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HOCHSCHILD (CO)HOMOLOGY AND DERIVED CATEGORIES

BERNHARD KELLER

Abstract. These are slightly expanded notes of lectures given in April 2019 at the
Isfahan school and conference on representations of algebras. We recall the formal-
ism of derived categories and functors and survey invariance results for the Hochschild
(co)homology of differential graded algebras and categories.

1. Introduction

Let k be a field. Hochschild homology and cohomology are classical invariants of an
associative k-algebra or, more generally, a k-category. They may be viewed as derived
versions of the trace space and the center of the algebra, which we recall in section 2. They
are invariant under Morita equivalences and also under derived equivalences, as we show in
section 5 after a reminder on derived categories in section 4. These invariance results sug-
gest that Hochschild (co)homology should be defined directly using the derived category.
This is not possible in general but we show in section 6 that they may be obtained from the
canonical differential graded enhancement of the derived category. Hochschild homology
and cohomology are endowed with higher structure: the Hochschild chain complex is a
mixed complex and the Hochschild cochain complex is a B∞-algebra as we recall in sec-
tion 7, where we also state the corresponding invariance results. In the final section 8, we
report on recent results on Tate–Hochschild cohomology after [34] and [30]. In particular,
we sketch a proof of the fact that Tate–Hochschild cohomology of an algebra is isomorphic,
as an algebra, to the classical Hochschild cohomology of its differential graded singularity
category.

2. Center and trace space for algebras and categories

For simplicity, we work over a field k. Let A be a k-algebra, i.e. an associative, possibly
non commutative, unital k-algebra. The center Z(A) of A is formed by the elements a ∈ A
such that

ab = ba

for all b ∈ A. The trace space Tr(A) is the quotient A/[A,A], where [A,A] denotes the
subspace of A generated by all commutators [a, b] = ab − ba, a, b ∈ A. Notice that the
center is naturally a commutative algebra whereas the trace space is just a vector space.
For example, if n ≥ 1 and Mn(A) denotes the algebra of n × n-matrices with coefficients
in A, we have an isomorphism

Z(A) ∼−→ Z(Mn(A))

taking an element a to the diagonal matrix whose diagonal coefficients all equal a, and an
isomorphism

Tr(Mn(A)) ∼−→ Tr(A)
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2 BERNHARD KELLER

taking the class of a matrix M = (mij) to the class of its trace∑
i

mii,

cf. [41]. Observe that by definition, we have a short exact sequence

0 // Z(A) // A // Homk(A,A)

where the second map is the inclusion and the third one takes a ∈ A to the commutator
[a, ?]. Somehow dually, we have a short exact sequence

0 Tr(A)oo Aoo A⊗k Aoo

where the third map takes a ⊗ b to the commutator ab − ba and the second map is the
natural projection. This parallelism suggests some similarity between the center and the
trace space but we will now argue that they are actually very different (for non commutative
algebras).

Let f : A → B be an algebra morphism (it need not preserve the unit). Clearly, we
have an induced map Tr(f) : Tr(A)→ Tr(B) taking the class of an element a to the class
of f(a). Thus, the assignment A 7→ Tr(A) becomes a functor. The deeper reason for this
functoriality is the following universal property: The map tr : A → Tr(A) taking a to
the class of a is a trace map, i.e. it takes values in a vector space, is k-linear and satisfies
tr(ab) = tr(ba) for all a, b ∈ A, and it is universal1 among all trace maps t : A → V , i.e.
we have t = t ◦ tr for a unique linear map t : Tr(A)→ V :

A

tr
��

∀t

""
Tr(A)

∃1t
// V

On the other hand, for an element a of the center Z(A), there is no reason for f(a) to lie in
Z(B) and there is no induced map between the centers in general. Hence the assignment
A 7→ Z(A) is not a functor. However, we will see below how, by passing from algebras to
categories, we do gain some functoriality for the center.

Recall [18] that a k-category is a category A whose morphism sets are endowed with k-
vector space structures such that the compositions are bilinear. We may (and will) identify
a k-algebra A with the k-category with a single object whose endomorphism algebra is A.
A general k-category should be viewed as a k-algebra with several objects [46]. Recall [18]
that a quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is a set of ‘vertices’, Q1 a set
of ‘arrows’ and s and t are maps Q1 → Q0 taking an arrow to its source respectively its
target. In particular, each (small) k-category A has an underlying quiver and the functor
taking the category to its quiver admits a left adjoint Q 7→ k-cat(Q), where the objects of
k-cat(Q) are the vertices of Q and the space of morphisms x → y is the vector space of
formal linear combinations of paths (=formal compositions of arrows) of length ≥ 0 from
x to y.

Let A be a small k-category. We define the center Z(A) to be the algebra of endomor-
phisms of the identity functor 1A : A → A. Thus, an element of the center is a family
ϕX, X ∈ A, of endomorphisms ϕX : X → X of objects of A such that for each morphism

1The Hattori-Stallings trace [28, 51] is based on an extension of this idea, cf. [25] for a beautiful
application.
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f : X → Y , the square

X
f
//

ϕX
��

Y

ϕY
��

X
f
// Y

commutes. Thus, we have the short exact sequence

(2.0.1) 0 // Z(A) //
∏
X∈AA(X,X) //

∏
X,Y ∈AHomk(A(X,Y ),A(X,Y )) ,

where the third map takes a family (ϕX) to the family of maps taking f : X → Y to
(ϕY ) ◦ f − f ◦ (ϕX). ‘Dually’, we define the trace space Tr(A) of A by the sequence

(2.0.2) 0 Tr(A)oo
⊕

X∈AA(X,X)oo
⊕

X,Y ∈AA(X,Y )⊗A(Y,X)oo ,

where the third map takes f ⊗ g to f ◦ g − g ◦ f . Notice that the middle terms of the
sequences are isomorphic if and only if A has only finitely many non zero objects.

We may ask whether we can reduce the computation of the center and the trace space of
the k-category A to that of the center and trace space for some k-algebra A. The natural
candidate is the matrix algebra defined by

k[A] =
⊕

X,Y ∈A
A(X,Y )

and endowed with matrix multiplication. Notice that it is associative but unital only if A
has only finitely many non zero objects. In general, it is still locally unital, i.e. for each
finite set of elements ai, i ∈ I, we may find an idempotent e such that eai = ai = aie for
all i, cf. [2] and [47].

