 1 ≤ k ≤ a + b, then vk−a = 0 and w1 · · ·wav1 · · · vk−a−11 ∈ Λ(m),∗. It follows
from v1 · · · vk−a−11 ∈ Λ(m),∗ that k − a ∈ N (m)

0 (v) and k ∈ N (m)
0 (v) + a.

2© Prove N (m)
0 (w) +N

(m)
0 (v) ≤ N

(m)
0 (wv) + 1.

When v = 1b, we get N (m)
0 (v) = 0 and then the conclusion follows immediately from

N
(m)
0 (w) ≤ N

(m)
0 (wv). Thus it suffices to consider v 6= 1b in the following. Let s ∈

{1, · · · , b} be the smallest such that v1 = · · · = vs−1 = 1 and vs = 0. In order to get
the conclusion, it suffices to show N (m)

0 (w) ∪ (a +N (m)
0 (v)) ⊂ N (m)

0 (wv) ∪ {a + s}. Since
N (m)

0 (w) ⊂ N (m)
0 (wv), we only need to prove (a + N (m)

0 (v)) ⊂ N (m)
0 (wv) ∪ {a + s}. Let

k ∈ N (m)
0 (v) \ {s}. It suffices to check a+ k ∈ N (m)

0 (wv). By vk = 0, we only need to prove
w1 · · ·wav1 · · · vk−11 ∈ Λ(m),∗. (By contradiction) Assume w1 · · ·wav1 · · · vk−11 /∈ Λ(m),∗.
Then w1 · · ·wav1 · · · vk−11 contains 0m or 1m.

i) If w1 · · ·wav1 · · · vk−11 contains 0m, then w1 · · ·wav1 · · · vk−1 contains 0m. This con-
tradicts wv ∈ Λ(m),∗.

ii) If w1 · · ·wav1 · · · vk−11 contains 1m, by k ≥ s+ 1, we know that

w1 · · ·wav1 · · · vs−10vs+1 · · · vk−11

contains 1m. Thus w1 · · ·wav1 · · · vs−1 contains 1m or vs+1 · · · vk−11 contains 1m. But
w1 · · ·wav1 · · · vs−1 contains 1m will contradict wv ∈ Λ(m),∗, and vs+1 · · · vk−11 con-
tains 1m will imply v1 · · · vk−11 contains 1m which contradicts k ∈ N (m)

0 (v).
(2) follows in the same way as (1). �

Proposition 3.3. Let m ≥ 3 be an integer and w ∈ Λ(m),∗. Then

(1) m · |w|0 ≤ (m− 1)N
(m)
0 (w) + |w|;

(2) m · |w|1 ≤ (m− 1)N
(m)
1 (w) + |w|.

Proof. (1) Let n = |w|. If n ≤ m− 1, the conclusion follows immediately from N
(m)
0 (w) =

|w|0. In the following, we assume n ≥ m. Recall

N (m)
0 (w) =

{
k : 1 ≤ k ≤ n,wk = 0, w1 · · ·wk−11 ∈ Λ(m),∗

}
and N

(m)
0 (w) = #N (m)

0 (w).

We define

N (m)

1m−10(w) :=
{
k : m ≤ k ≤ n,wk−m+1 · · ·wk−1wk = 1m−10

}
and N

(m)

1m−10 := #N (m)

1m−10(w).

1© Prove {k : 1 ≤ k ≤ n,wk = 0} = N (m)
0 (w) ∪N (m)

1m−10(w).
⊃ Obvious.
⊂ Let k ∈ {1, · · · , n} such that wk = 0. If k /∈ N (m)

0 (w), then k ≥ m and
w1 · · ·wk−11 /∈ Λ(m),∗. By w1 · · ·wk−1 ∈ Λ(m),∗, we get wk−m+1 · · ·wk−1 = 1m−1. This
implies k ∈ N (m)

1m−10(w).
2© Prove N (m)

0 (w) ∩N (m)

1m−10(w) = ∅.
(By contradiction) Assume that there exists k ∈ N (m)

0 (w)∩N (m)

1m−10(w). Then k ≥ m,
wk−m+1 · · ·wk−1 = 1m−1 and w1 · · ·wk−11 ∈ Λ(m),∗. These imply w1 · · ·wk−m1m ∈
Λ(m),∗, which contradicts the definition of Λ(m),∗.

