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We study the set Γ consisting of univoque sequences, the set Λ consisting of sequences in which the lengths of consecutive zeros and consecutive ones are bounded, and their frequency subsets Γ a , Γ a , Γ a and Λ a , Λ a , Λ a consisting of sequences respectively in Γ and Λ with frequency, lower frequency and upper frequency of zeros equal to some a ∈ [0, 1]. The Hausdorff dimension of all these sets are obtained by studying the dynamical system (Λ (m) , σ) where σ is the shift map and Λ (m) = w ∈ {0, 1} N : w does not contain 0 m or 1 m for integer m ≥ 3, studying the Bernoulli-type measures on Λ (m) and finding out the unique equivalent σ-invariant ergodic probability measure.

INTRODUCTION

Let N be the set of positive integers {1, 2, 3, • • • } and define Γ := w ∈ {0, 1} N : w < σ k w < w for all k ≥ 1 where σ is the shift map on {0, 1} N , 0 := 1, 1 := 0 and w :=

w 1 w 2 • • • for all w = w 1 w 2 • • • ∈ {0, 1} N .
The set Γ is strongly related to two well known research topics, iterations of unimodal functions and unique expansions of 1 (see [START_REF] Allouche | Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set[END_REF] for more details).

On the one hand, in 1985, Cosnard [START_REF] Cosnard | Étude de la classification topologique des fonctions unimodales[END_REF] proved that a sequence α = (α n ) n≥1 ∈ {0, 1} N is the kneading sequence of 1 for some unimodal function f if and only if τ (α) ∈ Γ , where τ : {0, 1} N → {0, 1} N is a bijection defined by τ (w) := ( n i=1 w i (mod 2)) n≥1 and Γ := w ∈ {0, 1} N : w ≤ σ k w ≤ w for all k ≥ 0 is similar to Γ in the sense that Γ \{periodic sequences} = Γ. The structure of Γ \{(10) ∞ } was studied in detail by Allouche [START_REF] Allouche | Théorie des nombres et automates[END_REF] (see also [START_REF] Allouche | Itérations de fonctions unimodales et suites engendrées par automates[END_REF]). The generalizations of Γ and Γ (to more than two digits) were studied in [START_REF] Allouche | Théorie des nombres et automates[END_REF][START_REF] Allouche | Univoque numbers and an avatar of Thue-Morse[END_REF].

On the other hand, expansions of real numbers in non-integer bases were introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] in 1957 and then widely studied until now (see for examples [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF][START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Wang | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF][START_REF] Komornik | Unique developments in non-integer bases[END_REF][START_REF] Li | Beta-expansion and continued fraction expansion[END_REF][START_REF] Li | Distributions of full and non-full words in beta-expansions[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF]). In 1990, Erdös, Joó and Komornik [START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -ni and related problems[END_REF] proved that a sequence α = (α n ) n≥1 ∈ {0, 1} N is the unique expansion of 1 in some base q ∈ (1, 2) if and only if α ∈ Γ. Thus we call Γ the set of univoque sequences in this paper. Note that the term "univoque sequence" is different in some other papers [START_REF] Daróczy | Univoque sequences[END_REF][START_REF] Vries | On the number of unique expansions in non-integer bases[END_REF][START_REF] Vries | Unique expansions of real numbers[END_REF].

For any a ∈ [0, 1], the frequency subsets of Γ are defined by

Γ a := w ∈ Γ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , Γ a := w ∈ Γ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , Γ a := w ∈ Γ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a ,
and the frequency subsets of Λ := w ∈ {0, 1} N : the lengths of consecutive 0's and consecutive 1's in w are bounded are defined by

Λ a := w ∈ Λ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , Λ a := w ∈ Λ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , Λ a := w ∈ Λ : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a ,
where # denotes the cardinality. It is straightforward to check Γ ⊂ Λ. Let U := q ∈ (1, 2) : 1 has a unique q-expansion be the set of univoque bases. It is proved in [START_REF] Daróczy | On the structure of univoque numbers[END_REF][START_REF] Komornik | Hausdorff dimension of univoque sets and Devil's staircase[END_REF] that U is of full Hausdorff dimension. That is, dim H U = 1. For more research on U, we refer the reader to [START_REF] Vries | Topology of the set of univoque bases[END_REF][START_REF] Komornik | On the topological structure of univoque sets[END_REF][START_REF] Kong | Univoque bases and Hausdorff dimension[END_REF].

On frequency sets, there is a well known result given by Eggleston [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF] saying that for any a ∈ [0, 1], the classical Eggleston-Besicovitch set has Hausdorff dimension dim H

x ∈ [0, 1) :

lim n→∞ #{k : 1 ≤ k ≤ n, ε k (x) = 0} n = a = -a log a -(1 -a) log(1 -a) log 2 , (1.1) where ε 1 (x)ε 2 (x) • • • ε n (x) • • •
is the greedy binary expansion of x, and 0 log 0 := 0.

Motivated by the above mentioned results, correspondingly, we study the set of univoque sequences Γ and the larger set Λ, study their frequency subsets Γ a , Γ a , Γ a , Λ a , Λ a , Λ a and give the following theorem as the main result in this paper. Let dim H (•, d 2 ) denote the Hausdorff dimension in {0, 1} N equipped with the usual metric d 2 .