Lemma 2.1. a) We have a canonical isomorphism Tr(k[A]) ∼−→ Tr(A).
b) We have a natural injective algebra morphism Z(k[A]) → Z(A) which is an iso-

morphism iff A has only finitely many non zero objects.

The proof is left to the reader as an exercise. Of course, the assignment A 7→ Tr(A) is
functorial with respect to k-linear functors F : A → B. We also have some functoriality
for the assignment A 7→ Z(A). Indeed, if B ⊂ A is a full subcategory, then the restriction
map

(ϕX)X∈A 7→ (ϕX)X∈B

is an algebra morphism Z(A) → Z(B). We see that A 7→ Z(A) is contravariant with
respect to fully faithful embeddings.

Let A be a k-algebra and ModA the k-category of all right A-modules (by choosing
suitable universes, we can dispense with the set-theoretical problem that ModA is not
small). We have a fully faithful embedding A ⊂ ModA taking the unique object to the
free A-module of rank one.

Lemma 2.2. The restriction along A ⊂ ModA is an isomorphism Z(ModA) ∼−→ Z(A).

Proof. Let ρ denote the restriction. We define σ : Z(A)→ Z(ModA) by sending an element
z ∈ Z(A) to the family σ(z) whose component at a module M is right multiplication
by z. Since z is central, the map σ(z)M is indeed an endomorphism of M and since
any f : L → M is A-linear, the family σ(z) does lie in Z(ModA). It is also clear that
ρ(σ(z)) = z for each z ∈ Z(A). Thus, the map ρ : Z(ModA)→ Z(A) is injective. Suppose
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that ϕ is in its kernel. Then ϕA = 0 and in fact ϕF = 0 for each free A-module. If M is
an arbitrary A-module, we have an exact sequence

F1
// F0

// M // 0

where F1 and F0 are free. The fact that ϕF1 and ϕF0 vanish then immediately implies
that ϕM vanishes. Thus, the map ρ is also injective.

√

Recall that a generator (resp. cogenerator) of ModA is a moduleG such that each module
is a quotient of a coproduct of copies of G (resp. a submodule of a product of copies of G).
Let projA denote the category of finitely generated projective modules, ProjA the category
of all projective modules and InjA the category of all injective modules. It is easy to adapt
the above proof to obtain the

Lemma 2.3. Let B ⊂ ModA be a full subcategory containing a generator or a cogenerator
of ModA. Then restriction to B is an isomorphism Z(ModA) ∼−→ Z(B). In particular, we
have isomorphisms

Z(A) ∼←− Z(projA) ∼←− Z(ProjA) ∼←− Z(ModA) ∼−→ Z(InjA).

The following lemma shows that the trace space behaves entirely differently. The proof
is based on the ‘Eilenberg swindle’.

Lemma 2.4. We have Tr(ModA) = 0. More generally, we have Tr(A) = 0 for any
k-category A admitting countable coproducts.

Proof. We sketch a proof. The details may be filled in using [36]. Let A and B be k-
categories and F,G : A → B k-linear functors. In a first step, one shows that if F
and G are isomorphic functors, we have an equality Tr(F ) = Tr(G) between the induced
maps Tr(A) → Tr(B). Now assume that B has finite direct sums. Then one shows that
Tr(F⊕G) = Tr(F )+Tr(G). Now assume that A has countable coproducts. For X ∈ A, let

X(N) be the coproduct of a countable set of copies of X. Then we can choose a functorial
isomorphism

X ⊕X(N) ∼−→ X(N).

Thus, if F : A → A is the functor X 7→ X(N), then we have 1A ⊕ F ∼−→ F as functors
A → A. It follows from the two previous steps that we have

Tr(1A) + Tr(F ) = Tr(1A ⊕ F ) = Tr(F )

and therefore

1Tr(A) = Tr(1A) = 0.
√

On the other hand, if we restrict to finite sums (and summands), this phenomenon does
not occur.

Lemma 2.5 ([36]). The inclusion A ⊂ projA induces an isomorphism Tr(A) ∼−→ Tr(projA).

3. Hochschild (co)homology of algebras

Let k be a field. We write ⊗ for ⊗k. Let A be a k-algebra. The Hochschild chain
complex of A is the complex C∗A concentrated in homological degrees ≥ 0

A A⊗Aoo . . .oo A⊗poo A⊗(p+1)oo . . .oo
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with CpA = A⊗(p+1), p ≥ 0, and differential given by

(3.0.1) d(a0, . . . , ap) =

p−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap) + (−1)p(apa0, . . . , ap−1) ,

where we write (a0, . . . , ap) for a0 ⊗ · · · ⊗ ap. Notice that the first differential takes a ⊗ b
to the commutator ab − ba. The Hochschild homology HH∗(A) is the graded space with
HHp(A) = Hp(C∗A).

The Hochschild [29] cochain complex of A is the complex C∗A concentrated in cohomo-
logical degrees ≥ 0

A // Homk(A,A) // Homk(A⊗A,A) // . . . // Homk(A
⊗p, A) // . . .

whose differential is given by
(3.0.2)

(df)(a0, . . . , ap) = a0f(a1, . . . , ap)−
p−1∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , ap)+(−1)pf(a0, . . . , ap−1)ap.

Notice that the first two differentials are given by

a 7→ [a, ?] and f 7→ (a⊗ b 7→ f(a)b− f(ab) + af(b)).

We see that that in degree 0 we recover the trace space Tr(A) = HH0(A) respectively
the center Z(A) = HH0(A). We also see that HH1(A) is equal to the Lie algebra of
outer derivations of A (with the bracket induced by the commutator of derivations). Both
structures, the commutative multiplication and the Lie bracket, extend to the whole of
Hochschild cohomology, as we will see in section 7.

Let Ae = Aop ⊗ A. We identify the category Mod(Ae) of right Ae-modules with the
(isomorphic) category of A-A-bimodules via the rule

amb = m(b⊗ a).

In particular, we have the identity bimodule AAA given by the algebra A considered as a
bimodule over itself.

Theorem 3.1 (Cartan–Eilenberg [9]). We have canonical isomorphisms

Ext∗Ae(A,A) ∼−→ HH∗(A) and Tor∗Ae(A,A) ∼−→ HH∗(A).

