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Abstract

The surging data traffic and dynamic user mobility in 5G networks have posed significant demands for mobile operators to increase data processing
capacity and ensure user handover quality. Specifically, a cost-effective and quality-aware radio access network (RAN) is in great necessity. With
the emergence of fog-computing-based RAN architecture (Fog-RAN), the data processing units (BBUs) can be separated from base stations
(RRHs) and hosted in distributed fog servers, where each server accommodates a community of RRHs to handle data traffic and user handover.
The key problem in Fog-RAN optimization is how to cluster complementary RRHs into communities and allocate adequate numbers of BBUs for
the fog servers, since real-world traffic and mobility patterns are highly dynamic to model, and it is not trivial to find an optimal RRH clustering
and BBU allocation scheme from potentially enormous numbers of candidates. In this work, we propose a data-driven framework for cost-
effective and quality-aware Fog-RAN optimization. In the RRH clustering phase, we build a weighted graph model to characterize user mobility
patterns across RRHs, and propose a size-constrained community detection (SCUD) algorithm to cluster RRHs into communities with frequent
internal handover events. In the BBU allocation phase, we formulate BBU allocation in each community fog server as a set partitioning problem,
and propose a column-reduced integer programming (CLIP) algorithm to find optimal BBU allocation schemes that maximize BBU utilization
rate. Evaluations using two large-scale real-world datasets collected from Ivory Coast and Senegal show that compared to the traditional RAN
architecture, our framework effectively reduces the average handover overhead to 12.8% and 27.3%, and increases the average BBU utilization
rate to 49.7% and 52.3% in both cities, respectively, which consistently outperforms the state-of-the-art baseline methods.
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1. Introduction

The number of mobile subscriptions is growing rapidly over
the past decades, reaching around 7.9 billion worldwide in 2019
[1]. In the fifth generation (5G) era, 3.5 billion Internet-of-
Things (IoT) devices will be connected to mobile network in-
frastructures in five years with new capabilities and use cases,
such as autonomous cars, shipping drones, and industrial robots
[1]. The tremendous traffic volume generated by these hetero-
geneous and dynamic mobile subscribers has posed great chal-
lenges to the radio access network (RAN) architecture of 5G
networks [2]. On one hand, the data traffic generated by these
mobile subscribers is growing explosively as a large volume of
multimedia contents are delivered [3]. In order to accommo-
date such surging traffic demand, operators need to expand the
RAN scale and increase its capacity, which leads to increasingly
high capital expenditure (CAPEX) and operating expenditure
(OPEX) [2, 4]. On the other hand, user mobility in 5G networks
is highly dynamic, ranging from large-scale crowd movement

to autonomous drone fleet migration [5]. Consequently, it is be-
coming extremely difficult for operators to ensure the quality of
services in RAN, such as user connectivity and handover delay.
Therefore, a cost-effective and quality-aware RAN architecture
is of great necessity for the success of 5G networks [6, 7].

To address these challenges, Cloud Radio Access Network
(Cloud-RAN) [8] has been proposed as a cloud computing so-
lution for next generation (5G) radio access networks. Cloud-
RAN envisions a centralized architecture where traditional base
stations are divided into remote radio heads (RRHs) and base-
band processing units (BBUs), and the BBUs are hosted and
shared in a centralized cloud pool [4]. Cloud-RAN reduces
the deployment and operational costs as a result of central-
ized resource sharing, and user mobility can be managed in
a unified and efficient manner [4]. However, as Cloud-RAN
requires a large volume of fronthaul traffic to be transmitted be-
tween BBUs and RRHs, the latency between RRHs and BBUs
is not negligible due to bandwidth and distance limitations in
the fronthaul [9]. Moreover, the design of one centralized BBU
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pool may be vulnerable to jamming attacks and raise network
security issues [10]. With the growing popularity of IoT de-
vices in the 5G era, the fronthaul latency and security issues
of Cloud-RAN have become critical challenges to satisfy the
requirements of latency-sensitive IoT applications and services
[11, 12].

To overcome the disadvantages of Cloud-RANs,
researchers have turned to fog computing, which extends the
cloud computing paradigm in Cloud-RAN to the edge of the
network [13]. In fog-computing-based radio access network
(Fog-RAN), instead of deploying a centralized BBU pool, the
BBU functionalities are provided by distributed fog servers
located close to the RRHs [14]. Figure 1 shows a typical
Fog-RAN architecture, where the whole RAN is divided into
several communities, and the RRHs in each community are
connected to a fog server via high-speed optical fibers, and
then routed to the core network. Fog-RAN alleviates the
challenges of the existing RAN architectures in the following
aspects. First, compared with Cloud-RAN, the fronthaul traffic
volume and transmission latency between RRHs and BBUs are
greatly reduced. Second, user mobility can be managed
internally in each fog server without explicitly transferring
session data across RRHs, and thus reduces handover overhead
and improves connection quality. Third, the BBU processing
capacities in the fog servers can be shared across the
connected RRHs to increase the utilization rate and thus
reduce the operational costs. Furthermore, Fog-RAN is
considered to be a more secure architecture than Cloud-RAN
[15, 16]. In Fog-RAN, data are processed in local fog servers,
decreasing the dependency on the core network and increasing
the independency among different fog servers. Selected
security functions can be carried out in fog servers, and
computing, storage, and networking tasks can be dynamically
relocated among fog severs [17]. If a fog server has been
attacked, its tasks can be dynamically rerouted to the adjacent
fog servers, demonstrating the robustness of the Fog-RAN
architecture. Also, the fog servers and RRHs in the Fog-RAN
architecture are corresponding to gNB-CUs and gNB-DUs in
the 5G wireless system [18], and the fog-RAN architecture can
be easily applied to 5G network. In summary, Fog-RAN
provides a promising solution to cost-effective and
quality-aware 5G network architecture [9].

In order to fully unlock the power of the Fog-RAN architec-
ture, we need to design optimal schemes to cluster RRHs into
communities and connect each community to a fog server, so as
to minimize not only the fronthaul traffic and latency between
RRHs and fog servers, but also the handover overhead across
RRHs. Moreover, we need to allocate an adequate number
of BBUs in each fog server to accommodate the RRH traffic
demands, so as to maximize the BBU utilization rate. However,
designing such an optimal RRH clustering and BBU allocation
scheme for a Fog-RAN architecture is not trivial due to the
following challenges.

1. It is not easy to characterize user mobility patterns
and traffic demands in real-world mobile networks.
In fact, the traffic generated in each RRH can vary

Figure 1. An illustrative example of the Fog-RAN architecture.

significantly, depending on the number and types of
connected user devices, the impacts of temporal contexts
(e.g., weekdays or weekends), the intensities of human
activities (e.g., commuting or eating), etc. Similarly,
user mobility is driven by various latent factors,
including human behaviors, IoT device tasks, city
functions, etc., and demonstrates sophisticated spatial
correlations. Existing work on traffic and mobility
characterization usually employ probabilistic models for
simulation, such as Poisson process [19] for traffic and
random walk process for mobility [20], which may not
be able to capture the spatial-temporal traffic and
mobility dynamics in real-world networks.

2. It is not trivial to design optimal RRH clustering
schemes in Fog-RANs. In Fog-RAN, by connecting a
set of RRHs to a fog server, the objective is to reduce the
user handover overhead among these RRHs, as well as
reducing the fronthaul traffic volume and transmission
latency between the RRHs and the fog server. To this
end, the RRHs with frequent handover events across
each other should be clustered to the same fog server to
alleviate transferring a large amount of user session data
across different fog servers [21]. Meanwhile, the RRH
community size, the geographic span of the fog server
and its connected RRHs should be constrained within a
range, so as to avoid fronthaul traffic jam and reduce
transmission latency for latency-sensitive applications.

