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The risk of severe outcomes following respiratory tract infections is significantly increased
in individuals over 60 years, especially in those with chronic medical conditions, i.e.,
hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease,
and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by
trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body
of evidence has accumulated, pointing at the occurrence of alterations, impairments, and
subsequently dysfunction of the various components of the immune system in individuals
with DS. This associates with increased vulnerability to respiratory tract infections in this
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population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19),
and bacterial pneumonias. To emphasize this link, here we comprehensively review the
immunobiology of DS and its contribution to higher susceptibility to severe illness and
mortality from respiratory tract infections.
Keywords: Down syndrome, immune dysregulation, hospitalization, respiratory tract infections, interferon,
COVID-19
OVERVIEW

Individuals with Down syndrome (DS) exhibit a higher risk of
developing severe responses to infectious diseases compared to
the general population (1–9). Chromosome 21 (Chr21), which is
triplicated in DS, harbors several essential immune-related genes,
such as four out of the six subunits of IFN receptors (10), b-2
integrin (ITGB2) (11), ubiquitin associated and SH3 domain
containing A (UBASH3A) (12), autoimmune regulator (AIRE)
(13), and more (Figures 1, 2). As a result, the immune system of
individuals with DS is often altered or dysregulated. Immune
dysregulation can be caused by mutations in key immune
regulatory genes, or increased gene dosage, as in the case of DS
(11, 14). Accordingly, the adaptive and innate immune responses
in individuals with DS are aberrant at multiple levels, including
cellular anomalies (15–20), reduced humoral response (21),
elevated interferon (IFN) signaling (10, 22), and altered toll-
like receptor (TLR) signaling (23), along with accelerated aging
of the immune system (24) (Figure 1).

At the individual level, the immune dysregulation observed in
DS is associated with blunted response to vaccines (21, 25) and
increased risk of infections, more prominently in the respiratory
tract (8, 9). Moreover, the risk of respiratory infections may be
org 2
exacerbated by unique anatomical airway features of individuals
with DS (26) (Figure 1).
Genetics of DS
DS is the most common genetic disorder causing a variable
degree of intellectual disability (ID). It was first clinically
described in 1866 by Langdon Down (27). Almost a century
later, in 1959, trisomy for the small acrocentric Chr21 was
identified as the genomic cause of this syndrome (28). The DS
genome usually contains an entire supernumerary Chr21, while
translocation of the entire Chr21 to another chromosome
accounts for ~ 5% of all DS cases (29, 30). In rare cases, only a
portion of Chr21 is triplicated, resulting in a partial trisomy (31,
32). The majority of individuals with DS (90–95%) are trisomic
for Chr21 in all of their cells, whereas a small proportion are
mosaic (33).

Chr21 is the smallest human chromosome (~1.46% of the
genome). The sequence of its long arm was published in 2000
(34). Trisomy-21 mostly results from a chromosome segregation
error in maternal meiosis I or II; the remainder are due to errors
in paternal meiosis I or II, as well as mitotic postzygotic errors
(35). Maternal age is a major risk factor for DS since aging
FIGURE 1 | Susceptibility factors to severe response to respiratory tract infections in Down syndrome. Top bar; Cellular-level susceptibility factors. Middle bar;
System-level susceptibility factors. Lower bar; patient-level susceptibility factors. All these factors culminate in increased susceptibility of individuals with DS to
respiratory tract infections.
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mothers have a higher chance of a DS pregnancy (36), although
the exact mechanism of this is unknown.

Chr21 contains approximately 233 protein-coding genes
(GRCh38.p13, Genecode database), 423 non-protein-coding
genes, and numerous other functional genomic elements (29)
that may be of importance for the phenotypic variability of DS.
In this respect, DS is considered a disorder of altered gene
expression (29). The consequences of gene dosage imbalance,
including in immune related genes (Figure 2), is widespread and
include immune dysregulation (22).

Worldwide Prevalence of DS
DS occurs in all populations, with small differences in the
incidence rates in various countries or population groups
influenced mainly by maternal age at conception (36). On
average, the number of newborns with DS is ~12.8 per 10,000
births (~1 in 780 newborns), with more males with DS than
females across most countries (37, 38). This number is strongly
influenced by the practice of prenatal detection and subsequent
elective termination of pregnancies. In several countries,
however, increasing maternal age counterbalances the impact
of prenatal diagnosis and results in a stable prevalence (37).

Changes in Lifespan of Individuals With DS
The last two generations have seen marked increase in the
lifespan of individuals with DS. In the 1940s, the average life
expectancy for people with DS was 12 years (39). Today,
Frontiers in Immunology | www.frontiersin.org 3
individuals with DS have a life expectancy of 60 years on
average (40), which is mostly linked to advances in medical
care. The main causes of death in adults with DS are Alzheimer’s
disease (AD), congenital heart defects, and pneumonia, in
contrast to solid tumors and ischemic heart disease, which
dominate in the general population (41–43). Increased survival
is in part attributable to early surgical interventions of congenital
heart malformations. Nevertheless, the risk for premature
mortality is high in DS, mainly because of respiratory
infections and leukemia (44). As a result of their relatively
longer life expectancy, a greater number of individuals with DS
now suffer from aging-related pathologies such as dementia, skin
and hair changes, early onset menopause, visual and hearing
impairments, adult-onset seizure disorder, thyroid dysfunction,
diabetes , obesity, sleep apnea, and musculoskeletal
problems (45).
INFECTIOUS DISEASES IN ADULTS
WITH DS

Despite the increase in life expectancy of individuals with DS,
children with DS remain at higher risk of neonatal and infant
mortality compared with children without DS (46). Children
with DS have a high incidence of ear, nose, and throat infections
(47) and respiratory tract infections (RI), which represent a
FIGURE 2 | Immune-related genes in Chr21. Alterations in the expression of Chr21 immune-related genes and miRs may directly contribute to immune
dysregulation in DS.
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leading cause of premature mortality (48). A special vulnerability
to infections affects individuals with DS after the age of 50 years,
especially with certain co-morbidities, such as seizures (49).
Individuals with DS suffer from a more severe illness following
respiratory tract infections, primarily with influenza virus (8),
respiratory syncytial virus (RSV), parainfluenza virus (1), SARS-
CoV-2 (9, 50), and Streptococcus pneumoniae (51). Skin (52)
and periodontal tissue infections (53) are also prevalent in
individuals with DS.

Respiratory Tract Infections
Respiratory Syncytial Virus (RSV)
RSV is a double-stranded RNA (dsRNA) virus and the primary
cause of severe lower respiratory tract infections (LRI) in young
children (<5 years) (3, 8). Acute LRI is characterized by cough
and/or respiratory distress and requires hospitalization in
0.5–2% of pediatric cases. Children with DS are at greater risk
for RSV infections (3, 5), especially for those with chronic lung
disease or congenital heart disease. Almost every child with DS is
infected with RSV by the age of 2 years, and nearly half develop
acute LRI (54). A meta-analysis conducted by Beckhaus and
Castro-Rodriguez revealed that the length of hospitalization
following RSV infection is higher in children with DS (mean
difference: 4.73 days). In addition, patients with DS are more
likely to require oxygen support (odds ratio: 6.53), ICU
admission (odds ratio: 2.56), and mechanical ventilation (odds
ratio: 4.56). Mortality rate is also higher in children with DS than
in children without DS (odds ratio: 9.4) (3).

