Hausdorff dimension of frequency sets of univoque sequences

Yao-Qiang Li

To cite this version:

Yao-Qiang Li. Hausdorff dimension of frequency sets of univoque sequences. Dynamical Systems, 2021, 36 (2), pp.340-361. 10.1080/14689367.2021.1905778 . hal-03280269

HAL Id: hal-03280269 https://hal.sorbonne-universite.fr/hal-03280269

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HAUSDORFF DIMENSION OF FREQUENCY SETS OF UNIVOQUE SEQUENCES

YAO-QIANG LI

Abstract

We study the set Γ consisting of univoque sequences, the set Λ consisting of sequences in which the lengths of consecutive zeros and consecutive ones are bounded, and their frequency subsets $\Gamma_{a}, \underline{\Gamma}_{a}, \bar{\Gamma}_{a}$ and $\Lambda_{a}, \underline{\Lambda}_{a}, \bar{\Lambda}_{a}$ consisting of sequences respectively in Γ and Λ with frequency, lower frequency and upper frequency of zeros equal to some $a \in[0,1]$. The Hausdorff dimension of all these sets are obtained by studying the dynamical system $\left(\Lambda^{(m)}, \sigma\right)$ where σ is the shift map and $\Lambda^{(m)}=\left\{w \in\{0,1\}^{\mathbb{N}}\right.$: w does not contain 0^{m} or $\left.1^{m}\right\}$ for integer $m \geq 3$, studying the Bernoulli-type measures on $\Lambda^{(m)}$ and finding out the unique equivalent σ-invariant ergodic probability measure.

1. Introduction

Let \mathbb{N} be the set of positive integers $\{1,2,3, \cdots\}$ and define

$$
\Gamma:=\left\{w \in\{0,1\}^{\mathbb{N}}: \bar{w}<\sigma^{k} w<w \text { for all } k \geq 1\right\}
$$

where σ is the shift map on $\{0,1\}^{\mathbb{N}}, \overline{0}:=1, \overline{1}:=0$ and $\bar{w}:=\bar{w}_{1} \bar{w}_{2} \cdots$ for all $w=w_{1} w_{2} \cdots \in$ $\{0,1\}^{\mathbb{N}}$.

The set Γ is strongly related to two well known research topics, iterations of unimodal functions and unique expansions of 1 (see [4] for more details).

On the one hand, in 1985, Cosnard [8] proved that a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 1} \in\{0,1\}^{\mathbb{N}}$ is the kneading sequence of 1 for some unimodal function f if and only if $\tau(\alpha) \in \Gamma^{\prime}$, where $\tau:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ is a bijection defined by $\tau(w):=\left(\sum_{i=1}^{n} w_{i}(\bmod 2)\right)_{n \geq 1}$ and

$$
\Gamma^{\prime}:=\left\{w \in\{0,1\}^{\mathbb{N}}: \bar{w} \leq \sigma^{k} w \leq w \text { for all } k \geq 0\right\}
$$

is similar to Γ in the sense that $\Gamma^{\prime} \backslash$ periodic sequences $\}=\Gamma$. The structure of $\Gamma^{\prime} \backslash\left\{(10)^{\infty}\right\}$ was studied in detail by Allouche [1] (see also [3]). The generalizations of Γ and Γ^{\prime} (to more than two digits) were studied in [1,5].

On the other hand, expansions of real numbers in non-integer bases were introduced by Rényi [29] in 1957 and then widely studied until now (see for examples [$2,6,7,22,26$, 27, 28, 30]). In 1990, Erdös, Joó and Komornik [16] proved that a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 1} \in$ $\{0,1\}^{\mathbb{N}}$ is the unique expansion of 1 in some base $q \in(1,2)$ if and only if $\alpha \in \Gamma$. Thus we call Γ the set of univoque sequences in this paper. Note that the term "univoque sequence" is different in some other papers $[9,11,12]$.

For any $a \in[0,1]$, the frequency subsets of Γ are defined by

$$
\Gamma_{a}:=\left\{w \in \Gamma: \lim _{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}
$$

[^0]\[

$$
\begin{aligned}
& \underline{\Gamma}_{a}:=\left\{w \in \Gamma: \underline{l i m}_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\} \\
& \bar{\Gamma}_{a}:=\left\{w \in \Gamma: \varlimsup_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}
\end{aligned}
$$
\]

and the frequency subsets of
$\Lambda:=\left\{w \in\{0,1\}^{\mathbb{N}}:\right.$ the lengths of consecutive 0 's and consecutive 1 's in w are bounded $\}$ are defined by

$$
\begin{aligned}
& \Lambda_{a}:=\left\{w \in \Lambda: \lim _{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}, \\
& \Lambda_{a}:=\left\{w \in \Lambda: \varliminf_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}, \\
& \bar{\Lambda}_{a}:=\left\{w \in \Lambda: \varlimsup_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\},
\end{aligned}
$$

where \# denotes the cardinality. It is straightforward to check $\Gamma \subset \Lambda$. Let

$$
\mathcal{U}:=\{q \in(1,2): 1 \text { has a unique } q \text {-expansion }\}
$$

be the set of univoque bases. It is proved in [10,21] that \mathcal{U} is of full Hausdorff dimension. That is,

$$
\operatorname{dim}_{H} \mathcal{U}=1
$$

For more research on \mathcal{U}, we refer the reader to $[13,23,24]$.
On frequency sets, there is a well known result given by Eggleston [15] saying that for any $a \in[0,1]$, the classical Eggleston-Besicovitch set has Hausdorff dimension

$$
\begin{equation*}
\operatorname{dim}_{H}\left(\left\{x \in[0,1): \lim _{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, \varepsilon_{k}(x)=0\right\}}{n}=a\right\}\right)=\frac{-a \log a-(1-a) \log (1-a)}{\log 2} \tag{1.1}
\end{equation*}
$$

where $\varepsilon_{1}(x) \varepsilon_{2}(x) \cdots \varepsilon_{n}(x) \cdots$ is the greedy binary expansion of x, and $0 \log 0:=0$.
Motivated by the above mentioned results, correspondingly, we study the set of univoque sequences Γ and the larger set Λ, study their frequency subsets $\Gamma_{a}, \underline{\Gamma}_{a}, \bar{\Gamma}_{a}, \Lambda_{a}, \underline{\Lambda}_{a}$, $\bar{\Lambda}_{a}$ and give the following theorem as the main result in this paper. Let $\operatorname{dim}_{H}\left(\cdot, d_{2}\right)$ denote the Hausdorff dimension in $\{0,1\}^{\mathbb{N}}$ equipped with the usual metric d_{2}.
Theorem 1.1. (1) We have $\operatorname{dim}_{H}\left(\Gamma, d_{2}\right)=\operatorname{dim}_{H}\left(\Lambda, d_{2}\right)=1$.
(2) For all $a \in[0,1]$ we have

$$
\begin{aligned}
& \operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\underline{\Gamma}_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\bar{\Gamma}_{a}, d_{2}\right) \\
= & \operatorname{dim}_{H}\left(\Lambda_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\underline{\Lambda}_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\bar{\Lambda}_{a}, d_{2}\right)=\frac{-a \log a-(1-a) \log (1-a)}{\log 2}
\end{aligned}
$$

where $0 \log 0:=0$.
It is known that by defining Bernoulli measures, and then calculating the lower local dimension of the measures and using Billingsley Lemma [18, Proposition 2.3], the Hausdorff dimension of classical Eggleston-Besicovitch sets mentioned above can be obtained. But this is based on the fact that only expansions in integer bases are considered in classical Eggleston-Besicovitch sets, there are no forbidden words in the symbolic space and the Bernoulli measures are invariant and ergodic with respect to the shift map. Ergodicity garuantees that classical Eggleston-Besicovitch sets have positive Bernoulli measures,
which is a condition needed for applying Billingsley Lemma to get the lower bound of the Hausdorff dimension. If there are forbidden words, such as expansions in non-integer bases [25], the corresponding Bernoulli-type measures are not ergodic (actually not invariant). This makes some difficulties to be overcome. In [25], after defining Bernoullitype measures, the authors found out the equivalent invariant ergodic measures, studied the relation between the equivalent measures and the original measures and obtained the Hausdorff dimension of Eggleston-Besicovitch (frequency) sets for a class of non-integer bases (see [25, Theorem 1.2]) by applying an avatar of the Billingsley Lemma. This paper follows a similar framework and construction, but most of the details we need to confirm are different.