3. It is not straightforward to design optimal BBU allo-
cation schemes in fog servers. In a fog server, BBUs
are usually implemented as virtual machines (VMs) with
a fixed capacity, while the traffic volume generated in
each RRH can be highly dynamic. We need to allocate an
adequate number of BBUs to accommodate the traffic de-
mands of the connected RRHs. On the one hand, directly
allocating one BBU for each RRH may lead to a low
utilization rate. On the other hand, allocating inadequate
number of BBUs for a fog server may result in traffic con-
gestion and hinder the quality of service of the fog server.
To this end, the RRHs connected to a fog server should
be organized to share an adequate number of BBUs, such
that the allocated BBU capacity is optimally utilized in
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each fog server.

With the emergence of big data and cloud computing tech-
nologies, a massive number of mobile network data can now
be collected, stored, and processed in operators infrastructures
[22, 23]. These mobile big data provide a great potential for
us to understand the traffic demands and mobility patterns of
mobile users, enabling researchers to design frameworks and
algorithms for network optimization in a data-driven approach
[24, 25]. In this work, we propose a data-driven framework
for Fog-RAN optimization leveraging the traffic demands and
mobility patterns of mobile users. More specifically, we first
extract the traffic volumes and user handover events of each
RRH in a mobile network from large-scale, real-world Call
Detail Record (CDR) datasets. We then cluster neighboring
RRHs with frequent handover events into proper communities,
and connect them to dedicated fog servers. Finally, in each fog
server, we partition the connected RRHs into disjoint subsets
and allocate BBUs for them, so that each subset of RRHs can
share the BBU capacity with complementary traffic patterns
and thus increase the BBU utilization rate.

In brief, the main contributions of this work include:

• We propose a novel data-driven approach to optimize
both operational cost and service quality for fog radio
access networks. The proposed approach is capable of
exploiting real-world data traffic demands and user
mobility patterns to build a demand-responsive
fog-RAN architecture.

• We propose a two-phase framework for RRH clustering
and BBU allocation via distributed fog servers. In the
RRH clustering phase, we build a weighted graph model
to characterize user mobility patterns across RRHs, and
propose a size-constrained community detection
(SCUD) algorithm to cluster RRHs into communities
with frequent internal handover events, and then connect
each RRH community to a fog server. In the BBU
allocation phase, we formulate BBU allocation in each
fog server as a set partitioning problem, and propose a
column-reduced integer programming (CLIP) algorithm
to find optimal BBU allocation schemes that maximize
the utilization rate.

• We evaluate the performance of our approach using two
large-scale real-world datasets collected from Ivory
Coast and Senegal. Results show that compared to the
traditional RAN architecture, our framework effectively
reduces the average handover overhead to 12.8% and
27.3%, and increases the average BBU utilization rate to
49.7% and 52.3%, respectively, which consistently
outperforms the state-of-the-art baseline methods.

The rest of this work is organized as follows. We first
present a literature review in Section 2, and then introduce the
preliminaries and framework overview in Section 3. In Section
4 we propose the mobility-based RRH clustering algorithm,
and in Section 5 we propose the traffic-based BBU allocation

algorithm. We report the evaluation results and present case
studies with real-world datasets in Section 6. Finally, we
conclude our work in Section 7.

2. Related Work

2.1. Radio Access Networks

The fast evolution of mobile networks have shown its great
importance in modern urban communication systems [26, 27].
Mobile network operators and researchers are continuously
seeking for solutions to provide stable telecommunication,
high speed data rate, and high quality of services to their users
[8, 28]. However, the cost to build, operate and upgrade the
network infrastructures is becoming increasingly expensive for
mobile operators [6]. As the deployment and commercial
operation of 4G systems are reaching maturity, researchers and
network operators worldwide have begun searching for next
generation (5G) mobile network solutions [6].

2.1.1. Cloud Radio Access Network
Cloud radio access network (Cloud-RAN) is targeted by

worldwide mobile network operators as a typical realization of
green and soft RAN architecture in 5G mobile networks [4]. In
2010, IBM proposed wireless network cloud (WNC) [29]. The
WNC system exploits emerging cloud-computing technology
and various wireless infrastructure technologies, such as remote
radio head and software radio, to enable RAN resource process-
ing operating in a cloud mode [29]. In 2011, China Mobile Re-
search Institute envisioned a cloud-based RAN architecture to
provide mobile broadband Internet access to wireless customers
with low bit-cost, high spectral and energy efficiency [8]. Texas
Instruments also proposed an enhanced version of its KeyStone
multicore architecture to be used to create cloud base stations.
For a comprehensive technology survey on Cloud-RAN, the
readers are referred to [4].

One of the key vision in Cloud-RAN is to provide flexi-
ble and configurable data processing capacity according to the
traffic demands [5, 8]. Furno et al. [30] coined such a vision
as a cognitive networking diagram. To this end, cooperations
among RRHs are necessary to cope with the fluctuations in
traffic demands [4]. However, as Cloud-RAN requires a large
volume of fronthaul traffic to be transmitted between BBUs and
RRHs, the latency between RRHs and BBUs are not negligible
due to bandwidth and distance limitations in the fronthaul [9].
Moreover, the design of one centralized BBU pool may be vul-
nerable to jamming attacks and raise network security issues
[10]. With the growing popularity of IoT devices in the 5G era,
the fronthaul latency and security issues of Cloud-RAN have
become critical challenges to satisfy the requirement of latency-
sensitive IoT applications and services [12].

2.1.2. Fog Radio Access Network
To overcome the disadvantages of Cloud-RANs,

researchers have turned to fog computing, which extends the
cloud computing paradigm in Cloud-RAN to the edge of the
network [13]. In fog-computing-based RAN architecture
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(Fog-RAN), instead of deploying a centralized BBU pool, the
BBU functionalities are provided via distributed fog servers
located close to the RRHs [14]. Shih et al. [31] introduced the
Fog-RAN and its rationale in serving ultra low-latency
applications. Zhang et al. [17] described the Fog-RAN
architecture and discussed how the distinctive characteristics
of Fog-RAN make it possible to efficiently alleviate the burden
on the fronthaul, backhaul, and backbone networks, as well as
reduce content delivery latencies. Fog computing is considered
to be a more secure architecture than cloud computing due to
its decentralized characteristics [15, 16], but it also faces new
security and privacy challenges [32]. Mandlekar et al. [33]
presented a survey talking about how fog computing is used to
defend data theft attacks. Tu et al. proposed a smart attack
defense scheme for end users and a novel technique to tackle
impersonation attacks in fog computing [34, 35]. Kumar et al.
[36] discussed the common security issues and proposed
countermeasures in fog computing. By allowing dynamic
relocation of the computing, storage, and control functions
among fogs, the life circle management of the system and
services can be more efficient and effective [17].

To unlock the power of the Fog-RAN architecture, many
studies have been conducted to optimize Fog-RANs. Park et
al. [37] studied the joint design of cloud and edge processing
for the downlink of a Fog-RAN, but this work only consid-
ered maximizing the delivery rate under fronthaul and enhanced
RRH capacity constraints without optimizing handover over-
head. Tandon et al. [38] and Sengupta et al. [39] demonstrated
the interplay of fronthaul, wireless and caching policies for the
minimization of the delivery latency to develop the information-
theoretic framework for the analysis of Fog-RANs. However,
they focused on the worst-case end-to-end latency among end
users without taking utilization into consideration. Xiang et
al. [40] proposed a deep reinforcement learning algorithm for
Fog-RAN slicing considering the transmission delay without
addressing the problem of caching and radio resource alloca-
tion. Pang et al. [41] proposed a Fog-RAN model achieving the
ultra-low latency by joint computing across multiple fog nodes
and near-range communication at the edge without consider-
ing handover overhead and utilization optimization. Moreover,
most of the existing works are based on simulation data, lacking
insights into real-world traffic demands and mobility patterns.
In this work, we exploit real-world data to build a demand-
responsive Fog-RAN architecture with regard to RRH cluster-
ing and BBU allocation, efficiently increasing BBU utilization
rate and reducing handover overhead as well as fronthaul la-
tency.