Palivizumab, a humanized monoclonal antibody and the only
preventative measure to RSV, is indicated for young children
(<24m) with high risk (e.g., prematurity, congenital heart
disease, and chronic lung disease).

To date, the American Academy of Pediatrics does not
recommend the routine use of palivizumab in patients with DS
without additional risk factors (3). In Japan, however, since 2013,
children with DS can receive insurance-covered palivizumab
even when they lack the standard indication and other medical
problems. This expanded palivizumab prophylaxis program was
reported to decrease RSV-related hospital admissions but was
associated with neither lower RSV infection nor lower mortality
rates (55). A study analyzing data from before and after the
introduction of the universal palivizumab prophylaxis program
for children with DS in Japan reported no reduction in RSV-
related hospitalization in this population after 2013 (56),
suggesting that the protective effect of palivizumab in children
with DS that exhibit no additional risk factors is minor.

Influenza Virus
Following the outbreak of the H1NI 2009 pandemic in Mexico, a
study found a 16-fold increase in hospitalization, an 8-fold
increase in endotracheal intubation, and more than 300-fold
increase in death in individuals with DS than in the general
population (8). Moreover, patients with DS were younger
compared with affected individuals in the general population
(15.2 vs. 41.6 years, mean age, respectively). As a result, it was
suggested that individuals with DS should be vaccinated
against seasonal influenza and the H1N1 strain (8). A study
Frontiers in Immunology | www.frontiersin.org 4
that examined antibody production following the influenza
A/H1N1 vaccine in 48 children with DS found that only 27%
of the children reached an antibody level that predicts a 50%
clinical protection rate (57).

SARS-CoV-2
The SARS-CoV-2 outbreak, which causes coronavirus disease
2019 (COVID-19), is particularly life-threatening to individuals
with DS due to preexisting co-morbidities, health and housing
conditions, immune dysfunction, and premature aging (9, 50). A
study conducted during the pandemic using multivariate logistic
regression on the ‘Leumit Healthcare Services’ database in Israel
reported a significant association between DS and the likelihood of
being tested positive for SARS-CoV-2 (adjusted odds ratio 1.64).
Either dysregulation of the immune system, co-morbidities, or
sociological factors such as housing conditions can contribute to
this predisposition. Additionally, the mean age of individuals with
DS who tested positive was lower compared to individuals without
DS who tested positive (18.47, 31.43 years, respectively) (50).

In the most comprehensive study to date, Huls and colleagues
examined the vulnerability of individuals with DS to severe
COVID-19 in two large cohorts: an international cohort from
the Trisomy-21 research society (T21RS) survey, and the UK
ISARIC4C survey. The investigators reported that the most
prevalent symptoms of COVID-19 in individuals with DS were
fever, cough, and shortness of breath; similar to those reported in
general population. Altered consciousness or confusion were
more common in hospitalized individuals with DS compared
with hospitalized individuals without DS. However, joint pain,
muscle aches, and vomiting/nausea were less frequent in DS (9).
60% of DS cases from the T21RS survey, reported by clinicians,
developed medical complications due to COVID-19, which
correlated with higher mortality rates. Most prevalently, these
complications were viral pneumonia and acute respiratory stress
syndrome. These complications increased with age, from 41% of
patients at age 0-19 to 65% at ages 20-39 and 69% at age 40 and
above. A retrospective study that was conducted in New York
and included 7246 patients hospitalized with COVID-19, 12 of
them with DS, found that these patients exhibit a more severe
disease than controls, particularly an increased incidence of
sepsis and need of mechanical ventilation (58). In line with
these reports, Clift and coworkers analyzed patient-level data of
8.26 million adults (aged >19 years), collected from January to
June 2020 in the U.K., to evaluate whether DS is a risk factor for
hospitalization and mortality from COVID-19. Indeed, the
hospitalization hazard ratio due to COVID-19 for people with
DS is 4.94, compared with people without DS (59).

The rate of COVID-19-associated mortality is also higher in
adults with DS than in the general population. Among
hospitalized individuals in the ISARIC4C survey, mortality has
increased in DS from age 40, compared to 60 in the general
population. Mortality rates under the age of 40 were low,
however, hospitalization rate of individuals with DS was higher
than in the general population (7%, 3%, respectively). By
comparing the T21RS data with the ISARIC4 data, the
researchers were able to report that individuals with DS
hospitalized with COVID-19 were ~3 times more likely to die
June 2021 | Volume 12 | Article 621440
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than individuals without DS, assuming the same age, gender, and
ethnicity. Overall, the mortality rate after hospitalization was
13% in non-DS patients from the ISARIC4 survey, 40% in DS
patients from the ISARIC4 survey, and 48% in DS patients from
the T21RS survey. Before the age of 40, the mortality rate after
hospitalization was 3% in non-DS patients from the ISARIC4
survey, 12% in DS patients from the ISARIC4 survey, and 12.5%
in DS patients from the T21RS survey. After the age of 40, the
mortality rate among hospitalized cases was 17% in non-DS
patients from the ISARIC4 survey, 49% in DS patients from the
ISARIC4 survey, and 55.5% in DS patients from the T21RS
survey (9). In a cohort study of 8 million adults, Clift and
colleagues reported that COVID-19 accounted for 39.7% of
deaths among individuals with DS, and for 20.3% of deaths
among individuals without DS. Adjusting for age and sex, the
researchers found that the mortality hazard ratio of COVID-19
for individuals with DS is 24.94 compared with individuals
without DS. Following further adjustments –ethnicity, BMI,
care home residency, and comorbidities– the mortality hazard
ratio was 10.39. Interestingly, this study did not find evidence for
interaction between DS and age or BMI that was associated with
higher hazard ratio (59).

As in the general population, age is a stronger risk factor for
severe COVID-19 illness in individuals with DS. Obesity, diabetes,
and congenital heart diseases, all DS-co-morbidities, along with
male gender, are additional risk factors for hospitalizations with
COVID-19. Risk factors for mortality were male gender and AD/
dementia (9). It is therefore well evident that individuals with DS
are at higher risk of SARS-CoV-2 infection (50), COVID-19-
related complications (58), and mortality (9, 59).

Infectious Diseases in DS: Hospitalization
Rate and Length
Children with DS may have a greater risk of admission to a
hospital and are more likely to have an extended stay and require
intensive care support upon respiratory tract infections (23).
However, studies have only recently begun to focus on the adult
DS population with respect to their rate of infections, and the
number and length of hospital izations. In general ,
hospitalization rate is higher in adults with DS compared with
the general population due to pneumonia or aspiration (60–62).
Tenenbaum and colleagues analyzed 297 hospitalizations of 120
adults with DS (aged 18-73 years in medical centers in Israel
between 1988-2007) and compared these data with a control
population. The number of hospitalizations recorded for
individuals with DS was twice that of individuals without DS.
The average hospitalization length was more than 1.5-fold (8.1
vs. 4.8 days), despite no difference in the mean age of the
hospitalized people (39.1 vs. 39.5, years). More than a fourth of
the hospitalizations were caused by infectious diseases.

