Sharp Bounds for the Inverse Sum Indeg Index of Graph Operations
Anam Rani, Muhammad Imran, Usman Ali

To cite this version:

HAL Id: hal-03284085
https://hal.sorbonne-universite.fr/hal-03284085
Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Research Article

Sharp Bounds for the Inverse Sum Indeg Index of Graph Operations

Anam Rani, Muhammad Imran, and Usman Ali

1Department of Basic Sciences, Deanship of Preparatory Year, King Faisal University, Al Hofuf, Al Ahsa, Saudi Arabia
2Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
3Institut de Mathématiques de Jussieu-Paris Rive Gauche, (Université de Paris/Sorbonne Université), Paris, France
4CASPAM, Bahauddin Zakariya University, Multan 66000, Pakistan

Correspondence should be addressed to Usman Ali; uali@bz.edu.pk

Received 8 February 2021; Accepted 22 May 2021; Published 9 June 2021

1. Introduction

Let G_k be a connected and simple graph whose vertex and edge sets are $V(G_k)$ and $E(G_k)$, respectively. The order k and size k' of G_k are the cardinalities of $|V(G_k)|$ and $|E(G_k)|$, respectively. The degree formula of $g_k \in V(G_k)$ is the cardinality of linked vertices to g_k in G_k and represented by $d_{G_k}(g_k)$. The largest (or smallest) degree of G_k is the degree of a vertex of G_k with the greatest (or least) number of edges incident to it and represented by $\Delta(G_k)$ (or $\delta(G_k)$).

A molecular descriptor is a numerical parameter of a graph that distinguished its topology. In organic chemistry, topological descriptors have investigated many applications in pharmaceutical drug design, QSAR/QSPR study, chemical documentation, and isomer discrimination. Some of these topological indices are Wiener index, Zagreb indices, Szeged index, and Randić index. The set of 148 discrete Adriatic descriptors [1] have been defined in 2010. These descriptors showed well predictive characteristics on the testing sets given by International Academy of Mathematical Chemistry. Twenty of these descriptors were taken as noteworthy predictors of physicochemical properties. One such index is inverse sum indeg index, denoted by ISI (G_k), of G_k that was investigated in [1] as a noteworthy predictor of total surface area for octane isomers and is presented as

$$\text{ISI}(G_k) = \sum_{g_k \in V(G_k)} \frac{d_{G_k}(g_k)d_{G_k}(g_k)}{d_{G_k}(g_k) + d_{G_k}(g_k)},$$

(1)

The Zagreb indices of G_k are presented by Gutman and Trinajstić [4] as follows:

$$M_1(G_k) = \sum_{g_k \in V(G_k)} d_{G_k}(g_k)^2,$$
$$M_2(G_k) = \sum_{g_k \in V(G_k)} d_{G_k}(g_k)d_{G_k}(g_k).$$

(2)
Let \(G_k \) be \(k \)-vertex and \(H_l \) be \(l \)-vertex graphs with size \(k' \) and \(l' \), respectively. The Cartesian product \(G_k \times H_l \), whose vertex set is \(V(G_k) \times V(H_l) \) and \((g_k, h_l), (g_k', h_l')\) are adjacent when \(g_k = g_k' \) and \(h_l h_l' \in E(H_l) \) or \(g_k g_k' \in E(G_k) \) and \(h_l h_l' = h_l' \) is a graph. The order and size of \(G_k \times H_l \) are \(kl \) and \(kl + k'l' \), respectively. The degree formula for \((g_k, h_l) \in V(G_k \times H_l)\) is \(d_{G_k}(g_k) + d_{H_l}(h_l) \).

The tensor product \(G_k \otimes H_l \), whose set of vertices is \(V(G_k) \times V(H_l) \) and \((g_k, h_l), (g_k', h_l')\) are linked when \(g_k g_k' \in E(G_k) \) and \(h_l h_l' \in E(H_l) \), is a graph. The order and size of \(G_k \otimes H_l \) are \(2k \) and \(2k + 2k'l' \), respectively. The degree formula for \((g_k, h_l) \in V(G_k \otimes H_l)\) is \(d_{G_k}(g_k) + d_{H_l}(h_l) \).