Theorem 1.1. (1) We have dim H (Γ, d 2 ) = dim H (Λ, d 2 ) = 1. (2) For all a ∈ [0, 1] we have dim H (Γ a , d 2 ) = dim H (Γ a , d 2 ) = dim H (Γ a , d 2 ) = dim H (Λ a , d 2 ) = dim H (Λ a , d 2 ) = dim H (Λ a , d 2 ) = -a log a -(1 -a) log(1 -a) log 2 ,
where 0 log 0 := 0.

It is known that by defining Bernoulli measures, and then calculating the lower local dimension of the measures and using Billingsley Lemma [18, Proposition 2.3], the Hausdorff dimension of classical Eggleston-Besicovitch sets mentioned above can be obtained. But this is based on the fact that only expansions in integer bases are considered in classical Eggleston-Besicovitch sets, there are no forbidden words in the symbolic space and the Bernoulli measures are invariant and ergodic with respect to the shift map. Ergodicity garuantees that classical Eggleston-Besicovitch sets have positive Bernoulli measures, which is a condition needed for applying Billingsley Lemma to get the lower bound of the Hausdorff dimension. If there are forbidden words, such as expansions in non-integer bases [START_REF] Li | Random walks associated to beta-shifts[END_REF], the corresponding Bernoulli-type measures are not ergodic (actually not invariant). This makes some difficulties to be overcome. In [START_REF] Li | Random walks associated to beta-shifts[END_REF], after defining Bernoullitype measures, the authors found out the equivalent invariant ergodic measures, studied the relation between the equivalent measures and the original measures and obtained the Hausdorff dimension of Eggleston-Besicovitch (frequency) sets for a class of non-integer bases (see [START_REF] Li | Random walks associated to beta-shifts[END_REF]Theorem 1.2]) by applying an avatar of the Billingsley Lemma. This paper follows a similar framework and construction, but most of the details we need to confirm are different.

For any a ∈ [0, 1] we define the global frequency sets in {0, 1} N by

G a := w ∈ {0, 1} N : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , G a := w ∈ {0, 1} N : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a , G a := w ∈ {0, 1} N : lim n→∞ #{k : 1 ≤ k ≤ n, w k = 0} n = a ,
for any integer m ≥ 3 we define

Λ (m) := w ∈ {0, 1} N : w does not contain 0 m or 1 m ,
and we let

Λ (m) a := Λ (m) ∩ G a .
Here we give an outline for the proof of Theorem 1.1 (2) to explain how the concepts in this paper interact. Following the simple argument at the beginning of the Proof of Theorem 1.1 in Section 5, we know that it suffices to consider the lower bound of dim H (Γ a , d 2 ). Since (5.2) says that dim H (Γ a , d 2 ) ≥ dim H (Λ (m) a , d 2 ) for any integer m ≥ 3, we only need to find a good lower bound for dim H (Λ (m) a , d 2 ). Hence the main we need to prove is Lemma 5.3. By the Billingsley Lemma in metric space (Proposition 2.6), this can be done by constructing a suitable measure on (Λ (m) , d 2 ) such that Λ (m) a has positive measure. Thus we define the Bernoulli-type measure µ p in Section 4. To guarantee that Λ (m) a has positive measure, we want ergodicity (see (2) 2 in the Proof of Lemma 5.3). Hence we find out the unique σ-invariant ergodic measure λ p equivalent to µ p in Section 4, and calculate its value on the cylinder [0] in Lemma 5.2, which is in fact a relation between µ p and λ p . Finally we apply Billingsley Lemma to obtain Lemma 5.3.

This paper is organized as follows. In Section 2, we give some basic notation and preliminaries on dynamical systems and measure theory. In Section 3, we study related digit occurrence parameters and their properties which will be used later. In Section 4 we study Bernoulli-type measures, and finally we prove our main result in Section 5.

NOTATION AND PRELIMINARIES

Let {0, 1} * := ∞ n=1 {0, 1} n and {0, 1} N be the sets of finite words and infinite sequences respectively on two digits {0, 1}. For any integer m ≥ 3, recall where n ∈ N. For a finite word w ∈ {0, 1} * , we use |w|, |w| 0 and |w| 1 to denote its length, the number of 0's in w and the number of 1's in w respectively. Besides,

Λ (m) = w ∈ {0,
w| k := w 1 w 2 • • • w k denotes the prefix of w with length k for w ∈ {0, 1} N or w ∈ {0, 1} n where n ≥ k. Let σ : {0, 1} N → {0, 1} N be the shift map defined by σ(w 1 w 2 • • • ) = w 2 w 3 • • • for w ∈ {0, 1} N
and d 2 be the usual metric on {0, 1} N defined by

d 2 (w, v) := 2 -inf{k≥0:w k+1 =v k+1 } for w, v ∈ {0, 1} N ,
where

2 -∞ = 0. Then σ is continuous on ({0, 1} N , d 2 ). By σ(Λ (m) ) = Λ (m) , we know that (Λ (m) , σ) is a dynamical system. It is straightforward to check that the natural projection map π 2 : {0, 1} N → [0, 1], defined by π 2 (w) := ∞ n=1 w n 2 n for w ∈ {0, 1} N ,
is surjective and continuous. Besides, we need the following concepts and notation.