As noted, DS is associated with increased susceptibility
infections (17, 21, 25, 63–65). Within the DS population,
young children and the elderly appear to mostly suffer from
respiratory infections (41, 66), and at higher rates than in the
general population (67). This is associated with worse outcomes,
Frontiers in Immunology | www.frontiersin.org 5
higher hospitalization rates, more extended hospital stays, and
higher mortality rates.
INTERPLAY BETWEEN IMMUNE
DYSREGULATION AND INFECTIOUS
DISEASES IN DS

Multiple immunological impairments are present in DS,
including dysfunction of the cellular and humoral responses,
altered phagocytic function of myeloid cells, partial deficiency of
complement proteins, and increased cytokine responses (21, 23,
63, 66, 68) (Figure 1). Secondary lymphoid compartments are
also affected in DS, as patients exhibit abnormal proportions of
peripheral blood lymphoid subsets (69–71), decreased function
of natural killer (NK) cells (72), abnormal T cell development,
and thymocyte maturation (15, 21, 22, 63, 73, 74) (Figure 3).
Individuals with DS have a smaller thymus with reduced
lymphocyte numbers (66, 75), which is thought to be the result
of thymic dysfunction and apoptosis of B and T cells (68, 76).
The thymus, even in newborns with DS, is smaller than that of
infants without DS and exhibits structural abnormalities (17, 25),
indicating that immunodeficiency and immune dysfunction are
integral parts of the syndrome (17, 66). Below, we thoroughly
detail the complex dysregulation of the various branches of the
immune system in adults with DS.

Dysregulation of Innate Immunity in DS
Individuals with DS exhibit significant alterations in the numbers
and functionality of innate immune cells and innate immune
receptors, all of which bear implications to susceptibility to
infections. These alterations are described in detail in the
following section.

Dysregulation of Innate Immune Cell Types in DS
Granulocytes
Granulocytes (neutrophils, eosinophils, and basophils) play a
critical role in the first-line host defense mechanisms against a
variety of microorganisms. In individuals with DS, neutrophils
exhibit numerous abnormalities, including reduced chemotactic
ability, associated with diminished resistance to infection (18,
77). Some adults with DS exhibit neutropenia (78) and a lower
number of granulocytes (16).

Intracellular calcium ([Ca2+]i) acts as a second messenger in
transmembrane signaling, regulates diverse functions in many
cell types, and plays a role in neutrophil responses such as
phagocytosis, locomotion, and free oxygen radical production
(77). Yamato et al. reported that neutrophils in subjects with DS
exhibit elevated levels of intracellular calcium concentration and
prolonged Ca2+ response following neutrophils stimulation,
suggesting an intrinsic neutrophil defect in DS (Figure 3).

Neutrophils from children with DS exhibit reduced chemotactic
ability (79) and decreased CD11b expression, with a higher fold-
change increase in CD11b expression following stimulation with
June 2021 | Volume 12 | Article 621440
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LPS, compared with stimulated neutrophils from control subjects
(66). These findings suggest that the ability of neutrophils to migrate
and adhere is compromised in DS.

Mang and colleagues reported that 70% of the children with
DS in their studied cohort show a significant degree of
eosinopenia in the peripheral blood (80). Additionally, children
with DS that suffer from hypothyroidism have eosinopenia in
38.5% of the cases, while pediatric hypothyroidism patients
without DS exhibit eosinopenia in 11.8% of the cases (80). In
neonates with DS, increased basophil number was reported (81).
James and colleagues reported that both eosinophils and
basophils from neonates with DS tend to be dysplastic with
abnormal hypogranulation in 50% and 56% of the samples,
respectively (82). Lastly, apoptosis of granulocyte was reported
to be accelerated in DS under various conditions (41). Of note,
most of the data on granulocytes in DS stems from studies in
children, and more data is needed to assess this arm of the innate
immune system in adults with DS.

Monocytes
Human monocytes are classified into classical CD14++CD16-,
intermediate CD14++CD16+, and nonclassical CD14+/dimCD16++

cells (83). They display different chemokine-receptor expression
profiles, potentially reflecting distinct tissue homing properties
(84). Non-classical CD14+/dimCD16++ cells, which are elevated in
DS (22), have superior antigen-presenting cell activity, they
Frontiers in Immunology | www.frontiersin.org 6
produce higher levels of proinflammatory cytokines (such as
TNF and IL-10), and have a direct antibacterial activity in the
tissue. In contrast, CD14++CD16- monocytes, which are reduced
in DS, exhibit a scavenging function and remove apoptotic
neutrophils and debris (Figure 3). Children with DS were
found to exh ib i t incr ea s ed abso lu te number s o f
CD14+dimCD16++ monocytes (16), which may contribute to
chronic inflammation. Furthermore, monocytes from children
with DS (age range: 6m-7y) exhibit a significant decrease in
chemotaxis than monocytes from non-DS controls, which was
not associated with age, sex, and physical development (85).
Reduced monocyte chemotaxis was also reported by Barkin and
colleagues, comparing institutionalized individuals with DS
(mean age = 14.3) with non-DS institutionalized individuals
(mean age = 13.9) (79).

Non-classical monocytes from children with DS express
higher levels of TLR4 compared to controls. Following LPS
stimulation, intermediate monocytes from children with DS
exhibit an increase in the expression CD11b, which is involved
in cell adhesion, compared with control subjects (66). These
intermediate, inflammatory monocytes were also increased in
adults with DS (22). Lastly, Kong and colleagues reported that
monocytes from individuals with DS display elevated levels of
Chr21-encoded IFN receptors and increased basal and
stimulation-induced levels of pSTAT1 (86), suggesting
hypersensitivity of trisomy-21 monocytes to IFN signals.
FIGURE 3 | Immune dysregulation in DS. Left panel; Innate immunity impairments in DS include a decrease in CD14++CD16- monocytes, an increase in
CD14+CD16+ monocytes, increase in NK cells, a decrease in myeloid dendritic cells (mDC), and a decrease in granulocytes. Neutrophils exhibit dysregulated Ca++

homeostasis and reduced chemotactic ability, which results in impaired functionality. Middle panel; humoral response dysregulation includes a decrease in total IgG,
as well as IgG and IgA levels in the saliva. Specifically, of IgG2, IgG4, and IgM production levels decrease, while production levels of IgG1, IgG3 and IgA increase.
Right panel; Adaptive immunity impairments include a decrease in the numbers of CD4+ T cells, an increase in the numbers of CD8+ cells, and a decrease in the
number of T regulatory cells. Overall, fewer T cells in DS express the ab subunits of the T-cell receptor (TCR), and more T cells express the gd subunits of the TCR.
The numbers of B cells and switched memory B cells also decrease in DS.
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Natural Killer Cells
NK cells are found in higher frequencies in the peripheral blood
of children with DS aged <2 years (16). This finding was also
reported in adolescents (68) and adults, comparing individuals
with DS to individuals with intellectual disability without DS
(41). Nevertheless, NK activity, assessed by measuring the
cytotoxicity of NK cells towards K562 target cells, was
significantly reduced in DS compared with non-DS controls
(87), which may contribute to higher susceptibility to viral
infections in adults with DS (Figure 3). Waugh and colleagues
assessed the expression of various markers associated with
activation of NK cells and found that CD16, CD38, CD8, and
CD11c were upregulated in CD56+CD16+ cytotoxic subset of
NK cells from DS adults (22). This implies that the frequency of
cytotoxic NK cells is not only elevated in DS but also exhibits an
increased activation state. However, the functional cytotoxicity of
these cells, which was previously reported to be reduced (87), was
not measured in this specific subset.

