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Abstract
Background: The CRASH-3 trial provides a high level of evidence on the question whether to administer
Tranexamic Acid (TXA) for Traumatic brain injury (TBI). For numerous other research questions, the
available evidence will not correspond to such a level of evidence and will rely on observational evidence
only. The development of methodological alternatives to analyze observational data is necessary. The
Crash-3trial provided the opportunity to explore the effect of TXA on TBI mortality with two distinct causal
inference methods using incomplete observational data.

Methods:  Two causal inference techniques, inverse propensity weighting (IPW) and doubly robust
method (DR), associated with machine learning method techniques to handle missing data, explored the
effect of TXA administration on 30-day head injury related death expressed in registry data. The effect
was expressed as Average Treatment Effect (ATE). TBI was defined as a head Abbreviated Injury Score
>2. The hypothesis expected the results to concur with the results obtained with the CRASH-3 benchmark
trial.

Results: Between September 2010 and February 2019, from a total of 20037 registry cases 8269
corresponded to the definition of TBI. A total of 683 received TXA and 7565 did not. The observed head-
injury related 30-day hospital mortality rate in the group TXA was 30% (205/683) compared to 15% in the
group no-TXA (1102/7565, p<0.001). Causal inference with the IPW approach indicates an ATE with a
higher mortality after TXA independently of the approach applied to manage missing data (ATE 0.10
(95% IC [0.06, 0.14]) or 0.09 (95% IC [0.03, 0.15])). ATE obtained with DR did not show any effect on
mortality independently of the approach applied to missing data (ATE -0.01 (95% IC [-0.05, 0.03]) or -0.01
(95% IC [-0.07, 0.05])). No effect was observed in predefined subgroups.

Conclusions: This study demonstrated the feasibility to apply causal inference techniques in incomplete
observational data. DR based on a stronger theoretical background compared to IPW, did not show a
significant association of TXA administration with in-hospital mortality. This result provides a strong
incentive to explore augmented causal inference techniques on incomplete observational data coupled
with techniques to handle missing values. 

Background
Severe traumatic brain injury (TBI) remains a major global public health challenge. The global incidence
is expected to rise, due to increased road traffic in the developing world and a higher proportion elderly in
all populations[1]. The CRASH-3 landmark trial examined the use of Tranexamic Acid (TXA) to tackle the
challenge of TBI with exemplary methodological rigor[2]. The trial demonstrated no reduction in overall
head injury-related 28-day mortality, but a reduction in the pre-specified subgroup of mild to moderate TBI
(GCS 9–13).

Despite the conclusion of two recent studies[3, 4], one randomized, and a meta-analysis incorporating
several other underpowered RCT’s[5] the result of CRASH-3 remains the most reliable evidence on TXA
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use in TBI with a beneficial risk benefit ratio[6].

In contrast, to the administration for TXA in TBI, for many research questions, the medical community
does not and will not dispose of results from prospective and randomized trials but rely on observational
data only. Alternatives are needed to improve inference from observational data. Causal inference
attempts to determine the independent influence of an effector as a component of a complex system.
Causal inference from observational data differs from association by analyzing the response of an
effector variable when a cause of the effect variable is changed. Methods from this family of
approaches, for instance propensity weighting or matching, have been successfully applied by physics,
climate research, econometrics and cognitive science[7, 8]. Augmented causal inference and related
techniques appear more reliable than conventional observational and pathophysiological research [9] and
help to develop more robust hypotheses for prospective research. Augmented Causal inference for
observational data is not meant not become a substitute for randomized controlled trials but a useful
addition to the methodological arsenal. To learn about and familiarize with this concept in reference to
high level evidence such as provided by the CRASH-3 trial appears necessary.

Based on this rationale the present study investigated the capacity of two causal inference approaches
(inverse propensity weighting and doubly robust method) combined with handling of missing data and to
interpret the results into the context of the available clinical evidence[5]. The hypothesis expected the
results to concur with the results obtained with the CRASH-3 benchmark trial.

Methods
This observational study is based on data from a prospective multicenter regional trauma registry, the
TraumaBase©(TB). The registry disposes of algorithms for consistency and coherence and professional
data monitoring. Data monitoring for the TraumaBase© is assured by the Biostatistics Laboratory of
Paris 7 ([10]).