Definition 2.1 (Cylinder). Let m ≥ 3 be an integer and w ∈ Λ (m), * . We call

[w] := v ∈ Λ (m) : v begins with w
the cylinder in Λ (m) generated by w.

Definition 2.2 (Absolute continuity and equivalence). Let µ and ν be measures on a measurable space (X, F). We say that µ is absolutely continuous with respect to ν and denote it by µ ν if, for any A ∈ F, ν(A) = 0 implies µ(A) = 0. Moreover, if µ ν and ν µ we say that µ and ν are equivalent and denote this property by µ ∼ ν. Definition 2.3. Let C be a family of certain subsets of a set X.

(

) C is called a monotone class on X if 1 {A n } n≥1 ⊂ C and A 1 ⊂ A 2 ⊂ • • • ⇒ ∞ n=1 A n ∈ C; 2 {A n } n≥1 ⊂ C and A 1 ⊃ A 2 ⊃ • • • ⇒ ∞ n=1 A n ∈ C. (2) C is called a semi-algebra on X if 1 ∅ ∈ C; 2 A, B ∈ C ⇒ A ∩ B ∈ C; 3 A ∈ C ⇒ A c ∈ C Σf where A c := X \ A and C Σf := n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N . (The subscript Σf means finite disjoint union.) (3) C is called an algebra on X if 1 ∅, X ∈ C; 2 A ∈ C ⇒ A c ∈ C; 3 A, B ∈ C ⇒ A ∩ B ∈ C. (4) C is called a sigma-algebra on X if 1 ∅, X ∈ C; 2 A ∈ C ⇒ A c ∈ C; 3 A 1 , A 2 , A 3 • • • ∈ C ⇒ ∞ n=1 A n ∈ C. 1 
The following useful approximation lemma follows from [31, Theorem 0.1 and 0.7].

Lemma 2.4. Let (X, B, µ) be a probability space, C be a semi-algebra which generates the sigmaalgebra B and A be the algebra generated by C. Then

(1) A = C Σf := n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N ;
(2) for each B ∈ B and each ε > 0, there is some A ∈ A with µ(A B) < ε.

In order to extend some properties from a small family to a larger one in some proofs in Section 4, we recall the following well known Monotone Class Theorem (see for example [20, Page 66]).

Theorem 2.5 (Monotone Class Theorem).

Let A be an algebra. Then the smallest monotone class containing A is precisely the smallest sigma-algebra containing A.

Let B(x, r) denote the closed ball centered on x with radius r. The following version of the Billingsley Lemma in metric space follows in the same way as the classical one in Euclidean space. Proposition 2.6 ([17, 18]). Let (X, d) be a metric space, E ⊂ X be a Borel set, µ be a finite Borel measure on X and s ≥ 0. If

µ(E) > 0 and lim r→0 log µ(B(x, r)) log r ≥ s for all x ∈ E,
then the Hausdorff dimension of E in (X, d) is no less than s.

DIGIT OCCURRENCE PARAMETERS

The digit occurrence parameters and their properties studied in this section will be used in Sections 4 and 5. (w) where #N denotes the cardinality of the set N . Proposition 3.2. Let m ≥ 3 be an integer and w, v ∈ Λ (m), * such that wv ∈ Λ (m), * . Then (wv). By v k = 0, we only need to prove

(1) N (m) 0 (w) + N (m) 0 (v) -1 ≤ N (m) 0 (wv) ≤ N (m) 0 (w) + N (m) 0 (v); (2) N (m) 1 (w) + N (m) 1 (v) -1 ≤ N (m) 1 (wv) ≤ N (m) 1 (w) + N (m) 1 (v). Proof. Let a = |w| and b = |v|. (1) 1 Prove N (m) 0 (wv) ≤ N (m) 0 (w) + N (m) 0 (v). It suffices to prove N (m) 0 (wv) ⊂ N (m) 0 (w) ∪ (N (m) 0 (v) + a), where N (m) 0 (v) + a := {j + a : j ∈ N (m) 0 (v)}. Let k ∈ N (m) 0 (wv). i) If 1 ≤ k ≤ a, then w k = 0, w 1 • • • w k-1 1 ∈ Λ (m), * and we get k ∈ N (m) 0 (w). ii) If a + 1 ≤ k ≤ a + b, then v k-a = 0 and w 1 • • • w a v 1 • • • v k-a-1 1 ∈ Λ (m), * . It follows from v 1 • • • v k-a-1 1 ∈ Λ (m), * that k -a ∈ N (m) 0 (v) and k ∈ N (m) 0 (v) + a. 2 Prove N (m) 0 (w) + N (m) 0 (v) ≤ N (m) 0 (wv) + 1. When v = 1 b , we get N (m) 0 (v) =
w 1 • • • w a v 1 • • • v k-1 1 ∈ Λ (m), * . (By contradiction) Assume w 1 • • • w a v 1 • • • v k-1 1 / ∈ Λ (m), * . Then w 1 • • • w a v 1 • • • v k-1 1 contains 0 m or 1 m . i) If w 1 • • • w a v 1 • • • v k-1 1 contains 0 m , then w 1 • • • w a v 1 • • • v k-1 contains 0 m . This con- tradicts wv ∈ Λ (m), * . ii) If w 1 • • • w a v 1 • • • v k-1 1 contains 1 m , by k ≥ s + 1, we know that w 1 • • • w a v 1 • • • v s-1 0v s+1 • • • v k-1 1 contains 1 m . Thus w 1 • • • w a v 1 • • • v s-1 contains 1 m or v s+1 • • • v k-1 1 contains 1 m . But w 1 • • • w a v 1 • • • v s-1 contains 1 m will contradict wv ∈ Λ (m), * , and v s+1 • • • v k-1 1 con- tains 1 m will imply v 1 • • • v k-1 1 contains 1 m which contradicts k ∈ N (m) 0 (v).
(2) follows in the same way as (1). 