2.1.3. Fog Radio Access Network and Multiple-access Edge
Computing

Multiple-access Edge Computing (MEC) is an extension of
mobile computing through edge computing [42], defined as a
platform providing IT and computing capabilities within the
RAN [43], in close proximity to mobile subscribers. Similar to
Fog-RAN, MEC is also a promising solution for the next gener-
ation (5G) access networks [37, 44]. Both Fog-RAN and MEC
offload data from the cloud [45] and process data leveraging

computing resources closer to end-nodes [46, 47], and thereby
mitigate latency issues [48, 9]. Fog-RAN is Edge networking
seen from the piont of view of device constructors [13, 14],
and MEC is Edge networking seen from the point of view of
network operators [49, 50].

2.2. Mobile Big Data Analytics

Mobile crowdsensing paradigms and operator’s
infrastructures can offer a massive number of mobile datasets
[51, 52, 53]. For example, the large-scale call detail records
datasets released by Telecom Italia [54] containing
two-months of calls, SMSs and network traffic data from the
city of Milan and the province of Trentino, Italy. Blondel et al.
[22] offered a large-scale anonymous call detail records
datasets consisting of phone calls and SMS exchanges between
five million of Orange’s customers in Ivory Coast over half a
year. These heterogeneous mobile big data have been applied
to academic research and industrial analytics [24], generating
many interesting results [55, 56, 57, 58]. For example, Furno
et al. [30] applied the call detail records datasets released by
Telecom Italia to facilitating the design and implementation of
cognitive mobile networking. Besides, based on these datasets,
Chen et al. [25] proposed a deep-learning-based Cloud Radio
Access Network (Cloud-RAN) optimization framework.

However, when it comes to the data-driven Fog-RAN
optimization, it has not yet been widely studied in the
literature. Gao et al. [59] adopted data-driven bandit learning
methods to integrate off-line history information into online
learning to devise a cache placement scheme in Fog-assisted
IoT systems. Luo et al. [60] developed a data-driven method
for fog-computing-aided process monitoring and control
architecture design to optimize online performance in each fog
computing node. Dao et al. [61] proposed an adaptive resource
balancing scheme for serviceability maximization in Fog-RAN
with respect to a time-varying network topology issued by
potential RRH mobilities. However, these works mainly
focused on the optimization for resource allocation in each fog
server and overlooked the fog server deployment optimization.
Zhao et al. [62] proposed a paradigm of federated
learning-enabled intelligent Fog-RANs using the data
collected by the nodes of the fog computing layer. However,
the employed indivisible learning models are unable to support
flexible computation offloading strategies, and thus the
dispersive computation resources of fog servers cannot be
optimized. In this work, we exploit large-scale real-world
mobile open datasets to understand the traffic demands and
mobility patterns in real networks. Then, based on the
knowledge discovered from these mobile datasets, we cluster
RRHs to deploy fog servers and find optimal BBU allocation
schemes via distributed fog servers. The proposed framework
decreases handover overhead, fronthaul latency, and fronthaul
traffic, as well as increases the BBU utilization rate.
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Figure 2. Framework overview.

3. Preliminaries and Framework Overview

3.1. Preliminaries
Radio access networks (RANs) connect user equipments

(UEs) to the core networks (CNs) through a set of base sta-
tions (BSs) deployed over a geographical area [63]. Each base
station provides the area with a network coverage for trans-
mission of voice and data [64]. In order to monitor and eval-
uate the processing capacity of base stations, large scales of
anonymized statistical data have been collected by operators
and made available for researchers [24]. In this work, we ex-
ploit the anonymized call detail record (CDR) data released by
Orange Group via the Data for Development (D4D) Challenges
[22, 65]. More specifically, we extract two city-scale datasets,
each containing the communication traffic generated from base
stations, and the user mobility trajectories across these base
stations. The geographic positions of the base stations are also
collected. Based on these datasets, we define the following
preliminaries for data analytics.

Definition 1. Remote Radio Head (RRH): an RRH is a radio
transceiver placed in a base station site to facilitate wireless
communication between user devices and the network [4]. We
define an RRH as a triple r =< id, lat, lng >, where id is the
RRH identity, and lat and lng are the latitude and longitude
coordinates of the RRH.

Definition 2. RRH Traffic Volume: the traffic volume of an
RRH is defined as the quantity of radio resource units [19]
occupied by an RRH during a period of time, which can be
derived from the total duration of calls, the overall volume of
Internet data, etc. Specifically, we denote the traffic volume of
RRH ri in the time slot t as F(ri, t).

Definition 3. RRH Handover Count: the handover count be-
tween a pair of RRHs is defined as the quantity of users moving
between the two RRHs during a period of time. Specifically,
we denote the handover count between RRH ri and RRH rj in
the time slot t as H(ri,rj, t).

Definition 4. Baseband Unit (BBU): a BBU is a device pro-
viding digital signal processing functionalities for the RRHs
connected to it [4]. In the proposed Fog-RAN architecture,

BBUs are implemented as virtual machine instances with spe-
cific CPU, memory, and storage resources [66]. Correspond-
ingly, we define a BBU as a tuple b =< id, param >, where
id is BBU identity, and param is the resource configuration
parameters of the BBU virtual machine.

Definition 5. BBU Capacity: the capacity of a BBU is deter-
mined by its resource parameters, and measured in the same
dimension as RRH. We denote the capacity of BBU bi as c(bi).
In this work, for the simplicity of analytics, we consider BBUs
with unified capacity C in all fog servers, although this assump-
tion could be easily extended by specifying a list of capacity
configurations, and our method can easily adapt to it.

Definition 6. Fog Server: in the proposed Fog-RAN architec-
ture, a fog server is defined as a distributed cloud server for
general-purpose baseband processing, data caching, and other
applications [9]. In this work, we focus on the baseband pro-
cessing functionality, and define a fog server as a triple s =<
id,R,B >, where id is the identity of the fog server, R = {ri}
is the community of RRHs connected to the fog server, and
B = {bi} is the set of BBUs allocated to accommodate the traffic
and handover demands of the connected RRHs.

3.2. Framework Overview
Based on the datasets and preliminaries, we propose a two-

phase framework for data-driven Fog-RAN optimization, as il-
lustrated in Figure 2. In the mobility-based RRH clustering
phase, we first extract the handover patterns across RRHs, and
build a weighted graph to model user mobility patterns with
geographic constraints. We then propose a size-constrained
community detection (SCUD) algorithm to cluster neighbor-
ing RRHs into communities with frequent internal handover
events. Based upon this, we connect each RRH community
to a fog server. In the traffic-based BBU allocation phase, we
first extract the traffic patterns of RRHs in each fog server, and
model RRH traffic complementarity with regard to BBU capac-
ities. We then formulate BBU allocation as a set partitioning
problem, and propose a column-reduced integer programming
(CLIP) algorithm find optimal RRH partition schemes, so that
each subset of RRHs share the BBU capacity to maximize the
BBU utilization rate. In the following sections, we elaborate on
the details of this framework.
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4. Mobility-Based RRH Clustering

In this phase, our objective is to cluster neighboring RRHs
with frequent handover events into communities. To this end,
we first extract user mobility patterns across RRHs from han-
dover counts, and then build a weighted graph to model user
mobility structures with geographic constraints.