To prove the theorem, one computes the derived functors using the bar resolution of the
first argument: Recall that the (augmented) bar resolution is the complex of bimodules

0 AAAoo A⊗Aoo . . .oo A⊗A⊗p ⊗Aoo . . .oo

where the augmentation is the multiplication of A and the differential is given by

d(a0, . . . , ap+1) =

p∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap+1).

Corollary 3.2. Hochschild cohomology HH∗(A) carries a natural graded multiplication,
the cup product, extending that of Z(A) = HH0(A).

It is shown in [9] that the cup product is induced by the following associative multipli-
cation on cochains: For f ∈ CpA and g ∈ CqA, define

(f ∪ g)(a1, . . . , ap, ap+1, . . . , ap+q) = (−1)pqf(a1, . . . , ap)g(ap+1, . . . , ap+q).
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4. Reminder on derived categories

We collect basic definitions and results on derived categories. We refer to [38] for more
details and references. As before, k is a field andA a k-algebra. The category CA = CModA
has as objects the cochain complexes

. . . // Mp dM // Mp+1 // . . .

of (right) A-modules. Notice that each such complex has an underlying Z-graded A-
module given by the sequence of the Mp, p ∈ Z. It is endowed with the differential
dM , which is a homogeneous endomorphism of degree +1. The morphisms of CA are the
morphisms f : L → M of graded A-modules which are homogeneous of degree 0 and
satisfy dM ◦ f = f ◦ dL. The suspension functor Σ : CA→ CA takes a complex M to ΣM
with components (ΣM)p = Mp+1 and differential dΣM = −dM . Two morphisms f and
g : L→M of CA are homotopic if there is a homogeneous morphism of graded A-modules
h : L→M of degree −1 such that

f − g = dM ◦ h+ h ◦ dL.

The homotopy category HA has the same objects as CA; its morphisms are homotopy
classes of morphisms of CA. A morphism s : L→M of CA or HA is a quasi-isomorphism
if the induced morphism in homology H∗(s) : H∗(L) → H∗(M) is invertible. The de-
rived category is the localization of CA (or HA) at the class of all quasi-isomorphisms.
Thus, it has the same objects as CA and its morphisms are equivalence classes of formal
compositions of morphisms of CA (or HA) and formal inverses of quasi-isomorphisms.

The homotopy category HA is canonically triangulated with suspension functor Σ. Each
componentwise split short exact sequence of CA

0 // L // M // N // 0

yields a canonical triangle

L // M // N // ΣL .

The derived category DA is triangulated with suspension functor Σ. Each short exact
sequence of CA yields a canonical triangle.

We identify A-modules M ∈ ModA with complexes concentrated in degree 0

. . . // 0 // M // 0 // . . . .

Then, for A-modules L and M , we have canonical isomorphisms

ExtpA(L,M) ∼−→ HomDA(L,ΣpM)

for all p ∈ Z (with the convention that Extp vanishes for p < 0). Moreover, the composition
in DA identifies with the Yoneda product on Ext.

Theorem 4.1. The projection HA→ DA admits a fully faithful left adjoint p and a fully
faithful right adjoint i.

Notice that the analogous statement for the category of complexes CA instead of the
homotopy category HA is wrong. This is one of the main reasons for introducing HA.
The functors p and i generalize projective respectively injective resolutions. Indeed, if M
is an A-module and P → M a projective resolution (i.e. a quasi-isomorphism where P is
right bounded with projective components), then we have P ∼−→ pM in HA. Similarly, if
M → I is an injective resolution, then iM ∼−→ I in HA.
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Now let B be another algebra and X a complex of A-B-bimodules. For M ∈ CA, define
the complex M ⊗A X ∈ CB by

(M ⊗A X)n =
⊕
p+q=n

Mp ⊗A Xq and d(m⊗ a) = (dm)⊗ a+ (−1)pm⊗ (dx).

For L ∈ CB, define HomB(X,L) ∈ CA as the complex whose nth component is formed
by the morphisms f : X → L of graded B-modules, homogeneous of degree n and whose
differential is given by

d(f) = dL ◦ f − (−1)nf ◦ dX .
Define objects of the derived categories

L
L
⊗A X = (pL)⊗A X and RHomB(X,L) = HomB(X, iL).

Example 4.2. For example, we have

HH∗(A) = TorA
e

∗ (A,A) = H∗(A
L
⊗AeA) and HH∗(A) = Ext∗Ae(A,A) = H∗(RHomAe(A,A)).

The following lemma is easy to prove.

Lemma 4.3. We have an adjoint pair

?
L
⊗A X : DA // DB : RHomB(X, ?)oo .

It is natural to ask when these adjoints are equivalences. To answer this question, let
us observe that DA has arbitrary coproducts, which are given by coproducts of complexes.
An object P of DA is compact if the functor Hom(P, ?) : DA → Mod k commutes with
arbitrary coproducts. It is perfect if it is quasi-isomorphic to a bounded complex of finitely
generated projective modules. For example, the free A-module AA is compact because

Hom(A,M) ∼−→ H0M

and of course it is also perfect.

Proposition 4.4. An object of DA is compact if and only if it is perfect.

The perfect derived category per(A) is the full subcategory of DA formed by the perfect
objects. Clearly it is a thick subcategory, i.e. a triangulated subcategory stable under taking
direct summands.

Proposition 4.5. The functor ?
L
⊗A X : DA→ DB is an equivalence if and only if

a) XB is perfect in DB and
b) XB generates DB as a triangulated category with arbitrary coproducts and
c) the natural map A → HomDB(XB, XB) given by left multiplication is an isomor-

phism and HomDB(XB,Σ
pXB) = 0 for all p 6= 0.

By definition, the bimodule complex X is a two-sided tilting complex if these conditions
hold. We have the following important class of examples:

Theorem 4.6 (Happel [26]). If T is an A-B-bimodule, then T is a two-sided tilting complex
iff TB is a tilting module and the left action yields an isomorphism A ∼−→ EndB(T ).

For a proof of the theorem in this form, cf. [38].

Theorem 4.7 (Rickard [49, 50]). There is a triangle equivalence DA→ DB if and only if
there is a two-sided tilting complex X.
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Notice that the theorem does not claim that a given triangle equivalence F : DA ∼−→ DB
is isomorphic to a derived functor ?