The product \(G_k \Join H_l \), whose set of vertices is \(V(G_k) \times V(H_l) \) and \((g_k, h_l), (g_k', h_l')\) are linked when \(g_k g_k' \in E(G_k) \) or \(h_l h_l' \in E(H_l) \), is a graph. The order and size of \(G_k \Join H_l \) are \(kl \) and \(k + kl' \), respectively. The degree formula for \((g_k, h_l) \in V(G_k \Join H_l)\) is \(d_{G_k}(g_k) + d_{H_l}(h_l) \).

The double graph \(D[G_k] \) is acquired by taking original edge set of two copies \(V_1(G_k) \) and \(V_2(G_k) \) of \(V(G_k) \) and linking each vertex in \(V_1(G_k) \) with the linked vertices of corresponding vertex in \(V_2(G_k) \). The strong double graph \(SD[G_k] \) is acquired by taking two copies of \(V_1(G_k) \) and \(V_2(G_k) \) of \(V(G_k) \) and linking each vertex in \(V_1(G_k) \) with closed neighborhood of corresponding vertex in \(V_2(G_k) \).

Figure 1 depicts some graph operations. For more details on these graph operations, see [5–14]. Also, we refer some recent articles [15–19] on different kinds of descriptors. It is an important and well-reputed problem to study and explore the molecular topological descriptors of the graph operations in terms of the original graphs, say \(G_k \) and \(H_l \), and this also helps to explore the physicochemical properties of the complex chemical structures which arise from these graph operations. The upper and lower bounds of any molecular descriptors are the important information related to a chemical graph. They determine the approximate possible range of the invariant in the form of molecular structural parameters. There are some bounds already available for the inverse sum indeg (ISI) index regarding the number of pendant vertices, size, radius, smallest and largest vertex degrees, and smallest nonpendent vertex degree of a graph computed in [3]. The objective of this article is to determine the bounds for inverse sum indeg index of some graph operations including Cartesian product, tensor product, strong product, composition, disjunction, symmetric difference, corona product, Indu–Bala product, union of graphs, double graph, and strong double graph in the form of original graphs, say \(G_k \) and \(H_l \).

2. Applications of Graph Theory Concept and Topological Indices in Chemistry

In 1936, Hosoya introduced the concept of graph terminologies in chemistry and provided a modeling for molecules. This modeling contents lead to predict the chemical properties of molecules, easy classification of chemical compounds, computer simulations, and computer-assisted design of new chemical compounds. As in current century, chemists manipulate graphs on a daily basis using Table 1 terminologies for recent development in their research.

Graph hypothesis had investigated an interesting exercise around in research. Compound graph speculation has provided a collection of beneficial indices, for instance, topological indices. The Zagreb indices are the topological indices that are correlated to a substantial computation of fabricated characteristics of the particles and have been investigated parallel to establishing the Kovats constants and limit of the particles [20]. The hyper Zagreb descriptor has a strong bound between the security of direct dendrimers besides the expanded medication stores and for establishing the strain criticalness of cyclo alkanes [21]. To connect with various physico-mix characteristics, Zagreb indices have required deep control upon the essentialness of the dendrimers [22]. The Zagreb polynomials were determined to happen for computation of the \(n \)-electron imperativeness of the particles inside specific brutal verbalizations [23, 24].
In this section, we compute the inverse sum indeg index of the Cartesian product, tensor product, strong product, composition, disjunction, symmetric difference, corona product, Indu–Bala product, double graph, and strong double graph. The relation between largest and smallest degree of G_k to the degree of $g_k \in V(G_k)$ is as follows:

$$d_{G_k}(g_k) \leq \Delta_{G_k},$$

$$d_{G_k}(g_k) \geq \delta_{G_k}.$$ \hfill (5)

In the upcoming theorem, we calculate the bounds for inverse sum indeg (ISI) index of Cartesian product.

Theorem 1. Let G_k and H_l be two graphs. Then,

$$M_2(G_k \triangleright H_l) \leq \text{ISI}(G_k \triangleright H_l) \leq \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (6)

The equalities hold if and only if G_k and H_l are regular.