(w) = k : 1 ≤ k ≤ n, w k = 0, w 1 • • • w k-1 1 ∈ Λ (m), *
and

N (m) 0 (w) = #N (m) 0 (w).
We define (2) follows in the same way as (1).

N (m) 1 m-1 0 (w) := k : m ≤ k ≤ n, w k-m+1 • • • w k-1 w k = 1 m-1 0 and N (m) 1 m-1 0 := #N (m) 1 m-1 0 (w). 1 Prove {k : 1 ≤ k ≤ n, w k = 0} = N (m) 0 (w) ∪ N (m) 1 m-1 0 (w). ⊃ Obvious. ⊂ Let k ∈ {1, • • • , n} such that w k = 0. If k / ∈ N (m) 0 (w), then k ≥ m and w 1 • • • w k-1 1 / ∈ Λ (m), * . By w 1 • • • w k-1 ∈ Λ (m), * , we get w k-m+1 • • • w k-1 = 1 m-1 . This implies k ∈ N (m) 1 m-1 0 (w). 2 Prove N (m) 0 (w) ∩ N (m) 1 m-1 0 (w) = ∅. (By contradiction) Assume that there exists k ∈ N (m) 0 (w) ∩ N (m) 1 m-1 0 (w). Then k ≥ m, w k-m+1 • • • w k-1 = 1 m-1 and w 1 • • • w k-1 1 ∈ Λ (m), * . These imply w 1 • • • w k-m 1 m ∈ Λ (m), * ,

BERNOULLI-TYPE MEASURES ON Λ (m)

Let m ≥ 3 be an integer, B(Λ (m) ) be the Borel sigma-algebra on Λ (m) (equipped with the usual metric d 2 ) and p ∈ (0, 1). We define the (p, 1 -p) Bernoulli-type measure µ p on (Λ (m) , B(Λ (m) )) as follows:

I. Let µ p (∅) = 0, µ p (Λ (m) ) = 1, µ p [0] = p, and µ p [1] = 1 -p.
II. Suppose µ p has been defined for all cylinders of order n ∈ N. For any w ∈ Λ (m),n , if w0, w1 ∈ Λ (m),n+1 , we define III. By Carathéodory's measure extension theorem, we uniquely extend µ p from its definition on the family of cylinders to become a measure on B(Λ (m) ).

Remark 4.1. By the definition of µ p , we have

µ p [w] = p N (m) 0 (w) (1 -p) N (m) 1 (w)
for all w ∈ Λ (m), * .

Note that µ p is not σ-invariant. In fact,

µ p [0 m-2 1] = p m-2 (1 -p) but µ p (σ -1 [0 m-2 1]) = µ p [0 m-1 1]+µ p [10 m-2 1] = p m-1 +p m-2 (1-p) 2 = p m-2
(1-p) for all p ∈ (0, 1).

The main result in this section is the following.

Theorem 4.2. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a unique σ-invariant ergodic probability measure λ p on (Λ (m) , B(Λ (m) )) equivalent to µ p , where λ p is defined by

λ p (B) := lim n→∞ 1 n n-1 k=0 σ k µ p (B) for B ∈ B(Λ (m) ).
The proof is based on the following lemmas.

Lemma 4.3. Let m ≥ 3 be an integer, p ∈ (0, 1) and w, v ∈ Λ (m), * such that wv ∈ Λ (m), * . Then

µ p [w]µ p [v] ≤ µ p [wv] ≤ p -1 (1 -p) -1 µ p [w]µ p [v].
Proof. It follows from Remark 4.1 and Proposition 3.2.

Lemma 4.4. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a constant c >

1 such that c -1 µ p (B) ≤ σ k µ p (B) ≤ cµ p (B)
for all k ∈ N and B ∈ B(Λ (m) ).

ii) Prove

µ p σ -k [w] ≥ c -1 µ p [w].
In fact, when w 1 = 0, we have

µ p σ -k [w] = u 1 •••u k w∈Λ (m), * µ p [u 1 • • • u k w] ≥ u 1 •••u k-1 1w∈Λ (m), * µ p [u 1 • • • u k-1 1w] ( ) = u 1 •••u k-1 1∈Λ (m), * µ p [u 1 • • • u k-1 1w] ( ) ≥ u 1 •••u k-1 1∈Λ (m), * µ p [u 1 • • • u k-1 1]µ p [w] = µ p σ -(k-1) [1]µ p [w] ( ) ≥ p(1 -p) 2 µ p [w].
where ( ) follows from w 1 = 0 and w ∈ Λ (m), * , ( ) follows from Lemma 4.3 and ( ) follows from i). When w 1 = 1, in the same way, we can get