For any $a \in[0,1]$ we define the global frequency sets in $\{0,1\}^{\mathbb{N}}$ by

$$
\begin{aligned}
& G_{a}:=\left\{w \in\{0,1\}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}, \\
& \underline{G}_{a}:=\left\{w \in\{0,1\}^{\mathbb{N}}: \varliminf_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\}, \\
& \bar{G}_{a}:=\left\{w \in\{0,1\}^{\mathbb{N}}: \varlimsup_{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n, w_{k}=0\right\}}{n}=a\right\},
\end{aligned}
$$

for any integer $m \geq 3$ we define

$$
\Lambda^{(m)}:=\left\{w \in\{0,1\}^{\mathbb{N}}: w \text { does not contain } 0^{m} \text { or } 1^{m}\right\}
$$

and we let

$$
\Lambda_{a}^{(m)}:=\Lambda^{(m)} \cap G_{a} .
$$

Here we give an outline for the proof of Theorem 1.1 (2) to explain how the concepts in this paper interact. Following the simple argument at the beginning of the Proof of Theorem 1.1 in Section 5, we know that it suffices to consider the lower bound of $\operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right)$. Since (5.2) says that $\operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right) \geq \operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right)$ for any integer $m \geq 3$, we only need to find a good lower bound for $\operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right)$. Hence the main we need to prove is Lemma 5.3. By the Billingsley Lemma in metric space (Proposition 2.6), this can be done by constructing a suitable measure on $\left(\Lambda^{(m)}, d_{2}\right)$ such that $\Lambda_{a}^{(m)}$ has positive measure. Thus we define the Bernoulli-type measure μ_{p} in Section 4. To guarantee that $\Lambda_{a}^{(m)}$ has positive measure, we want ergodicity (see (2) (2) in the Proof of Lemma 5.3). Hence we find out the unique σ-invariant ergodic measure λ_{p} equivalent to μ_{p} in Section 4, and calculate its value on the cylinder [0] in Lemma 5.2, which is in fact a relation between μ_{p} and λ_{p}. Finally we apply Billingsley Lemma to obtain Lemma 5.3.

This paper is organized as follows. In Section 2, we give some basic notation and preliminaries on dynamical systems and measure theory. In Section 3, we study related digit occurrence parameters and their properties which will be used later. In Section 4 we study Bernoulli-type measures, and finally we prove our main result in Section 5.

2. Notation and preliminaries

Let $\{0,1\}^{*}:=\bigcup_{n=1}^{\infty}\{0,1\}^{n}$ and $\{0,1\}^{\mathbb{N}}$ be the sets of finite words and infinite sequences respectively on two digits $\{0,1\}$. For any integer $m \geq 3$, recall

$$
\Lambda^{(m)}=\left\{w \in\{0,1\}^{\mathbb{N}}: w \text { does not contain } 0^{m} \text { or } 1^{m}\right\}
$$

and define

$$
\Lambda^{(m), *}:=\left\{w \in\{0,1\}^{*}: w \text { does not contain } 0^{m} \text { or } 1^{m}\right\}
$$

and

$$
\Lambda^{(m), n}:=\left\{w \in\{0,1\}^{n}: w \text { does not contain } 0^{m} \text { or } 1^{m}\right\}
$$

where $n \in \mathbb{N}$. For a finite word $w \in\{0,1\}^{*}$, we use $|w|,|w|_{0}$ and $|w|_{1}$ to denote its length, the number of 0 's in w and the number of 1 's in w respectively. Besides, $\left.w\right|_{k}:=w_{1} w_{2} \cdots w_{k}$ denotes the prefix of w with length k for $w \in\{0,1\}^{\mathbb{N}}$ or $w \in\{0,1\}^{n}$ where $n \geq k$.

Let $\sigma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the shift map defined by

$$
\sigma\left(w_{1} w_{2} \cdots\right)=w_{2} w_{3} \cdots \quad \text { for } w \in\{0,1\}^{\mathbb{N}}
$$

and d_{2} be the usual metric on $\{0,1\}^{\mathbb{N}}$ defined by

$$
d_{2}(w, v):=2^{-\inf \left\{k \geq 0: w_{k+1} \neq v_{k+1}\right\}} \quad \text { for } w, v \in\{0,1\}^{\mathbb{N}},
$$

where $2^{-\infty}=0$. Then σ is continuous on $\left(\{0,1\}^{\mathbb{N}}, d_{2}\right)$. By $\sigma\left(\Lambda^{(m)}\right)=\Lambda^{(m)}$, we know that $\left(\Lambda^{(m)}, \sigma\right)$ is a dynamical system. It is straightforward to check that the natural projection map $\pi_{2}:\{0,1\}^{\mathbb{N}} \rightarrow[0,1]$, defined by

$$
\pi_{2}(w):=\sum_{n=1}^{\infty} \frac{w_{n}}{2^{n}} \quad \text { for } w \in\{0,1\}^{\mathbb{N}}
$$

is surjective and continuous. Besides, we need the following concepts and notation.
Definition 2.1 (Cylinder). Let $m \geq 3$ be an integer and $w \in \Lambda^{(m), *}$. We call

$$
[w]:=\left\{v \in \Lambda^{(m)}: v \text { begins with } w\right\}
$$

the cylinder in $\Lambda^{(m)}$ generated by w.
Definition 2.2 (Absolute continuity and equivalence). Let μ and ν be measures on a measurable space (X, \mathcal{F}). We say that μ is absolutely continuous with respect to ν and denote it by $\mu \ll \nu$ if, for any $A \in \mathcal{F}, \nu(A)=0$ implies $\mu(A)=0$. Moreover, if $\mu \ll \nu$ and $\nu \ll \mu$ we say that μ and ν are equivalent and denote this property by $\mu \sim \nu$.
Definition 2.3. Let \mathcal{C} be a family of certain subsets of a set X.
(1) \mathcal{C} is called a monotone class on X if
(1) $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{C}$ and $A_{1} \subset A_{2} \subset \cdots \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{C}$;
(2) $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{C}$ and $A_{1} \supset A_{2} \supset \cdots \Rightarrow \bigcap_{n=1}^{\infty} A_{n} \in \mathcal{C}$.
(2) \mathcal{C} is called a semi-algebra on X if
(1) $\varnothing \in \mathcal{C}$;
(2) $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$;
(3) $A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C}_{\Sigma f}$
where $A^{c}:=X \backslash A$ and $\mathcal{C}_{\Sigma f}:=\left\{\bigcup_{i=1}^{n} C_{i}: C_{1}, \cdots, C_{n} \in \mathcal{C}\right.$ are disjoint, $\left.n \in \mathbb{N}\right\}$.
(The subscript ${ }_{\Sigma f}$ means finite disjoint union.)
(3) \mathcal{C} is called an algebra on X if
(1) $\varnothing, X \in \mathcal{C}$;
(2) $A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C}$;
(3) $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$.
(4) \mathcal{C} is called a sigma-algebra on X if
(1) $\varnothing, X \in \mathcal{C}$;
(2) $A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C}$;
(3) $A_{1}, A_{2}, A_{3} \cdots \in \mathcal{C} \Rightarrow \bigcap_{n=1}^{\infty} A_{n} \in \mathcal{C}$.

The following useful approximation lemma follows from [31, Theorem 0.1 and 0.7].
Lemma 2.4. Let (X, \mathcal{B}, μ) be a probability space, \mathcal{C} be a semi-algebra which generates the sigmaalgebra \mathcal{B} and \mathcal{A} be the algebra generated by \mathcal{C}. Then
(1) $\mathcal{A}=\mathcal{C}_{\Sigma f}:=\left\{\bigcup_{i=1}^{n} C_{i}: C_{1}, \cdots, C_{n} \in \mathcal{C}\right.$ are disjoint, $\left.n \in \mathbb{N}\right\}$;
(2) for each $B \in \mathcal{B}$ and each $\varepsilon>0$, there is some $A \in \mathcal{A}$ with $\mu(A \triangle B)<\varepsilon$.

In order to extend some properties from a small family to a larger one in some proofs in Section 4, we recall the following well known Monotone Class Theorem (see for example [20, Page 66]).

Theorem 2.5 (Monotone Class Theorem). Let \mathcal{A} be an algebra. Then the smallest monotone class containing \mathcal{A} is precisely the smallest sigma-algebra containing \mathcal{A}.

Let $B(x, r)$ denote the closed ball centered on x with radius r. The following version of the Billingsley Lemma in metric space follows in the same way as the classical one in Euclidean space.

Proposition $2.6([17,18])$. Let (X, d) be a metric space, $E \subset X$ be a Borel set, μ be a finite Borel measure on X and $s \geq 0$. If

$$
\mu(E)>0 \quad \text { and } \quad \underline{\lim }_{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq \text { s for all } x \in E
$$

then the Hausdorff dimension of E in (X, d) is no less than s.

3. Digit occurrence parameters

The digit occurrence parameters and their properties studied in this section will be used in Sections 4 and 5.
Definition 3.1 (Digit occurrence parameters). Let $m \geq 3$ be an integer. For any $w \in \Lambda^{(m), *}$, define

$$
\begin{aligned}
& \mathcal{N}_{0}^{(m)}(w):=\left\{k: 1 \leq k \leq|w|, w_{k}=0 \text { and } w_{1} \ldots w_{k-1} 1 \in \Lambda^{(m), *}\right\} \\
& \mathcal{N}_{1}^{(m)}(w):=\left\{k: 1 \leq k \leq|w|, w_{k}=1 \text { and } w_{1} \ldots w_{k-1} 0 \in \Lambda^{(m), *}\right\}
\end{aligned}
$$

and let

$$
N_{0}^{(m)}(w):=\# \mathcal{N}_{0}^{(m)}(w) \quad \text { and } \quad N_{1}^{(m)}(w):=\# \mathcal{N}_{1}^{(m)}(w)
$$

where $\# \mathcal{N}$ denotes the cardinality of the set \mathcal{N}.
Proposition 3.2. Let $m \geq 3$ be an integer and $w, v \in \Lambda^{(m), *}$ such that $w v \in \Lambda^{(m), *}$. Then
(1) $N_{0}^{(m)}(w)+N_{0}^{(m)}(v)-1 \leq N_{0}^{(m)}(w v) \leq N_{0}^{(m)}(w)+N_{0}^{(m)}(v)$;
(2) $N_{1}^{(m)}(w)+N_{1}^{(m)}(v)-1 \leq N_{1}^{(m)}(w v) \leq N_{1}^{(m)}(w)+N_{1}^{(m)}(v)$.