Proof. Using the degree formula for a vertex of $G_k \triangleright H_l$ in equation (1),

$$\text{ISI}(G_k \triangleright H_l) = \sum_{(g_k,h_l) \in E(G_k \triangleright H_l)} \frac{d_{G_k \triangleright H_l}(g_k,h_l) d_{G_k \triangleright H_l}(g_k',h_l')}{d_{G_k}(g_k) + d_{H_l}(h_l) + d_{G_k}(g_k') + d_{H_l}(h_l')} \leq \frac{1}{2(\Delta_{G_k} + \Delta_{H_l})} \sum_{(g_k,h_l) \in E(G_k \triangleright H_l)} d_{G_k \triangleright H_l}(g_k,h_l) d_{G_k \triangleright H_l}(g_k',h_l')$$

$$= \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (7)

Similarly, we can evaluate

$$\text{ISI}(G_k \triangleright H_l) \geq \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (8)

The above equalities hold if and only if factor graphs are regular.

In the next theorem, we calculate the bounds for ISI index of tensor product of G_k and H_l.

FIGURE 1: Graph operations: (a) $P_3 \square P_4$; (b) $P_3 \times P_4$; (c) $P_3 \otimes P_4$; (d) $P_3[P_4]$; (e) $P_3 \circ P_4$; (f) $P_3 \vee P_4$; (g) $P_3 \oplus P_4$; (h) $P_3 \mathcal{V} P_4$; (i) $D[G_4]$; (j) $SD[P_4]$.

<table>
<thead>
<tr>
<th>Table 1: Graph theory and chemistry dictionary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph theory</td>
</tr>
<tr>
<td>Graph</td>
</tr>
<tr>
<td>Vertex</td>
</tr>
<tr>
<td>Edge</td>
</tr>
<tr>
<td>Vertex degree</td>
</tr>
<tr>
<td>Tree</td>
</tr>
<tr>
<td>Bipartite graph</td>
</tr>
<tr>
<td>Perfect matching</td>
</tr>
<tr>
<td>Adjacency matrix</td>
</tr>
</tbody>
</table>

3. Inverse Sum Indeg Index of Graph Operations

In this section, we compute the inverse sum indeg index of the Cartesian product, tensor product, strong product, composition, disjunction, symmetric difference, corona product, Indu–Bala product, double graph, and strong double graph. The relation between largest and smallest degree of G_k to the degree of $g_k \in V(G_k)$ is as follows:

$$d_{G_k}(g_k) \leq \Delta_{G_k},$$

$$d_{G_k}(g_k) \geq \delta_{G_k}.$$ \hfill (5)

In the upcoming theorem, we calculate the bounds for inverse sum indeg (ISI) index of Cartesian product.

Theorem 1. Let G_k and H_l be two graphs. Then,

$$M_2(G_k \triangleright H_l) \leq \text{ISI}(G_k \triangleright H_l) \leq \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (6)

The equalities hold if and only if G_k and H_l are regular.

Proof. Using the degree formula for a vertex of $G_k \triangleright H_l$ in equation (1),

$$\text{ISI}(G_k \triangleright H_l) = \sum_{(g_k,h_l) \in E(G_k \triangleright H_l)} \frac{d_{G_k \triangleright H_l}(g_k,h_l) d_{G_k \triangleright H_l}(g_k',h_l')}{d_{G_k}(g_k) + d_{H_l}(h_l) + d_{G_k}(g_k') + d_{H_l}(h_l')} \leq \frac{1}{2(\Delta_{G_k} + \Delta_{H_l})} \sum_{(g_k,h_l) \in E(G_k \triangleright H_l)} d_{G_k \triangleright H_l}(g_k,h_l) d_{G_k \triangleright H_l}(g_k',h_l')$$

$$= \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (7)

Similarly, we can evaluate

$$\text{ISI}(G_k \triangleright H_l) \geq \frac{M_2(G_k \triangleright H_l)}{2(\Delta_{G_k} + \Delta_{H_l})}.$$ \hfill (8)

The above equalities hold if and only if factor graphs are regular.

In the next theorem, we calculate the bounds for ISI index of tensor product of G_k and H_l.

□
Theorem 2. Let G_k and H_l be two graphs. Then,
\[
\frac{M_2(G_k)M_2(H_l)}{\Delta_G \Delta_H} \leq \text{ISI}(G_k \times H_l) \leq \frac{M_2(G_k)M_2(H_l)}{\delta_G \delta_H}.
\] (9)

The above equalities hold if and only if both graphs are regular.