Differences in Toll-Like Receptor Signaling
Toll-like receptors (TLR) are pattern recognition receptors
(PRRs) that link between the activation of innate immunity
and the initiation of adaptive responses. In mammals, the TLR
family comprises 13 receptors, which can be grouped based on
their subcellular localization: TLR1, TLR2, TLR4, TLR5, TLR6,
and TLR10 are expressed on the cell surface, while TLR7, TLR8,
and TLR9 are expressed in intracellular vesicles such as
endosomes and lysosomes (88). TLR3 can be found both at the
cell surface and intracellularly (89). TLRs can be activated by
microbial-associated molecular patterns (MAMPs). For a
detailed list of TLR exogenous ligands see Mukherjee (2016)
(90). TLRs are also activated by endogenous, non-infectious
molecules resulting from cellular injury, also referred to as
damage-associated molecular patterns (DAMPs). Several TLR
ligands of host cell origin have been identified, including but not
limited to HMGB1 (High-mobility group B1), hyaluronan,
b-defensin, heat shock proteins (HSPs), amyloids, and lipoproteins
(91–94). For a more comprehensive list of putative endogenous
ligands of TLRs see Erridge (2010) (95).

TLRs are amply expressed across immune cells, including
neutrophils, macrophages, monocytes, lymphocytes, dendritic
cells (DC), and microglia in the brain. Their signaling
pathways lead to the induction of pro-inflammatory cytokines,
chemokines, and co-stimulatory molecules, which are essential
for initiating adaptive immune responses (96, 97). Pathological
activation or dysregulation of TLR signaling can lead to an
exacerbated production of inflammatory molecules and
oxidative species, which has been associated with tissue
damage, chronic inflammation, autoimmunity, and poorer
outcomes during infections or acute sepsis (98); most of which
are common in DS.

In fact, there is evidence that TLR signaling is altered in DS.
Huggard and colleagues found that elevated TLR4 expression in
LPS-stimulated non-classical monocytes increased neutrophilic
response in pediatric patients with DS compared with controls
(66). In addition, blood flow cytometry analysis showed that the
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basal expression of TLR2 is significantly higher in neutrophils
and monocyte subsets in children with DS compared with
controls (23). Given the large repertoire of DAMPs shown to
activate TLR2, including anti-phospholipid autoantibodies, acute
serum amyloid, HSPs, HMGB1, as well as several extracellular
matrix components (95), some of which are known to be
increased in DS serum (99), this elevation in TLR2 could
potentially contribute to the state of exacerbated cytokine
production characteristic of DS, via MyD88-independent
pathways (100). This is compatible with additional findings in
DS, indicating a significant reduction in the basal mRNA
expression of MyD88, as well as no increase in its expression
following stimulation with LPS (23). MyD88 is a key adaptor
protein involved in the activation of TLR signaling, which is
necessary for mounting immune responses to bacterial
pneumococcal and streptococcal infections and antiviral
responses (101). Therefore, its reduced expression could
contribute to the greater susceptibility to such infections seen
in DS.

Furthermore, dysregulation of MyD88-dependent TLR
signaling in DS may be further exacerbated by mechanisms
involving miRs, whose expression can be regulated by
inflammatory cytokines. For example, the Chr21-encoded miR-
155 represses the expression of MyD88 (102), which could
further contribute to TLR dysregulation in DS (Figure 3).
Tuttle and colleagues examined the detrimental effect of
polyinosinic:polycytidylic acid (P(I:C)), a TLR3 agonist that
triggers IFN responses, in the Dp16 mouse model of DS that
recapitulates IFNRs triplication (103). The investigators reported
that P(I:C) administration increased circulating levels of IFN-a
in WT mice and Dp16, subsequently leading to weight loss and
lethal immune hypersensitivity, specifically in Dp16 mice. In the
lungs, P(I:C)-administered Dp16 mice exhibited elevated
expression of IFNAR1, TLR3, and the key interferon-
stimulated genes MX1 and EIF2AK2, compared with P(I:C)-
administered WT mice, suggesting hypersensitivity to TLR3
stimulation in DS. This is specifically relevant for pathologies
in which excess inflammatory responses correlate with disease
severity, such as in the case of COVID-19 (104). Thus, TLR3
stimulation may lead to adverse IFN-mediated outcomes in DS.
Importantly, Tuttle and colleagues were able to demonstrate that
that P(I:C)-elicited weight loss and mortality can be overturned
by JAK1 and JAK1/2 inhibitors, raising the possibility that these
agents may be beneficial in individuals with DS suffering from
autoimmune diseases (103).

Remdesivir, a broad-spectrum antiviral medication, was
recently shown to shorten recovery time from COVID-19
(105). Moreover, recent findings suggest that combined
administration of Remdesivir and Baricitinib, a JAK1/2
inhibitor, is superior to Remdesivir treatment alone. The
combined treatment reduced the time of recovery from 8 days
in Remdesivir-treated patients to 7 days, along with a 30%
improvement in the clinical status. Moreover, patients that
received non-invasive oxygen support at enrollment recovered
at day 10 following Remdesivir/Baricitinib treatment, while
Remdesivir-treated patients recovered at day 18. The 28-day
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mortality rate was also reduced from 7.8% in the control group to
5.1% in the combined treatment group (106). These mechanisms
should be further explored in the context of infections in DS, as
they could offer insights to uncover novel therapeutic avenues to
correct the immune imbalance in people with DS.

Strict regulation of TLR pathways is crucial in protecting from
infection but also in avoiding damage from excess cytokine
production, a common phenomenon in DS, which can lead to
worse outcomes, acutely in sepsis or chronic inflammation
in autoimmunity.

Anomalies in FcgR Receptor Signaling
Fc receptors are a family of cell surface proteins that bind to the
Fc portion of antibodies of a particular isotype (107). Cross-
linking of Fc receptors and high affinity binding to Igs occur
when these antibodies recognize pathogens or infected cells,
stimulating phagocytosis of opsonized microbes by monocytes,
macrophages, neutrophils, and DC or their destruction by
cytotoxic effector cells (108). Activation of FcgRs constitutes an
important function of the immune system in the removal
of pathogens.