Setting and Cohort
All consecutive trauma patients admitted to one of the 14 participating trauma centers were screened for
inclusion. The appendix I provides the complete list variables that were recorded for each patient
according to the revised Utstein major trauma template [11]. The trauma system in participating trauma
centers have been previously described [10, 12, 13]; management was left to the discretion of the
responsible physician based on national triage[14] and TBI management guidelines [15]. The
corresponding Strobe checklist is provided in the appendix (I.a).

Inclusion criteria
The traumatic brain injury was defined as cerebral injury identified on a brain CT scan on admission
corresponding to and Abbreviated Injury Score > 2.

Exclusion criteria
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Patients were excluded if their age was < 16 years old or the patient was admitted to a center with less
than 20 traumatic brain injuries (TBI) over the entire inclusion period.

Administration of Tranexamic Acid (TXA)
TXA administration followed the CRASH-2 protocol, an intravenous dose of 1 gram over 10 minutes,
followed immediately by a second intravenous dose of 1 gram over 8 hours. For the purpose of the study,
the authors considered, that all administration occurred within three hours of injury.

Data extraction
A complete list of collected data can be found in the Appendix I.b).

Analysis
The objective was to evaluate the effect of TXA on 30-day head-injury related mortality in a cohort of
traumatic brain injured patients by causal inference. The study cohort was stratified into predefined
subgroups in accordance with the CRASH-3 trial: GCS 9–12 and less than 8 and pupil anomaly. Other
outcomes reported are all cause 30-day mortality and all-cause mortality as well as all head-injury related
deaths to allow comparison with other studies. Data are presented as absolute count and percentages (n,
%) for categorial and median (interquartile range) for numerical data. Categorical data were compared
using a Chi-2 or Fisher Exact Test, numerical data using a Mann-Whitney Test. The analysis was
performed on the whole cohort stratified into “TXA administration” and “no TXA administration”. A p
value < 0.05 was considered as significant. The statistical package R version 3.6.2 was used for the entire
analysis of this study (R Core Team (2019). R: A language and environment for statistical computing. R
Foundation for Statistical Computing Vienna, Austria) and associated following packages (cite packages
if needed)

Adopted Causal Inference approach
A detailed description and essential theoretical concepts can be found in the appendix section II.a-x
following.

a) Exposure variable and outcome criteria

Traumatic Brain Injury (TBI) was defined as stated above. The exposure variable was administration of
tranexamic acid (TXA) during prehospital care or on admission to the resuscitation room and considered
to have occurred within three hours of the initial trauma. TXA administration followed the CRASH-2
protocol. The main outcome of interest was all cause in-hospital mortality. Patients who died within 24
hours were retained in the analysis to minimize survivor bias.

b) Measure of Impact

The measure of impact was the average treatment effect (ATE) and corresponded to the difference in
mortality between TBI patients exposed to TXA compared to patients not exposed. The ATE and the
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corresponding 95% confidence interval (95% CI) were calculated for the entire cohort and pre-defined
subgroups: TBI severity (mild/moderate, severe) and pupil reactivity (normal, reactive, non-reactive). ATE
corresponds to the estimation of the average effect of the treatment to reduce mortality, expressed in %
points difference between the two groups (see appendix for the CRASH-3 results expressed as ATE). ATE
was considered in favour of a causal relationship if the 95%CI did not include 0. All 95%CI were
calculated with a non-parametric Bootstrap method.

c) Identification of confounding factors

Potential confounders were identified by a Delphi process consulting with a group of 10 experts in
TBI[16]. Pre-intervention (prior to the administration of TXA) variables identified by the Delphi process
concerned factors that would influence the clinician to administer TXA (e.g. haemorrhage, see Fig. 1). In
the final model (see section doubly robust method) all variables associated to the severity of the TBI and
hospital mortality (e.g. GCS) as well as criteria associated with the treatment administration were
mapped with the program dagitty 17 into a Directed Acyclic Graph (DAG, Fig. 1) as recommended18.

d) Balancing

In order to estimate the average treatment effect (ATE), deconfounding or balancing of the groups was
achieved by reweighting observations and consequently comparing the standardized mean differences;
the differences were not to exceed a 20% threshold.

e) Effect estimation

The ATE was estimated by

1) Inverse propensity score weighting, requiring a model capturing the confounding factors to debias the
treatment assignment and

2) Doubly robust approach requiring a model capturing the confounding factors to debias the treatment
assignment and a model that relates the confounding factors to the outcome, the outcome model.