Proof. Using the degree formula for a vertex in tensor product of graphs in (1),
\[
\text{ISI}(G_k \times H_l) = \sum_{(g_k, h_l)(g_k', h_l) \in (G_k \times H_l)} \frac{d_{G_k \times H_l}(g_k, h_l)d_{G_k \times H_l}(g_k', h_l)}{d_{G_k \times H_l}(g_k, h_l) + d_{G_k \times H_l}(g_k', h_l)}
= \frac{1}{2\delta_G \delta_H} \sum_{(g_k, h_l)(g_k', h_l) \in (G_k \times H_l)} \frac{d_{G_k \times H_l}(g_k, h_l)d_{G_k \times H_l}(g_k', h_l)}{d_{G_k \times H_l}(g_k, h_l) + d_{G_k \times H_l}(g_k', h_l)}
\leq \frac{M_2(G_k \times H_l)}{2\delta_G \delta_H}
= \frac{M_2(G_k)M_2(H_l)}{\delta_G \delta_H}
\]

See Theorem 2.1 in [25]. Similarly, we can compute
\[
\text{ISI}(G_k \times H_l) \geq \frac{M_2(G_k)M_2(H_l)}{\Delta_G \Delta_H}
\] (11)

The above equalities hold if and only if both graphs are regular.

We derive the bounds of inverse sum indeg (ISI) index of $G_k \otimes H_l$ in the upcoming theorem.

Theorem 3. Let G_k and H_l be two graphs. Then,
\[
\text{ISI}(G_k \times H_l) = \sum_{(g_k, h_l)(g_k', h_l) \in (G_k \times H_l)} \frac{d_{G_k \otimes H_l}(g_k, h_l)d_{G_k \otimes H_l}(g_k', h_l)}{d_{G_k \otimes H_l}(g_k, h_l) + d_{G_k \otimes H_l}(g_k', h_l)}
= \frac{1}{2(\delta_G + \delta_H + \delta_G \delta_H)} \sum_{(g_k, h_l)(g_k', h_l) \in (G_k \otimes H_l)} \frac{d_{G_k \otimes H_l}(g_k, h_l)d_{G_k \otimes H_l}(g_k', h_l)}{d_{G_k \otimes H_l}(g_k, h_l) + d_{G_k \otimes H_l}(g_k', h_l) + d_{G_k \otimes H_l}(g_k) + d_{H_l}(h_l)}
\leq \frac{M_2(G_k \otimes H_l)}{2(\delta_G + \delta_H + \delta_G \delta_H)}
= \frac{M_2(G_k)M_2(H_l)}{2(\delta_G + \delta_H + \delta_G \delta_H)}
\]

In a similarly way,
The above equalities satisfy if and only if factor graphs are regular.

In the upcoming theorem, we evaluate the bounds for inverse sum indeg (ISI) index of $G_k[H_i]$.

Theorem 4. Let G_k and H_i be two graphs. Then,

\[
\text{ISI}(G_k[H_i]) = \sum_{(g_k, h_i) \in E(G_k[H_i])} \frac{d_{G_k[H_i]}(g_k, h_i)d_{G_k[H_i]}(g_k', h_i)}{d_{G_k[H_i]}(g_k, h_i) + d_{G_k[H_i]}(g_k', h_i)}
\]

\[
= \sum_{(g_k, h_i) \in E(G_k[H_i])} \frac{d_{G_k[H_i]}(g_k, h_i)d_{G_k[H_i]}(g_k', h_i)}{ld_{G_k}(g_k) + ld_{H_i}(h_i) + ld_{G_k}(g_k') + ld_{H_i}(h_i)}
\]

\[
\leq \frac{1}{2(l\delta_{G_k} + \delta_{H_i})} \sum_{(g_k, h_i) \in E(G_k[H_i])} d_{G_k[H_i]}(g_k, h_i)d_{G_k[H_i]}(g_k', h_i)
\]

\[
= \frac{M_2(G_k[H_i])}{2(l\delta_{G_k} + \delta_{H_i})}
\]

In a similar way,

\[
\text{ISI}(G_k[H_i]) \geq \frac{M_2(G_k[H_i])}{2(l\delta_{G_k} + \delta_{H_i})}
\]

The above equalities hold if and only if factor graphs are regular.

In the following theorem, we present the bounds for inverse sum indeg (ISI) index of disjunction of G_k and H_i.

