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Abstract

Motivation: Previously we presented swarm, an open-source amplicon clustering program that produces
fine-scale molecular operational taxonomic units (OTUs) that are free of arbitrary global clustering
thresholds. Here we present swarm v3 to address issues of contemporary datasets that are growing
towards tera-byte sizes.
Results: When compared to previous swarm versions, swarm v3 has modernized C++ source code,
reduced memory footprint by up to 50%, optimized CPU-usage and multithreading (more than 7 times
faster with default parameters), and it has been extensively tested for its robustness and logic.
Availability: Source code and binaries are available at https://github.com/torognes/swarm
Contact: frederic.mahe@cirad.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
In emerging planetary biology, large-scale amplicon sequencing datasets
are used to unravel global ecological and evolutionary patterns within
and across biomes and biota (de Vargas et al., 2015; Mahé et al., 2017;
Giner et al., 2020). With today’s sequencing platforms, such as Illumina
and PacBio, single environmental diversity studies can produce massive
amounts of data. A critical bioinformatics step in the handling of these
massive metabarcoding datasets is to cluster the sequencing reads into

operational taxonomic units (OTUs). OTUs are often used as units of
comparison in downstream statistical analyses and are often interpreted as
proxies for species and other taxa (Santoferrara et al., 2020).

Swarm v1 (Mahé et al., 2014) was introduced as a novel approach to
cluster amplicons into OTUs, inspired by previous single-linkage methods
such as DOTUR (Schloss & Handelsman, 2005). The key underlying idea
of swarm was to use a local, iterative, single-linkage clustering process
to group closely related sequences (by default with one difference in their
nucleotide sequences, i.e. d = 1). Swarm’s clustering process differs
from global clustering threshold approaches that apply an arbitrary fixed
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minimal similarity between the OTU seed and other OTU members; often
set at 97% or 98% (Edgar et al., 2010), or from model-based noise-filtering
methods such as DADA2 (Callahan et al., 2016) and Deblur (Amir et al.,
2017). The recommended usage of these methods is to process samples or
sequencing runs independently and then to merge the results. Swarm offers
a fast alternative allowing users to (re-)process entire datasets at once.
Swarm v2 (Mahé et al., 2015) implemented in C++ two additional features
to refine clustering: OTU-breaking that splits OTUs that are only linked
via low-abundant sequences (--no-otu-breaking to disable); and
the merging that grafts low-abundant OTUs onto higher-abundant OTUs
(--fastidious to enable).

Swarm v2 was completely implemented in C++ and was substantially
faster due to algorithmic advances when used with default parameters
(d = 1). There was still room for improvement. There were issues with
code standardization that could limit compile-time optimization and raise
warnings or errors with future compilers (Darriba et al., 2018; Wilson
et al., 2014). The code could only be executed on GNU/Linux and macOS
on x86-64 CPUs. And although swarm v2 was multithreaded and fast,
its time and memory requirements could become a limiting factor on very
large current and future datasets, especially as amplicon sequences become
longer. Swarm v3 addresses these issues.

2 Code quality and portability
Following the recommendations of Darriba et al., 2018, swarm v3 features
a substantially revised and improved documentation (e.g.; help and man
page), as well as clearer and more helpful warnings and error messages.
Swarm’s logic and behavior have been tested extensively via automatically
generated input (afl-fuzz1) and 669 hand-crafted functional software tests2,
covering more than 95% of swarm’s code (the remaining code is CPU
architecture-specific). The Codecov3 tool tracks code coverage evolution,
and the Travis-CI4 suite automatically executes the test suite on each new
code modification to prevent regressions.

To facilitate swarm’s long-term maintenance and portability, advanced
compiler options (gcc5 and clang6) as well as state-of-the-art static
(cppcheck7 and clang-tidy8) and dynamic C++ analyzers (valgrind9) were
used to detect unsafe or deprecated code not reported by commonly
used compiler options. More than 1,600 warnings were fixed so far,
improving swarm’s global code quality score as assessed by SoftWipe
(Zapletal et al., 2020) from 5.2 to 6.6 out of 10. Swarm has now been
ported to new combinations of CPU architectures and operating systems:
Microsoft’s Windows on x86-64, GNU/Linux and macOS on ARM 64, and
GNU/Linux on POWER8, in addition to the already available versions for
GNU/Linux and macOS on x86-64.