Proof. Let $a=|w|$ and $b=|v|$.
(1) (1) Prove $N_{0}^{(m)}(w v) \leq N_{0}^{(m)}(w)+N_{0}^{(m)}(v)$.

It suffices to prove $\mathcal{N}_{0}^{(m)}(w v) \subset \mathcal{N}_{0}^{(m)}(w) \cup\left(\mathcal{N}_{0}^{(m)}(v)+a\right)$, where $\mathcal{N}_{0}^{(m)}(v)+a:=\{j+a$: $\left.j \in \mathcal{N}_{0}^{(m)}(v)\right\}$. Let $k \in \mathcal{N}_{0}^{(m)}(w v)$.
i) If $1 \leq k \leq a$, then $w_{k}=0, w_{1} \cdots w_{k-1} 1 \in \Lambda^{(m), *}$ and we get $k \in \mathcal{N}_{0}^{(m)}(w)$.
ii) If $a+1 \leq k \leq a+b$, then $v_{k-a}=0$ and $w_{1} \cdots w_{a} v_{1} \cdots v_{k-a-1} 1 \in \Lambda^{(m), *}$. It follows from $v_{1} \cdots v_{k-a-1} 1 \in \Lambda^{(m), *}$ that $k-a \in \mathcal{N}_{0}^{(m)}(v)$ and $k \in \mathcal{N}_{0}^{(m)}(v)+a$.
(2) Prove $N_{0}^{(m)}(w)+N_{0}^{(m)}(v) \leq N_{0}^{(m)}(w v)+1$.

When $v=1^{b}$, we get $N_{0}^{(m)}(v)=0$ and then the conclusion follows immediately from $N_{0}^{(m)}(w) \leq N_{0}^{(m)}(w v)$. Thus it suffices to consider $v \neq 1^{b}$ in the following. Let $s \in$ $\{1, \cdots, b\}$ be the smallest such that $v_{1}=\cdots=v_{s-1}=1$ and $v_{s}=0$. In order to get the conclusion, it suffices to show $\mathcal{N}_{0}^{(m)}(w) \cup\left(a+\mathcal{N}_{0}^{(m)}(v)\right) \subset \mathcal{N}_{0}^{(m)}(w v) \cup\{a+s\}$. Since $\mathcal{N}_{0}^{(m)}(w) \subset \mathcal{N}_{0}^{(m)}(w v)$, we only need to prove $\left(a+\mathcal{N}_{0}^{(m)}(v)\right) \subset \mathcal{N}_{0}^{(m)}(w v) \cup\{a+s\}$. Let $k \in \mathcal{N}_{0}^{(m)}(v) \backslash\{s\}$. It suffices to check $a+k \in \mathcal{N}_{0}^{(m)}(w v)$. By $v_{k}=0$, we only need to prove $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1} 1 \in \Lambda^{(m), *}$. (By contradiction) Assume $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1} 1 \notin \Lambda^{(m), *}$. Then $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1} 1$ contains 0^{m} or 1^{m}.
i) If $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1} 1$ contains 0^{m}, then $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1}$ contains 0^{m}. This contradicts $w v \in \Lambda^{(m), *}$.
ii) If $w_{1} \cdots w_{a} v_{1} \cdots v_{k-1} 1$ contains 1^{m}, by $k \geq s+1$, we know that

$$
w_{1} \cdots w_{a} v_{1} \cdots v_{s-1} 0 v_{s+1} \cdots v_{k-1} 1
$$

contains 1^{m}. Thus $w_{1} \cdots w_{a} v_{1} \cdots v_{s-1}$ contains 1^{m} or $v_{s+1} \cdots v_{k-1} 1$ contains 1^{m}. But $w_{1} \cdots w_{a} v_{1} \cdots v_{s-1}$ contains 1^{m} will contradict $w v \in \Lambda^{(m), *}$, and $v_{s+1} \cdots v_{k-1} 1$ contains 1^{m} will imply $v_{1} \cdots v_{k-1} 1$ contains 1^{m} which contradicts $k \in \mathcal{N}_{0}^{(m)}(v)$.
(2) follows in the same way as (1).

Proposition 3.3. Let $m \geq 3$ be an integer and $w \in \Lambda^{(m), *}$. Then
(1) $m \cdot|w|_{0} \leq(m-1) N_{0}^{(m)}(w)+|w|$;
(2) $m \cdot|w|_{1} \leq(m-1) N_{1}^{(m)}(w)+|w|$.

Proof. (1) Let $n=|w|$. If $n \leq m-1$, the conclusion follows immediately from $N_{0}^{(m)}(w)=$ $|w|_{0}$. In the following, we assume $n \geq m$. Recall

$$
\mathcal{N}_{0}^{(m)}(w)=\left\{k: 1 \leq k \leq n, w_{k}=0, w_{1} \cdots w_{k-1} 1 \in \Lambda^{(m), *}\right\} \quad \text { and } \quad N_{0}^{(m)}(w)=\# \mathcal{N}_{0}^{(m)}(w)
$$

We define
$\mathcal{N}_{1^{m-1} 0}^{(m)}(w):=\left\{k: m \leq k \leq n, w_{k-m+1} \cdots w_{k-1} w_{k}=1^{m-1} 0\right\} \quad$ and $\quad N_{1^{m-1} 0}^{(m)}:=\# \mathcal{N}_{1^{m-1} 0}^{(m)}(w)$.
(1) Prove $\left\{k: 1 \leq k \leq n, w_{k}=0\right\}=\mathcal{N}_{0}^{(m)}(w) \cup \mathcal{N}_{1^{m-1} 0}^{(m)}(w)$.

Obvious.

Let $k \in\{1, \cdots, n\}$ such that $w_{k}=0$. If $k \notin \mathcal{N}_{0}^{(m)}(w)$, then $k \geq m$ and $w_{1} \cdots w_{k-1} 1 \notin \Lambda^{(m), *}$. By $w_{1} \cdots w_{k-1} \in \Lambda^{(m), *}$, we get $w_{k-m+1} \cdots w_{k-1}=1^{m-1}$. This implies $k \in \mathcal{N}_{1^{m-1} 0}^{(m)}(w)$.
(2) Prove $\mathcal{N}_{0}^{(m)}(w) \cap \mathcal{N}_{1^{m-1} 0}^{(m)}(w)=\varnothing$.
(By contradiction) Assume that there exists $k \in \mathcal{N}_{0}^{(m)}(w) \cap \mathcal{N}_{1^{m-1} 0}^{(m)}(w)$. Then $k \geq m$, $w_{k-m+1} \cdots w_{k-1}=1^{m-1}$ and $w_{1} \cdots w_{k-1} 1 \in \Lambda^{(m), *}$. These imply $w_{1} \cdots w_{k-m} 1^{m} \in$ $\Lambda^{(m), *}$, which contradicts the definition of $\Lambda^{(m), *}$.
Combining (1) and (2), we get $|w|_{0}=N_{0}^{(m)}(w)+N_{1_{m-1}}^{(m)}(w)$. It follows from $(m-1) N_{1_{m-1}}^{(m)}(w) \leq$ $|w|_{1}=|w|-|w|_{0}$ that $(m-1)\left(|w|_{0}-N_{0}^{(m)}(w)\right) \leq|w|-|w|_{0}$, i.e., $m \cdot|w|_{0} \leq(m-1) N_{0}^{(m)}(w)+|w|$.
(2) follows in the same way as (1).

4. BERNOULLI-TYPE MEASURES ON $\Lambda^{(m)}$

Let $m \geq 3$ be an integer, $\mathcal{B}\left(\Lambda^{(m)}\right)$ be the Borel sigma-algebra on $\Lambda^{(m)}$ (equipped with the usual metric d_{2}) and $p \in(0,1)$. We define the $(p, 1-p)$ Bernoulli-type measure μ_{p} on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$ as follows:
I. Let

$$
\mu_{p}(\varnothing)=0, \quad \mu_{p}\left(\Lambda^{(m)}\right)=1, \quad \mu_{p}[0]=p, \quad \text { and } \quad \mu_{p}[1]=1-p .
$$

II. Suppose μ_{p} has been defined for all cylinders of order $n \in \mathbb{N}$. For any $w \in \Lambda^{(m), n}$, if $w 0, w 1 \in \Lambda^{(m), n+1}$, we define

$$
\mu_{p}[w 0]:=p \mu_{p}[w] \quad \text { and } \quad \mu_{p}[w 1]:=(1-p) \mu_{p}[w] ;
$$

if $w 0 \in \Lambda^{(m), n+1}$ but $w 1 \notin \Lambda^{(m), n+1}$, then $[w 1]=\varnothing,[w 0]=[w]$ and naturally we have

$$
\mu_{p}[w 0]=\mu_{p}[w] ;
$$

if $w 1 \in \Lambda^{(m), n+1}$ but $w 0 \notin \Lambda^{(m), n+1}$, then $[w 0]=\varnothing,[w 1]=[w]$ and naturally we have

$$
\mu_{p}[w 1]=\mu_{p}[w] .
$$

III. By Carathéodory's measure extension theorem, we uniquely extend μ_{p} from its definition on the family of cylinders to become a measure on $\mathcal{B}\left(\Lambda^{(m)}\right)$.