Combining 1© and 2©, we get |w|0 = N
(m)
0 (w)+N

(m)

1m−10(w). It follows from (m−1)N
(m)

1m−10(w) ≤
|w|1 = |w|−|w|0 that (m−1)(|w|0−N (m)

0 (w)) ≤ |w|−|w|0, i.e.,m·|w|0 ≤ (m−1)N
(m)
0 (w)+|w|.

(2) follows in the same way as (1). �
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4. BERNOULLI-TYPE MEASURES ON Λ(m)

Let m ≥ 3 be an integer, B(Λ(m)) be the Borel sigma-algebra on Λ(m) (equipped with
the usual metric d2) and p ∈ (0, 1). We define the (p, 1 − p) Bernoulli-type measure µp on
(Λ(m),B(Λ(m))) as follows:

I. Let

µp(∅) = 0, µp(Λ
(m)) = 1, µp[0] = p, and µp[1] = 1− p.

II. Suppose µp has been defined for all cylinders of order n ∈ N. For any w ∈ Λ(m),n,
if w0, w1 ∈ Λ(m),n+1, we define

µp[w0] := pµp[w] and µp[w1] := (1− p)µp[w];

if w0 ∈ Λ(m),n+1 but w1 /∈ Λ(m),n+1, then [w1] = ∅, [w0] = [w] and naturally we
have

µp[w0] = µp[w];

if w1 ∈ Λ(m),n+1 but w0 /∈ Λ(m),n+1, then [w0] = ∅, [w1] = [w] and naturally we
have

µp[w1] = µp[w].

III. By Carathéodory’s measure extension theorem, we uniquely extend µp from its
definition on the family of cylinders to become a measure on B(Λ(m)).

Remark 4.1. By the definition of µp, we have

µp[w] = pN
(m)
0 (w)(1− p)N

(m)
1 (w) for all w ∈ Λ(m),∗.

Note that µp is not σ-invariant. In fact, µp[0m−21] = pm−2(1− p) but

µp(σ
−1[0m−21]) = µp[0

m−11]+µp[10m−21] = pm−1+pm−2(1−p)2 6= pm−2(1−p) for all p ∈ (0, 1).

The main result in this section is the following.

Theorem 4.2. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a unique σ-invariant
ergodic probability measure λp on (Λ(m),B(Λ(m))) equivalent to µp, where λp is defined by

λp(B) := lim
n→∞

1

n

n−1∑
k=0

σkµp(B) for B ∈ B(Λ(m)).

The proof is based on the following lemmas.

Lemma 4.3. Let m ≥ 3 be an integer, p ∈ (0, 1) and w, v ∈ Λ(m),∗ such that wv ∈ Λ(m),∗. Then

µp[w]µp[v] ≤ µp[wv] ≤ p−1(1− p)−1µp[w]µp[v].

Proof. It follows from Remark 4.1 and Proposition 3.2. �

Lemma 4.4. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a constant c > 1 such
that

c−1µp(B) ≤ σkµp(B) ≤ cµp(B)

for all k ∈ N and B ∈ B(Λ(m)).
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Proof. Let c = p−2(1− p)−2 > 1.
(1) Prove c−1µp[w] ≤ σkµp[w] ≤ cµp[w] for any k ∈ N and w ∈ Λ(m),∗.
Fix w ∈ Λ(m),∗ and k ∈ N. Note that

σ−k[w] =
⋃

u1···ukw∈Λ(m),∗

[u1 · · ·ukw]

is a disjoint union.
1© Estimate the upper bound of σkµp[w]:

µpσ
−k[w] =

∑
u1···ukw∈Λ(m),∗

µp[u1 · · ·ukw]

(?)

≤
∑

u1···ukw∈Λ(m),∗

p−1(1− p)−1µp[u1 · · ·uk]µp[w]

≤ p−1(1− p)−1
∑

u1···uk∈Λ(m),∗

µp[u1 · · ·uk]µp[w]

= p−1(1− p)−1µp[w]

≤ cµp[w]

where (?) follows from Lemma 4.3.
2© Estimate the lower bound of σkµp[w]:

i) Prove µpσ−k[0] ≥ p2(1 − p) and µpσ
−k[1] ≥ p(1 − p)2. In fact, when k = 1, the

conclusion is obvious. When k ≥ 2, we have

µpσ
−k[0] =

∑
u1···uk0∈Λ(m),∗

µp[u1 · · ·uk0]

≥
∑

u1···uk−1uk−10∈Λ(m),∗

µp[u1 · · ·uk−1uk−10]

(?)
=

∑
u1···uk−1∈Λ(m),∗

µp[u1 · · ·uk−1uk−10]

(??)