For more details, refer to Appendix II.a-h

e) Sensitivity analysis (see Appendix VI)

After estimation of the treatment effects, a sensitivity analysis was performed to assess how much the
final results would change if one or more of the working assumptions such as unconfoundedness and
expert based plausibility were violated.

f) Management of missing data

Missing data were managed with two distinct methods (Appendix III):
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- MICE, multiple imputation with chained equations

- MIA, missing incorporated in attributes

MICE, and multiple imputation in general, is a probabilistic imputation method exploiting the correlation
between different variables replacing missing values with several plausible values [17]. MIA uses random
forests algorithms to learn complex relationships between predictive factors and treatment
allocation/outcome and additionally about the information in the missing values patterns in the data.

Results

Cohort and propensity score weighting
Between September 2010 and February 2019, a total of 20037 separate trauma cases have been
incorporated into the Traumabase Registry in 14 participating centers (Flowchart in Appendix I.c). Among
this sample, 8269 corresponded to the definition of TBI. A total of 683 received TXA and 7565 did not
receive TXA. Table 1 illustrates that the clinical characteristics of the two groups before propensity score
adjustment differed significantly. Patients with administration of TXA were more severely injured, showed
higher SAPS II scores, and were more often in shock or required more often neurosurgery and
neurocritical care. 

Table 1, cohort characteristics
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Variable TXA group

(n = 683)

Control group

(n = 7565)

p

Gender = male, n (%) 460 (67) 5817 (77) <
0.001

Age (years)

                < 25, n (%)

                25-44, n (%)

                45-64, n (%)

                ≥ 65, n (%)

39 [26-55]

139 (20)

275 (40)

172 (25)

97 (14)

40 [26-58]

1654 (22)

2551 (34)

2000 (27)

1338 (18)

0.099

0.004

0.004

0.004

0.004

Anticoagulant therapy, n (%) 24 (4) 395 (5) 0.084

Antiplatelet therapy, n (%) 33 (5) 363 (5) 0.703

Initial GCS in pre-hospital phase 7 [3-14] 13 [6-15] <
0.001

Initial GCS = 3, n (%) 227 (34) 1042 (14) <
0.001

Initial GCS = 3 or bilateral mydriasis in pre-hospital
phase, n (%)

 

240 (36)

 

1146 (16)

 

<
0.001

AIS

                Head

                Face

                External

 

3 [3-5]

0 [0-2]

0 [0-0]

 

3 [2-5]

0 [0-1]

0 [0-0]

 

<
0.001

<
0.001

0.193

ISS 38 [29-50] 21 [13-29] <
0.001

Pupil anomaly in pre-hospital phase

                Anisocoria, n (%)

                Bilateral mydriasis, n (%)

                None, n (%)

                Not specified, n (%)

 

93 (14)

163 (24)

418 (61)

9 (1)

 

689 (9)

605 (8)

6142 (81)

129 (2)

 

<
0.001

<
0.001

<
0.001

<
0.001



Page 8/18

Osmotherapy in pre-hospital phase

                Mannitol, n (%)

                Hypertonic saline serum, n (%)

                None, n (%)

 

122 (18)

20 (3)

113 (17)

 

822 (11)

134 (2)

514 (7)

 

<
0.001

<
0.001

<
0.001

Improvement of pupil anomaly after osmotherapy 

                Yes, n (%)

                No, n (%)

 

 

35 (5)

142 (21)

 

 

346 (5)

765 (10)

 

 

<
0.001

<
0.001

Blood pressure in pre-hospital phase

                Systolic 

                Diastolic

 

105 [80-125]

62 [45-80]

 

130 [116-
148]

80 [68-90]

 

<
0.001

<
0.001

Heart rate in pre-hospital phase 108 [78-127] 87 [72-101] <
0.001

Shock index in pre-hospital phase 0.96 [0.69-1.3] 0.66 [0.53-
0.81]

<
0.001

Minimal SpO2 in pre-hospital phase 95 [87-99] 97 [95-99] <
0.001

Activation of hemorrhagic shock procedure, n (%) 96 (14) 1261 (17) 0.087

Cardiac arrest in pre-hospital phase, n (%) 131 (19) 358 (5) <
0.001

Cristalloid volume (mL) 1000 [750-
1500]

500 [500-
1000]