Remark 4.1. By the definition of μ_{p}, we have

$$
\mu_{p}[w]=p^{N_{0}^{(m)}(w)}(1-p)^{N_{1}^{(m)}(w)} \quad \text { for all } w \in \Lambda^{(m), *} .
$$

Note that μ_{p} is not σ-invariant. In fact, $\mu_{p}\left[0^{m-2} 1\right]=p^{m-2}(1-p)$ but
$\mu_{p}\left(\sigma^{-1}\left[0^{m-2} 1\right]\right)=\mu_{p}\left[0^{m-1} 1\right]+\mu_{p}\left[10^{m-2} 1\right]=p^{m-1}+p^{m-2}(1-p)^{2} \neq p^{m-2}(1-p)$ for all $p \in(0,1)$.
The main result in this section is the following.
Theorem 4.2. Let $m \geq 3$ be an integer and $p \in(0,1)$. Then there exists a unique σ-invariant ergodic probability measure λ_{p} on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right.$) equivalent to μ_{p}, where λ_{p} is defined by

$$
\lambda_{p}(B):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \sigma^{k} \mu_{p}(B) \quad \text { for } B \in \mathcal{B}\left(\Lambda^{(m)}\right)
$$

The proof is based on the following lemmas.
Lemma 4.3. Let $m \geq 3$ be an integer, $p \in(0,1)$ and $w, v \in \Lambda^{(m), *}$ such that $w v \in \Lambda^{(m), *}$. Then

$$
\mu_{p}[w] \mu_{p}[v] \leq \mu_{p}[w v] \leq p^{-1}(1-p)^{-1} \mu_{p}[w] \mu_{p}[v] .
$$

Proof. It follows from Remark 4.1 and Proposition 3.2.
Lemma 4.4. Let $m \geq 3$ be an integer and $p \in(0,1)$. Then there exists a constant $c>1$ such that

$$
c^{-1} \mu_{p}(B) \leq \sigma^{k} \mu_{p}(B) \leq c \mu_{p}(B)
$$

for all $k \in \mathbb{N}$ and $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$.

Proof. Let $c=p^{-2}(1-p)^{-2}>1$.
(1) Prove $c^{-1} \mu_{p}[w] \leq \sigma^{k} \mu_{p}[w] \leq c \mu_{p}[w]$ for any $k \in \mathbb{N}$ and $w \in \Lambda^{(m), *}$.

Fix $w \in \Lambda^{(m), *}$ and $k \in \mathbb{N}$. Note that

$$
\sigma^{-k}[w]=\bigcup_{u_{1} \cdots u_{k} w \in \Lambda^{(m), *}}\left[u_{1} \cdots u_{k} w\right]
$$

is a disjoint union.
(1) Estimate the upper bound of $\sigma^{k} \mu_{p}[w]$:

$$
\begin{aligned}
\mu_{p} \sigma^{-k}[w] & =\sum_{u_{1} \cdots u_{k} w \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} w\right] \\
& \stackrel{(\star)}{\leq} \sum_{u_{1} \cdots u_{k} w \in \Lambda^{(m), *}} p^{-1}(1-p)^{-1} \mu_{p}\left[u_{1} \cdots u_{k}\right] \mu_{p}[w] \\
& \leq p^{-1}(1-p)^{-1} \sum_{u_{1} \cdots u_{k} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k}\right] \mu_{p}[w] \\
& =p^{-1}(1-p)^{-1} \mu_{p}[w] \\
& \leq c \mu_{p}[w]
\end{aligned}
$$

where (\star) follows from Lemma 4.3.
(2) Estimate the lower bound of $\sigma^{k} \mu_{p}[w]$:
i) Prove $\mu_{p} \sigma^{-k}[0] \geq p^{2}(1-p)$ and $\mu_{p} \sigma^{-k}[1] \geq p(1-p)^{2}$. In fact, when $k=1$, the conclusion is obvious. When $k \geq 2$, we have

$$
\begin{aligned}
\mu_{p} \sigma^{-k}[0] & =\sum_{u_{1} \cdots u_{k} 0 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 0\right] \\
& \geq \sum_{u_{1} \cdots u_{k-1} \bar{u}_{k-1} 0 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} \bar{u}_{k-1} 0\right] \\
& \stackrel{(\star)}{=} \sum_{u_{1} \cdots u_{k-1} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} \bar{u}_{k-1} 0\right] \\
& \stackrel{(\star \star)}{\geq} \mu_{p}[0] \sum_{u_{1} \cdots u_{k-1} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1}\right] \mu_{p}\left[\bar{u}_{k-1}\right] \\
& \geq p \sum_{u_{1} \cdots u_{k-1} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1}\right] \cdot p(1-p) \\
& =p^{2}(1-p),
\end{aligned}
$$

where (\star) follows from

$$
u_{1} \cdots u_{k-1} \bar{u}_{k-1} 0 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-1} \in \Lambda^{(m), *}
$$

and ($(\star \star)$ follows from Lemma 4.3. In the same way, we can get $\mu_{p} \sigma^{-k}[1] \geq p(1-p)^{2}$.
ii) Prove $\mu_{p} \sigma^{-k}[w] \geq c^{-1} \mu_{p}[w]$. In fact, when $w_{1}=0$, we have

$$
\begin{aligned}
\mu_{p} \sigma^{-k}[w] & =\sum_{u_{1} \cdots u_{k} w \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} w\right] \\
& \geq \sum_{u_{1} \cdots u_{k-1} 1 w \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 1 w\right] \\
& \stackrel{(\star)}{=} \sum_{u_{1} \cdots u_{k-1} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 1 w\right] \\
& \stackrel{(\star \star)}{\geq} \sum_{u_{1} \cdots u_{k-1} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 1\right] \mu_{p}[w] \\
& =\mu_{p} \sigma^{-(k-1)}[1] \mu_{p}[w] \\
& \stackrel{(\star \star \star)}{\geq} p(1-p)^{2} \mu_{p}[w] .
\end{aligned}
$$

where (\star) follows from $w_{1}=0$ and $w \in \Lambda^{(m), *,}(\star \star)$ follows from Lemma 4.3 and $(\star \star \star)$ follows from i). When $w_{1}=1$, in the same way, we can get $\mu_{p} \sigma^{-k}[w] \geq$ $p^{2}(1-p) \mu_{p}[w]$.
(2) Prove $c^{-1} \mu_{p}(B) \leq \sigma^{k} \mu_{p}(B) \leq c \mu_{p}(B)$ for all $k \in \mathbb{N}$ and $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$. Let

$$
\begin{gathered}
\mathcal{C}:=\left\{[w]: w \in \Lambda^{(m), *}\right\} \cup\{\varnothing\} \\
\mathcal{C}_{\Sigma f}:=\left\{\bigcup_{i=1}^{n} C_{i}: C_{1}, \cdots, C_{n} \in \mathcal{C} \text { are disjoint, } n \in \mathbb{N}\right\}
\end{gathered}
$$

and

$$
\mathcal{G}:=\left\{B \in \mathcal{B}\left(\Lambda^{(m)}\right): c^{-1} \mu_{p}(B) \leq \sigma^{k} \mu_{p}(B) \leq c \mu_{p}(B) \text { for all } k \in \mathbb{N}\right\} .
$$

Then \mathcal{C} is a semi-algebra on $\Lambda^{(m)}, \mathcal{C}_{\Sigma f}$ is the algebra generated by \mathcal{C} (by Lemma 2.4 (1)) and \mathcal{G} is a monotone class. Since in (1) we have already proved $\mathcal{C} \subset \mathcal{G}$, it follows that $\mathcal{C}_{\Sigma f} \subset \mathcal{G} \subset \mathcal{B}\left(\Lambda^{(m)}\right)$. Noting that $\mathcal{B}\left(\Lambda^{(m)}\right)$ is the smallest sigma-algebra containing $\mathcal{C}_{\Sigma f}$, it follows from the Monotone Class Theorem (Theorem 2.5) that $\mathcal{G}=\mathcal{B}\left(\Lambda^{(m)}\right)$.
Lemma 4.5 ([14]). Let (X, \mathcal{B}, μ) be a probability space and T be a measurable transformation on X satisfying $\mu\left(T^{-1} B\right)=0$ whenever $B \in \mathcal{B}$ with $\mu(B)=0$. If there exists a constant $M>0$ such that for any $B \in \mathcal{B}$ and any $n \in \mathbb{N}$,

$$
\frac{1}{n} \sum_{k=0}^{n-1} \mu\left(T^{-k} B\right) \leq M \mu(B)
$$

then for any real integrable function f on X, the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)
$$

exists for μ-almost every $x \in X$.
Lemma 4.6. Let $m \geq 3$ be an integer and $p \in(0,1)$. For any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$ satisfying $\sigma^{-1} B=B$, we have $\mu_{p}(B)=0$ or 1 .
Proof. Let $\alpha=p^{2}(1-p)^{2}>0$.
(1) Let $w \in \Lambda^{(m), *}$ and $n=|w|$. For any $A \in \mathcal{B}\left(\Lambda^{(m)}\right)$, we prove $\alpha \mu_{p}[w] \mu_{p}(A) \leq \mu_{p}([w] \cap$ $\left.\sigma^{-(n+2)} A\right)$.
(1) For any $v \in \Lambda^{(m), *}$, prove $\alpha \mu_{p}[w] \mu_{p}[v] \leq \mu_{p}\left([w] \cap \sigma^{-(n+2)}[v]\right)$.