To date, a significant inhibition of FcgR was reported in
individuals with DS aged 6 months to 32 years, due to an increase
in FcgR blocking factors (109). Guarnotta and coworkers
examined the sera of 29 individuals with DS and found that
55% of them displayed FcR inhibition above the upper limit of
normality, compared with 7% in the control group. Moreover,
the investigators found serum immune complexes, which may
partially account for the observed FcR blockage, in a higher
percentage of subjects with DS than in controls (109).
Intriguingly, levels of FcgR1A and FcgR1B are significantly
increased in a whole blood specimen, WBC, and monocytes of
individuals with DS compared with non-trisomic individuals, as
found using the TrisomExplorer database (http://www.trisome.
org/explorer). A comprehensive study of the circulating
proteome in DS revealed a significant downregulation of Fc-
receptor Like 3 (FCRL3), an Fc-receptor-like glycoprotein
involved in immune regulation (110). Several questions remain
open, however, including whether FcgR signaling is
compromised or exacerbated in DS, and of which FcR subtype
(s) is affected, as well as the impact of such changes on immune
activation and the ability to fight infections. From an
immunotherapy perspective, there is a need to better
understand FcR engagement, as this could influence the
amount of antibody required to obtain a therapeutic effect or
an adequate response to vaccines (111).

Interferon Hyperactivity
Four of the six interferon receptors (IFNR) are encoded on
Chr21: the two subunits for type I IFN—IFNAR1 and IFNAR2;
the type II IFNR subunit—IFNGR2; and a subunit of type III
IFN—IL10RB (112, 113). Therefore, it is proposed that increased
gene dosage of IFNRs results in consistent IFN response that
contributes to the many clinical manifestations of DS (10).
Sullivan and coworkers performed RNA-seq on fibroblast from
individuals with and without trisomy-21 of different ages, genetic
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backgrounds, and genders. Their analysis revealed that the top
upstream regulators that are predicted to be activated in DS are
IFN-related factors. Indeed, they found a ~1.5-fold increase in
the expression of the Chr21-IFNRs with relatively low inter-
subject variability. Additionally, 21% of the Chr21 and non-
Chr21 upregulated genes in individuals with trisomy-21 were
linked to IFN signaling. Subsequently, the investigators reported
that the IFN-activated kinases JAK1 and TYK2 are negative
regulators of cell viability in trisomy-21 fibroblasts (10).

Consistent with their findings in fibroblast, Sullivan and
colleagues found that all four IFNRs are upregulated in
immortalized lymphoblastoids and that the strongest regulators
of consistent gene expression are IFN-related factors. In
circulating T cells and monocytes from donors with trisomy-
21, IFNAR1, IFNAR2, and IL10RB were upregulated compared
with controls. In association with this finding, T cells and
monocytes were predicted to exhibit inactivation of the gene
expression program driven by the N-Myc transcription factor
and repression of the EIF2 pathway. IFN response is a selective
control of protein translation that prevents the synthesis of viral
protein following infection by impairing rRNA processing.
Indeed, in monocytes and T cells, genes that overlap between
the repressed MYCN and EIF2 programs encode components of
the small and large ribosomal subunits, potentially impairing the
integrity of protein synthesis in these cells (10).

In a substantial study, Waugh and colleagues performed deep
mapping of the immune system of adults with trisomy-21 using
mass cytometry to evaluate 100 cell types. Their analysis revealed
a global immune dysregulation, including changes in lymphoid
and myeloid cell compartments, associated with a widespread
hypersensitivity to IFN-a. This could be explained by elevated
expression of the type I IFNR subunit IFNAR1 across the entire
immune system (22). Following stimulation with the type I IFN
ligand IFN-a-2a, pSTAT1 and p4E-BP1 were significantly
hyper-induced in multiple cell types tested from donors with
DS, especially in myeloid lineage cells. pSTAT4 was hyper-
activated in lineages involved in cellular immunity (T cells and
CD7+ ILCs). CD8+ cells exhibited increased expression of
Granzyme B (GZMB) following IFN-a-2a stimulation, and
ERK1/2 phosphorylation was observed in monocytes and DCs
from donors with DS (22). In line with these findings, Kong and
colleagues reported an increased surface expression of the
Chr21-encoded IFNAR1, IFNAR2, IFNGR2, and IL10RB, but
not the Chr6-encoded IFNGR1 in EBV-transformed B cells from
donors with DS (86). IFNAR2 and IFNGR2 were also
overexpressed in monocytes from donors with DS compared to
controls. Accordingly, levels of monocyte STAT1 and pSTAT1
were higher in DS than in controls but lower than in samples
from donors with a gain of function STAT1 mutation, which
enhances cellular responses to the three types of interferons.
Indeed, following stimulation with IFN-a and IFN-g, monocytes
from individuals with DS exhibited elevated pSTAT1 expression
(86). In a T cell-oriented study, Araya and coworkers
demonstrated that trisomy-21 T cell subsets show elevated
levels of basal IFN signaling and hypersensitivity to IFN-a
stimulation that may contribute to increased autoimmunity
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(69). For example, pSTAT1 was hyper-activated in the CD4+
central memory T subset, and pSTAT4 peaked in CD8+ subsets.
Without stimulation, CD8+ cells from donors with DS displayed
increased activation marker IFN-g expression compared with
controls. CD8+ cells were also found to exist in an intermediate
state, expressing both activation and inhibitory markers. For
example, co-expression of IFN-g and the inhibitory receptor PD-1
(69) can potentially reduce anti-viral responses, as high levels
of PD-1 expression can have unfavorable immunological
consequences during chronic viral infections (114).

As mentioned above, Tuttle and colleagues demonstrated that
TLR3 agonist triggers an excessive type I IFN response that
results in lethal immune hypersensitivity, specifically in Dp16
mice, in which IFNR subunits are triplicated (103). Furthermore,
the investigators were able to overturn this effect using JAK1 and
JAK1/2 inhibitors. Over-activation of type I IFN response by
TLR3 stimulation is specifically relevant in acute conditions
which involve excess inflammatory response, such as COVID-
19 (104).

Dysregulation of the Complement Cascade
The complement system, a major effector mechanism of humoral
and innate immunity, is composed of serum proteins,
membrane-bound regulators, and receptors that promote a
beneficial inflammatory response leading to pathogen
opsonization and removal (115). Complement proteins are
mainly produced by the liver; however, immune cells and
endothelial cells can also contribute to the complement pool
(116). Three complement pathways, activated by different
recognition molecules, have been identified: the classical
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pathway, the alternative pathway, and the lectin pathway (115).
They are characterized by sequential zymogen activation of
distinct complement proteins. Although the initiator
complement proteins in each pathway are distinct, all the
pathways converge at C3 and C5 convertase enzyme
complexes. C3 is cleaved into C3a and C3b, and C5 into C5a
and C5b, of which C3b and C5b act as opsonins, and C3a and
C5a as anaphylatoxins; the latter promoting the recruitment of
phagocytes to the site of complement activation (115). In
addition, deposition of C5b and other complement proteins
(C6, C7, C8, and C9) results in the formation of a multimeric
complex, termed membrane attack complex, which forms pores
in the cell membrane and eventually promotes cytolysis (115).
For more detailed reviews of the complement cascade see Merle
(2015), Sarma (2011), and Ricklin (2010) (117–119).