L
⊗A X for a two-sided tilting complex X. It is open

whether this always holds.
Define rep(A,B) to be the full subcategory of D(Aop⊗B) formed by the bimodule com-

plexes X such that XB is perfect. We think of the objects of rep(A,B) as ‘representations
up to homotopy’ of A in per(B). Notice that a bimodule complex X belongs to rep(A,B)

if and only if the functor ?
L
⊗A X takes per(A) to per(B). For X ∈ rep(A,B), put

X∨ = RHomB(X,B)

and notice that this is naturally an object of D(Bop ⊗A).

Lemma 4.8. We have a canonical isomorphism

?
L
⊗B X∨ ∼−→ RHomB(X, ?).

Thus, the functor ?
L
⊗B X∨ is right adjoint to ?

L
⊗A X. The adjunction morphisms are

produced by the action morphism

α : A→ RHomB(X,X) ∼←− X
L
⊗B X∨ in D(Ae)

and the evaluation morphism

ε : X∨
L
⊗A X = RHomB(X,B)

L
⊗A X → B in D(Be).

Notice that ?
L
⊗A X is fully faithful if and only if the action morphism A → X

L
⊗B X∨ is

invertible.

5. Invariance theorems

Let A and B be k-algebras. Let X ∈ rep(A,B) and

X∨ = RHomB(X,B) ∈ D(Bop ⊗A).

Note that in general, X∨ is not perfect over A and so does not belong to rep(B,A). Recall
the canonical action and evaluation morphisms

α : A→ X
L
⊗B X∨ in D(Ae) and ε : X∨

L
⊗A X → B in D(Be).

Theorem 5.1. We have a canonical morphism

HH∗(X) : HH∗(A)→ HH∗(B)

It is an isomorphism if ?
L
⊗A X : DA→ DB is an equivalence.

Sketch of proof. Recall that HH∗(A) = H∗(A
L
⊗Ae A). We have a canonical morphism

ψ(X) defined as the composition

A
L
⊗Ae A

1⊗α
// A

L
⊗Ae (X

L
⊗B X∨) A

L
⊗Ae (X ⊗k X∨)

L
⊗Be B

flip
��

B
L
⊗Be B B

L
⊗Be (X∨ ⊗A X)

1⊗ε
oo B

L
⊗Be (X∨ ⊗k X)

L
⊗Ae A

.
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Then HH∗(X) is H∗(ψ(X)). One shows that ψ(A) = 1 and for X ∈ rep(A,B) and

Y ∈ rep(B,C), we have ψ(X
L
⊗B Y ) = ψ(Y ) ◦ ψ(X), cf. Theorem 2.1 in [4]. This implies

the second claim.
√

Now recall that a fully faithful functor F : A → B between k-categories yields a re-
striction morphism F ∗ : Z(B)→ Z(A). Since Hochschild cohomology may be viewed as a
‘derived center’, the following theorem is quite natural.

Theorem 5.2. Suppose we have X ∈ rep(A,B) such that the functor ?
L
⊗AX : DA→ DB

is fully faithful. Then we have a canonical ‘restriction’ morphism

HH∗(X) : HH∗(B)→ HH∗(A).

It is an isomorphism if ?
L
⊗A X : DA→ DB is an equivalence.

Below, we will show using other methods that even if XB is not perfect but ?
L
⊗A X :

DA→ DB is fully faithful, we still have such a restriction morphism.

Sketch of proof. It is not hard to show, without any hypothesis on X ∈ rep(A,B), that we
have an adjoint pair

X∨
L
⊗A?

L
⊗A X : DAe // DBe : X

L
⊗B?

L
⊗B X∨oo .

Now we construct a map from

HHp(B) = HomDBe(B,ΣpB)

to HHp(A) as follows:

HomDBe(B,ΣpB) // HomDBe(X∨
L
⊗A X,ΣpB)

adj

��

HomDAe(A,ΣpA)
∼ // HomDAe(A,ΣpX

L
⊗B X∨).

√

Each morphism f : A→ ΣpA of DAe induces a morphism

f
L
⊗Ae 1A : A

L
⊗Ae A→ ΣpA

L
⊗Ae A.

In this way, we obtain an action

∩ : HH∗(A)⊗HH∗(A)→ HH∗(A)

called the cap product (not to be confused with the cup product ∪ on Hochschild coho-
mology).

Theorem 5.3 ([3]). Suppose that X ∈ rep(A,B) is such that the functor ?
L
⊗A X : DA→

DB is an equivalence. Then the induced isomorphisms

HH∗(X) : HH∗(A) ∼−→ HH∗(B) and HH∗(X) : HH∗(A) ∼−→ HH∗(B)

are compatible with the cap product.
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6. Differential graded categories

Recall from Lemma 2.2, that for an algebra A, the restriction along the inclusion A ⊂
ModA is an isomorphism

Z(ModA) ∼−→ Z(A).

It is natural to ask what the derived version of this fact is. In the derived version, Hochschild
cohomology should replace the center and the derived category should replace the module
category. So we would like to know how to recover Hochschild cohomology from the derived
category DA. Unfortunately, this seems to be an ill-posed question nobody knows how to
answer. However, it is easy to recover Hochschild cohomology from the differential graded
(=dg) version of DA, namely the dg category DdgA. Our first aim in this section is to
define the dg category DdgA in an intrinsic way, via a universal property.

6.1. Dg categories and their derived categories. Recall that the category of com-
plexes Ck is monoidal, i.e. it is endowed with the bifunctor (L,M) 7→ L⊗M given by

(L⊗M)n =
⊕
p+q=n

Lp ⊗M q, d(l ⊗m) = (dl)⊗m+ (−1)|l|l ⊗ dm

enjoying a number of desirable properties. A dg category is a category A enriched in the
monoidal category of complexes. Thus, the morphism spaces A(X,Y ) are complexes and
the compositions

A(Y,Z)⊗A(X,Y )→ A(X,Z)

and units k → A(X,X) are morphisms of complexes.
For example, if B is an algebra, the dg category CdgB has the same objects as CB and

its morphism complexes are defined by

(CdgB)(L,M) = HomB(L,M) ,

cf. section 4. As in the case of k-categories, we identify dg categories with one object with
dg algebras.