Theorem 5. Let G_k and H_i be two graphs. Then,

\[
\text{ISI}(G_k \lor H_i) = \sum_{(g_k, h_i) \in E(G_k \lor H_i)} \frac{d_{G_k \lor H_i}(g_k, h_i)d_{G_k \lor H_i}(g_k', h_i)}{d_{G_k \lor H_i}(g_k, h_i) + d_{G_k \lor H_i}(g_k', h_i)}
\]

\[
= \sum_{(g_k, h_i) \in E(G_k \lor H_i)} \frac{d_{G_k \lor H_i}(g_k, h_i)d_{G_k \lor H_i}(g_k', h_i)}{ld_{G_k}(g_k) + k\delta_{H_i}(h_i) - d_{G_k}(g_k)d_{H_i}(h_i) + ld_{G_k}(g_k') + k\delta_{H_i}(h_i) - d_{G_k}(g_k')d_{H_i}(h_i)}
\]

\[
\leq \frac{1}{2(l\delta_{G_k} + k\delta_{H_i} - \delta_{G_k}\delta_{H_i})} \sum_{(g_k, h_i) \in E(G_k \lor H_i)} d_{G_k \lor H_i}(g_k, h_i)d_{G_k \lor H_i}(g_k', h_i)
\]

\[
= \frac{M_2(G_k \lor H_i)}{2(l\delta_{G_k} + k\delta_{H_i} - \delta_{G_k}\delta_{H_i})}
\]

The equalities hold if and only if both graphs are regular.

Proof. Using the degree formula of an element of $V(G_k[H_i])$ in (1),
Similarly, we compute
\[
\text{ISI}(G_k \vee H_l) \geq \frac{M_2(G_k \vee H_l)}{2(l\Delta_{G_k} + k\Delta_{H_l} - \Delta_{G_k}\Delta_{H_l})}. \tag{20}
\]

The above equalities hold if and only if both graphs are regular.

Theorem 6. Let G_k and H_l be two graphs. Then,
\[
\frac{M_2(G_k \oplus H_l)}{2(l\Delta_{G_k} + k\Delta_{H_l} - 2\Delta_{G_k}\Delta_{H_l})} \leq \text{ISI}(G_k \oplus H_l) \leq \frac{M_2(G_k \oplus H_l)}{2(l\delta_{G_k} + k\delta_{H_l} - 2\delta_{G_k}\delta_{H_l})} \tag{21}
\]

\[
\text{ISI}(G_k \oplus H_l) = \sum_{(g_k, h_l)(g_k', h_l) \in E(G_k \oplus H_l)} \frac{d_{G_k \oplus H_l}(g_k, h_l)d_{G_k \oplus H_l}(g_k', h_l)}{d_{G_k \oplus H_l}(g_k, h_l) + d_{G_k \oplus H_l}(g_k', h_l)}
\]
\[
= \sum_{(g_k, h_l)(g_k', h_l) \in E(G_k \oplus H_l)} \frac{l'd_{G_k}(g_k) + k\delta_{H_l}(h_l) - 2d_{G_k}(g_k)d_{H_l}(h_l) + l'd_{G_k}(g_k) + k\delta_{H_l}(h_l) - 2d_{G_k}(g_k'd_{H_l}(h_l))}{2(l\delta_{G_k} + k\delta_{H_l} - 2\delta_{G_k}\delta_{H_l})}
\]
\[
\leq \frac{1}{2(l\delta_{G_k} + k\delta_{H_l} - 2\delta_{G_k}\delta_{H_l})} \sum_{(g_k, h_l)(g_k', h_l) \in E(G_k \oplus H_l)} d_{G_k \oplus H_l}(g_k, h_l)d_{G_k \oplus H_l}(g_k', h_l)
\]
\[
= \frac{M_2(G_k \oplus H_l)}{2(l\delta_{G_k} + k\delta_{H_l} - 2\delta_{G_k}\delta_{H_l})}. \tag{22}
\]

Similarly,
\[
\text{ISI}(G_k \oplus H_l) \geq \frac{M_2(G_k \oplus H_l)}{2(l\Delta_{G_k} + k\Delta_{H_l} - 2\Delta_{G_k}\Delta_{H_l})}. \tag{23}
\]

The above equalities hold if and only if both graphs are regular.

Next, we evaluate the bounds of inverse sum indeg (ISI) index of join of n graphs.