<
0.001

Colloid volume (mL) 0 [0-500] 0 [0-0] <
0.001

Vasopressor therapy, n (%)  397 (58) 1064 (14) <
0.001

GCS at hospital admission 13 [3-15] 15 [13-15] <
0.001

Pupil anomaly at hospital admission

                Anisocoria, n (%)

 

93 (14)

 

689 (9)

 

<
0.001
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                Bilateral mydriasis, n (%)

                None, n (%)

163 (24)

418 (61)

605 (9)

6142 (81)

<
0.001

<
0.001

Osmotherapy at hospital admission 

                Mannitol, n (%)

                Hypertonic saline serum, n (%)

                Aucune, n (%)

 

122 (18)

127 (19)

434 (64)

 

922 (12)

599 (8)

6044 (80)

 

<
0.001

<
0.001

<
0.001

IGS II 60 [45-75] 30 [17-49] <
0.001

Maximal Pulsatility index with transcranial Doppler  1.2 [0.9-1.6] 1.1 [0.9-1.4] 0.003

Traumatic brain injury on brain scan  479 (70) 4999 (66) 0.035

Inverse propensity weighting (IPW) generated two comparable groups as demonstrated in Fig. 2. The
distribution of missing data was equally weighted to acknowledge for distinct distribution in each group
(see Appendix IV).

Main outcome criterion
Before application of the causal inference approach the observed head-injury related 30-day mortality in
the group TXA was 30% (205/683) compared to 15% in the group no-TXA (1102/7565), p < 0.001. Figure
3 illustrates results obtained with causal inference for the main outcome. The Average Treatment Effect
(ATE) indicates the mortality difference in the group TXA versus the group without TXA. Causal inference
according to IPW indicates an ATE suggesting an objective association with a higher 30-day head-injury
related mortality after TXA administration independently of the approach applied to estimate missing
data (ATE MICE: 0.10 (95% IC [0.06, 0.14]); ATE MIA: 0.09 (95% IC [0.03, 0.15])). Results obtained with
doubly robust method did not show any effect of the treatment on 30-day head-injury related mortality
(ATE MICE: -0.01 (95% IC [-0.05, 0.03]); ATE MIA: -0.01 (95% IC [-0.07, 0.05])).

Subgroup Analysis
Table 2 exposes the results after stratification of the two groups according to TBI severity (severe GCS ≤ 
8, moderate/mild GCS 9–15), pupil reaction (reactive versus non-reactive). IPW estimates an ATE in
favour of an increased mortality in mild TBI patients (mild/moderate GCS or reactive pupils) no matter
which imputation technique is applied compared to DR. For severe patients (severe GCS or non-reactive
pupils) both approaches, IPW and DR, agree on a non-significant effect, independently of the imputation
technique.
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The appendix provides all-cause mortality and 30-day all-cause mortality and all head-injury related
mortality and the corresponding ATE including subgroups. Independently of the definition applied, no
mortality definition and in no subgroup, we could show a causal relationship between TXA and mortality. 

Table 2
, Head injury related 30d death stratified into subgroups according to GCS and pupil

response
Inverse propensity weighting ATE with MICE imputation ATE with MIA estimation

GCS = 9–15 0.10 (95% IC [0.02, 0.18]) 0.07 (95% IC [0.03, 0.11])

GCS ≤ 8 0.07 (95% IC [-0.07, 0.21]) 0.07 (95% IC [-0.01, 0.15])

Reactive pupils 0.13 (95% IC [0.07, 0.19]) 0.11 (95% IC [0.05, 0.17])

Non reactive pupils 0.01 (95% IC [-0.28, 0.30]) 0.01 (95% IC [-0.11, 0.13])

Doubly robust method ATE with MICE imputation ATE with MIA estimation

GCS = 9–15 0.02 (95% IC [-0.08, 0.12]) 0.00 (95% IC [-0.06, 0.06])

GCS ≤ 8 -0.02 (95% IC [-0.16, 0.12]) -0.01 (95% IC [-0.05, 0.03])

Reactive pupils 0.05 (95% IC [-0.01, 0.11]) 0.00 (95% IC [-0.06, 0.06])

Non reactive pupils -0.11 (95% IC [-0.38, 0.16]) -0.01 (95% IC [-0.07, 0.05])

Discussion
This study applied two causal inference techniques, inverse propensity weighting (IPW) and doubly
robust method (DR), combined with handling of missing data to estimate the effect of TXA on patients
with TBI from observational data. Based on the present large observational database, IPW seems to
overestimate a harmful effect of TXA on mortality when compared to the CRASH-3 reference. By contrast,
the estimation based on Doubly Robust (DR) suggests that TXA administration after TBI does not exert
any effect on mortality.