µ p σ -k [w] ≥ p 2 (1 -p)µ p [w]. (2) Prove c -1 µ p (B) ≤ σ k µ p (B) ≤ cµ p (B) for all k ∈ N and B ∈ B(Λ (m) ). Let C := [w] : w ∈ Λ (m), * ∪ ∅ , C Σf := n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N and G := B ∈ B(Λ (m) ) : c -1 µ p (B) ≤ σ k µ p (B) ≤ cµ p (B) for all k ∈ N .
Then C is a semi-algebra on Λ (m) , C Σf is the algebra generated by C (by Lemma 2.4 (1)) and G is a monotone class. Since in [START_REF] Allouche | Théorie des nombres et automates[END_REF] we have already proved C ⊂ G, it follows that

C Σf ⊂ G ⊂ B(Λ (m) ). Noting that B(Λ (m)
) is the smallest sigma-algebra containing C Σf , it follows from the Monotone Class Theorem (Theorem 2.5) that G = B(Λ (m) ).

Lemma 4.5 ([14]). Let (X, B, µ) be a probability space and T be a measurable transformation on X satisfying µ(T -1 B) = 0 whenever B ∈ B with µ(B) = 0. If there exists a constant M > 0 such that for any B ∈ B and any n ∈ N,

1 n n-1 k=0 µ(T -k B) ≤ M µ(B),
then for any real integrable function f on X, the limit

lim n→∞ 1 n n-1 k=0 f (T k x)
exists for µ-almost every x ∈ X.

Lemma 4.6. Let m ≥ 3 be an integer and p ∈ (0, 1). For any B ∈ B(Λ (m) ) satisfying σ -1 B = B, we have µ p (B) = 0 or 1.

Proof. Let α = p 2 (1 -p) 2 > 0.
(1) Let w ∈ Λ (m), * and n = |w|. For any A ∈ B(Λ (m) ), we prove

αµ p [w]µ p (A) ≤ µ p ([w] ∩ σ -(n+2) A). 1 For any v ∈ Λ (m), * , prove αµ p [w]µ p [v] ≤ µ p ([w] ∩ σ -(n+2) [v]).
In fact, it follows from

ww n v 1 v ∈ Λ (m), * and [w] ∩ σ -(n+2) [v] ⊃ [ww n v 1 v] that µ p ([w] ∩ σ -(n+2) [v]) ≥ µ p [ww n v 1 v] ( ) ≥ µ p [w]µ p [w n ]µ p [v 1 ]µ p [v] ≥ (p(1 -p)) 2 µ p [w]µ p [v]
where ( ) follows from Lemma 4.3.

2 Let C := [v] : v ∈ Λ (m), * ∪ ∅ and G w := A ∈ B(Λ (m) ) : αµ p [w]µ p (A) ≤ µ p ([w] ∩ σ -(n+2) A) .
Then G w is a monotone class. Since in 1 we have already proved C ⊂ G w , in the same way as the end of the proof of Lemma 4.4, we get G w = B(Λ (m) ).

(2) We use B c to denote the complement of B in Λ (m) . For any ε > 0, by Lemma 2.4, there exist finitely many disjoint cylinders [w (i) ] ⊂ C such that µ p (B c ∆E ε ) < ε where

E ε = i [w (i) ]. (3) Let B ∈ B(Λ (m) ) with σ -1 B = B. For any w ∈ Λ (m), * , by B = σ -(|w|+2) B and (1) we get αµ p (B)µ p [w] ≤ µ(σ -(|w|+2) B ∩ [w]) = µ p (B ∩ [w]).
Thus

αµ p (B)µ p (E ε ) = i αµ p (B)µ p [w (i) ] ≤ i µ p (B ∩ [w (i) ]) = µ p (B ∩ i [w (i) ]) = µ p (B ∩ E ε ). Let a = µ p ((B ∪ E ε ) c ), b = µ p (B ∩ E ε ), c = µ p (B \ E ε ) and d = µ p (E ε \ B).
Then we already have

α(b + c)(b + d) ≤ b, a + b < ε (by µ p (B c ∆E ε ) < ε) and a + b + c + d = 1. It follows from α(b + c)(a + d -ε) ≤ α(b + c)(b + d) ≤ b < ε that (b + c)(a + d) < ( 1 α + b + c)ε ≤ ( 1 α + 1)ε. This implies µ p (B)µ p (B c ) ≤ ( 1 α + 1)ε for any ε > 0. Therefore µ p (B)(1 -µ p (B)) = 0 and then µ p (B) = 0 or 1.
Proof of Theorem 4.2. (1) For any n ∈ N and B ∈ B(Λ (m) ), define

λ n p (B) := 1 n n-1 k=0 µ p (σ -k B).
Then λ n p is a probability measure on (Λ (m) , B(Λ (m) )). By Lemma 4.4, there exists c > 0 such that

c -1 µ p (B) ≤ λ n p (B) ≤ cµ p (B) for any B ∈ B(Λ (m) ) and n ∈ N. (4.1) 
(2) For any B ∈ B(Λ (m) ), prove that lim n→∞ λ n p (B) exists.