≥ µp[0]
∑

u1···uk−1∈Λ(m),∗

µp[u1 · · ·uk−1]µp[uk−1]

≥ p
∑

u1···uk−1∈Λ(m),∗

µp[u1 · · ·uk−1] · p(1− p)

= p2(1− p),

where (?) follows from

u1 · · ·uk−1uk−10 ∈ Λ(m),∗ ⇔ u1 · · ·uk−1 ∈ Λ(m),∗

and (??) follows from Lemma 4.3. In the same way, we can get µpσ−k[1] ≥ p(1−p)2.
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ii) Prove µpσ−k[w] ≥ c−1µp[w]. In fact, when w1 = 0, we have

µpσ
−k[w] =

∑
u1···ukw∈Λ(m),∗

µp[u1 · · ·ukw]

≥
∑

u1···uk−11w∈Λ(m),∗

µp[u1 · · ·uk−11w]

(?)
=

∑
u1···uk−11∈Λ(m),∗

µp[u1 · · ·uk−11w]

(??)

≥
∑

u1···uk−11∈Λ(m),∗

µp[u1 · · ·uk−11]µp[w]

= µpσ
−(k−1)[1]µp[w]

(???)

≥ p(1− p)2µp[w].

where (?) follows from w1 = 0 and w ∈ Λ(m),∗, (??) follows from Lemma 4.3 and
(? ? ?) follows from i). When w1 = 1, in the same way, we can get µpσ−k[w] ≥
p2(1− p)µp[w].

(2) Prove c−1µp(B) ≤ σkµp(B) ≤ cµp(B) for all k ∈ N and B ∈ B(Λ(m)). Let

C :=
{

[w] : w ∈ Λ(m),∗
}
∪
{
∅
}
,

CΣf :=
{ n⋃
i=1

Ci : C1, · · · , Cn ∈ C are disjoint, n ∈ N
}

and
G :=

{
B ∈ B(Λ(m)) : c−1µp(B) ≤ σkµp(B) ≤ cµp(B) for all k ∈ N

}
.

Then C is a semi-algebra on Λ(m), CΣf is the algebra generated by C (by Lemma 2.4 (1))
and G is a monotone class. Since in (1) we have already proved C ⊂ G, it follows that
CΣf ⊂ G ⊂ B(Λ(m)). Noting that B(Λ(m)) is the smallest sigma-algebra containing CΣf , it
follows from the Monotone Class Theorem (Theorem 2.5) that G = B(Λ(m)). �

Lemma 4.5 ([14]). Let (X,B, µ) be a probability space and T be a measurable transformation on
X satisfying µ(T−1B) = 0 whenever B ∈ B with µ(B) = 0. If there exists a constant M > 0
such that for any B ∈ B and any n ∈ N,

1

n

n−1∑
k=0

µ(T−kB) ≤Mµ(B),

then for any real integrable function f on X , the limit

lim
n→∞

1

n

n−1∑
k=0

f(T kx)

exists for µ-almost every x ∈ X .

Lemma 4.6. Letm ≥ 3 be an integer and p ∈ (0, 1). For anyB ∈ B(Λ(m)) satisfying σ−1B = B,
we have µp(B) = 0 or 1.

Proof. Let α = p2(1− p)2 > 0.
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(1) Let w ∈ Λ(m),∗ and n = |w|. For any A ∈ B(Λ(m)), we prove αµp[w]µp(A) ≤ µp([w] ∩
σ−(n+2)A).

1© For any v ∈ Λ(m),∗, prove αµp[w]µp[v] ≤ µp([w] ∩ σ−(n+2)[v]).
In fact, it follows from wwnv1v ∈ Λ(m),∗ and [w] ∩ σ−(n+2)[v] ⊃ [wwnv1v] that

µp([w] ∩ σ−(n+2)[v]) ≥ µp[wwnv1v]
(?)

≥ µp[w]µp[wn]µp[v1]µp[v] ≥ (p(1− p))2µp[w]µp[v]

where (?) follows from Lemma 4.3.
2© Let

C :=
{

[v] : v ∈ Λ(m),∗
}
∪
{
∅
}

and
Gw :=

{
A ∈ B(Λ(m)) : αµp[w]µp(A) ≤ µp([w] ∩ σ−(n+2)A)

}
.

Then Gw is a monotone class. Since in 1© we have already proved C ⊂ Gw, in the
same way as the end of the proof of Lemma 4.4, we get Gw = B(Λ(m)).