How do these results relate to the available evidence? First, the present study truly does not compare to
the available prospective evidence. Any evaluation between the presented results and prospective
evidence in particular CRASH-3 only serves the purpose to appreciate the performance of the deployed
statistical (or analysis) techniques. Second, prospective studies diverge in crucial points such as power,
outcome criteria (28-day mortality versus 30-day or all-cause mortality), pre-hospital or intrahospital TXA
administration, excluding extracranial hemorrhage, administration protocols.

The results for ATE in % of risk of head injury related death for the Doubly Robust method ranged from a
7% decrease to a 5% increase depending on the method to estimate the missing values (MICE of MIA)
and 3–15% increase with IPW. In comparison, CRASH-3 risk of head injury related death in the overall
cohort ranged from a 14% decrease to a 2% increase with a mean of a 1.3% decrease[2]. Rowell at al [3]
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showed a range from a 8% decrease for 28-day mortality to a 2% increase, with a mean of 3% decrease.
The meta-analysis[5] concluded to a 3% decrease to a 1% increase in overall mortality.

The main challenge in any causal inference approach from observational data is the control of
confounders. Bossers et al., a registry based observational study, showed an increase in 28-day mortality
concurring with the ATE estimation by IPW. Bossers et al. established the association through unadjusted
logistic regression, then adjusted for confounders in contrast the present study based on expert
knowledge and directed acyclic graphs as recommended[9]. The results discordant from CRASH-3
obtained by Bossers et al. and IPW may however pertain to the same difficulty to obtain sufficient control
for confounding.

When comparing observational data from two very disparate groups, standard propensity scores
methods tend to under-correct for the observed difference, either due to model misspecification (in the
case of logistic regression) or insufficient sample size (in case of random forest regression). In
consequence the estimation of the treatment effect becomes erroneous. In the present case IPW seems
not to have sufficiently corrected for the treatment bias, probably because it struggles to achieve
sufficient control of confounders. IPW and DR require both a sufficient knowledge of all confounding
factors. DR however provides better control of potential bias and smaller variability than IPW, integrating
at the same time a prediction of mortality and of treatment allocation. This dual modelling of mortality
and treatment allocation optimally exploits the available data and protects against misspecification of
either one of the models, making it more robust than IPW. Furthermore, the flexibility of random forests in
the doubly robust method engenders a more powerful model capturing complex relationships and is
suited for application to a large cohort. The first take-away from the present paper is therefore when
employing causal inference, DR is preferrable to IPW. This study also shares an important innovation,
since it is the first to combine DR with two advanced methods to handle missing data and both generate
concordant results.

Trials in critical care in the last fifteen years often produced negative results and were regularly
underpowered to detect frequently unattainable outcome targets [7]. Mortality as the most certified
outcome criterion often falls short to picture heterogenous effects of complex interventions in complex
disease [8]. Furthermore, RCTs consume precious human, financial, organizational and time resources.
Benchmark trials such as CRASH-3 result from exemplar international research efforts, not applicable or
reproducible to many research questions. Not only because of resource constraints, but the necessary
recruitment remains unobtainable in an appropriate timeframe. Recruitment is not facilitated by the
increasingly small marginal benefits bestowed by ever more complex interventions. Despite a strong
rationale, CRASH-3 required more than 12000 patients.

Augmented causal inference does not aspire to become a substitute for randomized controlled trials but
is capable to upgrade conventional observational in particular in the era of big data and physiological
research and to provide a better rationales for RCTs [9]. The approach could become a reference to
prepare RCTs, explore the association of different interventions or bundles in different subgroups. This
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customized preparation would funnel research resources to the most promising RCTs. For this reason, the
results of this study using augmented causal inference appear promising and should be further explored.
An association of prospective, randomized data and parallel augmented causal inference on
observational dataset could be feasible.