Theorem 7. Let $G_k = G_{k_1} + G_{k_2} + \cdots + G_{k_n}$. Then,
\[
\sum_{i=1}^{n} M_2(G_{k_i}) + (r - k_i)M_1(G_{k_i}) + k'_i(r - k_i)^2 \leq \text{ISI}(G_k) \leq \sum_{i=1}^{n} M_2(G_{k_i}) + (r - k_i)M_1(G_{k_i}) + k'_i(r - k_i)^2
\]
\[
+ \frac{1}{2} \sum_{i \neq j, j=1}^{n} \frac{(2k'_i + k_i(r - k_i))(2k'_j + k_j(r - k_j))}{\Delta_{G_{k_i}} \Delta_{G_{k_j}} + 2r - k_i - k_j} \tag{24}
\]
The equalities hold if and only if G_k, for $s = 1, 2, \ldots, n$, are regular graphs.

\begin{align*}
\text{ISI}(G_k) &= \sum_{g_1 \in E(G_k)} \frac{d_{G_k}(g_1) d_{G_k}(g_1)}{d_{G_k}(g_1) + d_{G_k}(g_1)} \\
&= \sum_{s=1}^{n} \sum_{g_1 \in E(G_k)} \frac{(d_{G_k}(g_1) + r - k_{s}) (d_{G_k}(g_1) + r - k_{s}) + 1}{2} + \sum_{s=1}^{n} \sum_{g_1 \in E(G_k)} \frac{(d_{G_k}(g_1) + r - k_{s}) (d_{G_k}(g_1) + r - k_{s})}{\delta_{G_k} + \delta_{G_k} + 2r - k_{s} - k_{s}} \\
&\leq \sum_{s=1}^{n} M_2(G_k) + (r - k_{s}) M_1(G_k) + k'_{s} (r - k_{s})^2 + \frac{1}{2} \sum_{s=1}^{n} M_2(G_k) + (r - k_{s}) M_1(G_k) + k'_{s} (r - k_{s})^2 + \frac{1}{2} \sum_{s=1}^{n} \frac{2k'_{s} (r - k_{s}) (2k'_{s} + k'_{s} (r - k_{s}))}{\delta_{G_k} + \delta_{G_k} + 2r - k_{s} - k_{s}}.
\end{align*}

(25)

Similarly

\begin{align*}
\text{ISI}(G_k) \geq & \sum_{s=1}^{n} M_2(G_k) + (r - k_{s}) M_1(G_k) + k'_{s} (r - k_{s})^2 + \frac{1}{2} \sum_{s=1}^{n} \frac{2k'_{s} (r - k_{s}) (2k'_{s} + k'_{s} (r - k_{s}))}{\delta_{G_k} + \delta_{G_k} + 2r - k_{s} - k_{s}} \\
&+ \frac{1}{2} \sum_{s=1}^{n} \frac{(2k'_{s} + k'_{s} (r - k_{s})) (2k'_{s} + k'_{s} (r - k_{s}))}{\delta_{G_k} + \delta_{G_k} + 2r - k_{s} - k_{s}}.
\end{align*}

(26)

The above equalities hold if and only if G_k, $s = 1, 2, \ldots, n$, are regular.

In the following theorem, we calculate the bounds for ISI index of $G_k \ast H_l$.

Theorem 8. Let G_k and H_l be k-vertex and l-vertex graphs. Then,

\begin{align*}
\frac{k (M_2(H_l) + M_1(H_l) + l)}{2(\Delta_{H_l} + 1)} + \frac{(2l' + l) (2k' + kl)}{\Delta_{G_k} + \Delta_{H_l} + l + 1} + \frac{M_2(G_k) + l M_1(G_k) + l^2 l'}{2(\Delta_{G_k} + l)} \leq & \text{ISI}(G_k \ast H_l) \\
\leq & \frac{k (M_2(H_l) + M_1(H_l) + l)}{2(\delta_{H_l} + 1)} + \frac{(2l' + l) (2k' + kl)}{\delta_{G_k} + \delta_{H_l} + l + 1} + \frac{M_2(G_k) + l M_1(G_k) + l^2 l'}{2(\delta_{G_k} + l)}.
\end{align*}

(27)
The equalities hold if and only if both graphs are regular.