If A is a dg category, the category H0A has the same objects as A and the morphism
spaces H0(A(X,Y )) with the natural compositions. For example, this yields another view-
point on the homotopy category HB via the equality of categories

H0(CdgB) = HB.

A dg functor F : A → B is a functor such that

F : A(X,Y )→ B(FX,FY )

is a morphism of complexes for all X,Y ∈ A. It is a quasi-equivalence if F : A(X,Y ) →
B(FX,FY ) is a quasi-isomorphism for all X,Y ∈ A and the induced functor H0F :
H0A → H0B is an equivalence. The category Hqe is the localization of the category dgcat
of small dg categories at the class of all quasi-equivalences. For example, if f : A→ B is a
quasi-isomorphism between dg algebras, it may be viewed as a quasi-equivalence between
dg categories with one object.

Theorem 6.2 (Tabuada [52]). The category dgcat carries a (cofibrantly generated) Quillen
model structure whose weak equivalences are the quasi-equivalences. In particular, the
morphisms A → B in Hqe form a set for all small dg categories A, B.

Thanks to the theorem, we can speak about representable functors on the category Hqe
without having to ‘enlarge the universe’.
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Theorem 6.3 ([37]). Let A be a dg category and N ⊆ A a full dg subcategory. Then there
is a morphism Q : A → A/N of Hqe which kills N (i.e. we have 1QN = 0 in H0(A/N )
for all N ∈ N ) and which is universal in Hqe among the morphisms killing N .

We define the dg quotient of A by N to be the dg category A/N of the theorem. It is
thus unique up to unique isomorphism in Hqe.

Theorem 6.4 (Drinfeld 2004 [14]). The dg category A/N is obtained from A by adjoining a
contracting homotopy hN for each object N on N (i.e. hN is of degree −1 and d(hN ) = 1N ).

For an algebra B, we define the dg derived category of B to be the dg quotient

DdgB = CdgB/AcdgB ,

where AcdgB is the full dg subcategory of CdgB whose objects are the acyclic complexes.

Theorem 6.5 ([37, 14]). We have a canonical equivalence H0(DdgB) ∼−→ DB.

Our next aim is to define the derived category DA (as well as its dg version DdgA) of a
dg category A. Define the opposite dg category Aop to be the dg category with the same
objects, with the morphism complexes Aop(X,Y ) = A(Y,X) and the compositions given
by

f ◦Aop g = (−1)|f ||g|g ◦ f

for all homogeneous f ∈ Aop(Y, Z) and g ∈ Aop(X,Y ). For two dg functors F,G : A → B,
define the complex Hom(F,G) to be the subcomplex of∏

X∈A
B(FX,GX)

formed by the families (ϕX) such that

(Gf) ◦ (ϕX) = (−1)|ϕ||f |(ϕY ) ◦ (Ff)

for all X,Y ∈ A and f : X → Y . In this way, the category Fundg(A,B) of dg functors
from A to B becomes a dg category. We define the dg category of dg right A-modules to
be

CdgA = Fundg(Aop, Cdgk)

and the category of right A-modules to be Z0CdgA (same objects as CdgA and morphism
spaces Z0(CdgA)(L,M)). We define the homotopy category of dg A-modules as

HA = H0CdgA.

For example, for each object X ∈ A, we have the representable dg module

X∧ = A(?, X) : Aop → Cdgk.

Whence the dg Yoneda functor

A → CdgA , X 7→ X∧.

As an exercise, the reader may want to prove the dg Yoneda lemma:

Lemma 6.6. For X in A and M in CA, we have a natural isomorphism

HomA(X∧,M) ∼−→MX , f 7→ f(1X).
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Notice that when B is an ordinary algebra and A the dg category whose endomorphism
algebra is B (concentrated in degree 0), then CdgA = CdgB

Let A be a small dg category. A morphism s : L → M of dg A-modules is a quasi-
isomorphism if

sX : LX →MX

is a quasi-isomorphism for each X ∈ A. We define the derived category DA to be the
localization of CA (respectively HA) at the class of quasi-isomorphisms and the dg derived
category DdgA to be the dg quotient

Cdg(A)/Acdg(A).

As in Theorem 4.1, the quotient functor HA → DA admits a left adjoint p and a right
adjoint i, cf. [35], and the construction of the derived functors generalizes.

Let us give an example where we have a beautiful description of the derived category of a
non trivial dg category: Let A be a right noetherian algebra (concentrated in degree 0) and
modA the abelian category of finitely generated (right) A-modules. Let Cbdg(modA) ⊂ CdgA
be the full dg subcategory of bounded complexes over modA and

Dbdg(modA) = Cbdg(modA)/Acbdg(modA).

Let InjA denote the category of all injective modules and H InjA the homotopy category
of (unbounded) complexes of injective modules.

Theorem 6.7 (Krause [40]). We have a canonical triangle equivalence

H InjA ∼−→ D(Dbdg(modA)).

6.8. Hochschild (co)homology of dg categories. Let A be a small dg category. We
have the following generalization of Proposition 4.4. Recall that a thick subcategory of a
triangulated category is a full triangulated subcategory stable under taking direct factors.

Proposition 6.9. An object P ∈ DA is compact if and only if it is perfect, i.e. contained
in the thick subcategory generated by the representable modules X∧, X ∈ A.

Let B be another dg category. The tensor product A⊗B is the dg category whose objects
are the pairs (X,Y ), X ∈ A, Y ∈ B, and whose morphisms are given by

(A⊗ B)((X,Y ), (X ′, Y ′)) = A(X,X ′)⊗ B(Y, Y ′).

We define rep(A,B) as the full subcategory of D(B ⊗Aop) formed by the dg bimodules X
whose restriction to B is perfect.

Let Ae = A ⊗Aop. The identity bimodule IA sends (X,Y ) to A(X,Y ), X,Y ∈ A. We
put

HH∗(A) = H∗RHomAe(IA, IA) and HH∗(A) = H∗(IA
L
⊗Ae IA).