In fact, it follows from $w \bar{w}_{n} \bar{v}_{1} v \in \Lambda^{(m), *}$ and $[w] \cap \sigma^{-(n+2)}[v] \supset\left[w \bar{w}_{n} \bar{v}_{1} v\right]$ that

$$
\mu_{p}\left([w] \cap \sigma^{-(n+2)}[v]\right) \geq \mu_{p}\left[w \bar{w}_{n} \bar{v}_{1} v\right] \stackrel{(\star)}{\geq} \mu_{p}[w] \mu_{p}\left[\bar{w}_{n}\right] \mu_{p}\left[\bar{v}_{1}\right] \mu_{p}[v] \geq(p(1-p))^{2} \mu_{p}[w] \mu_{p}[v]
$$

where (\star) follows from Lemma 4.3.
(2) Let

$$
\mathcal{C}:=\left\{[v]: v \in \Lambda^{(m), *}\right\} \cup\{\varnothing\}
$$

and

$$
\mathcal{G}_{w}:=\left\{A \in \mathcal{B}\left(\Lambda^{(m)}\right): \alpha \mu_{p}[w] \mu_{p}(A) \leq \mu_{p}\left([w] \cap \sigma^{-(n+2)} A\right)\right\} .
$$

Then \mathcal{G}_{w} is a monotone class. Since in (1) we have already proved $\mathcal{C} \subset \mathcal{G}_{w}$, in the same way as the end of the proof of Lemma 4.4, we get $\mathcal{G}_{w}=\mathcal{B}\left(\Lambda^{(m)}\right)$.
(2) We use B^{c} to denote the complement of B in $\Lambda^{(m)}$. For any $\varepsilon>0$, by Lemma 2.4, there exist finitely many disjoint cylinders $\left\{\left[w^{(i)}\right]\right\} \subset \mathcal{C}$ such that $\mu_{p}\left(B^{c} \Delta E_{\varepsilon}\right)<\varepsilon$ where $E_{\varepsilon}=\bigcup_{i}\left[w^{(i)}\right]$.
(3) Let $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$ with $\sigma^{-1} B=B$. For any $w \in \Lambda^{(m), *}$, by $B=\sigma^{-(|w|+2)} B$ and (1) we get

$$
\alpha \mu_{p}(B) \mu_{p}[w] \leq \mu\left(\sigma^{-(|w|+2)} B \cap[w]\right)=\mu_{p}(B \cap[w])
$$

Thus

$$
\alpha \mu_{p}(B) \mu_{p}\left(E_{\varepsilon}\right)=\sum_{i} \alpha \mu_{p}(B) \mu_{p}\left[w^{(i)}\right] \leq \sum_{i} \mu_{p}\left(B \cap\left[w^{(i)}\right]\right)=\mu_{p}\left(B \cap \bigcup_{i}\left[w^{(i)}\right]\right)=\mu_{p}\left(B \cap E_{\varepsilon}\right) .
$$

Let $a=\mu_{p}\left(\left(B \cup E_{\varepsilon}\right)^{c}\right), b=\mu_{p}\left(B \cap E_{\varepsilon}\right), c=\mu_{p}\left(B \backslash E_{\varepsilon}\right)$ and $d=\mu_{p}\left(E_{\varepsilon} \backslash B\right)$. Then we already have

$$
\alpha(b+c)(b+d) \leq b, \quad a+b<\varepsilon\left(\text { by } \mu_{p}\left(B^{c} \Delta E_{\varepsilon}\right)<\varepsilon\right) \quad \text { and } \quad a+b+c+d=1 .
$$

It follows from

$$
\alpha(b+c)(a+d-\varepsilon) \leq \alpha(b+c)(b+d) \leq b<\varepsilon
$$

that

$$
(b+c)(a+d)<\left(\frac{1}{\alpha}+b+c\right) \varepsilon \leq\left(\frac{1}{\alpha}+1\right) \varepsilon
$$

This implies $\mu_{p}(B) \mu_{p}\left(B^{c}\right) \leq\left(\frac{1}{\alpha}+1\right) \varepsilon$ for any $\varepsilon>0$. Therefore $\mu_{p}(B)\left(1-\mu_{p}(B)\right)=0$ and then $\mu_{p}(B)=0$ or 1 .

Proof of Theorem 4.2. (1) For any $n \in \mathbb{N}$ and $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$, define

$$
\lambda_{p}^{n}(B):=\frac{1}{n} \sum_{k=0}^{n-1} \mu_{p}\left(\sigma^{-k} B\right)
$$

Then λ_{p}^{n} is a probability measure on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$. By Lemma 4.4, there exists $c>0$ such that

$$
\begin{equation*}
c^{-1} \mu_{p}(B) \leq \lambda_{p}^{n}(B) \leq c \mu_{p}(B) \quad \text { for any } B \in \mathcal{B}\left(\Lambda^{(m)}\right) \text { and } n \in \mathbb{N} . \tag{4.1}
\end{equation*}
$$

(2) For any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$, prove that $\lim _{n \rightarrow \infty} \lambda_{p}^{n}(B)$ exists.

Let $\mathbb{1}_{B}: \Lambda^{(m)} \rightarrow\{0,1\}$ be defined by

$$
\mathbb{1}_{B}(w):= \begin{cases}1 & \text { if } w \in B \\ 0 & \text { if } w \notin B\end{cases}
$$

for any $w \in \Lambda^{(m)}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lambda_{p}^{n}(B) & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int \mathbb{1}_{\sigma^{-k} B} d \mu_{p} \\
& =\lim _{n \rightarrow \infty} \int \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right) d \mu_{p}(w) \\
& =\int \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right) d \mu_{p}(w)
\end{aligned}
$$

where the last equality is an application of the dominated convergence theorem, in which the μ_{p}-a.e. (almost every) existence of $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right)$ follows from Lemma 4.5, Lemma 4.4 and (4.1).
(3) For any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$, define

$$
\lambda_{p}(B):=\lim _{n \rightarrow \infty} \lambda_{p}^{n}(B)
$$

By the well known Vitali-Hahn-Saks Theorem, λ_{p} is a probability measure on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$.
(4) The fact $\lambda_{p} \sim \mu_{p}$ on $\mathcal{B}\left(\Lambda^{(m)}\right)$ follows from (4.1) and the definition of λ_{p}.
(5) Prove that λ_{p} is σ-invariant.

In fact, for any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$ and $n \in \mathbb{N}$, we have

$$
\lambda_{p}^{n}\left(\sigma^{-1} B\right)=\frac{1}{n} \sum_{k=1}^{n} \mu_{p}\left(\sigma^{-k} B\right)=\frac{1}{n} \sum_{k=0}^{n} \mu_{p}\left(\sigma^{-k} B\right)-\frac{\mu_{p}(B)}{n}=\frac{n+1}{n} \lambda_{p}^{n+1}(B)-\frac{\mu_{p}(B)}{n} .
$$

Let $n \rightarrow \infty$, we get $\lambda_{p}\left(\sigma^{-1} B\right)=\lambda_{p}(B)$.
(6) Prove that $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right), \lambda_{p}, \sigma\right)$ is ergodic.

In fact, for any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$ satisfying $\sigma^{-1} B=B$, by Lemma 4.6 we get $\mu_{p}(B)=0$ or 1 , which implies $\lambda_{p}(B)=0$ or 1 since $\lambda_{p} \sim \mu_{p}$.
(7) Prove that such λ_{p} is unique on $\mathcal{B}\left(\Lambda^{(m)}\right)$.

Let λ_{p}^{\prime} be a σ-invariant ergodic probability measure on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$ equivalent to μ_{p}. Then for any $B \in \mathcal{B}\left(\Lambda^{(m)}\right)$, by the Birkhoff Ergodic Theorem, we get

$$
\lambda_{p}^{\prime}(B)=\int \mathbb{1}_{B} d \lambda_{p}^{\prime}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right) \quad \text { for } \lambda_{p}^{\prime} \text {-a.e. } w \in \Lambda^{(m)}
$$

and

$$
\lambda_{p}(B)=\int \mathbb{1}_{B} d \lambda_{p}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right) \quad \text { for } \lambda_{p} \text {-a.e. } w \in \Lambda^{(m)} .
$$

Since $\lambda_{p}^{\prime} \sim \mu_{p} \sim \lambda_{p}$, there exists $w \in \Lambda^{(m)}$ such that $\lambda_{p}^{\prime}(B)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{B}\left(\sigma^{k} w\right)=$ $\lambda_{p}(B)$. It means that λ_{p}^{\prime} and λ_{p} are the same on $\mathcal{B}\left(\Lambda^{(m)}\right)$.