(2) We use Bc to denote the complement of B in Λ(m). For any ε > 0, by Lemma 2.4,
there exist finitely many disjoint cylinders

{
[w(i)]

}
⊂ C such that µp(Bc∆Eε) < ε where

Eε =
⋃
i[w

(i)].
(3) Let B ∈ B(Λ(m)) with σ−1B = B. For any w ∈ Λ(m),∗, by B = σ−(|w|+2)B and (1) we get

αµp(B)µp[w] ≤ µ(σ−(|w|+2)B ∩ [w]) = µp(B ∩ [w]).

Thus

αµp(B)µp(Eε) =
∑
i

αµp(B)µp[w
(i)] ≤

∑
i

µp(B ∩ [w(i)]) = µp(B ∩
⋃
i

[w(i)]) = µp(B ∩ Eε).

Let a = µp((B∪Eε)c), b = µp(B∩Eε), c = µp(B \Eε) and d = µp(Eε \B). Then we already
have

α(b+ c)(b+ d) ≤ b, a+ b < ε (by µp(Bc∆Eε) < ε) and a+ b+ c+ d = 1.

It follows from
α(b+ c)(a+ d− ε) ≤ α(b+ c)(b+ d) ≤ b < ε

that

(b+ c)(a+ d) < (
1

α
+ b+ c)ε ≤ (

1

α
+ 1)ε.

This implies µp(B)µp(B
c) ≤ ( 1

α
+ 1)ε for any ε > 0. Therefore µp(B)(1 − µp(B)) = 0 and

then µp(B) = 0 or 1. �

Proof of Theorem 4.2. (1) For any n ∈ N and B ∈ B(Λ(m)), define

λnp (B) :=
1

n

n−1∑
k=0

µp(σ
−kB).

Then λnp is a probability measure on (Λ(m),B(Λ(m))). By Lemma 4.4, there exists c > 0
such that

c−1µp(B) ≤ λnp (B) ≤ cµp(B) for any B ∈ B(Λ(m)) and n ∈ N. (4.1)
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(2) For any B ∈ B(Λ(m)), prove that limn→∞ λ
n
p (B) exists.

Let 1B : Λ(m) → {0, 1} be defined by

1B(w) :=

{
1 if w ∈ B
0 if w /∈ B

for any w ∈ Λ(m). Then

lim
n→∞

λnp (B) = lim
n→∞

1

n

n−1∑
k=0

ˆ
1σ−kB dµp

= lim
n→∞

ˆ
1

n

n−1∑
k=0

1B(σkw) dµp(w)

=

ˆ
lim
n→∞

1

n

n−1∑
k=0

1B(σkw) dµp(w)

where the last equality is an application of the dominated convergence theorem, in which
the µp-a.e. (almost every) existence of limn→∞

1
n

∑n−1
k=0 1B(σkw) follows from Lemma 4.5,

Lemma 4.4 and (4.1).
(3) For any B ∈ B(Λ(m)), define

λp(B) := lim
n→∞

λnp (B).

By the well known Vitali-Hahn-Saks Theorem, λp is a probability measure on (Λ(m),B(Λ(m))).
(4) The fact λp ∼ µp on B(Λ(m)) follows from (4.1) and the definition of λp.
(5) Prove that λp is σ-invariant.
In fact, for any B ∈ B(Λ(m)) and n ∈ N, we have

λnp (σ−1B) =
1

n

n∑
k=1

µp(σ
−kB) =

1

n

n∑
k=0

µp(σ
−kB)− µp(B)

n
=
n+ 1

n
λn+1
p (B)− µp(B)

n
.

Let n→∞, we get λp(σ−1B) = λp(B).
(6) Prove that (Λ(m),B(Λ(m)), λp, σ) is ergodic.
In fact, for any B ∈ B(Λ(m)) satisfying σ−1B = B, by Lemma 4.6 we get µp(B) = 0 or 1,
which implies λp(B) = 0 or 1 since λp ∼ µp.
(7) Prove that such λp is unique on B(Λ(m)).
Let λ′p be a σ-invariant ergodic probability measure on (Λ(m),B(Λ(m))) equivalent to µp.
Then for any B ∈ B(Λ(m)), by the Birkhoff Ergodic Theorem, we get

λ′p(B) =

ˆ
1B dλ

′
p = lim

n→∞

1

n

n−1∑
k=0

1B(σkw) for λ′p-a.e. w ∈ Λ(m)

and

λp(B) =

ˆ
1B dλp = lim

n→∞

1

n

n−1∑
k=0

1B(σkw) for λp-a.e. w ∈ Λ(m).