Specifically, we first model RRHs as graph nodes, and con-
nect two RRHs with a link if they are geographically close to
each other. We compute the link weight based on the handover
intensity between the corresponding nodes. We then cluster
RRHs based on the weighted graph. These communities should
be densely connected internally and loosely connected among
one another [67]. In the literature, various algorithms have
been proposed to find community structures in graphs [67],
such as modularity maximization [68], label propagation [69],
and the Girvan-Newman algorithm [70]. However, directly ap-
plying these community detection algorithms may not be ad-
equate in the RRH clustering scenario, since we also need to
constrain the geographic span of the formed RRH communities,
so that the fronthaul latency between the RRHs and the fog
server can be guaranteed to satisfy service quality requirements.
As RRHs are not evenly distributed geographically, it is difficult
to select a unified distance threshold for the RRH communities.
Therefore, we proposed a size-constrained community detec-
tion (SCUD) algorithm to solve this problem. We elaborate the
details as follows.

4.1. User Handover Pattern Extraction

We extract the handover counts between RRHs in a mobile
network based on the users’ trajectories in the dataset. Specif-
ically, we record a handover event when a user is observed in
two consecutive RRHs. We then exploit a tensor structure to
capture the spatial-temporal user mobility patterns [71]. Specif-
ically, we build a tensor H ∈ RNr×Nr×Nt with three dimensions
to model the RRH handover counts, where H(ri,rj, t) refers to
the handover count between RRH ri and RRH rj in the time
slot t, Nr is the number of RRHs, and Nt is the number of time
slots. We consider the case of symmetric handover counting
where H(ri,rj, t)=H(rj,ri, t), and a time slot of one hour where
t = 1h.

Based on the handover tensor, we first calculate the average
handover intensity of each RRH pair as follows:

I(ri,rj) =
1
Nt

Nt∑
t=1

H(ri,rj, t) (1)

As an example, Figure 3(a) demonstrates the average han-
dover intensities across a set of RRHs in Abidjan, Ivory Coast
from 12/05/2011 to 04/22/2012. We can observe several RRH
communities with strong internal handover intensities, which
indicates the spatial locality of user handover patterns.

4.2. Graph-Based Mobility Structure Modeling

Based on the extracted user handover patterns, we model
the structures of user mobility across RRHs as an undirected,

Figure 3. An example of the daily user mobility profiles in Abidjan, Ivory
Coast. The blue links on the map correspond to user handover counts between
RRHs pairs, where thicker links correspond to larger handover counts.

weighted graph G = (V,E), where V = {r1, . . .,rN } denotes the
set of nodes corresponding to N RRHs, and E denotes the set of
links between RRH pairs. We then define the adjacency matrix
W of graph G, which is an N ×N symmetric matrix with entries
w(ri,rj) denoting the link weight between node ri and node rj .

For each RRH node pair, we use their average handover
intensity to determine their link weight, i.e., w(ri,rj) = I(ri,rj).
We consider the case of symmetric non-negative weights
(w(ri,rj) = w(rj,ri),w(ri,rj) ≥ 0) with no loops (w(ri,ri) = 0).
In this way, we model the user mobility patterns as a
constructed weighted graph, which enables mobility-based
RRH clustering in the next step.

4.3. SCUD: RRH Clustering Algorithm

Based upon the mobility graph structure, in this step, we
cluster neighboring RRHs with frequent handover events across
them into communities and connect them to the fog servers. We
formulate this problem as a community detection problem [67],
and elaborate the problem formulation and solution as follows.

Problem Formulation: Given graph G = (V,E), we first
define a set of communities C = {C1, . . .,CK }, where

∪∀Ck ∈C = V and ∩∀Ck ∈C = ∅ (2)

Then, given a node v, we define the connectivity of v to a
community C as the sum of link weights between u and the
nodes in the community C:

con(v,C) =
∑
u∈C

w(u,v) (3)

Finally, we define the adjacent communities C(v) of v as

C(v) = {C |con(v,C) > 0,C ∈ C} (4)

With the definitions above, our objective is to find an op-
timal set of communities C, so that the internal connectivity

6
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within a community is higher than the inter-community con-
nectivity, i.e.,

∀v ∈ Ck, con(v,Ck) ≥ max{con(v,Cl),Cl ∈ C} (5)

Moreover, we need to constrain the size of each community
(i.e., the quantity of nodes in a community) to prevent long
fronthaul latency, i.e.,

∀Ck ∈ C, size(Ck) ≤ τmax (6)

Solution and Challenge: The problem can be identified as
a community detection problem and be solved by modularity
maximization algorithms [70]. The modularity Q of a graph G
is defined as the difference of the probability of the edges that
fall within a given community Ck and the expected probability
of edges that were distributed at random in the graph [72], i.e.,

Q =
K∑
k=1
(ekk − a2

k) (7)

where ekk is the probability of inner-community edges, i.e.,

ekk =
|E(Ck)|
|E(G)| =

∑
u,v∈Ck

w(u,v)∑
u,v∈V w(u,v) (8)

and ak is the probability of a random edge connecting to com-
munity k, i.e.,

ak =

∑
v∈Ck

deg(v)
2|E | =

∑
u∈Ck,v∈V w(u,v)∑
u,v∈V w(u,v) (9)

|E | is the sum of link weights, and deg(v) denotes the degree
of node v. Modularity reflects the concentration of edges
within community compared with random distribution of links
between all nodes regardless of community.

The basic idea of community detection by modularity max-
imization is that if we maximize Q(Ck), the resultant commu-
nity structure will have dense connections between the nodes
within community but sparse connections between nodes in dif-
ferent community [70]. However, optimizing the modularity of
a graph is proven to be NP-hard [72]. Moreover, the community
size constraints bring extra challenges in modularity optimiza-
tion. To address these issues, we propose a size-constrained
community detection (SCUD) algorithm based on the popular
fast-unfolding algorithm [73] to effectively partition nodes into
communities with size constraints.

Size-Constrained Community Detection (SCUD): The
basic idea of the SCUD algorithm is iteratively moving a node
vj from its old community to a new community Ck that
maximize the modularity gain while not exceeding the size
threshold τmax . Specifically, the modularity gain is calculated
as follows

∆Q(vj,Ck) = ejk + ek j −2ajak = 2(ejk − ajak) (10)

The details of the SCUD algorithm are presented in Algo-
rithm 1. Specifically, the algorithm iteratively build communi-
ties by merging adjacent nodes. At the first step of a iteration,

we assign each node to its adjacent community with the highest
modularity gain without exceeding the community size con-
straint1. In the second step of the iteration, we generate a new
graph G′ by regarding each community in the original graph as
a node. Specifically, for the nodes v′i,v

′
j ∈ G′, we calculate their

link weight as follow

w(v′i,v′j) =
∑

u∈Ci,v∈C j

w(u,v) (11)

where Ci → v′i and Cj → v′j . We repeat the two steps in each
iteration until the new graph structure is the same as the previ-
ous one, or the maximum iteration number max_iter is reached,
as the convergence of such a heuristic algorithm is difficult to
prove2. Finally, we obtain a set of communities C for the RRHs
with frequent internal mobility behaviors.

5. Traffic-Based BBU Allocation

In this phase, we need to assign a set of distributed fog
servers to the RRH communities obtained in the previous
phase, and determine the optimal quantity of BBUs allocated
for each fog server. In real-world deployment, we assume that
the fog server for each RRH community can be placed at the
geographic centroid of the community. The RRHs in a
community and the corresponding fog server are connected via
high speed optical fibers [74].