5. Proof of the main result

For any $a \in[0,1]$, recall the definition of the global frequency sets G_{a}, \underline{G}_{a} and \bar{G}_{a} from the introduction. The following lemma follows immediately from (1.1), [25, Theorem 6.1] and the invariance of Hausdorff dimension under the projection π_{2}. (See also [19, Theorem 3.3].)
Lemma 5.1. For any $a \in[0,1]$, we have

$$
\operatorname{dim}_{H}\left(G_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\underline{G}_{a}, d_{2}\right)=\operatorname{dim}_{H}\left(\bar{G}_{a}, d_{2}\right)=\frac{-a \log a-(1-a) \log (1-a)}{\log 2} .
$$

To prove Theorem 1.1, we also need the next two lemmas, which will be proved later.
Lemma 5.2. Let $m \geq 3$ be an integer, $p \in(0,1)$ and λ_{p} be the measure on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$ defined in Theorem 4.2. Then

$$
\lambda_{p}[0]=\frac{p-p^{m}}{1-p^{m}-(1-p)^{m}} .
$$

For any integer $m \geq 3$, we recall

$$
\Lambda^{(m)}=\left\{w \in\{0,1\}^{\mathbb{N}}: w \text { does not contain } 0^{m} \text { or } 1^{m}\right\}
$$

and

$$
\Lambda_{a}^{(m)}=\Lambda^{(m)} \cap G_{a} \quad \text { for } a \in[0,1] .
$$

Lemma 5.3. Let $a \in(0,1)$ and integer $m \geq 3$ be large enough such that $\frac{1}{m}<a<1-\frac{1}{m}$. Define $f_{m}:(0,1) \rightarrow \mathbb{R}$ by

$$
f_{m}(x):=\frac{x-x^{m}}{1-x^{m}-(1-x)^{m}} \quad \text { for } x \in(0,1) .
$$

Then there exists $q_{m} \in(0,1)$ such that $f_{m}\left(q_{m}\right)=a$ and

$$
\operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right) \geq \frac{-(m a-1) \log q_{m}-(m-m a-1) \log \left(1-q_{m}\right)}{(m-1) \log 2} .
$$

Moreover, $q_{m} \rightarrow$ a as $m \rightarrow \infty$.
Proof of Theorem 1.1. First we prove (2). Let $a \in[0,1]$. Since it is straightforward to check $\Gamma \subset \Lambda$, we have

$$
\Gamma_{a} \subset \Lambda_{a} \subset G_{a}, \quad \Gamma_{a} \subset \underline{\Gamma}_{a} \subset \underline{\Lambda}_{a} \subset \underline{G}_{a} \quad \text { and } \quad \Gamma_{a} \subset \bar{\Gamma}_{a} \subset \bar{\Lambda}_{a} \subset \bar{G}_{a}
$$

By Lemma 5.1, we only need to prove

$$
\begin{equation*}
\operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right) \geq \frac{-a \log a-(1-a) \log (1-a)}{\log 2} \tag{5.1}
\end{equation*}
$$

If $a=0$ or 1 , this follows immediately from $0 \log 0:=0$ and $1 \log 1=0$. So we only need to consider $0<a<1$ in the following. For any integer $m \geq 3$, we define

$$
\Theta_{a}^{(m)}:=\left\{w \in G_{a}: w_{1} \cdots w_{2 m}=1^{2 m}, w_{k m+1} \cdots w_{k m+m} \notin\left\{0^{m}, 1^{m}\right\} \text { for all } k \geq 2\right\}
$$

and

$$
\Xi_{a}^{(m)}:=\left\{w \in G_{a}: w_{k m+1} \cdots w_{k m+m} \notin\left\{0^{m}, 1^{m}\right\} \text { for all } k \geq 0\right\}
$$

Then

$$
\begin{equation*}
\operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right) \stackrel{(\star)}{\geq} \operatorname{dim}_{H}\left(\Theta_{a}^{(m)}, d_{2}\right) \stackrel{(\star \star)}{\geq} \operatorname{dim}_{H}\left(\Xi_{a}^{(m)}, d_{2}\right) \stackrel{(\star \star \star)}{\geq} \operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right) \tag{5.2}
\end{equation*}
$$

where (\star) follows from $\Gamma_{a} \supset \Theta_{a}^{(m)},(\star \star \star)$ follows from $\Xi_{a}^{(m)} \supset \Lambda_{a}^{(m)}$, and ($(\star$) follows from $\sigma^{2 m}\left(\Theta_{a}^{(m)}\right)=\Xi_{a}^{(m)}$ and the fact that $\sigma^{2 m}$ is Lipschitz continuous (since $d_{2}\left(\sigma^{2 m}(w), \sigma^{2 m}(v)\right) \leq$ $2^{2 m} d_{2}(w, v)$ for all $\left.w, v \in\{0,1\}^{\mathbb{N}}\right)$. By (5.2) and Lemma 5.3, for m large enough, there exists $q_{m} \in(0,1)$ such that $q_{m} \rightarrow a$ (as $m \rightarrow \infty$) and

$$
\operatorname{dim}_{H}\left(\Gamma_{a}, d_{2}\right) \geq \frac{-(m a-1) \log q_{m}-(m-m a-1) \log \left(1-q_{m}\right)}{(m-1) \log 2}
$$

Let $m \rightarrow \infty$, we get (5.1).
Finally we deduce (1) from (2). In fact, since (2) implies $\operatorname{dim}_{H}\left(\Gamma_{\frac{1}{2}}, d_{2}\right)=1$, it follows from $\Gamma_{\frac{1}{2}} \subset \Gamma \subset \Lambda \subset\{0,1\}^{\mathbb{N}}$ that $\operatorname{dim}_{H}\left(\Gamma, d_{2}\right)=\operatorname{dim}_{H}\left(\Lambda, d_{2}\right)=1$.

Finally we prove Lemmas 5.2 and 5.3 to end this paper.
Proof of Lemma 5.3. Since f_{m} is continuous on (0,1), $\lim _{x \rightarrow 0^{+}} f_{m}(x)=\frac{1}{m}, \lim _{x \rightarrow 1^{-}} f_{m}(x)=$ $1-\frac{1}{m}$ and $\frac{1}{m}<a<1-\frac{1}{m}$, there exists $q_{m} \in(0,1)$ such that $f_{m}\left(q_{m}\right)=a$.
(1) Prove $q_{m} \rightarrow a$ as $m \rightarrow \infty$. Notice that

$$
\left|q_{m}-a\right|=\left|q_{m}-f_{m}\left(q_{m}\right)\right|=\left|\frac{q_{m}^{m}\left(1-q_{m}\right)-q_{m}\left(1-q_{m}\right)^{m}}{1-q_{m}^{m}-\left(1-q_{m}\right)^{m}}\right| .
$$

Let

$$
g_{m}(x):=\frac{x^{m}(1-x)-x(1-x)^{m}}{1-x^{m}-(1-x)^{m}} \quad \text { for } x \in(0,1)
$$

Then

$$
\left|q_{m}-a\right|=\left|g_{m}\left(q_{m}\right)\right| \leq \sup _{x \in(0,1)}\left|g_{m}(x)\right| .
$$

In order to prove $q_{m} \rightarrow a$, it suffices to check $\left|g_{m}(x)\right| \leq \frac{1}{m}$ for all $x \in(0,1)$. That is,

$$
m \cdot\left|x^{m}(1-x)-x(1-x)^{m}\right| \leq 1-x^{m}-(1-x)^{m} \quad \text { for all } x \in(0,1)
$$

(1) When $x \in\left(0, \frac{1}{2}\right]$, we get $x^{m}(1-x)-x(1-x)^{m} \leq 0$. It suffices to prove $(m-m x-$ 1) $x^{m}+1-(m x+1)(1-x)^{m} \geq 0$. Since $m-m x-1>0$, we only need to prove $h_{m}(x):=(m x+1)(1-x)^{m} \leq 1$ for all $x \in\left[0, \frac{1}{2}\right]$. This follows from $h_{m}(0)=1$ and $h_{m}^{\prime}(x)=-m(m+1) x(1-x)^{m-1} \leq 0$ for all $x \in\left[0, \frac{1}{2}\right]$.
(2) When $x \in\left(\frac{1}{2}, 1\right)$, we get $x^{m}(1-x)-x(1-x)^{m} \geq 0$. It suffices to prove $(m x-$ 1) $(1-x)^{m}+1-(1+m-m x) x^{m} \geq 0$. Since $m x-1>0$, we only need to prove $h_{m}(x):=(1+m-m x) x^{m} \leq 1$ for all $x \in\left[\frac{1}{2}, 1\right]$. This follows from $h_{m}(1)=1$ and $h_{m}^{\prime}(x)=m(m+1)(1-x) x^{m-1} \geq 0$ for all $x \in\left[\frac{1}{2}, 1\right]$.
(2) We apply Proposition 2.6 to get the lower bound of $\operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right)$. Let $\mu_{q_{m}}$ be the $\left(q_{m}, 1-q_{m}\right)$ Bernoulli-type measure on $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right)\right)$ defined in Section 4.
(1) The fact that $\Lambda_{a}^{(m)}=\Lambda^{(m)} \cap G_{a}$ is a Borel set in $\left(\Lambda^{(m)}, d_{2}\right)$ follows from the fact that G_{a} is a Borel set in $\left(\{0,1\}^{\mathbb{N}}, d_{2}\right)$.
(2) Prove $\mu_{q_{m}}\left(\Lambda_{a}^{(m)}\right)=1$.