The study imparts specific limitations. The inclusion period spans from 2010 to 2019, over this long
period it is likely that management and epidemiology have evolved. The study group considered all TXA
to be administered within three hours of injury. Furthermore, TXA was administered for suspected
hemorrhage and not TBI, making the effect on isolated TBI difficult to assess; the association of
hemorrhage and TBI might have affected the outcome prediction, although this was accounted for in the
model. Among the patients included with TBI, 842 presented with severe acute hemorrhage (received at
least 4 red blood cell packs within the first six hours). The choice of confounders and treatment
allocation variables was based on expert advice and could be a possible source of bias. Even experts
may fail to perceive alternative explicative patterns and risk to appreciate only the patterns they know and
are prone to inherent cognitive bias. Despite use of a Delphi and DAG to map possible confounders to
account for these in the final model, some variables might still escape sufficient control. Collected data
can be imprecise (for example blood pressure measurements) and are only a fragmented surrogate for a
complex physiological process (a few blood pressure measurements at various time points versus
continuous data). Missing data constitute an inherent limitation of any work based on off-the-shelf
observational data; missingness of data is impossible to prevent in particular in registry data and all the
more so in a clinical context of emergency. Fully aware of this intrinsic limitation of registry data, the
study group set out to purposefully integrate and advance management of missing data, testing two
different methods for imputation of missing data. With all these imperfections, control for confounding in
causal inference of observational data remains a formidable challenge. Future studies need to address
this challenge including the quality and mapping capacity of observational data. Finally, the chosen
threshold of a Mean Standardized Difference of 20% as accepted might seem important, in particular
since mortality differences between the groups are < 20%.

Conclusion
This study explored the feasibility to estimate the effect of TXA administration on TBI in relationship to
available prospective evidence, in particular an international benchmark trial combined with an innovative
approach to handle missing data. In comparison to the IPW approach, the doubly robust method provides
a better estimate of the effect of TXA. Possibly IPW provides insufficient control of confounding. This
result provides a strong incentive to explore augmented causal inference techniques on observational
data as an alternative to situations where randomized controlled trials are impossible or in the
preparation of RCTs.

Abbreviations
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ATE= Average Treatment Effect; CT= Computer Tomography; DAG= Directed Acyclic Graph; GCS=
Glasgow Coma Scale; DR=Doubly Robust Method; MIA= Missing Incorporated in attributes; MICE=
Multiple imputation with chained equations; MSD = Mean Standardized Difference; IPW=Inverse
Propensity Weighting; RT = Randomized Controlled TBI= Traumatic Brain Injury; TXA=Tranexamic Acid
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Figure 1

Directed Acyclic Graph (DAG): a) pre-intervention variables associated with the decision to administer
Tranexamic Acid (TXA) in purple; arrows point toward TXA administration or death if the same variables
are associated with death. b) Explicative variables associated with the main outcome death (blue arrows)
independent from treatment administration. ph=prehospital; init=initial, SBP/DBP=systolic/diastolic
blood pressure; HR=heart rate; SpO2.min=minimal peripheral oxygen saturation in prehospital phase;
HemoCue=capillary hemoglobin concentration; delta HemoCue=difference prehospital and admission
capillary hemoglobin; Activation HS procedure=activation of hemorrhagic shock procedure;
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TCD.PI.max=maximal pulsatility index measured with transcranial doppler, EVD=external ventricular
drain, IICP=at least one episode of increased PI, GCS=Glasgow Coma Scale, ISS=Injury Severity Score,
AIS=Abbreviated Injury Score, IGS.II=Simplified acute physiology score

Figure 2

Effect of inverse propensity weighting (IPW) on Mean Standardized Differences (MSD) in absolute
values. Black dots represent absolute values of the MSD before inverse propensity weighting. Blue dots
represent absolute values of the MSD after inverse propensity weighting. All confounding factors
demonstrated an MSD < 20% after IPW except for capillary hemoglobine (=Hemocue); blue points
=adjusted after IPW, black points =unadjusted before IPW
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Figure 3

Estimation of ATE (Average treatment effect) on 30-day head injury related death after application of
causal inference with inverse propensity weighting (IPW) and doubly robust method (DR). In dotted lines
estimation by IPW, in uninterrupted lines estimation by DR; in orange imputation of missing data with
MICE; in purple estimation of missing data with MIA. In cyan dashed line the unadjusted ATE (without
reweighting of the treatment groups). A negative ATE excluding zero favours the TXA group over the
group without TXA. (ATE=average treatment effect; dr=doubly robust method; ipw=inverse propensity
weighting, MICE=multiple imputation with chained equations; MIA=missing incorporated in attributes)
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