The basic idea of optimal BBU allocation in a fog server is
to partition the connected RRHs into subsets, and allocate a
BBU for each subset, so that the aggregated traffic in each
subset are complementary, i.e., being close to the BBU
capacity to a maximal extent while not exceeding the BBU
capacity. For example, an RRH occupying 70% of BBU
capacity can be partitioned in a subset with another RRH
occupying 30% of capacity to increase BBU utilization. To
this end, we first extract the RRH traffic patterns for each fog
server, and then propose a deviation-based metric to measure
their complementarity. Finally, we model the BBU allocation
problem as a set partitioning problem [75]. To solve this
problem, exhaustively searching for RRHs with
complementary traffic patterns to form subsets can be
computationally intractable, since there are a tremendous
number of partitioning schemes as the network scale grows
[25]. Therefore, we propose a column-reduced integer
programming (CLIP) algorithm [76] to effectively find the
exact solution to the optimal set partitioning problem. We
elaborate the details as follows.

5.1. RRH Traffic Profile Extraction
We extract the RRH traffic volume based on the commu-

nication traffic logs in the dataset3. We then build a tensor

1If two communities yield the same gain, we randomly choose one.
2Based on experiments, we empirically find that the algorithm converges

quickly in most cases.
3In this work, we calculate the total duration of calls as a measurement of

traffic volume, while our approach can directly adapt to other traffic metrics.
7



L. Chen et al. / Journal of Network and Computer Applications 00 (2020) 1–17 8

Figure 4. An illustrative example of the daily traffic profiles of two RRHs in Abidjan, Ivory Coast. Red dots on the map correspond to RRHs, and curves on the
charts correspond to hourly traffic volume in a typical weekday and weekend.

F ∈ RNr×Nt with two dimensions to model the RRH traffic
volume, where F(r, t) refers to the traffic volume generated by
RRH r in the time slot t. We derive F by summing up the
absolute values of inbound and outbound traffic, i.e., F(r, t) =
|Fin(r, t)| + |Fout (r, t)|, and calculate the traffic volumes on an
hourly basis, i.e., t = 1h.

Based on the traffic tensor, we extract a traffic profile for
each RRH to characterize its traffic pattern. Specifically, for
each RRH ri , we aggregate and average its hourly traffic volume
in the dataset over a typical weekday and a typical weekend to
build the temporal profile, i.e.,

Φ(ri) = [ f w1, f w2..., f w24, f n1, f n2..., f n24] (12)

where f wi(i = 1,2...24) and f ni(i = 1,2...24) correspond to the
average traffic volume of the ith hour over all weekdays and
weekends, respectively.

As an example, Figure 4 shows the daily traffic profiles of
two RRHs in Abidjan, Ivory Coast from 12/05/2011 to
04/22/2012. We can see that the RRH traffic patterns in
different areas (e.g., r1 in a business district and r2 in a
residential area) exhibit different variations and intensities
during the typical weekday and weekend.

5.2. Capacity-Constrained Traffic Complementarity Modeling
Based on the extracted traffic profiles, we define the traffic

complementarity of a subset of RRHs connected to a BBU.
Specifically, given a subset of RRHs R = {r1,r2, . . .,rn}, we first
calculate their aggregated traffic profile as

Φ(R) =
n∑
i=1
Φ(ri) (13)

For example, the dashed lines in Figure 5 demonstrate the
aggregated traffic profiles for the two RRHs. We can see that
during weekday morning and weekend afternoon (indicated by
the masks in Figure 5 ), the aggregated traffic volumes are very
close to the BBU capacity (indicated by the green lines). There-
fore, we can allocate one BBU for the two RRHs to share the
BBU capacity and increase the BBU utilization rate in these
periods.

Figure 5. An example of the aggregated traffic patterns of two RRHs in Abidjan,
Ivory Coast. The blue masks indicate that the aggregated traffic volumes are
very close to the BBU capacities (the green lines) during weekday morning and
weekend afternoon.

More specifically, we first define the temporal group as a
duration in the typical weekday and weekend, i.e.,
[Ts,Te] ∈ [1,48]. We note that different temporal groups may
lead to different traffic aggregation and BBU allocation
schemes. We then compare the aggregated traffic volumes in
the temporal group with the BBU capacity to determine their
complementarity. Specifically, we define the complementarity
score η between the aggregated traffic Φ(R) and the BBU
capacity Γ as their coefficient of determination [77] during the
temporal group, i.e.,

η(R) = 1− SSres

SStot
= 1−

∑Te
t=Ts
(Φ(R, t)−Γ)2∑Te

t=Ts
(Φ(R, t)−Φ(R))2

(14)

where

Φ(R) = 1
|Ts −Te |

Te∑
t=Ts

Φ(R, t) (15)

We note that the complementarity score η is maximum
(equals to 1) when the aggregated traffic and the BBU capacity
are exactly the same during the temporal group. A lower η
corresponds to larger variations between the aggregated traffic
and the BBU capacity.

Meanwhile, we define the utilization rate µ as the average
percentage of the aggregated traffic to the BBU capacity during

8
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Algorithm 1: The SCUD algorithm
Input: Graph G = (V,E), community size threshold τmax ,

maximum iteration number max_iter
Output: Community label set L

1 Initialize: L← {1, . . .,N}
▷ randomize node list

2 randomize(L);
3 while (iter < max_iter)∧ (move > 0) do

▷ assign nodes to communities
4 for j← 1 to Nr do
5 if size(vj ) ≥ τmax then
6 continue;
7 end

▷ remove node vj from its community
8 old_label← L(vj ); L(vj ) ← null;
9 Cvj = get_adjacent_community(vj,G, L);

10 max_gain← 0;
11 for Ck ∈ Cvj do
12 if size(vj )+ size(Ck ) > τmax then
13 continue;
14 end
15 gain← ∆Q(vj,Ck );
16 if gain ≥ max_gain then
17 max_gain← gain;
18 new_label← L(Ck );
19 end
20 end

▷ update node label
21 L(vj ) ← new_label
22 if old_label , new_label then
23 move← 1;
24 end
25 end

▷ update graph structure
26 C = get_all_community(G, L);
27 Initialize G′(E ′,V ′);
28 for C ∈ C do
29 v′ ∈ V ′← C;
30 size(v′) ← size(C);
31 end
32 for v′i ∈ V ′ do
33 for v′j ∈ V ′ do
34 w(v′i,v

′
j ) ←

∑
u∈Ci,v∈C j

w(u,v)
35 end
36 end
37 G← G′;
38 end
39 C = get_all_community(G, L);

the temporal group, i.e.,

µ(R) = 1
|Ts −Te |

Te∑
t=Ts

Φ(R, t)
Γ
=
Φ(R)
Γ

(16)

Normally, in order to avoid BBUs from overloading, we need
to constrain µ(R) ≤ 1, so that the aggregated traffic does not
exceed the BBU capacity.

Figure 6. An example of four RRHs partitioned into two subsets.

5.3. CLIP: BBU Allocation Algorithm
Based on the definitions above, in this step, we partition a

set of RRHs connected to a fog server into several subsets, so as
to maximize the complementarity score of the formed subsets
under the utilization constraint.