Let 1 B : Λ (m) → {0, 1} be defined by

1 B (w) := 1 if w ∈ B 0 if w / ∈ B
for any w ∈ Λ (m) . Then

lim n→∞ λ n p (B) = lim n→∞ 1 n n-1 k=0 ˆ1σ -k B dµ p = lim n→∞ ˆ1 n n-1 k=0 1 B (σ k w) dµ p (w) = ˆlim n→∞ 1 n n-1 k=0 1 B (σ k w) dµ p (w)
where the last equality is an application of the dominated convergence theorem, in which the µ p -a.e. (almost every) existence of lim n→∞ By the well known Vitali-Hahn-Saks Theorem, λ p is a probability measure on (Λ (m) , B(Λ (m) )).

1 n n-1 k=0 1 B (σ k w)
(4) The fact λ p ∼ µ p on B(Λ (m) ) follows from (4.1) and the definition of λ p .

(5) Prove that λ p is σ-invariant.

In fact, for any B ∈ B(Λ (m) ) and n ∈ N, we have

λ n p (σ -1 B) = 1 n n k=1 µ p (σ -k B) = 1 n n k=0 µ p (σ -k B) - µ p (B) n = n + 1 n λ n+1 p (B) - µ p (B) n .
Let n → ∞, we get λ p (σ Since λ p ∼ µ p ∼ λ p , there exists w ∈ Λ (m) such that λ p (B) = lim n→∞

-1 B) = λ p (B). (6) 
1 n n-1 k=0 1 B (σ k w) = λ p (B)
. It means that λ p and λ p are the same on B(Λ (m) ).

PROOF OF THE MAIN RESULT

For any a ∈ [0, 1], recall the definition of the global frequency sets G a , G a and G a from the introduction. The following lemma follows immediately from (1.1), [START_REF] Li | Random walks associated to beta-shifts[END_REF]Theorem 6.1] and the invariance of Hausdorff dimension under the projection π 2 . (See also [START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation[END_REF]Theorem 3.3].) Lemma 5.1. For any a ∈ [0, 1], we have

dim H (G a , d 2 ) = dim H (G a , d 2 ) = dim H (G a , d 2 ) = -a log a -(1 -a) log(1 -a) log 2 .
To prove Theorem 1.1, we also need the next two lemmas, which will be proved later.

Lemma 5.2. Let m ≥ 3 be an integer, p ∈ (0, 1) and λ p be the measure on (Λ (m) , B(Λ (m) )) defined in Theorem 4.2. Then

λ p [0] = p -p m 1 -p m -(1 -p) m .
For any integer m ≥ 3, we recall

Λ (m) = w ∈ {0, 1} N : w does not contain 0 m or 1 m and Λ (m) a = Λ (m) ∩ G a for a ∈ [0, 1].
Lemma 5.3. Let a ∈ (0, 1) and integer m ≥ 3 be large enough such that 1 m < a < 1 -1 m . Define f m : (0, 1) → R by f m (x) :=

x -x m 1 -x m -(1 -x) m for x ∈ (0, 1). Then there exists q m ∈ (0, 1) such that f m (q m ) = a and dim H (Λ (m) a , d 2 ) ≥ -(ma -1) log q m -(m -ma -1) log(1 -q m ) (m -1) log 2 .

Moreover, q m → a as m → ∞.

Proof of Theorem 1.1. First we prove [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF]. Let a ∈ [0, 1]. Since it is straightforward to check Γ ⊂ Λ, we have

Γ a ⊂ Λ a ⊂ G a , Γ a ⊂ Γ a ⊂ Λ a ⊂ G a and Γ a ⊂ Γ a ⊂ Λ a ⊂ G a .
By Lemma 5.1, we only need to prove

dim H (Γ a , d 2 ) ≥ -a log a -(1 -a) log(1 -a) log 2 . ( 5.1) 
If a = 0 or 1, this follows immediately from 0 log 0 := 0 and 1 log 1 = 0. So we only need to consider 0 < a < 1 in the following. For any integer m ≥ 3, we define

Θ (m) a := w ∈ G a : w 1 • • • w 2m = 1 2m , w km+1 • • • w km+m / ∈ {0 m , 1 m } for all k ≥ 2 and Ξ (m) a := w ∈ G a : w km+1 • • • w km+m / ∈ {0 m , 1 m } for all k ≥ 0 . Then dim H (Γ a , d 2 ) ( ) ≥ dim H (Θ (m) a , d 2 ) ( ) ≥ dim H (Ξ (m) a , d 2 ) ( ) ≥ dim H (Λ (m) a , d 2 ) (5.2)
where ( ) follows from Γ a ⊃ Θ and the fact that σ 2m is Lipschitz continuous (since d 2 (σ 2m (w), σ 2m (v)) ≤ 2 2m d 2 (w, v) for all w, v ∈ {0, 1} N ). By (5.2) and Lemma 5.3, for m large enough, there exists q m ∈ (0, 1) such that q m → a (as m → ∞) and

dim H (Γ a , d 2 ) ≥ -(ma -1) log q m -(m -ma -1) log(1 -q m ) (m -1) log 2 .
Let m → ∞, we get (5.1). Finally we deduce (1) from (2). In fact, since (2) implies dim H (Γ1

2 , d 2 ) = 1, it follows from Γ1 2 ⊂ Γ ⊂ Λ ⊂ {0, 1} N that dim H (Γ, d 2 ) = dim H (Λ, d 2 ) = 1.
Finally we prove Lemmas 5.2 and 5.3 to end this paper.