Since λ′p ∼ µp ∼ λp, there exists w ∈ Λ(m) such that λ′p(B) = limn→∞
1
n

∑n−1
k=0 1B(σkw) =

λp(B). It means that λ′p and λp are the same on B(Λ(m)). �
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5. PROOF OF THE MAIN RESULT

For any a ∈ [0, 1], recall the definition of the global frequency sets Ga, Ga and Ga from
the introduction. The following lemma follows immediately from (1.1), [25, Theorem
6.1] and the invariance of Hausdorff dimension under the projection π2. (See also [19,
Theorem 3.3].)

Lemma 5.1. For any a ∈ [0, 1], we have

dimH(Ga, d2) = dimH(Ga, d2) = dimH(Ga, d2) =
−a log a− (1− a) log(1− a)

log 2
.

To prove Theorem 1.1, we also need the next two lemmas, which will be proved later.

Lemma 5.2. Let m ≥ 3 be an integer, p ∈ (0, 1) and λp be the measure on (Λ(m),B(Λ(m)))
defined in Theorem 4.2. Then

λp[0] =
p− pm

1− pm − (1− p)m
.

For any integer m ≥ 3, we recall

Λ(m) =
{
w ∈ {0, 1}N : w does not contain 0m or 1m

}
and

Λ(m)
a = Λ(m) ∩Ga for a ∈ [0, 1].

Lemma 5.3. Let a ∈ (0, 1) and integer m ≥ 3 be large enough such that 1
m
< a < 1− 1

m
. Define

fm : (0, 1)→ R by

fm(x) :=
x− xm

1− xm − (1− x)m
for x ∈ (0, 1).

Then there exists qm ∈ (0, 1) such that fm(qm) = a and

dimH(Λ(m)
a , d2) ≥ −(ma− 1) log qm − (m−ma− 1) log(1− qm)

(m− 1) log 2
.

Moreover, qm → a as m→∞.

Proof of Theorem 1.1. First we prove (2). Let a ∈ [0, 1]. Since it is straightforward to check
Γ ⊂ Λ, we have

Γa ⊂ Λa ⊂ Ga, Γa ⊂ Γa ⊂ Λa ⊂ Ga and Γa ⊂ Γa ⊂ Λa ⊂ Ga.

By Lemma 5.1, we only need to prove

dimH(Γa, d2) ≥ −a log a− (1− a) log(1− a)

log 2
. (5.1)

If a = 0 or 1, this follows immediately from 0 log 0 := 0 and 1 log 1 = 0. So we only need
to consider 0 < a < 1 in the following. For any integer m ≥ 3, we define

Θ(m)
a :=

{
w ∈ Ga : w1 · · ·w2m = 12m, wkm+1 · · ·wkm+m /∈ {0m, 1m} for all k ≥ 2

}
and

Ξ(m)
a :=

{
w ∈ Ga : wkm+1 · · ·wkm+m /∈ {0m, 1m} for all k ≥ 0

}
.

Then

dimH(Γa, d2)
(?)

≥ dimH(Θ(m)
a , d2)

(??)

≥ dimH(Ξ(m)
a , d2)

(???)

≥ dimH(Λ(m)
a , d2) (5.2)



HAUSDORFF DIMENSION OF FREQUENCY SETS OF UNIVOQUE SEQUENCES 13

where (?) follows from Γa ⊃ Θ
(m)
a , (? ? ?) follows from Ξ

(m)
a ⊃ Λ

(m)
a , and (??) follows from

σ2m(Θ
(m)
a ) = Ξ

(m)
a and the fact that σ2m is Lipschitz continuous (since d2(σ2m(w), σ2m(v)) ≤

22md2(w, v) for allw, v ∈ {0, 1}N). By (5.2) and Lemma 5.3, form large enough, there exists
qm ∈ (0, 1) such that qm → a (as m→∞) and

dimH(Γa, d2) ≥ −(ma− 1) log qm − (m−ma− 1) log(1− qm)

(m− 1) log 2
.

Let m→∞, we get (5.1).
Finally we deduce (1) from (2). In fact, since (2) implies dimH(Γ 1

2
, d2) = 1, it follows

from Γ 1
2
⊂ Γ ⊂ Λ ⊂ {0, 1}N that dimH(Γ, d2) = dimH(Λ, d2) = 1. �

Finally we prove Lemmas 5.2 and 5.3 to end this paper.