Proof. Using the degree formula of a vertex in corona product in (1),

$$\text{ISI} (G_k \ast H_l) = k \sum_{h_i \in E(H_l)} \left(\frac{d_{H_l}(h_i) + 1}{d_{H_l}(h_i) + d_{H_l}(h_i) + 2} \right) + \sum_{j=1}^{k} \sum_{l=1}^{k} \left(\frac{d_{H_l}(h_i) + 1}{d_{H_l}(h_i) + d_{G_k}(g_k) + l + 1} \right)$$

$$+ \sum_{g_k \ast g_k \in E(G_k)} \left(\frac{d_{G_k}(g_k) + l}{d_{G_k}(g_k) + d_{G_k}(g_k) + 2l} \right)$$

From equation (2), we obtain

$$\text{ISI} (G_k \ast H_l) \leq k \sum_{h_i \in E(H_l)} \left(\frac{d_{H_l}(h_i) + 1}{d_{H_l}(h_i) + 2} \right) + \sum_{j=1}^{k} \sum_{l=1}^{k} \left(\frac{d_{H_l}(h_i) + 1}{d_{H_l}(h_i) + d_{G_k}(g_k) + l + 1} \right)$$

$$+ \sum_{g_k \ast g_k \in E(G_k)} \left(\frac{d_{G_k}(g_k) + l}{2(d_{G_k} + l)} \right)$$

$$= \frac{k(M_2(H_l) + M_1(H_l) + l)}{2(\delta_{H_l} + 1)} + \frac{(2l + l)(2k' + kl)}{\delta_{G_k} + \delta_{H_l} + l + 1} + \frac{M_2(G_k) + lM_1(G_k) + l^2 l'}{2(\delta_{G_k} + l)}$$

Similarly, we calculate

$$\text{ISI} (G_k \ast H_l) \geq \frac{k(M_2(H_l) + M_1(H_l) + l)}{2(\Delta_{H_l} + 1)} + \frac{(2l + l)(2k' + kl)}{\Delta_{G_k} + \Delta_{H_l} + l + 1} + \frac{M_2(G_k) + lM_1(G_k) + l^2 l'}{2(\Delta_{G_k} + l)}$$

The above equalities hold only when G_k and H_l are regular graphs.

Next, we evaluate the bounds for inverse sum indeg (ISI) index of Indu–Bala product. □
Theorem 9. Let G_k and H_l be k-vertex and l-vertex graphs. Then,

\[
\frac{M_2(G_k) + lM_1(G_k) + l^2k'}{\Delta_{G_k} + l} + \frac{2M_2(H_l) + (2l + 3)M_1(H_l) + (2l' + l)(k + 1)^2 + 4l' (k + 1)}{2(\Delta_{H_l} + k + 1)} + \frac{2(4l' + 2l' l(k + 1) + 2l' kl + l^2 k(k + 1))}{\Delta_{G_k} + \Delta_{H_l} + k + l + 1} \leq \text{ISI}(G_k \blacktriangledown H_l) \leq \frac{M_2(G_k) + lM_1(G_k) + l^2k'}{\delta_{G_k} + l} + \frac{2M_2(H_l) + (2l + 3)M_1(H_l) + (2l' + l)(k + 1)^2 + 4l' (k + 1)}{2(\delta_{H_l} + k + 1)} + \frac{2(4l' + 2l' l(k + 1) + 2l' kl + l^2 k(k + 1))}{\delta_{G_k} + \delta_{H_l} + k + l + 1}
\]

(31)

The equalities hold only when G_k and H_l are regular.

Proof. Using the degree formula of a vertex in Indu–Bala product in (1),

\[
\text{ISI}(G_k \blacktriangledown H_l) = 2 \left[\sum_{g_k, h_l \in V(G_k)} \frac{(d_{G_k}(g_k) + l)(d_{G_k}(g'_k) + l)}{(d_{G_k}(g_k) + d_{G_k}(g'_k)) + 2l} + \sum_{h_l, h_l \in E(H_l)} \frac{(d_{H_l}(h_l) + k + 1)(d_{H_l}(h'_l) + k + 1)}{d_{H_l}(h_l) + d_{H_l}(h'_l) + 2k + 2} \right]
\]

(32)

Using equation (2), then we have

\[
\text{ISI}(G_k \blacktriangledown H_l) \leq 2 \left[\sum_{g_k, h_l \in V(G_k)} \frac{(d_{G_k}(g_k) + l)(d_{G_k}(g'_k) + l)}{2(\Delta_{G_k} + l)} + \sum_{h_l, h_l \in E(H_l)} \frac{(d_{H_l}(h_l) + k + 1)(d_{H_l}(h'_l) + k + 1)}{2(\delta_{H_l} + k + 1)} \right]
\]