Let $\lambda_{q_{m}}$ be the measure defined in Theorem 4.2 such that $\left(\Lambda^{(m)}, \mathcal{B}\left(\Lambda^{(m)}\right), \lambda_{q_{m}}, \sigma\right)$ is ergodic. It follows from the Birkhoff Ergodic Theorem that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{[0]}\left(\sigma^{k} w\right)=\int \mathbb{1}_{[0]} d \lambda_{q_{m}}=\lambda_{q_{m}}[0] \xlongequal[\text { Lemma } 5.2]{\text { by }} \frac{q_{m}-q_{m}^{m}}{1-q_{m}^{m}-\left(1-q_{m}\right)^{m}}=f_{m}\left(q_{m}\right)=a
$$

for $\lambda_{q_{m}}$-almost every $w \in \Lambda^{(m)}$. By $\frac{\left|w_{1} \cdots w_{n}\right| 0}{n}=\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{[0]}\left(\sigma^{k} w\right)$, we get

$$
\lim _{n \rightarrow \infty} \frac{\left|w_{1} \cdots w_{n}\right|_{0}}{n}=a \quad \text { for } \lambda_{q_{m}} \text {-almost every } w \in \Lambda^{(m)}
$$

which implies $\lambda_{q_{m}}\left(\Lambda_{a}^{(m)}\right)=1$. It follows from $\lambda_{q_{m}} \sim \mu_{q_{m}}$ that $\mu_{q_{m}}\left(\Lambda_{a}^{(m)}\right)=1$.
(3) For all $w \in \Lambda_{a}^{(m)}$, we have

$$
\begin{aligned}
& \varliminf_{r \rightarrow \infty} \frac{\log \mu_{q_{m}}(B(w, r))}{\log r} \\
& \stackrel{(\star)}{\geq} \quad \underset{n \rightarrow \infty}{\lim } \frac{\log \mu_{q_{m}}\left[w_{1} \cdots w_{n}\right]}{\log 2^{-n}} \\
& =\underline{\lim }_{n \rightarrow \infty} \frac{-\log q_{m}^{N_{0}^{(m)}\left(w_{1} \cdots w_{n}\right)}\left(1-q_{m}\right)^{N_{1}^{(m)}\left(w_{1} \cdots w_{n}\right)}}{n \log 2} \\
& \geq \frac{\lim _{n \rightarrow \infty} \frac{N_{0}^{(m)}\left(w_{1} \cdots w_{n}\right)}{n}\left(-\log q_{m}\right)+\underline{\lim }_{n \rightarrow \infty} \frac{N_{1}^{(m)}\left(w_{1} \cdots w_{n}\right)}{n}\left(-\log \left(1-q_{m}\right)\right)}{\log 2} \\
& \stackrel{(\star \star)}{\geq} \frac{\underline{\lim }_{n \rightarrow \infty}\left(\frac{m \cdot\left|w_{1} \cdots w_{n}\right|_{0}}{(m-1) n}-\frac{1}{m-1}\right)\left(-\log q_{m}\right)+\underline{\lim }_{n \rightarrow \infty}\left(\frac{m \cdot\left|w_{1} \cdots w_{n}\right|_{1}}{(m-1) n}-\frac{1}{m-1}\right)\left(-\log \left(1-q_{m}\right)\right)}{\log 2} \\
& \stackrel{(* \star \star)}{=} \frac{-(m a-1) \log q_{m}-(m-m a-1) \log \left(1-q_{m}\right)}{(m-1) \log 2}
\end{aligned}
$$

where $(\star \star \star)$ follows from $w \in \Lambda_{a}^{(m)},(\star \star)$ follows from Proposition 3.3 and (\star) can be proved as follows. For any $r \in(0,1)$, there exists $n=n(r) \in \mathbb{N}$ such that $\frac{1}{2^{n}} \leq r<\frac{1}{2^{n-1}}$. Then by $B(w, r)=\left[w_{1} \cdots w_{n}\right]$ and $\log \mu_{q_{m}}\left[w_{1} \cdots w_{n}\right]<0$, we get $\frac{\log \mu_{q_{m}}(B(w, r))}{\log r} \geq \frac{\log \mu_{q_{m}}\left[w_{1} \cdots w_{n}\right]}{\log 2^{-n}}$. (In fact, (\star) can take " $=$ " .)
Thus the lower bound of $\operatorname{dim}_{H}\left(\Lambda_{a}^{(m)}, d_{2}\right)$ follows from (1), (2), (3) and Proposition 2.6.
Proof of Lemma 5.2. By the definition of λ_{p}, we know

$$
\lambda_{p}[0]=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu_{p} \sigma^{-k}[0] .
$$

For any integer $k \geq 0$, let

$$
\begin{aligned}
a_{k}:=\mu_{p} \sigma^{-k}[0] & =\sum_{u_{1} \cdots u_{k} 0 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 0\right], \quad b_{k}:=\mu_{p} \sigma^{-k}[1]=\sum_{u_{1} \cdots u_{k} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 1\right], \\
c_{k}:=\mu_{p} \sigma^{-k}[01] & =\sum_{u_{1} \cdots u_{k} 01 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 01\right], \quad d_{k}:=\mu_{p} \sigma^{-k}[10]=\sum_{u_{1} \cdots u_{k} 10 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 10\right] .
\end{aligned}
$$

By Theorem 4.2, the following limits exist:

$$
\begin{aligned}
& a:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_{k}=\lambda_{p}[0], \quad b:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} b_{k}=\lambda_{p}[1], \\
& c:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} c_{k}=\lambda_{p}[01], \quad d:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} d_{k}=\lambda_{p}[10] .
\end{aligned}
$$

(1) We have $a+b=1$ since $\lambda_{p}[0]+\lambda_{p}[1]=\lambda_{p}\left(\Lambda^{(m)}\right)$.
(2) We have $c=d$ since $\lambda_{p}[00]+\lambda_{p}[01]=\lambda_{p}[0]=\lambda_{p} \sigma^{-1}[0]=\lambda_{p}[00]+\lambda_{p}[10]$.
(3) Prove $(1-p) a+p^{m-1} d=c$ and $p b+(1-p)^{m-1} c=d$.
(1) For $k \geq m$, we have

$$
a_{k}=d_{k-1}+p d_{k-2}+\cdots+p^{m-3} d_{k-m+2}+p^{m-2} d_{k-m+1}
$$

since

$$
\begin{aligned}
& \sum_{u_{1} \cdots u_{k} 0 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 0\right] \\
& =\sum_{u_{1} \cdots u_{k-1} 10 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 10\right]+\sum_{u_{1} \cdots u_{k-1} 00 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 00\right] \\
& =d_{k-1}+\sum_{u_{1} \cdots u_{k-2} 100 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 100\right]+\sum_{u_{1} \cdots u_{k-2} 000 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 000\right] \\
& \stackrel{(\star)}{=} d_{k-1}+\sum_{u_{1} \cdots u_{k-2} 10 \in \Lambda^{(m), *}} p \mu_{p}\left[u_{1} \cdots u_{k-2} 10\right]+\sum_{u_{1} \cdots u_{k-2} 000 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 000\right] \\
& =d_{k-1}+p d_{k-2}+\sum_{u_{1} \cdots u_{k-3} 1000 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-3} 1000\right]+\sum_{u_{1} \cdots u_{k-3} 0000 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-3} 0000\right] \\
& \stackrel{(\star \star)}{=} d_{k-1}+p d_{k-2}+\sum_{u_{1} \cdots u_{k-3} 10 \in \Lambda^{(m), *}} p^{2} \mu_{p}\left[u_{1} \cdots u_{k-3} 10\right]+\sum_{u_{1} \cdots u_{k-3} 0^{4} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-3} 0^{4}\right] \\
& = \\
& = \\
& =d_{k-1}+p d_{k-2}+\cdots+p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+2} 0^{m-1} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-m+2} 0^{m-1}\right] \\
& =d_{k-1}+p d_{k-2}+\cdots+p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+1} 10^{m-1} \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-m+1} 10^{m-1}\right] \\
& \left(\stackrel{\star \star *)}{=} d_{k-1}+p d_{k-2}+\cdots+p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+1} 10 \in \Lambda^{(m), *}} p^{m-2} \mu_{p}\left[u_{1} \cdots u_{k-m+1} 10\right]\right. \\
& =d_{k-1}+p d_{k-2}+\cdots+p^{m-3} d_{k-m+2}+p^{m-2} d_{k-m+1},
\end{aligned}
$$

where $(\star),(* *)$ and $(* * *)$ follow from

$$
\begin{aligned}
& u_{1} \cdots u_{k-2} 100 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-2} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-2} 101 \in \Lambda^{(m), *} \\
& u_{1} \cdots u_{k-3} 1000 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-3} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-3} 101, u_{1} \cdots u_{k-3} 1001 \in \Lambda^{(m), *}
\end{aligned}
$$

and

$$
\begin{aligned}
& u_{1} \cdots u_{k-m+1} 10^{m-1} \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-m+1} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-m+1} 101, u_{1} \cdots u_{k-m+1} 1001, \cdots, u_{1} \cdots u_{k-m+1} 10^{m-2} 1 \in \Lambda^{(m), *}
\end{aligned}
$$

respectively, recalling the definition of μ_{p}. (2) For $k \geq m$, we have

$$
c_{k}=(1-p) d_{k-1}+(1-p) p d_{k-2}+\cdots+(1-p) p^{m-3} d_{k-m+2}+p^{m-2} d_{k-m+1}
$$