Activation of the complement in DS is implicated in DS-
associated AD pathology (120, 121). It was mechanistically
proposed that factor H, an inhibitor of complement activation,
which is downregulated in brain, spleen, and liver tissues from
older adults with DS (122), contributes to enhanced complement
response in DS. Concordantly, the Chr21-encoded miR-155
(123), a negative regulator of factor H, was increased in the
same tissue samples (122) (Figure 4). Therefore, these findings
indicate that complement regulation may be compromised in
DS, possibly resulting in abnormal complement activation in
brain and peripheral tissues. Interestingly, recent studies further
indicate a reduction in circulating complement proteins C3,
C1Qa, C6, and C1R in the plasma of children and adolescents
with DS (110). The authors proposed that this resulted from
consumption of the complement system that is associated with
FIGURE 4 | miR-125b and miR-155 are involved in immune dysregulation in DS. Both miR-125b and miR-155 are located on chromosome 21. miR-125b is
overexpressed in plasma cells, while miR-155 is overexpressed in both plasma and memory B cells, leading to an impaired humoral response. miR-155
overexpression results in reduced expression of factor H and Myd88, leading to impaired complement response and impaired inflammatory response, respectively.
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excessive inflammation, and is particularly attributed to the
increased IFN signaling characteristic of DS, and, as suggested,
to other type I interferonopathies (110).

Dysregulation of the complement system, either by
hyperactivation or by decreased complement levels, may result
in a maladaptive inflammatory response (124), possibly
contributing to the increased frequency of infections in DS,
such as those related to the upper respiratory tract. Along this
line, abnormal complement activation caused by the avian
influenza virus H5N1 was shown to provoke acute lung injury,
neutrophil infiltration into the lungs, and increased serum IL-6
and TNF-a levels in infected mice (125). Moreover, intravenous
administration of either a C3aR antagonist or an anti-C5a
antibody attenuated lung injury and neutrophil lung
infiltration, diminished IL-6 and TNF-a levels, and increased
the survival rate; thus, indicating that complement inhibition
may be beneficial in influenza infections (125).

COVID-19 pathology is worsened by maladaptive immune
response. It was therefore hypothesized that excessive
complement activation contributes to disease progression and
severity (126). Indeed, complement inhibition using antibodies
directed against C5a (127), C5 (128, 129), and C3 (130) are
currently being tested.

Sullivan and colleagues hypothesized that the dysregulated
complement responses seen in DS could contribute to increased
morbidity in this population (110). Indeed, complement
consumption is associated with multiple pathologies, such as
improper pulmonary clearance of Streptococcus pneumoniae
(131), pathogenesis of age-related kidney injury (132), and
microglia-mediated synapse loss in amyloid pathologies (133),
which may further contribute to accelerating AD pathogenesis.

Dysregulation of Adaptive Immunity in DS
Dysregulation of the T Cell Lineage
T lymphocytes exhibit a significant dysregulation in individuals with
DS. In adults with DS, high levels of IFN-g, which promotes Th1-
responses and thus higher Th1/Th2 ratio, are thought to cause an
imbalance between anti- and proinflammatory immune responses
(68, 134). T cells from individuals with DS also express higher levels
of IFN-stimulated genes because of heightened basal levels of IFN
signaling and hypersensitivity to IFN-a stimulation (10, 69). CD8+

T cells from adults with DS are reduced in naïve subsets and
enriched in differentiated subsets that express higher levels of
activation and senescence markers (e.g., IFN-g, Granzyme B, PD-
1, KLRG1), and over-produce cytokines associated with
autoimmunity (e.g., TNF-a) (69). Conventional CD4+ T cells
display increased polarization toward the Th1 and Th1/17 states
and produce higher levels of the autoimmunity-related cytokines IL-
17A and IL-22. In concordance, levels of TNF-a, IL17A–D, and IL-
22 are often upregulated in the plasma of people with DS.
Additionally, regulatory, CD4+ and CD8+ T cells show higher
expression of the inhibitory receptor PD-1, suggesting chronic
antigenic stimulation and increased turnover of memory T cells
in DS (68, 69).

Individuals with DS have a significantly higher number of
unique T-cell receptor (TCR) gamma (TRG) sequences, along
Frontiers in Immunology | www.frontiersin.org 10
with decreased clonal expansion (72). TRG repertoire
abnormalities may contribute to patients’ predisposition to
infections and autoimmune diseases. However, since these
observations were obtained using DNA sequencing of a mixed
population of thymocytes, they cannot be specifically attributed
to gd T cells. Individuals with DS are reported to have a decreased
population of cells expressing high levels of TCR ab and
approximately 10% of cells expressing TCR gd (20, 135, 136)
(Figure 3). The Chr21-encoded Ubiquitin-associated (UBA) and
Src homology 3 (SH3) domain containing A (UBASH3A) is a
negative regulator of NF-kB signaling in T cells that also play a
broad role in autoimmunity (137, 138). UBASH3A is indeed
upregulated in trisomy-21 T cells as found using the
TrisomExplorer portal. Ge and collogues found that
modulation of UBASH3A levels in unstimulated Jurkat T cells
changes the amount of cellular CD3 chains and cell-surface
TCR–CD3 complexes. Moreover, the investigators found that
association between UBASH3A and components of cellular
pathways plays a role in regulation of TCR–CD3 turnover and
dynamics, including cell motility, endocytosis, and endocytic
recycling of membrane receptors. Importantly, UBASH3A
negatively regulated CD28 signaling and subsequently the
activation state of T cells (137). It is therefore speculated that
elevated T cell levels of UBASH3A in DS might impair T cell-
mediated response to pathogens.

B Cell Dysfunction in DS
DS significantly affect both the differentiation and function of B
cells, as fewer circulating B cells and impaired molecular
maturation markers are consistently observed (17, 41, 139–141).
Individuals with DS are sometimes B cell lymphopenic (23, 66, 73,
74) and exhibit a specific reduction in the number of switched
memory B cells (17, 64) (Figure 3). The trisomy appears to alter
the differentiation of B cells starting from pluripotent cells (75). In
children with DS, all steps of peripheral B cell development are
altered with a more severe defect during the later stages of B cell
development. Transitional and mature-naïve B cell numbers are
reduced by ~50%, as the bone marrow produces lower numbers of
transitional B cells, while switched memory B cells are reduced to
10–15% of the numbers in age-matched controls (17). Moreover,
the frequency of switched memory B cells specific to vaccine
antigens is also reduced in individuals with DS compared with
their euploid siblings (64). In-vitro studies revealed a rapid
exhaustion of switched memory B cells in DS due to
hypersensitivity to TLR9 stimulation-induced differentiation into
antibody-producing cells (17, 64). Moreover, differentiation of T
follicular helper (TFH) cells, which play an essential role in the
formation of germinal center (GC) and the production of high-
affinity antibodies, are skewed towards less effective CXCR3+ TFH