(33)

\[
= \frac{M_2(G_k) + lM_1(G_k) + l^2k'}{\delta_{G_k} + l} + \frac{2M_2(H_l) + (2l + 3)M_1(H_l) + (2l' + l)(k + 1)^2 + 4l' (k + 1)}{2(\delta_{H_l} + k + 1)} + \frac{2(4l' + 2l' l(k + 1) + 2l' kl + l^2 k(k + 1))}{\delta_{G_k} + \delta_{H_l} + k + l + 1}
\]

Similarly, we calculate
\[\text{ISI}(G_k \nabla H_j) \geq \frac{M_2(G_k) + lM_1(G_k) + \Delta G_k}{\Delta G_k + l} + \frac{2M_2(H_j) + (2l + 3)M_1(H_j) + (2l' + l)(k + 1)^2 + 4l'(k + 1)}{2(\Delta H_j + k + 1)} \\
+ \frac{2\left(4k'l + 2k'l(k + 1) + 2l'k + 2k(k + 1)\right)}{\Delta G_k + \Delta H_j + k + l + 1}. \]

(34)

The equalities hold only when \(G_k \) and \(H_j \) are regular graphs.

In the next theorem, we find the inverse sum indeg (ISI) index of double graph.

Theorem 10. Let \(G_k \) be a k-vertex graph. Then,

\[\text{ISI}(D[G_k]) = 8\text{ISI}(G_k). \]

(35)

Proof. Using the degree formula of a vertex in \(D[G_k] \) in equation (1), we acquire

\[
\text{ISI}(D[G_k]) = \sum_{g_k, h_k \in (D[G_k])} \frac{d_{D[G_k]}(g_k) d_{D[G_k]}(h_k)}{d_{D[G_k]}(g_k) + d_{D[G_k]}(h_k)} \\
= 4 \sum_{g_k, h_k \in (G_k)} \frac{(2d_{G_k}(g_k))(2d_{G_k}(h_k))}{2d_{G_k}(g_k) + 2d_{G_k}(h_k)} \\
= 8 \sum_{g_k, h_k \in (G_k)} \frac{d_{G_k}(g_k) d_{G_k}(h_k)}{d_{G_k}(g_k) + d_{G_k}(h_k)} = 8\text{ISI}(G_k).
\]

(36)

In the upcoming theorem, we calculate the bounds for inverse sum indeg (ISI) index of strong double graph.

Theorem 11. Let \(G_k \) be an k-vertex graph. Then,

\[
\frac{M_2(SD[G_k])}{2(2\Delta G_k + 1)} \leq \text{ISI}(SD[G_k]) \leq \frac{M_2(SD[G_k])}{2(2\Delta G_k + 1)}.
\]

(37)

The equalities hold only when \(G_k \) is a regular graph.

Proof. Using the degree formula of a vertex in \(SD[G_k] \) in (1),

\[
\text{ISI}(SD[G_k]) = \sum_{g_k, h_k \in (SD[G_k])} \frac{d_{SD[G_k]}(g_k) d_{SD[G_k]}(h_k)}{d_{SD[G_k]}(g_k) + d_{SD[G_k]}(h_k)} \\
= \sum_{g_k, h_k \in (SD[G_k])} \frac{d_{SD[G_k]}(g_k) d_{SD[G_k]}(h_k)}{2d_{G_k}(g_k) + 1 + 2d_{G_k}(h_k) + 1} \\
\leq \sum_{u, v \in E(SD[G_k])} \frac{d_{SD[G_k]}(g_k) d_{SD[G_k]}(g_k')}{2(\delta G_k + 1)}.
\]

(38)

Similarly, we compute

\[
\text{ISI}(SD[G_k]) \geq \frac{M_2(SD[G_k])}{2(2\Delta G_k + 1)}.
\]

(39)

The above equalities hold only when \(G_k \) is a regular graph.

4. Conclusion

In this paper, some graph operations including different products, differences, union of graphs, double graph, and strong double graph are studied. In particular, we have found the sharp bounds for inverse sum indeg (ISI) index of these operations of graphs. The investigation related to other significant predictors is still open.

Data Availability

All kinds of data and materials, used to compute the results, are provided in Section 1.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
Acknowledgments

This project was sponsored by the Deanship of Scientific Research under Nasher Proposal No. 216006, King Faisal University.

References