Proof of Lemma 5.3. Since f m is continuous on (0, 1), lim x→0 + f m (x) = 1 m , lim x→1 -f m (x) = 1 -1 m and 1 m < a < 1 -1 m , there exists q m ∈ (0, 1) such that f m (q m ) = a. (1) Prove q m → a as m → ∞. Notice that |q m -a| = |q m -f m (q m )| = q m m (1 -q m ) -q m (1 -q m ) m 1 -q m m -(1 -q m ) m . Let g m (x) := x m (1 -x) -x(1 -x) m 1 -x m -(1 -x) m for x ∈ (0, 1). Then |q m -a| = |g m (q m )| ≤ sup x∈(0,1) |g m (x)|.
In order to prove q m → a, it suffices to check |g m (x)| ≤ 1 m for all x ∈ (0, 1). That is, m

• |x m (1 -x) -x(1 -x) m | ≤ 1 -x m -(1 -x) m for all x ∈ (0, 1). 1 When x ∈ (0, 1 2 ], we get x m (1 -x) -x(1 -x) m ≤ 0. It suffices to prove (m -mx - 1)x m + 1 -(mx + 1)(1 -x) m ≥ 0. Since m -mx -1 > 0, we only need to prove h m (x) := (mx + 1)(1 -x) m ≤ 1 for all x ∈ [0, 1 2 ]. This follows from h m (0) = 1 and h m (x) = -m(m + 1)x(1 -x) m-1 ≤ 0 for all x ∈ [0, 1 2 ]. 2 When x ∈ ( 1 2 , 1), we get x m (1 -x) -x(1 -x) m ≥ 0. It suffices to prove (mx - 1)(1 -x) m + 1 -(1 + m -mx)x m ≥ 0. Since mx -1 > 0, we only need to prove h m (x) := (1 + m -mx)x m ≤ 1 for all x ∈ [ 1 2 , 1]. This follows from h m (1) = 1 and h m (x) = m(m + 1)(1 -x)x m-1 ≥ 0 for all x ∈ [ 1 2 , 1]. (2 
) We apply Proposition 2.6 to get the lower bound of dim H (Λ (m) a , d 2 ). Let µ qm be the (q m , 1 -q m ) Bernoulli-type measure on (Λ (m) , B(Λ (m) )) defined in Section 4. 1 The fact that Λ For any integer k ≥ 0, let

(m) a = Λ (m) ∩ G a is a Borel set in (Λ (m) , d 2 ) follows from the fact that G a is a Borel set in ({0, 1} N , d 2 ).
a k := µ p σ -k [0] = u 1 •••u k 0∈Λ (m), * µ p [u 1 • • • u k 0], b k := µ p σ -k [1] = u 1 •••u k 1∈Λ (m), * µ p [u 1 • • • u k 1], c k := µ p σ -k [01] = u 1 •••u k 01∈Λ (m), * µ p [u 1 • • • u k 01], d k := µ p σ -k [10] = u 1 •••u k 10∈Λ (m), * µ p [u 1 • • • u k 10].
By Theorem 4.2, the following limits exist: a := lim 

  1} N : w does not contain 0 m or 1 m , and define Λ (m), * := w ∈ {0, 1} * : w does not contain 0 m or 1 m and Λ (m),n := w ∈ {0, 1} n : w does not contain 0 m or 1 m

Definition 3 . 1 (

 31 Digit occurrence parameters). Let m ≥ 3 be an integer. For any w ∈ Λ (m), * , defineN (m) 0 (w) := k : 1 ≤ k ≤ |w|, w k = 0 and w 1 . . . w k-1 1 ∈ Λ (m), * , N(m) 1 (w):= k : 1 ≤ k ≤ |w|, w k = 1 and w 1 . . . w k-1 0 ∈ Λ (m), * ,

  0 and then the conclusion follows immediately from N (m) 0 (w) ≤ N (m) 0 (wv). Thus it suffices to consider v = 1 b in the following. Let s ∈ {1, • • • , b} be the smallest such that v 1 = • • • = v s-1 = 1 and v s = 0. In order to get the conclusion, it suffices to show N , we only need to prove (a + N ∪ {a + s}. Let k ∈ N (m) 0 (v) \ {s}. It suffices to check a + k ∈ N (m) 0

Proposition 3 . 3 .

 33 Let m ≥ 3 be an integer and w ∈ Λ (m), * . Then(1) m • |w| 0 ≤ (m -1)N (m) 0 (w) + |w|; (2) m • |w| 1 ≤ (m -1)N (m) 1 (w) + |w|.Proof. (1) Let n = |w|. If n ≤ m -1, the conclusion follows immediately from N (m) 0 (w) = |w| 0 . In the following, we assume n ≥ m. Recall N (m) 0

  which contradicts the definition of Λ (m), * . Combining 1 and 2 , we get |w| 0 = N (m) 0 (w)+N (m) 1 m-1 0 (w). It follows from (m-1)N (m) 1 m-1 0 (w) ≤ |w| 1 = |w|-|w| 0 that (m-1)(|w| 0 -N (m) 0 (w)) ≤ |w|-|w| 0 , i.e., m•|w| 0 ≤ (m-1)N (m) 0 (w)+|w|.