Proof of Lemma 5.3. Since fm is continuous on (0, 1), limx→0+ fm(x) = 1
m

, limx→1− fm(x) =

1− 1
m

and 1
m
< a < 1− 1

m
, there exists qm ∈ (0, 1) such that fm(qm) = a.

(1) Prove qm → a as m→∞. Notice that

|qm − a| = |qm − fm(qm)| =
∣∣∣qmm(1− qm)− qm(1− qm)m

1− qmm − (1− qm)m

∣∣∣.
Let

gm(x) :=
xm(1− x)− x(1− x)m

1− xm − (1− x)m
for x ∈ (0, 1).

Then
|qm − a| = |gm(qm)| ≤ sup

x∈(0,1)

|gm(x)|.

In order to prove qm → a, it suffices to check |gm(x)| ≤ 1
m

for all x ∈ (0, 1). That is,

m · |xm(1− x)− x(1− x)m| ≤ 1− xm − (1− x)m for all x ∈ (0, 1).

1© When x ∈ (0, 1
2
], we get xm(1− x)− x(1− x)m ≤ 0. It suffices to prove (m−mx−

1)xm + 1 − (mx + 1)(1 − x)m ≥ 0. Since m −mx − 1 > 0, we only need to prove
hm(x) := (mx + 1)(1 − x)m ≤ 1 for all x ∈ [0, 1

2
]. This follows from hm(0) = 1 and

h′m(x) = −m(m+ 1)x(1− x)m−1 ≤ 0 for all x ∈ [0, 1
2
].

2© When x ∈ (1
2
, 1), we get xm(1 − x) − x(1 − x)m ≥ 0. It suffices to prove (mx −

1)(1 − x)m + 1 − (1 + m −mx)xm ≥ 0. Since mx − 1 > 0, we only need to prove
hm(x) := (1 + m −mx)xm ≤ 1 for all x ∈ [1

2
, 1]. This follows from hm(1) = 1 and

h′m(x) = m(m+ 1)(1− x)xm−1 ≥ 0 for all x ∈ [1
2
, 1].

(2) We apply Proposition 2.6 to get the lower bound of dimH(Λ
(m)
a , d2). Let µqm be the

(qm, 1− qm) Bernoulli-type measure on (Λ(m),B(Λ(m))) defined in Section 4.

1© The fact that Λ
(m)
a = Λ(m) ∩Ga is a Borel set in (Λ(m), d2) follows from the fact that

Ga is a Borel set in ({0, 1}N, d2).
2© Prove µqm(Λ

(m)
a ) = 1.

Let λqm be the measure defined in Theorem 4.2 such that (Λ(m),B(Λ(m)), λqm , σ) is
ergodic. It follows from the Birkhoff Ergodic Theorem that

lim
n→∞

1

n

n−1∑
k=0

1[0](σ
kw) =

ˆ
1[0]dλqm = λqm [0]

by
=======

Lemma 5.2

qm − qmm
1− qmm − (1− qm)m

= fm(qm) = a
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for λqm-almost every w ∈ Λ(m). By |w1···wn|0
n

= 1
n

∑n−1
k=0 1[0](σ

kw), we get

lim
n→∞

|w1 · · ·wn|0
n

= a for λqm-almost every w ∈ Λ(m),

which implies λqm(Λ
(m)
a ) = 1. It follows from λqm ∼ µqm that µqm(Λ

(m)
a ) = 1.

3© For all w ∈ Λ
(m)
a , we have

lim
r→∞

log µqm(B(w, r))

log r
(?)

≥ lim
n→∞

log µqm [w1 · · ·wn]

log 2−n

= lim
n→∞

− log q
N

(m)
0 (w1···wn)

m (1− qm)N
(m)
1 (w1···wn)

n log 2

≥
limn→∞

N
(m)
0 (w1···wn)

n
(− log qm) + limn→∞

N
(m)
1 (w1···wn)

n
(− log(1− qm))

log 2

(??)