These may also be computed as the (co)homologies of the complexes C∗A and C∗A con-
structed as follows: The complex C∗A is the sum total complex of the bicomplex

. . . //
⊕
A(X0, X1)⊗A(X1, X0) //

⊕
A(X0, X0)

whose pth column (p ≥ 0) is the sum⊕
A(Xp, X0)⊗A(Xp−1, Xp)⊗ · · · ⊗ A(X0, X1)

taken over all sequences of objects X0, X1, . . . , Xp of A and whose horizontal differential
is given by formula (3.0.1) adjusted following the Koszul sign rule. The complex C∗A is
the product total complex of the bicomplex∏

A(X0, X0) //
∏

Homk(A(X0, X1),A(X0, X1)) // . . .
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whose pth column (p ≥ 0) is∏
Homk(A(Xp−1, Xp)⊗ . . .⊗A(X0, X1),A(X0, Xp))

where the product is taken over all sequences of objects X0, . . . , Xp of A and whose
horizontal differential is given by formula (3.0.2) adjusted following the Koszul sign rule.

Theorem 6.10 ([36, 33]). Let A and B be dg categories and X ∈ D(B ⊗Aop).
a) If X ∈ rep(A,B) (i.e. X is right perfect), then there is a canonical induced morphism

HH∗(X) : HH∗(A)→ HH∗(B).

It only depends on the class of X in K0(rep(A,B)) and is an isomorphism if the

functor ?
L
⊗A X : DA → DB is an equivalence.

b) Suppose that the functor ?
L
⊗A X : DA → DB is fully faithful (but X is not neces-

sarily right perfect). Then there is a canonical restriction morphism

resX : HH∗(B)→ HH∗(A).

It is an isomorphism if the functor X
L
⊗B? : D(Bop)→ D(Aop) is also fully faithful.

We will sketch a proof of b) after Theorem 7.5.

Corollary 6.11 (Lowen–Van den Bergh [43]). Let A be a dg category. The restriction
along the Yoneda functor A → DdgA induces an isomorphism

HH∗(DdgA) ∼−→ HH∗(A).

A similar result was obtained by Toën in [53]. It should be viewed as the derived version
of the isomorphism

Z(ModA) ∼−→ Z(A)

of Lemma 2.2 for an algebra A.

7. Higher structure

7.1. Higher structure on Hochschild homology. Let A be an algebra (for simplicity).
Recall the Connes–Quillen cyclic bicomplex

. . .

��

. . .

��

. . .

��

A⊗2

b
��

A⊗2

b′

��

1−t
oo A⊗2

b
��

N
oo . . .

1−t
oo

A A
1−t
oo A

N
oo . . .

1−t
oo

Here we put

t(a1 ⊗ . . .⊗ an) = (−1)n−1a2 ⊗ . . .⊗ an ⊗ a1 and N = 1 + t+ · · ·+ tn−1.

The bicocomplex is 2-periodic in the horizontal direction. Its even columns are copies of
the Hochschild chain complex and its odd columns copies of the bimodule bar resolution
of A. The homology of the sum total complex is the cyclic homology of A. Let MA
denote the cone over the subcomplex formed by the first two columns. Let us write d for
its differential. Let d′ : MA → MA be the homogeneous map of (cohomological) degree
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−1 given by the projection onto the first column followed by the map N followed by the
inclusion of the second column. We have

d2 = 0 , d′2 = 0 , dd′ + d′d = 0.

This means that MA is a mixed complex, i.e. a dg module over the dg algebra Λ = k[ε]/(ε2),
where ε is of degree −1 and d = 0. Of course, ε acts via d′ in MA. We write DMix for the
mixed derived category, i.e. the category DΛ.

Notice that MA is functorial with respect to algebra morphisms which do not necessarily
preserve the unit like the morphism

A→M2(A) , a 7→
[
a 0
0 0

]
.

The inclusion of the first column clearly yields an isomorphism A
L
⊗Ae A ∼−→ MA in

Dk. Thus we have HH∗(A) = H∗(MA). Moreover, the mixed complex MA contains
the information on cyclic, negative cyclic and periodic cyclic homology as shown by the
canonical isomorphisms (cf. [32])

HC∗(A) = H∗(MA
L
⊗Λk), HN∗(A) = H∗RHomΛ(k,MA), HP∗(A) = holimn(MA

L
⊗ΛΣ−2nk).

Here, the transition morphisms of the inverse system are induced by the morphism k → Σ2k
of the canonical triangle

Σk // Λ // k // Σ2k.

This triangle induces the ISB-sequence

HC∗−1
B // HH∗

I // HC∗
S // HC∗−2

B // HH∗−1 .

Now let B be another algebra and X ∈ rep(A,B). We may and will assume that
the restriction XB is right bounded with projective components. Then we have X∧ =
RHomB(X,B) = HomB(X,B). We have natural morphisms of differential graded algebras
(not preserving the unit)

A
α //

[
A X
X∧ B

]
B

β
oo

taking a to [ a 0
0 0 ] and b to

[
0 0
0 b

]
.

Lemma 7.2 ([36]). The morphism Mβ is invertible in DMix.

We define MX = (Mβ)−1 ◦Mα in DMix.

Theorem 7.3 ([36]). a) We have M(AAA) = 1MA and for X ∈ rep(A,B) and Y ∈

rep(B,C), we have M(X
L
⊗B Y ) = MY ◦MX.

b) The morphism MX only depends on the class of X in K0(rep(A,B)).

It is not hard to generalize the definitions and results of this subsection from algebras
to dg categories.

7.4. Higher structure on Hochschild cohomology. Let A be an algebra (for simplic-
ity) and C∗A its Hochschild cochain complex, cf. section 3. If c and u, v, . . . , w are
Hochschild cochains, one defines [31] the brace operation c{u, v, . . . , w} by substituting the
cochains u, v, . . . , w for some of the arguments of c, inserting suitable signs and summing
over all possibilities of doing this, cf. Figure 1.

The complex C∗A together with the cup product ∪ and the brace operations is an
example of a B∞-algebra in the sense of Getzler–Jones [19], i.e. a graded vector space V
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•
c

u v w
• • •

Figure 1. The brace operations

such that the tensor coalgebra T c(ΣV ) (with the deconcatenation coproduct) is endowed
with a dg bialgebra structure whose comultiplication is deconcatenation. Here the letter
‘B’ stands for ‘Baues’, in honour of Hans–Joachim Baues, who showed [6] that the singular
cochain complex with integer coefficients of any topological space carries a natural B∞-
algebra structure. Notice that B∞–structures are closely related to monoidal structures
(cf. [42] and the references given there). In the case of the Hochschild cochain complex,

the monoidal category is the derived category D(Ae) with the derived tensor product
L
⊗A

over A; in the case of the singular cochain complex on a topological space X, it is the
derived category of sheaves of abelian groups on X with the derived tensor product. The
B∞-algebra structure on C∗A contains in particular the information on the Gerstenhaber
bracket, which may be recovered via

[c, u] = c{u} ∓ u{c}.