µ

  p [w0] := pµ p [w] and µ p [w1] := (1 -p)µ p [w]; if w0 ∈ Λ (m),n+1 but w1 / ∈ Λ (m),n+1 , then [w1] = ∅, [w0] = [w] and naturally we have µ p [w0] = µ p [w]; if w1 ∈ Λ (m),n+1 but w0 / ∈ Λ (m),n+1 , then [w0] = ∅, [w1] = [w] and naturally we have µ p [w1] = µ p [w].

  follows from Lemma 4.5, Lemma 4.4 and (4.1). (3) For any B ∈ B(Λ (m) ), define λ p (B) := lim n→∞ λ n p (B).

1 n n- 1 k=0 1 Bn n- 1 k=0 1 B

 11111 Prove that (Λ(m) , B(Λ (m) ), λ p , σ) is ergodic. In fact, for any B ∈ B(Λ (m) ) satisfying σ -1 B = B, by Lemma 4.6 we get µ p (B) = 0 or 1, which implies λ p (B) = 0 or 1 since λ p ∼ µ p .[START_REF] Wang | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] Prove that such λ p is unique on B(Λ (m) ). Let λ p be a σ-invariant ergodic probability measure on (Λ (m) , B(Λ (m) )) equivalent to µ p . Then for any B ∈ B(Λ (m) ), by the Birkhoff Ergodic Theorem, we get λ p (B) = ˆ1B dλ p = lim n→∞ (σ k w) for λ p -a.e. w ∈ Λ (m) and λ p (B) = ˆ1B dλ p = lim n→∞ 1 (σ k w) for λ p -a.e. w ∈ Λ (m) .

2 1 n n- 1 k=0 1 (w 1

 21111 Prove µ qm (Λ (m) a ) = 1.Let λ qm be the measure defined in Theorem 4.2 such that (Λ(m) , B(Λ (m) ), λ qm , σ) is ergodic. It follows from the Birkhoff Ergodic Theorem thatlim n→∞ 1 n n-1 k=0 1 [0] (σ k w) = ˆ1[0] dλ qm = λ qm [0] by ======= Lemma 5.2 q m -q m m 1 -q m m -(1 -q m ) m = f m (q m ) = a for λ qm -almost every w ∈ Λ (m) . By |w 1 •••wn| 0 n = [0] (σ k w), we get lim n→∞ |w 1 • • • w n | 0 n = a for λ qm -almost every w ∈ Λ (m) , which implies λ qm (Λ (m) a ) = 1. It follows from λ qm ∼ µ qm that µ qm (Λ •••wn) n (-log q m ) + lim n→∞ N (m) 1 (w 1 •••wn) n (-log(1 -q m )) log 2 ( ) ≥ lim n→∞ m•|w 1 •••wn| 0 (m-1)n -1 m-1 (-log q m ) + lim n→∞ m•|w 1 •••wn| 1 (m-1)n -1 m-1 (-log(1 -q m )) log 2 ( ) = -(ma -1) log q m -(m -ma -1) log(1 -q m ) (m -1) log 2where ( )follows from w ∈ Λ (m)a , ( ) follows from Proposition 3.3 and ( ) can be proved as follows. For any r ∈ (0, 1), there exists n = n(r) ∈ N such that 1 2 n ≤ r < 1 2 n-1 . Then by B(w, r) = [w 1 • • • w n ] and log µ qm [w 1 • • • w n ] < 0, we get log µq m (B(w,r)) log r ≥ log µq m [w 1 •••wn] log 2 -n . (In fact, ( ) can take "=".) Thus the lower bound of dim H (Λ (m) a , d 2 ) follows from 1 , 2 , 3 and Proposition 2.6. Proof of Lemma 5.2. By the definition of λ p , we know λ p [0] = lim n→∞ 1 n n-1 k=0 µ p σ -k [0].

c

  k = λ p [01], d := lim n→∞ 1 n n-1 k=0 d k = λ p [10].

( 1 )

 1 We have a + b = 1 since λ p [0] + λ p [1] = λ p (Λ (m) ). (2) We have c = d since λ p [00] + λ p [01] = λ p [0] = λ p σ -1 [0] = λ p [00] + λ p[START_REF] Daróczy | On the structure of univoque numbers[END_REF].
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Proof. Let c = p -2 (1 -p) -2 > 1.

(1) Prove c -1 µ p [w] ≤ σ k µ p [w] ≤ cµ p [w] for any k ∈ N and w ∈ Λ (m), * . Fix w ∈ Λ (m), * and k ∈ N. Note that

is a disjoint union. 1 Estimate the upper bound of σ k µ p [w]:

where ( ) follows from Lemma 4.3.

2 Estimate the lower bound of σ k µ p [w]: 2 . In fact, when k = 1, the conclusion is obvious. When k ≥ 2, we have

where ( ) follows from

and ( ) follows from Lemma 4.3. In the same way, we can get

where ( ), ( ) and ( ) follow from

and

respectively, recalling the definition of µ p . 2 For k ≥ m, we have

where ( ), ( ) and ( ) follow from

, * respectively, recalling the definition of µ p .

Combining