≥
limn→∞

(m·|w1···wn|0
(m−1)n

− 1
m−1

)
(− log qm) + limn→∞

(m·|w1···wn|1
(m−1)n

− 1
m−1

)
(− log(1− qm))

log 2

(???)
=

−(ma− 1) log qm − (m−ma− 1) log(1− qm)

(m− 1) log 2

where (? ? ?) follows from w ∈ Λ
(m)
a , (??) follows from Proposition 3.3 and (?)

can be proved as follows. For any r ∈ (0, 1), there exists n = n(r) ∈ N such that
1

2n
≤ r < 1

2n−1 . Then by B(w, r) = [w1 · · ·wn] and log µqm [w1 · · ·wn] < 0, we get
log µqm (B(w,r))

log r
≥ logµqm [w1···wn]

log 2−n . (In fact, (?) can take “=”.)

Thus the lower bound of dimH(Λ
(m)
a , d2) follows from 1©, 2©, 3© and Proposition 2.6. �

Proof of Lemma 5.2. By the definition of λp, we know

λp[0] = lim
n→∞

1

n

n−1∑
k=0

µpσ
−k[0].

For any integer k ≥ 0, let

ak := µpσ
−k[0] =

∑
u1···uk0∈Λ(m),∗

µp[u1 · · ·uk0], bk := µpσ
−k[1] =

∑
u1···uk1∈Λ(m),∗

µp[u1 · · ·uk1],

ck := µpσ
−k[01] =

∑
u1···uk01∈Λ(m),∗

µp[u1 · · ·uk01], dk := µpσ
−k[10] =

∑
u1···uk10∈Λ(m),∗

µp[u1 · · ·uk10].

By Theorem 4.2, the following limits exist:

a := lim
n→∞

1

n

n−1∑
k=0

ak = λp[0], b := lim
n→∞

1

n

n−1∑
k=0

bk = λp[1],

c := lim
n→∞

1

n

n−1∑
k=0

ck = λp[01], d := lim
n→∞

1

n

n−1∑
k=0

dk = λp[10].

(1) We have a+ b = 1 since λp[0] + λp[1] = λp(Λ
(m)).

(2) We have c = d since λp[00] + λp[01] = λp[0] = λpσ
−1[0] = λp[00] + λp[10].
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(3) Prove (1− p)a+ pm−1d = c and pb+ (1− p)m−1c = d.
1© For k ≥ m, we have

ak = dk−1 + pdk−2 + · · ·+ pm−3dk−m+2 + pm−2dk−m+1,

since ∑
u1···uk0∈Λ(m),∗

µp[u1 · · ·uk0]

=
∑

u1···uk−110∈Λ(m),∗

µp[u1 · · ·uk−110] +
∑

u1···uk−100∈Λ(m),∗

µp[u1 · · ·uk−100]

= dk−1 +
∑

u1···uk−2100∈Λ(m),∗

µp[u1 · · ·uk−2100] +
∑

u1···uk−2000∈Λ(m),∗

µp[u1 · · ·uk−2000]

(?)
= dk−1 +

∑
u1···uk−210∈Λ(m),∗

pµp[u1 · · ·uk−210] +
∑

u1···uk−2000∈Λ(m),∗

µp[u1 · · ·uk−2000]

= dk−1 + pdk−2 +
∑

u1···uk−31000∈Λ(m),∗

µp[u1 · · ·uk−31000] +
∑

u1···uk−30000∈Λ(m),∗

µp[u1 · · ·uk−30000]

(??)
= dk−1 + pdk−2 +

∑
u1···uk−310∈Λ(m),∗

p2µp[u1 · · ·uk−310] +
∑

u1···uk−304∈Λ(m),∗

µp[u1 · · ·uk−304]

= · · ·

= dk−1 + pdk−2 + · · ·+ pm−3dk−m+2 +
∑

u1···uk−m+20m−1∈Λ(m),∗

µp[u1 · · ·uk−m+20m−1]

= dk−1 + pdk−2 + · · ·+ pm−3dk−m+2 +
∑

u1···uk−m+110m−1∈Λ(m),∗

µp[u1 · · ·uk−m+110m−1]

(???)
= dk−1 + pdk−2 + · · ·+ pm−3dk−m+2 +

∑
u1···uk−m+110∈Λ(m),∗

pm−2µp[u1 · · ·uk−m+110]