Definitions: Let P(k) = {r (k)1 ,r
(k)
2 , . . .,r

(k)
Nk
} be the set of

RRHs connected to a fog server C(k). We define a partition of
P(k) as P(k) = {P(k)1 ,P

(k)
2 , . . .,P

(k)
J }, so that

∪∀P(k)j ∈P(k)
= P(k) and ∩∀P(k)j ∈P(k)

= ∅ (17)

In other words, P(k) is a set of nonempty subsets of P(k),
where every element in R(k) appears in only one of these subsets
P(k)j , j = 1,2, . . ., J. Let R(k) be the power set of P(k), then P(k)

is a proper subset of R(k), i.e., P(k) ⊂ R(k). Figure 6 shows
an illustrative example of four RRHs partitioned into two sub-
sets, where P(k) = {r (k)1 ,r

(k)
2 ,r

(k)
3 ,r

(k)
4 }, P(k)1 = {r

(k)
1 ,r

(k)
2 }, P(k)2 =

{r (k)3 ,r
(k)
4 }, and P(k) = {P(k)1 ,P

(k)
2 } is a partition of P(k).

With the above-mentioned definitions, we present the for-
mulation of the RRH set partitioning problem with the objective
of maximizing the complementarity score under the utilization
constraint.

Problem: (RRH Set Partitioning)

maximize η(P(k)) (18)

=maximize
J∑
j=1
η(Pj) (19)

subject to

∪∀P(k)j ∈P(k)
= P(k) and ∩∀P(k)j ∈P(k)

= ∅ (20)

µ(P(k)) =max µ(P(k)j ) ≤ 1 (21)

Solution and Challenge: The set partitioning problem (18)
can be solved by integer programming algorithms [76]. First,
we construct a (0,1)-matrix A to describe all the possible sub-
sets of P(k), where each column of A represents a subset P(k)j ∈
P(k), and each row of A corresponds to an RRH r (k)i ∈ P(k). The
binary element A(i, j) = 1 if and only if RRH r (k)i is in subset
P(k)j . For example, Figure 6(b) shows the matrix representation
of all the possible subsets in Figure 6(a). We then associate
a (0,1)-vector x with matrix A to represent the set partitioning
scheme P(k). Specifically, we let xj = 1 if and only if the j th

column of A is selected in the partitioning scheme, i.e., P(k)j ∈
9
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Figure 7. A complete RRH subset tree for the example in Figure 6
.

P(k). Since an RRH can be partitioned into one and only one
subset, we derive

Ax = e = (1, . . .,1)T (22)

For example, the partition scheme in Figure 6(a) can be writ-
ten as x = (0,1,1,0,0,0,0,0,0,0,0,0,0,0,0)T , corresponding to
the selection of the two RRH subsets {0,0,1,1} and {1,1,0,0}.
With the above-mentioned matrix representation, the objective
function of Problem (18) can be rewritten as

maximize ηTx (23)

where η is the utilization rate vector for the corresponding sub-
sets in A. Meanwhile, the utilization constraint can be ex-
pressed as

| |µx| |∞ ≤ 1 (24)

where µ is the complementarity vector for the corresponding
subsets in A, and | | · | |∞ is the vector infinity norm that computes
the maximum of the vector elements.

Finally, the RRH set partitioning problem is rewritten as
Problem: (Integer Programming Problem)

argmax
x

ηTx (25)

subject to

Ax = e = (1, . . .,1)T (26)
| |µx| |∞ ≤ 1 (27)

Since η and µ are constant vectors for a given RRH set, we
can compute their values in advance, and exhaustively search
for the optimal x for (26) as a solution. However, as network
scale grows, such an exhaustive search method quickly
becomes intractable [19]. First, given a set of m RRHs, the
corresponding matrix A contains 2m − 1 columns (subsets),
making it difficult to store and manipulate for real-world
networks with thousands and hundreds RRHs. Second,
directly applying integer programming algorithms on such a
large matrix A is computationally intractable even with
modern solvers [19]. Therefore, we propose a column-reduced
integer programming (CLIP) algorithm to effectively solve
Problem (26) as follows.

Column-Reduced Integer Programming: We reduce the
number of columns in A by exploiting a tree projection and
pruning algorithm [78]. Specifically, instead of enumerating

all the RRH subsets in the matrix, we generate a tree of RRH
subsets by successively adding RRHs to the existing nodes. As
an example, Figure 7 shows the complete subset tree for the
example in Figure 6. Instead of generating all the tree nodes
at once, we traverse the tree from top down in a depth-first
manner, and prune branches based on the following lemma.

Lemma: (monotone property) If the utilization rate
µ(P(k)) > 1, then ∀P(j) ⊃ P(k) ∈ P, we have µ(P(j)) > 1.

Proof : let P(j) = P(k)∪ rc , we have

µ(P(j)) = 1
|Ts −Te |

Te∑
t=Ts

Φ(P(j), t)
C

(28)

=
1

|Ts −Te |

Te∑
t=Ts

Φ(P(k)∪ rc, t)
C

=
1

|Ts −Te |

Te∑
t=Ts

Φ(P(k), t)+Φ(rc, t)
C

> µ(P(k)) > 1

Therefore, to satisfy utilization constraint (27), we can
safely remove nodes with µ(Pk) > 1 and all its child nodes. In
this way, we generate the column-reduced matrix A ∈ Rm×n
with n columns for m RRHs, in which each column
corresponds to a subset satisfying the utilization constraint. In
practice, we find out that n ≪ 2m − 1, which effectively
reduces the search space for the optimal solution.

Finally, we solve the integer programming problem (26)
with column-reduced A. Such a problem is proven NP-hard
[79], and various techniques have been proposed to solve it,
such as cutting plane, branch and bound, and heuristic search
[80]. The basic steps include narrowing the solution space,
finding integer-feasible solutions, and discarding space without
better integer-feasible solutions. In this work, we employ the
Integer Linear Programming Solver from the Matlab Optimiza-
tion Toolbox4 to find the optimal solution.

6. Evaluation

We evaluate the performance of our framework based on
real-world mobile network datasets. Specifically, we assess its
capability of improving network quality and reducing network
cost. We first describe the experiment settings, and then present
the evaluation results and case studies.

6.1. Dataset Description

We exploit two large-scale, anonymized CDR datasets re-
leased by Orange Group via the D4D challenges [22, 65] for
evaluation. The datasets contain CDRs from Orange customers
from Ivory Coast for half-a-year, and Senegal in one year, re-
spectively. After data preprocessing, we extract two city-scale
datasets for Abidjan and Dakar, the two largest cities in Ivory
Coast and Senegal, respectively. The details of the datasets are
listed in Table 1.

4https://www.mathworks.com/help/optim/index.html
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Table 1. Datasets Description
City Abidjan Dakar
Area 422 km2 83 km2

Population 4,707,404 1,146,053
Base stations 270 257

Duration 20 weeks 50 weeks
12/05/2011–04/22/2012 01/07/2013–12/22/2013

Average call duration 5.18 minutes 6.82 minutes
Handover per hour 78,662 113,082

In each city, we assume that a Fog-RAN is to be deployed
upon the existing network infrastructure. Specifically, the ex-
isting base stations are replaced by light-weight RRHs. A set of
distributed fog servers are deployed for each RRH community,
and connected to the RRHs via high speed optical fibers. We
calculate the RRH traffic volume by aggregating the incoming
and outgoing call duration in each RRH, and derive the user
handover count by traversing the trajectories of user mobility
across RRHs. Due to privacy concerns, the user mobility data
in the original datasets is randomly sampled from a portion of
Orange customers (1% for Ivory Coast and 3.33% for Senegal,
respectively) [22, 65]. Therefore, we estimate the actual han-
dover count by multiplying the sampling rate.