cells in children with DS (142). Type I IFN (IFN-I) plays a cardinal
role in antibody isotype switching, and thus in the proper
induction of humoral immunity following vaccines, as it
activates DC and TFH cells (143, 144). However, high levels of
IFN-I can also impair antibody production in individuals with DS
since it inhibits B cell encounter with viral antigens in draining
lymph nodes (dLNs), interaction with TFH and DCs, and
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subsequent activation, proliferation, and differentiating into
antibody-secreting cells (145, 146). By restricting localization of
TFH cells within B cell areas of the spleen, IFN-I impairs GC
formation, Ig-class switching, and plasmablast differentiation that
subsequently results in suboptimal production of pathogen-
specific IgM and IgG sub-classes, and resolution of infections
(147). As such, immunoglobulin production in individuals with
DS is impaired. Indeed, in addition to B cell lymphopenia, serum
levels of immunoglobulin IgG2, IgG4, and IgM are decreased in
children with DS, while total IgG, IgG1, IgG3, and IgA are
increased in these individuals (Figure 3) (21, 23, 66, 73, 148).
Additionally, IgA and IgG titers are largely reduced in saliva of
adolescents and young adults with DS, although IgM levels appear
to be normal (65). Thus, these reports indicate that the reduced
number and rapid exhaustion of switched-memory B cells can
impair the humoral response. As such, the B cell dysfunction
appears to increase respiratory infections in young children with
DS (21).

The prevalence of allergic sensitization is dramatically
reduced in children with DS compared with children without
DS (149). Indeed, Sullivan and coworkers reported that the levels
of IgE antibodies, which mediate allergic responses (150), are
reduced in individuals with DS (110). The investigators linked
this observation to hypersensitivity to IFN-a/b in DS, which may
suppress allergic inflammation by preventing activation of
granulocyte and IL-4-mediated isotype switching to IgE (110).

Dendritic Cells in DS
Myeloid dendritic cells (mDCs), a heterogeneous population of
professional antigen-presenting cells, serve as a bridge linking
adaptive and innate immune responses (151). The absolute
number of mDC is lower in pediatric patients with DS, while
the number of plasmacytoid dendritic cells (pDC) is normal (16).
In adults with DS, however, this reduction is not observed (22).
mDCs also promote a Th1-type response of CD4+ T cells during
viral infections by secreting a range of immunostimulatory
cytokines and chemokines that prime differentiation of naïve T
cells to effector T cells (151). Thus, Low mDC numbers in the
peripheral blood may be associated with abnormalities in T cell
maturation in DS (16) (Figure 3). Additionally, CD1c+
conventional dendritic cells, which have been proposed to
promote autoimmunity through T cell activation, were
observed in higher numbers in the circulation of adults with
DS compared with age-matched controls (22).

pDCs, a rare subset of circulating DCs, also link innate and
adaptive immunity, as they release high levels of type I IFNs
following viral infections, which contribute to the activation of T
cells and other pDCs (152). Indeed, pDCs from adults with DS
overexpress IFNAR1, but they also display the largest fold change
in STAT1 expression among all immune cells tested following
type I IFN stimulation (22). Taken together, it is speculated that
pDCs IFN-hypersensitivity in DS can contribute to severe
outcomes of viral infections in which the course of the disease
is influenced by excessive inflammation, as in the case of
COVID-19. Indeed, plasmacytoid predendritic cells are rapidly
diversified and activated to produce IFN-a and other cytokines
following interaction with SARS-CoV-2 viral strains (153).
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Overall, a selective cell-mediated immunodeficiency, defective
neutrophil chemotaxis, low T and B cell counts, and impaired
antibody response to pathogens presumably explain the higher
rate of mortality from pneumonia and other respiratory diseases
in children with DS (21, 65).
Aberrant Cytokine and Chemokine
Signaling in DS
Cytokines participate in the regulation of immune and
inflammatory responses through binding to specific receptors
and activation of signaling pathways; many of them acting
through the Janus kinases (JAKs)/signal transducer and
activator of transcription proteins (STAT) pathways (154). The
secretion of cytokines is a normal part of a cell’s physiological
response to infection and pathogen recognition; however, in
certain pathological contexts, an exacerbated production or an
improper resolution can lead to sustained inflammation and
associated chronic damage (107). In the context of respiratory
infections, which are prevalent in individuals with DS,
inflammatory cytokines have been associated with poorer
prognosis or fatal outcomes (155). Likewise, elevations in IL-6,
TNF-a, macrophage inflammatory protein 2 (MIP-2), and the
IL-1 receptor antagonist (IL-1RA) have been associated with
increased mortality in a murine model of septic shock (156).

Individuals with DS exhibit higher circulating levels of pro-
inflammatory cytokines and chemokines than euploid controls; even
in the absence of infections or autoimmunity (69, 110, 157–161). A
meta-analysis that reviewed 19 studies that included almost 1500
participants concluded that circulating IFN-g, IL-1b, TNF-a, and
MIP-1a are significantly elevated in individuals with DS (157, 162).
Moreover, a proteomic analysis of the plasma and serum from
children and adults with DS revealed a significant elevation in the
pro-inflammatory cytokines IL-6, MCP-1, IL-22, and TNF-a (110).
The circulating cytokine signature resembles that of type I IFN
pathologies and several autoimmune conditions, many of which are
indeed common in DS (163, 164).

These heightened basal levels of inflammatory cytokines seen in
DS across multiple age brackets can be in part attributed to the
trisomy-21, but can be also related to the fact that DS is
characterized by priming of diverse immune cell types, reflecting
heightened pro-inflammatory states (69). This has been recently
demonstrated in a comprehensive study characterizing the
peripheral T cell compartment in adults with DS, where it was
shown that CD8+ T cells from participants with DS stimulated in
vitro responded more potently than their euploid counterparts,
overproducing TNF-a, IFN-g, IL-2, and MIP-1a, MIP-1b, Eotaxin,
GM-CSF, IL-8, IL1-RA, and IL-10 (69). Similarly, CD4+ T cells
from people with DS stimulated in vitro also expressed higher levels
of IL-10, IL-17A, IL-22, and MIP-3a, which is consistent with a
polarization of these cells toward the Th1 and Th17 states.
Moreover, this study also showed that effector T cells in DS are
resistant to CD4+ Treg mediated suppression, bringing additional
evidence to explain the chronic heightened inflammatory state
characteristic of DS.

The consequences of systemic exacerbated inflammation are
of particular concern in the context of viral respiratory infections
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because of the link between cytokine storm, disease severity, and
mortality (165). Indeed, Broers and colleagues reported that ex
vivo stimulation of whole blood from children with DS with
influenza-A virus resulted in increased levels of TNF-a, IL-1b,
IL-6, IL-8, and IFN-a compared to their euploid siblings (166).
In addition, elevated levels of IL-10, an IFN-induced cytokine,
may further explain the high susceptibility of people with DS to
develop pneumococcal pneumonia following viral infections (6,
167). This is since this anti-inflammatory cytokine may reduce
macrophage and neutrophil function, compromising the body’s
anti-bacterial defense (168). Therefore, upon viral infections,
individuals with DS should be considered for prophylactic
antibiotics such as azithromycin (169). Lastly, it has been
recently speculated that higher basal and stimulation-induced
cytokine release from trisomy-21 immune cells contribute to
poorer outcomes following SARS-CoV-2 infection in patients
with DS (104). COVID-19 morbidity and mortality are indeed
driven by an exacerbated immune response that may result in a
cytokine storm and subsequent organ failure. As mentioned
above, a combined treatment with the JAK1/2 inhibitor
Baricitinib, and Remdesivir in COVID-19 patients promotes
recovery and reduces COVID-19 mortality rates compared to
Remdesivir treatment alone (106). Additionally, in a phase-3,
global, double-blind, randomized, placebo-controlled trial by
Marconi and colleagues, COVID-19 patients received the
corticosteroid dexamethasone, in combination with Baricitinib
or placebo. The investigators reported that although reduced
disease progression did not achieve statistical significance,
mortality rate was reduced by 38.2% in patients that received
the combined treatment (170). This promising path could be
further examined in clinical trials that include individuals with
DS, as JAK1/2 inhibition may be even more beneficial in
COVID-19 patients with DS.