= dk−1 + pdk−2 + · · ·+ pm−3dk−m+2 + pm−2dk−m+1,

where (?), (??) and (? ? ?) follow from

u1 · · ·uk−2100 ∈ Λ(m),∗ ⇔ u1 · · ·uk−210 ∈ Λ(m),∗

⇒ u1 · · ·uk−2101 ∈ Λ(m),∗,

u1 · · ·uk−31000 ∈ Λ(m),∗ ⇔ u1 · · ·uk−310 ∈ Λ(m),∗

⇒ u1 · · ·uk−3101, u1 · · ·uk−31001 ∈ Λ(m),∗

and

u1 · · ·uk−m+110m−1 ∈ Λ(m),∗ ⇔ u1 · · ·uk−m+110 ∈ Λ(m),∗

⇒ u1 · · ·uk−m+1101, u1 · · ·uk−m+11001, · · · , u1 · · ·uk−m+110m−21 ∈ Λ(m),∗

respectively, recalling the definition of µp. 2© For k ≥ m, we have

ck = (1− p)dk−1 + (1− p)pdk−2 + · · ·+ (1− p)pm−3dk−m+2 + pm−2dk−m+1,
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since ∑
u1···uk01∈Λ(m),∗

µp[u1 · · ·uk01]

=
∑

u1···uk−1101∈Λ(m),∗

µp[u1 · · ·uk−1101] +
∑

u1···uk−1001∈Λ(m),∗

µp[u1 · · ·uk−1001]

(?)
=

∑
u1···uk−110∈Λ(m),∗

(1− p)µp[u1 · · ·uk−110] +
∑

u1···uk−1001∈Λ(m),∗

µp[u1 · · ·uk−1001]

= (1− p)dk−1 +
∑

u1···uk−21001∈Λ(m),∗

µp[u1 · · ·uk−21001] +
∑

u1···uk−20001∈Λ(m),∗

µp[u1 · · ·uk−20001]

(??)
= (1− p)dk−1 +

∑
u1···uk−210∈Λ(m),∗

p(1− p)µp[u1 · · ·uk−210] +
∑

u1···uk−2031∈Λ(m),∗

µp[u1 · · ·uk−2031]

= (1− p)dk−1 + p(1− p)dk−2 +
∑

u1···uk−31031∈Λ(m),∗

µp[u1 · · ·uk−31031] +
∑

u1···uk−3041∈Λ(m),∗

µp[u1 · · ·uk−3041]

= · · ·

= (1− p)dk−1 + (1− p)pdk−2 + · · ·+ (1− p)pm−3dk−m+2 +
∑

u1···uk−m+20m−11∈Λ(m),∗

µp[u1 · · ·uk−m+20m−11]

= (1− p)dk−1 + (1− p)pdk−2 + · · ·+ (1− p)pm−3dk−m+2 +
∑

u1···uk−m+110m−11∈Λ(m),∗

µp[u1 · · ·uk−m+110m−11]

(???)
= (1− p)dk−1 + (1− p)pdk−2 + · · ·+ (1− p)pm−3dk−m+2 +

∑
u1···uk−m+110∈Λ(m),∗

pm−2µp[u1 · · ·uk−m+110]

= (1− p)dk−1 + (1− p)pdk−2 + · · ·+ (1− p)pm−3dk−m+2 + pm−2dk−m+1,

where (?), (??) and (? ? ?) follow from

u1 · · ·uk−1101 ∈ Λ(m),∗ ⇔ u1 · · ·uk−110 ∈ Λ(m),∗

⇒ u1 · · ·uk−1100 ∈ Λ(m),∗,

u1 · · ·uk−21001 ∈ Λ(m),∗ ⇔ u1 · · ·uk−210 ∈ Λ(m),∗

⇒ u1 · · ·uk−2101, u1 · · ·uk−21000 ∈ Λ(m),∗

and
u1 · · ·uk−m+110m−11 ∈ Λ(m),∗ ⇔ u1 · · ·uk−m+110 ∈ Λ(m),∗

⇒ u1 · · ·uk−m+1101, · · · , u1 · · ·uk−m+110m−21 ∈ Λ(m),∗

but u1 · · ·uk−m+110m−10 /∈ Λ(m),∗

respectively, recalling the definition of µp.
Combining 1© and 2©we get (1− p)(ak − pm−2dk−m+1) = ck − pm−2dk−m+1,

i.e., (1− p)ak + pm−1dk−m+1 = ck for any k ≥ m.

That is,
(1− p)ak+m + pm−1dk+1 = ck+m for any k ≥ 0,

which implies

(1− p) 1

n

n−1∑
k=0

ak+m + pm−1 1

n

n−1∑
k=0

dk+1 =
1

n

n−1∑
k=0

ck+m.

Let n→∞, we get (1−p)a+pm−1d = c. It follows in the same way that pb+(1−p)m−1c = d.
Combining (1), (2) and (3) we get a = p−pm

1−p−(1−p)m . �
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