6.2. Evaluation Plan
Based on the two datasets, we first extract handover profiles

for the RRH pairs in Abidjan and Dakar, respectively. Subse-
quently, we run the proposed SCUD algorithm to cluster RRHs
into communities. For each community, we extract the RRH
traffic profiles, and allocate BBUs for complementary RRHs
using the proposed CLIP algorithm. We dynamically gener-
ate RRH-BBU mapping schemes for different temporal groups
based on the observations from traffic variation patterns. We ad-
just the size of RRH community and BBU capacity to compare
the performances of different schemes and find proper commu-
nity sizes and BBU capacities for Abidjan and Dakar, respec-
tively. The parameter selection procedures are detailed later.

6.3. Evaluation Metrics
We derive the following network quality and cost metrics

to evaluate the performances of different RAN architectures.
First, compared with the traditional RAN architecture, the pro-
posed Fog-RAN architecture reduces handover overhead and
increases BBU utilization. We quantitatively evaluate the im-
provements using the following two metrics.

Handover Overhead: Given a set of RRHs and an RRH
clustering scheme C = {C1, . . .,CK }, we calculate the handover
overhead as the cost of migrating the user session data between
RRHs for a random handover event. If two RRHs are connected
to the same fog server, such migration cost can be negligible
since no data copying is needed. For handover between differ-
ent fog servers, we assume that each migration cost is constant.
Consequently, we calculate the session migration delay as pro-
portional to the handover event counts between fog servers, e.g.,

MH (C) =
K∑
k=1

∑
u∈Ck,v<Ck

w(u,v) (29)

We note that for the traditional RAN architecture without RRH
clustering, we have MH (C) is maximized as none of the RRHs
are in the same community and every handover event are pro-
cessed with a cost.

BBU Utilization: Given an RRH clustering scheme
C = {C1, . . .,CK }, we assign a fog server to each community to
process the aggregated RRH traffic. In each fog server, the
BBU processing capacities are shared across the connected
RRHs to increase the utilization rate. Specifically, given a set
of RRHs P(k) in a fog server with the partitioning scheme
P(k) = {P(k)1 ,P

(k)
2 , . . .,P

(k)
J }, we calculate its average BBU

utilization rate as

MU (P(k)) =
1
J

J∑
j=1
µ(P(k)j ) (30)

Upon this basis, we derive the overall BBU utilization for the
entire Fog-RAN as

MU (C) =
1
K

K∑
k=1

MU (P(k)) (31)

Second, compared with the Cloud-RAN architecture, the
proposed Fog-RAN architecture reduces the fronthaul traffic
volume and transmission latency between the RRHs and BBUs
[81]. We quantitatively evaluate the improvements with the
following two metrics.

Fronthaul Traffic: In the fog and cloud-RAN architec-
tures, BBUs are hosted in centralized servers, thus we bench-
mark the fronthaul traffic volumes between RRHs and the con-
nected fog or cloud servers. Specifically, given an RRH cluster-
ing scheme C = {C1, . . .,CK }, we calculate the fronthaul traffic
as the maximum traffic volume of the communities, i.e.,

MΦ(C) = max
k=1,...,K

Φ(P(k)). (32)

where P(k) is the set of RRHs in the fog sever corresponding
to the community Ck , and Φ(P(k)) is the average traffic volume
of P(k) in a temporal group. We note that in the Cloud-RAN
architecture, since all the RRHs are connected to a centralized
cloud server, the fronthaul traffic volume equals to the sum of
the RRH traffic volume.

Fronthaul Latency: Another key metric for evaluating a
clustering scheme is the transmission delay between RRHs and
BBUs in the network [82]. We assume that the fog or cloud
servers are placed at the geographic centroids of the
corresponding communities [83]. Accordingly, we measure
the average fronthaul delay as proportional to the radius of the
fog or cloud, which is the maximum distance from the
community centroid to the connected RRHs, i.e.,

MD(C) =
1
K

K∑
k=1

max
r ∈P(k)

dist(r,Ck) (33)

where Ck is the geographic centroid of the community Ck , and
dist(r,Ck) is the Euclidean distance.
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Figure 8. Traffic variation patterns of the 270 and 257 RRHs in Abidjan (left)
and Dakar (right), respectively. Each row corresponds to a traffic profile of an
RRH denoted by the typical weekday and weekend.

6.4. Baseline Methods

Taking into consideration the traditional and state-of-the-
art RAN architectures, we design the following baselines to
compare to the proposed method.

BTS-RAN: this baseline directly connects each RRH to a
BBU located at the same site. Each RRH-BBU pair is usually
deployed and operated as a stand-alone base station (BTS) [4].
In this way, no BBUs are shared across RRHs. This architecture
has been widely adopted in many traditional networks, e.g., the
3G/4G mobile networks [4].

Cloud-RAN: this baseline adopts the RAN architecture
proposed in [25], which deploys a centralized cloud server
(BBU pool) for a city-wide network, and connects all the
RRHs to the BBU pool via optical fibers. Similarly, in the
cloud server, we partition RRHs into subsets and allocate
BBUs for them to share the BBU capacity. However, it is
computationally intractable to directly apply integer
programming algorithms to find the exact optimal solution for
such a city-wide cloud server. Instead, we adopt the greedy
algorithm proposed in [25] to find an optimal approximation.
Specifically, the algorithm incrementally allocates BBUs to
accommodate RRH traffic demands in heuristic iterations until
all the RRHs are connected.

Simple-Fog-RAN: this baseline clusters RRHs into com-
munities based on their geographic distances without consider-
ing user mobility patterns in the network. The algorithm and
constraints are the same as the proposed CLIP method. In each
fog server, it performs RRH partitioning and BBU allocation
using the greedy algorithm as proposed in [25].

Fog-RAN: the proposed Fog-RAN architecture clusters
RRHs into communities based on handover events leveraging
the proposed algorithm (CLIP), and allocates BBUs in fog
servers using the exact optimization algorithm (SCUD).

6.5. Parameter Selection

The following key parameters in the proposed framework
need to be carefully selected to achieve optimal performance.

Temporal groups: In the RRH partitioning and BBU allo-
cation phase, we need to dynamically switch to different parti-
tioning schemes in different temporal groups. Figure 8 shows
the traffic variation patterns of Abidjan and Dakar, respectively.
Based on the observations, we derive six temporal groups in
weekdays and weekends, as shown in Table 2.

Table 2. Temporal groups for dynamic scheme switching
Day type Group name Time span

Weekdays
working hours 08:00–17:00
evening time 17:00–22:00
night time 22:00–08:00

Weekends
day time 10:00–19:00
evening time 19:00–02:00
night time 02:00–10:00

Figure 9. The costs of forming different sizes of communities in Abidjan (left)
and Dakar (right), respectively.

Figure 10. The handover count between two RRHs is about the inversely
proportional to their Euclidean distance.

RRH Community Size: In the RRH clustering phase, a
key parameter is the community size threshold τmax (i.e., the
largest quantity of RRHs in each community). A small thresh-
old may result in fragmented communities, high handover over-
head MH (C) and large number of communities K , while a large
threshold may lead to over-sized communities with high fron-
thaul traffic MΦ(C). Based on cell planing practices and fog
network surveys [84, 47], we vary the threshold τmax from 2
to 20 RRHs, and calculate the cost to compare different size
thresholds as follows

Cost(C|τmax) = MH (C) ∗MΦ(C) ∗K (34)

To minimize Cost(C|τmax), we conduct repeated experi-
ments over groups with different community size thresholds in
both cities, and present the results in Figure 9.

Furthermore, for cities without handover count data, we can
estimate the handover overhead between two RRHs using their
Euclidean distance. Based on the observations, closer RRHs
usually have more handover counts, and the handover count
between two RRHs is about the inversely proportional to the
Euclidean distance between them (see Figure 10). Therefore,
we estimate the handover overhead and the cost as follows
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Figure 11. The estimated costs of forming different sizes of communities in
Abidjan (left) and Dakar (right), respectively.