By the homotopy category of B∞-algebras we mean the localization of the category of B∞-
algebras with respect to all morphisms of B∞-algebras inducing isomorphisms in homology.

Let B be another algebra and X ∈ D(B ⊗Aop) a complex of A-B-bimodules.

Theorem 7.5 ([33]). Suppose that the functor ?
L
⊗A X : DA → DB is fully faithful (but

XB is not necessarily perfect). Then there is a canonical restriction morphism

resX : C∗B → C∗A

in the homotopy category of B∞-algebras. It is invertible if the functor X
L
⊗B? : D(Bop)→

D(Aop) is also fully faithful (for example if ?
L
⊗A is an equivalence).

We sketch the proof: Let G be the ‘glued’ dg category with two objects 1 and 2 such
that G(1, 1) = B, G(2, 2) = A, G(1, 2) = X and G(2, 1) = 0. We have obvious forgetful
(or ‘restriction’) maps

C∗B C∗G
resBoo

resA // C∗A.

which clearly respect the B∞-structure. It is a classical fact, cf. [27, 11, 45, 21, 12, 23, 7, 20],
that we have a homotopy bicartesian square

C∗
resA //

resB
��

C∗A

α
��

C∗B // RHomB⊗Aop(X,X).
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We claim that α and hence resB is invertible in Dk. Indeed, we have a commutative square
in Dk

C∗A

α

��

∼ // RHomAe(A,A)

β

��

RHomB⊗Aop(X,X)
∼ // RHomAe(A,RHomB(X,X)),

where β is induced by the action morphism

A→ RHomB(X,X).

This is invertible by our assumption that the functor ?
L
⊗A X is fully faithful. We put

resX = resA ◦ res−1
B .

Corollary 7.6. For an algebra A, the isomorphism

HH∗(DdgA) ∼−→ HH∗(A)

of Corollary 6.11 lifts to an isomorphism in the homotopy category of B∞-algebras.

8. Tate–Hochschild cohomology

Let A be a right noetherian algebra and modA the abelian category of finitely generated
(right) A-modules. Let Db(modA) be its bounded derived category. The perfect derived
category per(A) is a thick subcategory of Db(modA). They coincide if A is of finite global
dimension. We define the singularity category sg(A) to be the quotient Db(modA)/ per(A).
This category was first considered by Buchweitz [8] in 1986 and rediscovered by Orlov [48]
in 2003 in a geometric setting. It measures the non regularity of the algebra A.

As an example, let S = k[x1, . . . , xn] and let A = S/(f) for a non zero f ∈ S. It follows
from the work of Eisenbud [16] that the singularity category sg(A) is triangle equivalent
to the homotopy category of matrix factorizations of f . By definition, this category equals
H0(mfdg(f)), where mfdg(f) is the dg category of matrix factorizations of f : its objects
are the 2-periodic diagrams (not complexes!)

. . .
d0 // P1

d1 // P0
d0 // P1

d1 // P0
d0 // . . .

where the Pi are finitely generated projective S-modules and d2 is the multiplication with f .
For two such objects P and Q, the morphism complex Hom(P,Q) has as its nth component
the space of homogeneous S-linear maps g : P → Q of degree n. The differential is given by
d(g) = d ◦ g− (−1)ng ◦ d. We leave it as an exercise for the reader to check that d2(g) = 0.
It is an important point that the complexes Hom(P,Q) are also 2-periodic, so that we may
also view mfdg(f) as a differential Z/2Z–graded category!

Now suppose that Ae = A ⊗ Aop is also (right) noetherian. We define Tate–Hochschild
cohomology of A (sometimes also called singular Hochschild cohomology of A) to be the
Yoneda algebra HH∗sg(A) = Ext∗sg(Ae)(A,A) of the identity bimodule in the singularity cat-

egory of the enveloping algebra. By definition, it is an algebra and it is not hard to check
directly that it is (graded) commutative. However, the singularity category sg(Ae) is not
monoidal in any natural way. We may nevertheless ask whether Tate–Hochschild cohomol-
ogy carries the same rich structure as classical Hochschild cohomology. This problem was
open for some time and finally solved in the thesis of Zhengfang Wang:

Theorem 8.1 (Zhengfang Wang). a) HH∗sg(A) carries a natural (but intricate!) Ger-
stenhaber bracket [56].

b) There is a natural B∞-algebra C∗sgA computing HH∗sg(A) with its Gerstenhaber
bracket [55].
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Thus, we see that there is a complete structural analogy between Tate–Hochschild co-
homology and classical Hochschild cohomology. It is therefore natural to ask whether
Tate–Hochschild cohomology is not an instance of classical Hochschild cohomology, i.e.
whether the Tate–Hochschild cohomology of A is classical Hochschild cohomology of some
more complicated object associated with A in analogy with Corollary 6.11. Recall that a
dg category A is smooth if the identity bimodule IA : (X,Y ) 7→ A(X,Y ) is perfect in the
derived category D(Ae) of bimodules. Define the dg singularity category of A as the dg
quotient

sgdg(A) = Dbdg(modA)/ perdg(A).

Theorem 8.2 ([34]). There is a canonical morphism of graded algebras

HH∗sg(A)→ HH∗(sgdg(A)).

It is an isomorphism if the dg category Dbdg(modA) is smooth.

According to Theorem A of Elagin–Lunts–Schnürer’s [17], the dg category Dbdg(modA) is

smooth if A is a finite-dimensional algebra over any field k such that A/ rad(A) is separable
over k (which is automatic if k is perfect). By Theorem B of [loc. cit.], it also holds if the
algebra A is right noetherian and finitely generated over its center and the center is a
finitely generated algebra over k.

Conjecture 8.3. The morphism of the theorem lifts to a morphism in the homotopy cat-
egory of B∞-algebras.

Note that this morphism will be an isomorphism if the bounded dg derived category
Dbdg(modA) is smooth. In particular, this should hold for each finite-dimension algebra
defined by a quiver with an admissible ideal of relations. The following theorem confirms
the conjecture for radical square 0 algebras.