since

$$
\begin{aligned}
& \sum_{u_{1} \cdots u_{k} 01 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k} 01\right] \\
& =\sum_{u_{1} \cdots u_{k-1} 101 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 101\right]+\sum_{u_{1} \cdots u_{k-1} 001 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 001\right] \\
& \stackrel{(\star)}{=} \sum_{u_{1} \cdots u_{k-1} 10 \in \Lambda^{(m), *}}(1-p) \mu_{p}\left[u_{1} \cdots u_{k-1} 10\right]+\sum_{u_{1} \cdots u_{k-1} 001 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-1} 001\right] \\
& =(1-p) d_{k-1}+\sum_{u_{1} \cdots u_{k-2} 1001 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 1001\right]+\sum_{u_{1} \cdots u_{k-2} 0001 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 0001\right] \\
& \stackrel{(\star \star)}{=}(1-p) d_{k-1}+\sum_{u_{1} \cdots u_{k-2} 10 \in \Lambda^{(m), *}} p(1-p) \mu_{p}\left[u_{1} \cdots u_{k-2} 10\right]+\sum_{u_{1} \cdots u_{k-2} 0^{3} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-2} 0^{3} 1\right] \\
& =(1-p) d_{k-1}+p(1-p) d_{k-2}+\sum_{u_{1} \cdots u_{k-3} 10^{3} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-3} 10^{3} 1\right]+\sum_{u_{1} \cdots u_{k-3} 0^{4} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-3} 0^{4} 1\right] \\
& =\cdots \\
& =(1-p) d_{k-1}+(1-p) p d_{k-2}+\cdots+(1-p) p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+2} 0^{m-1} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-m+2} 0^{m-1} 1\right] \\
& =(1-p) d_{k-1}+(1-p) p d_{k-2}+\cdots+(1-p) p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+1} 10^{m-1} 1 \in \Lambda^{(m), *}} \mu_{p}\left[u_{1} \cdots u_{k-m+1} 10^{m-1} 1\right] \\
& \stackrel{(\star \star \star)}{=}(1-p) d_{k-1}+(1-p) p d_{k-2}+\cdots+(1-p) p^{m-3} d_{k-m+2}+\sum_{u_{1} \cdots u_{k-m+1} 10 \in \Lambda^{(m), *}} p^{m-2} \mu_{p}\left[u_{1} \cdots u_{k-m+1} 10\right] \\
& =(1-p) d_{k-1}+(1-p) p d_{k-2}+\cdots+(1-p) p^{m-3} d_{k-m+2}+p^{m-2} d_{k-m+1} \text {, }
\end{aligned}
$$

where $(\star),(\star \star)$ and $(\star \star \star)$ follow from

$$
\begin{aligned}
& u_{1} \cdots u_{k-1} 101 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-1} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-1} 100 \in \Lambda^{(m), *} \\
& u_{1} \cdots u_{k-2} 1001 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-2} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-2} 101, u_{1} \cdots u_{k-2} 1000 \in \Lambda^{(m), *}
\end{aligned}
$$

and

$$
\begin{aligned}
& u_{1} \cdots u_{k-m+1} 10^{m-1} 1 \in \Lambda^{(m), *} \Leftrightarrow u_{1} \cdots u_{k-m+1} 10 \in \Lambda^{(m), *} \\
& \Rightarrow u_{1} \cdots u_{k-m+1} 101, \cdots, u_{1} \cdots u_{k-m+1} 10^{m-2} 1 \in \Lambda^{(m), *} \\
& \text { but } u_{1} \cdots u_{k-m+1} 10^{m-1} 0 \notin \Lambda^{(m), *}
\end{aligned}
$$

respectively, recalling the definition of μ_{p}.
Combining (1) and (2) we get $(1-p)\left(a_{k}-p^{m-2} d_{k-m+1}\right)=c_{k}-p^{m-2} d_{k-m+1}$,

$$
\text { i.e., } \quad(1-p) a_{k}+p^{m-1} d_{k-m+1}=c_{k} \quad \text { for any } k \geq m .
$$

That is,

$$
(1-p) a_{k+m}+p^{m-1} d_{k+1}=c_{k+m} \quad \text { for any } k \geq 0,
$$

which implies

$$
(1-p) \frac{1}{n} \sum_{k=0}^{n-1} a_{k+m}+p^{m-1} \frac{1}{n} \sum_{k=0}^{n-1} d_{k+1}=\frac{1}{n} \sum_{k=0}^{n-1} c_{k+m} .
$$

Let $n \rightarrow \infty$, we get $(1-p) a+p^{m-1} d=c$. It follows in the same way that $p b+(1-p)^{m-1} c=d$.
Combining (1), (2) and (3) we get $a=\frac{p-p^{m}}{1-p-(1-p)^{m}}$.

Acknowledgement. The author is grateful to Professor Jean-Paul Allouche for his advices on a former version of this paper, and also grateful to the Oversea Study Program of Guangzhou Elite Project (GEP) for financial support (JY201815).

References

[1] J.-P. Allouche, Théorie des nombres et automates, Thèse d'État, Bordeaux, 1983, http://tel.archives-ouvertes.fr/tel-00343206/fr/.
[2] J.-P. Allouche, M. Clarke, and N. Sidorov, Periodic unique beta-expansions: the Sharkovskiŭ ordering, Ergodic Theory Dynam. Systems 29 (2009), no. 4, 1055-1074.
[3] J.-P. Allouche and M. Cosnard, Itérations de fonctions unimodales et suites engendrées par automates, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 3, 159-162.
[4] J.-P. Allouche and M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001), no. 4, 325-332.
[5] J.-P. Allouche and C. Frougny, Univoque numbers and an avatar of Thue-Morse, Acta Arith. 136 (2009), no. 4, 319-329.
[6] F. BLANCHARD, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), no. 2, 131-141.
[7] Y. Bugeaud and B.-W. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions, J. Fractal Geom. 1 (2014), no. 2, 221-241.
[8] M. COSNARD, Étude de la classification topologique des fonctions unimodales, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 3, 59-77.
[9] Z. Daróczy and I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (1993), no. 3-4, 397-407.
[10] Z. Daróczy and I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (1995), no. 3-4, 385-408.
[11] M. DE Vries, On the number of unique expansions in non-integer bases, Topology Appl. 156 (2009), no. 3, 652-657.
[12] M. De Vries and V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009), no. 2, 390-427.
[13] M. de Vries, V. Komornik and P. Loreti, Topology of the set of univoque bases, Topology Appl. 205 (2016), 117-137.
[14] N. Dunford and D. S. Miller, On the ergodic theorem, Trans. Amer. Math. Soc. 60 (1946), 538-549.
[15] H. G. EgGleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20, (1949). 31-36.
[16] P. Erdös, I. Jó́, And V. Komornik, Characterization of the unique expansions $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, Bull. Soc. Math. France 118 (1990), no. 3, 377-390.
[17] K. J. FALCONER, Fractal Geometry, Mathematical foundations and applications. John Wiley \& Sons, Ltd., Chichester, 1990. xxii+288 pp. ISBN: 0-471-92287-0
[18] K. J. Falconer, Techniques in Fractal Geometry, John Wiley \& Sons, Ltd., Chichester, 1997. xviii+256 pp. ISBN: 0-471-95724-0
[19] A.-H. Fan, J. Schmeling, and S. Troubetzkoy, A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. Lond. Math. Soc. (3) 107 (2013), no. 5, 1173-1219.
[20] G. B. Folland, Real Analysis, Modern techniques and their applications. Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1999. xvi+386 pp. ISBN: 0-471-31716-0
[21] V. Komornik, D. Kong, and W. Li, Hausdorff dimension of univoque sets and Devil's staircase, Adv. Math. 305 (2017), 165-196.
[22] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636-639.
[23] V. Komornik and P. Loreti, On the topological structure of univoque sets, J. Number Theory 122 (2007), no. 1, 157-183.
[24] D. Kong, W. Li, F. LÜ, and M. De Vries, Univoque bases and Hausdorff dimension, Monatsh. Math. 184 (2017), no. 3, 443-458.
[25] B. Li, Y.-Q. Li, AND T. SAhlsten, Random walks associated to beta-shifts, arXiv:1910.13006 (2019).
[26] B. Li and J. Wu, Beta-expansion and continued fraction expansion, J. Math. Anal. Appl. 339 (2008), no. 2, 1322-1331.
[27] Y.-Q. Li And B. Li, Distributions of full and non-full words in beta-expansions, J. Number Theory 190 (2018), 311-332.
[28] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
[29] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[30] J. SCHMELING, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 675-694.
[31] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. ix+250 pp. ISBN: 0-387-90599-5

School of Mathematics, South China University of Technology, Guangzhou, 510641, P.R. CHinA

E-mail address: scutyaoqiangli@qq.com
Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Université - Campus Pierre et Marie Curie, Paris, 75005 , France

E-mail address: yaoqiang.li@imj-prg.fr

[^0]: Date: July 6, 2021.
 2020 Mathematics Subject Classification. Primary 37B10; Secondary 11K55, 11A63, 28A80.
 Key words and phrases. univoque sequence, digit frequency, Hausdorff dimension, Bernoulli-type measure.