Figure 12. The optimal τmax estimated using historical data with different
time windows. The n in x-axis means using the first n weeks of the data.

ŵ(u,v) = 1
dist(u,v), M̂H (C) =

K∑
k=1

∑
u∈Ck,v<Ck

ŵ(u,v) (35)

�Cost(C|τmax) = M̂H (C) ∗MΦ(C) ∗K (36)

Figure 11 shows the results of repeated experiments over
groups with different community size thresholds using
estimated handover counts, and the optimal values of τmax for
Abidjan and Dakar are the same as those determined using
real-world data.

Also, we conducted a series of experiments over historical
data with different time windows to verify the effectiveness of
using partial data to calculate the τmax and show the moderate
consistency of real-world user mobility and traffic data. First,
we use the data in the first week to calculate τmax . Then,
we extend the time window to the first two weeks and get the
corresponding τmax . The process is repeated until the τmax

remains the same for more than two rounds or all data have been
included. The results are shown in Figure 12, indicating that the
τmax can be estimated with around three and two weeks of data
in Abidjan and Dakar, respectively. Actually, the mobility and
traffic patterns in a city show moderate regularity (see Appendix
A), making it practical to estimate τmax using limited historical
data. Furthermore, we change the τmax from 10 to 15 in Abid-
jan and from 15 to 20 in Dakar and calculate the corresponding
values of τmax , the results (see Appendix B) show that the
proposed approach can achieve a good performance so long
as the τmax is controlled in a reasonable scope. Based on the
above discussions, we select optimal τmax = 13 for Abidjan and
τmax = 19 for Dakar.

BBU capacity: Based on the observations and repeated ex-

periments, we select the BBU capacity Γ = 2×105 for Abidjan
and Γ = 3×105 for Dakar.

6.6. Evaluation Results

6.6.1. Results of RRH Clustering
Handover Overhead: Figure 13 shows the handover

overhead using different RRH clustering methods on the two
datasets. The traditional BTS-RAN baseline obtains the highest
handover overhead in both cities (normalized to 100%), since
each user handover event is processed between different BBUs.
The Simple-Fog-RAN baseline shows moderate improvements
on handover overhead in both cities, due to the adoption of
distributed fog servers. Finally, the proposed Fog-RAN method
achieves the lowest handover overhead (12.8% and 27.3%,
respectively), validating the effectiveness of exploiting user
mobility community structure in reducing handover overhead.

Fronthaul Latency: Figure 14 shows the fronthaul latency
of the Cloud-RAN baseline and the proposed Fog-RAN method.
The Cloud-RAN baseline shows the worse performance in both
cities, since the centralized BBU pool needs a large community
radius to cover all the RRHs. In comparison, the proposed Fog-
RAN method achieves significant improvements on fronthaul
latency due to the distributed, size-constrained fog servers in
the Fog-RAN architecture.

6.6.2. Results of BBU Allocation
BBU Utilization: In Figure 15, we present the BBU

utilization rate of different methods on the two datasets. We
can see that the proposed Fog-RAN method achieves the best
BBU utilization rate in both cities in all the temporal groups
using the SCUD algorithm (with an average BBU utilization
rate of 49.7% in Abidjan and 52.3% in Dakar, respectively). In
comparison, the traditional BTS-RAN method performs the
worst since there is no sharing of BBU capacities across the
base stations. The Simple-Fog-RAN methods achieves
improved BBU utilization, due to the adoption of BBU sharing
in the fog servers with the greedy allocation algorithms.
However, since the greedy algorithms do not always guarantee
the optimal results, the overall performance is not as good as
the Fog-RAN method.

Fronthaul Traffic: Figure 16 shows the fronthaul traffic in
different temporal groups using Cloud-RAN and proposed Fog-
RAN methods on the two datasets. The Cloud-RAN baseline
shows the worse performance in both cities. In comparison,
the proposed Fog-RAN method achieves significant improve-
ments on reducing fronthaul traffic due to the distributed, size-
constrained fog servers in the Fog-RAN architecture.

6.7. Case Studies

6.7.1. Abidjan
We visualize the clustering results of the proposed method

in Figure 17(a) using a Voronoi diagram [85], where each poly-
gon corresponds to an RRH community. We also draw the user
mobility patterns by lines, where thicker lines correspond to
more handover events between the corresponding RRH pairs.
We can see that the handover events are frequently observed
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Figure 13. The handover overhead comparison of BTS-RAN,
Simple-Fog-RAN and the proposed Fog-RAN in Abidjan and
Dakar.

Figure 14. The fronthaul latency comparison of Cloud-RAN
and the proposed Fog-RAN in Abidjan and Dakar.

across the business districts (e.g., Plateau), as shown in Fig-
ure 17(b). Our method successfully finds RRH communities
with frequent internal handover events and thus reduces the user
handover overhead. Figure 17(c) shows the BBU allocation
scheme in Plateau, Abidjan during working hours (8:00-17:00)
in weekdays, and the aggregated traffic pattern in one of its
BBUs. We can see that in this BBU, the aggregated traffic pat-
tern in working hours (08:00–17:00 in weekdays) is close to the
BBU capacity and thus improves the overall BBU utilization.

6.7.2. Dakar
Figure 18(a) shows the RRH community structure and mo-

bility patterns in Dakar. As the capital of Senegal, Dakar fea-
tures various administrative and business areas, as well as popu-
lated residential neighborhoods. In particular, our method iden-
tifies the Dakar-Plateau arrondissement (borough), as shown in
Figure 18(b), where most ministries and public administrations
are located. Figure 18(c) shows the BBU allocation scheme
in Dakar-Plateau during evening time (19:00-02:00) in week-
ends, and the aggregated traffic pattern in one of its BBUs. We
can see that the traffic tends of RRH 1 and RRH 2 during this
temporal group are complementary to each other. Therefore,
aggregating these two complementary RRHs to allocate a BBU
can significantly increase BBU utilization.

7. Conclusion

In this work, we propose a data-driven optimization
framework for the Fog-RAN architecture. We focus on two of
the most important objectives in Fog-RAN optimization, i.e.,
increasing infrastructure utilization and improving handover
quality. Accordingly, we propose a two-phase framework to
map RRHs to BBUs hosted in distributed fog servers.
Specifically, we first exploit user mobility patterns to cluster
RRHs into communities, and then assign a fog server to each
RRH community. In each fog server, we partition the
connected RRHs into subsets and allocate BBUs based on the
RRH traffic demands. The proposed size-constrained
communication detection (SCUD) algorithm is capable of
finding RRH communities with intensive internal mobility
patterns, and the proposed column-reduced integer
programming (CLIP) algorithm is effective in partitioning
RRHs into subsets with complementary traffic patterns.
Real-world evaluation results in Abidjan and Dakar show that
compared with the traditional RAN architecture, our
framework effectively reduces the average handover overhead
to 12.8% and 27.3%, and increases the average BBU
utilization rate to 49.7% and 52.3% in both cities, respectively,
which consistently outperforms the state-of-the-art baseline
methods.

In the future, we plan to improve this work in the follow-
ing directions. First, we plan to explore the dynamic mapping
schemes between RRHs and fog servers in packet routing RAN
networks, to support the real-time optimization of Fog-RAN.
Second, we plan to investigate the variations in the BBU pool,
such as considering different BBU capacity levels, and various
resource constraints in the fog servers. We believe that such a
data-driven optimization paradigm can benefit the design and
deployment of the Fog-RAN architecture in the 5G era.
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