Theorem 8.4 (Chen–Li–Wang [10]). The conjecture holds if A = kQ/(Q1)2, where Q is a
finite quiver without sinks or sources and (Q1)2 the square of the ideal of the path algebra
kQ generated by the arrows.

To show why the conjecture is probably not easy to prove, let us sketch the construction
of the isomorphism in Theorem 8.2. Let M = Dbdg(modA) and S = sgdg(A). We have
natural dg functors

A
i //M

p
// S

whose composition vanishes in the homotopy category of dg categories. We construct the
following square (commutative up to isomorphism)

Db(A⊗Aop)

��

(1⊗i)∗
// D(A⊗Aop)

(i⊗1)!
// D(M⊗Mop)

(p⊗p)∗
��

sg(A⊗Aop) // D(S ⊗ Sop)

Here, for a dg functor f : A1 → A2, we denote by f∗ the left adjoint and by f ! the right
adjoint of the restriction functor f∗ : DA2 → DA1. One checks that the dashed triangle
functor exists, takes the identity bimodule A to the identity bimodule S(?,−) and induces
an isomorphism between the Yoneda algebras of these objects. Since the functor is induced
by the composition of a right derived with a left derived functor, it is hard to compute it
explicitly and that is why the conjecture is not obvious.
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9. Application: two reconstruction theorems

We apply the results of the preceding section to the reconstruction of singularities.

9.1. Isolated hypersurface singularities.

Theorem 9.2 (Hua-K [30]). Let S = C[[x1, . . . , xn]] and suppose that R = S/(f) is an
isolated singularity. Then R is determined up to isomorphism by its dimension and the dg
singularity category sgdg(R).

Notice that because of Knörrer periodicity, the dg singularity category alone does not
determine R.

Sketch of proof. We consider the center

Z(sgdg(R)) = HH0(sgdg(R)).

By Theorem A of [17], the bounded dg derived category Db(modR) is smooth. By Theo-
rem 8.2, the algebra HH0(sgdg(R)) is isomorphic to HH0

sg(R). Now since R is a hypersur-
face, the dg singularity category may be described by matrix factorizations and is therefore
2-periodic. Hence its Hochschild cohomology is 2-periodic and, again by Theoreom 8.2, so
is HH∗sg(R). Thus, we have an isomorphism

HH0
sg(R) ∼−→ HH2r

sg (R).

Now by a theorem of Buchweitz [8], for Gorenstein algebras, in sufficiently high degrees,
Tate–Hochschild cohomology agrees with classical Hochschild cohomology and we get an
isomorphism

HH2r
sg (R) ∼−→ HH2r(R).

Thus, we are reduced to the computation of Hochschild cohomology of a hypersurface.
Thanks to the results of [24], we find that HH2r(R) and HH0(R) are isomorphic to the
Tyurina algebra

S/(f,
∂f

∂x1
, . . . ,

∂f

∂xn
).

Now the Tyurina algebra together with the dimension determine R by the Mather–Yau
theorem [44], more precisely its formal series version proved in [22]. Notice that in this
sketch, we have neglected the technical problems arising from the fact thatR is a topological
algebra.

√

Notice that in the above computation, we have considered the dg singularity category
sgdg(R) as a differential Z-graded category. If one considers it as a differential Z/2-graded
category, one obtains a different result for the center, namely the Milnor algebra

ZZ/2(sgdg(R)) = S/(
∂f

∂x1
, . . . ,

∂f

∂xn
)

as shown by Dyckerhoff [15].

9.3. Compound Du Val singularities. Let R be a complete local isolated compound
Du Val singularity (thus, it is 3-dimensional, normal and a generic hyperplane section
through the origin is a Kleinian surface singularity). Let

f : Y → X = Spec(R)

be a small crepant resolution (thus, it is birational, an isomorphism in codimension 1, an
isomorphism outside the exceptional fibre and f∗(ωX) ∼= ωY ). Then the reduced excep-
tional fibre F of f is a tree of rational curves P1. The morphism f contracts this tree to
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a point. Associated to this situation is the contraction algebra Λ introduced by Donovan–
Wemyss [13]. It is a finite-dimensional algebra which represents the deformations with non
commutative base of the exceptional fibre of f . It is known that numerous invariants of
the singularity can be computed from the algebra Λ. This has lead Donovan–Wemyss to
conjecture [5] that the derived equivalence class of Λ determines R up to isomorphism.
We show a weakened version: Thanks to work of Van den Bergh and de Thanhoffer de
Voelcsey [54], it is known that Λ is the Jacobian algebra of a quiver Q with potential W .
By definition, the potential is an element of HH0(CQ). Let W be its image in HH0(Λ).

Theorem 9.4 (Hua–K [30]). The derived equivalence class of the pair (Λ,W ) determines
R.

The proof uses, among other things, Theorem 9.2 and silting theory.
Let us point out the link to cluster theory: It turns out that the singularity category

sg(R) is triangle equivalent to a generalized cluster category in the sense of Amiot [1],
namely the generalized cluster category CQ,W associated with the quiver Q with potential
W . This category has therefore the same main properties as the categories appearing in
the (additive) categorification of Fomin–Zelevinsky cluster algebras, cf. [39]. However, the
quivers that appear are quite different: Whereas the quivers in Donovan–Wemyss’ theory
have many loops and 2-cycles, the quivers appearing in cluster theory never have loops or
2-cycles.
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[2] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987),
no. 1, 1–16.

[3] Marco Antonio Armenta and Bernhard Keller, Derived invariance of the cap product in Hochschild
theory, C. R. Math. Acad. Sci. Paris 355 (2017), no. 12, 1205–1207.

[4] , Derived invariance of the Tamarkin-Tsygan calculus of an algebra, C. R. Math. Acad. Sci.
Paris 357 (2019), no. 3, 236–240. MR 3945161

[5] Jenny August, On the finiteness of the derived equivalence classes of some stable endomorphism rings,
arXiv:1801.05687 [math.RT].

[6] H. J. Baues, The double bar and cobar constructions, Compositio Math. 43 (1981), no. 3, 331–341.
[7] Belkacem Bendiffalah and Daniel Guin, Cohomologie de l’algèbre triangulaire et applications, Algebra
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