3 Time and space optimization, real-world results
DNA sequences are stored in silico as strings of the four characters A, C,
G, and T. Rather than using a byte of memory for storing each nucleotide,
it is possible to only use two bits. Thereby, four nucleotides can be

1 https://lcamtuf.coredump.cx/afl/
2 https://github.com/frederic-mahe/swarm-tests/
3 https://codecov.io
4 https://travis-ci.org
5 https://gcc.gnu.org
6 https://clang.llvm.org
7 http://cppcheck.sourceforge.net
8 https://clang.llvm.org/extra/clang-tidy/
9 https://www.valgrind.org

stored per byte. This compression reduces the global memory-footprint
but also requires some storage overhead and additional encoding-decoding
operations as CPUs cannot operate directly on anything smaller than a
byte. To alleviate this, swarm v3 deploys a faster hash function (Zobrist,
1970) and an efficient Bloom filter (Putze et al., 2009), and was re-written
to operate on fixed-length chunks of compressed sequences, rather than
on individual nucleotides (see Supp. File). It should be noted that this
new algorithm only applies to the default value for swarm’s d parameter
(d = 1). Higher d values use the same algorithm as in swarm v2.

On a dataset of 10.6 million unique SSU-rRNA V4 sequences
(representing 31.6 million reads, 380 bp on average, Mahé et al., 2017), and
a series of subsamplings (1%, and 10-90% steps), swarm v3 outperformed
swarm v2 in every performance metric, while yielding exactly identical
clustering results. With both versions running on 1 core, v3 was more than
7 times faster than v2. When both were running on 16 cores, v3 was about
10 times faster than v2. The memory requirement of v3 was about half that
of v2 (Supp. Fig 1). Comparable results were obtained on a second dataset
of 10.6 million unique SSU-rRNA V9 sequences (130 bp on average,
de Vargas et al., 2015), but with a less pronounced memory-footprint
reduction as the storage overhead of two-bit compressed sequences has a
larger impact with shorter sequences (see Supp. Figs. 2, 3, and Supp. File
for a detailed benchmark description).

When using the merging option (named fastidious), swarm v3 is more
than 5 times faster for SSU-rRNA V9 (130 bp), and more than 9 times
faster for SSU-rRNA V4 (380 bp) (Supp. Fig. 2). The memory-footprint is
only reduced by 5-10% due to the fact that the fastidious algorithm relies
on a Bloom filter to store hash values instead of DNA sequences, and
therefore does not profit from the two-bit sequence compression.

4 Conclusion
Swarm v3 is a clustering method designed to maximize taxonomic
resolution, sensitivity and speed. If coupled with “lossy” post-clustering
filtering steps such as chimera detection, quality filtering, and multi-sample
co-occurrence patterns (e.g.; Frøslev et al., 2017), swarm has the potential
to yield robust, single-nucleotide resolution results. Swarm v3 can be used
on short and long read metabarcoding data (with sequences up to 10 Mbp
when using d = 1), or on meta-transcriptomic/genomic data that has
been subsampled from the same locus. It offers a comprehensive set of
options that gives users full-control and access to intermediate internal
data, such as the complete pairwise sequence network (see Forster et al.,
2020, for a usage example). Swarm v3 is open-source, actively maintained,
portable, and efficient, thus reducing the need for expensive computational
resources. As an example, the UniEuk project (Berney et al., 2017)
gathered from the global research community an SSU-rRNA V4 dataset
with nearly 324 million unique sequences (123 billion nucleotides), more
than three times the volume of the recently published Earth Microbiome
Project (Thompson et al., 2017). Using default parameters, swarm v3
required 50 minutes to cluster the UniEuk dataset on a 16-core system.
We estimate that it would take less than six hours on the same machine to
process a one trillion nucleotide, or one tera-byte dataset.
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