Implications for Vaccine Efficacy in DS
Immune dysregulation appears to be a major obstacle in
generating protective immunity through vaccination (171).
Elderly individuals (172), people with diabetes (173), morbidly
obese individuals (174), and individuals with DS (57, 73, 175) are
considered to poorly respond to vaccines. Due to suboptimal
primary and memory immune responses, vaccines often
inefficiently protect people with DS against several pathogens.
Pneumococcal capsular polysaccharide vaccine (21) elicits a
suboptimal response in children and adolescents with DS,
which can be reversed using a conjugated pneumococcal
vaccine, which induces a T-dependent response (73). Following
a Hepatitis B virus (HBV) vaccination, only 31.9% of children
with DS after the age of 10 exhibited adequate anti-HBV titers
(25). No difference in seroconversion was found between
individuals with DS and controls following a Hepatitis A virus
vaccination (176). Individuals with DS also show a decreased
avidity of the antibody response to tetanus toxoid booster
vaccination at 9 years of age, suggesting impaired memory B
cell selection in the germinal center (175). Response to influenza
virus A and B vaccinations seems to be adequate in patients with
DS despite the decreased number of CD19+ B cells (74). Other
studies found no impaired vaccine responses in individuals with
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DS (between 2 and 18 years old) to T-independent and
-dependent vaccines, as both type-2 pneumococcal
polysaccharide and inactivated seasonal influenza vaccines
elicited a good humoral response. In contrast, influenza and
pneumococcal glyco-conjugated vaccines induced less IgM in the
saliva of children with DS of ages 6-7 than in controls, despite
comparable production of IgG and that of IgA (64). On the other
hand, the deficiency in vaccine-induced protection can be
circumvented by infusion of a pathogen-specific antibody. As
previously mentioned, administration of Palivizumab, an RSV
neutralizing monoclonal antibody, reduces RSV-related
hospitalization in children with DS (<24 months old) (55). In
sum, the efficacy of some traditional vaccine strategies may be
lessened in individuals with DS, underscoring the need for more
research in this area to enable novel and DS-tailored strategies.
To date, no data is available regarding the efficacy of the various
COVID-19 vaccines in individuals with DS in comparison to the
general population.
GENETIC BASIS FOR IMMUNE
DYSREGULATION AND INCREASED
BURDEN OF INFECTIONS IN DS

Multiple genes within the triplicated Chr21 are directly
associated with the immune response and regulation and may
contribute to immune dysregulation in DS (Figure 2). As
detailed in previous sections, four of the six IFNR are encoded
on Chr21 and are upregulated in virtually all immune cells,
causing a variety of immune dysregulations related to IFN
hypersensitivity (10, 22, 69, 86, 103). Clinically, it is speculated
that consistent IFN-response and IFN hypersensitivity may
worsen the outcomes of respiratory tract infections.

b-2 integrin is encoded by the Chr21 ITGB2 gene. Upon
association with CD11a, ITGB2 forms the LFA-1 protein
(integrin aLb2), which is implicated leukocyte migration, T cell
differentiation, and neutrophil arrest (177, 178). In association
with CD11b, ITGB2 forms the MAC-1 protein (integrin aMb2),
which is implicated in internalization of bacteria to phagocytes
(179), and macrophage fusion (180), but also serves as
complement receptor 3 (CR3) (181). Upon association with
CD11c, ITGB2 forms the complement receptor 4 (CR4, integrin
aXb2) (181). ITGB2 association with CD11d forms integrin
aGb2, which mediates NK-neutrophils interaction and
macrophage fusion, retention, and migration (180, 182). ITGB2,
which is critical for leukocyte migration, is over-expressed in both
CD4+ and CD8+ T cells from peripheral blood of children with DS
(11). Paradoxically, overexpression of ITGB2 in lymphocytes
results in poor adherence in vitro (183). Indeed, ITGB2 is
upregulated in the whole blood, WBCs, monocytes, and T cells
in individuals with DS, as indicated in the TrisomExplorer
database. This can potentially explain the chemotaxis deficit
seen in some DS immune cells, such as neutrophils and
monocytes (79, 85).

ICOSLG (also known as B7 or CD275) encoded on Chr21 is
involved in Treg cell function (22, 183, 184). ICOSLG is also
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constitutively expressed in human monocytes and dendritic cells,
and its expression is upregulated in monocytes by IFN-g (185).
Indeed, according to the TrisomExplorer database, ICOSLG is
upregulated in trisomy-21 monocytes.

AIRE, a protein whose gene is also located on Chr21 and is
known to play a critical step in preventing autoimmunity by
regulating the apoptosis of cells expressing TCR against self-
antigens, is downregulated in DS patients, according to some
reports (13, 186). However, according to the TrisomExplorer
database, AIRE expression remains unchanged in whole blood,
WBCs, and monocytes, and is upregulated in T cells from
individuals with DS.

UBASH3A, a negative regulator of NF-kB signaling in T cell
(137, 138), is upregulated in trisomy-21 T cells as found using the
TrisomExplorer database. It can be speculated, therefore, that
elevated T cell levels of UBASH3A in DS may impair T cell-
mediated response to pathogens.

Regulator of Calcineurin 1 (RCAN1), also known as DS
critical region 1 (DSCR1), is a Chr21 gene that encodes a
protein that inhibits the Ser/Thr phosphatase calcineurin (187).
Using a mouse model, Martin and colleagues were able to
demonstrate that RCAN1 overexpression causes T cell
abnormalities, as described in DS (188). These changes include
T cell developmental defects, reduced number of mature CD4+
and CD8+ thymocytes, reduced T cell number in immune
organs, reduced proliferative capacity, and aberrant cytokine
production by T cells.

Runt-related transcription factor 1 (RUNX1), a Chr21-
encoded transcription factor of the runt domain-containing
family, is a regulatory factor in T-cell immunity through
interaction with multiple master regulators involving the
differentiation and function of T cells (189). Overexpression of
RUNX1 was associated with thrombocytopenia, possibly
through regulation of Th17 cell differentiation (190).
Moreover, overexpression of the Runx1 transcription factor
impairs the development of thymocytes from the double-
negative to double-positive stages (191). Therefore, RUNX1
triplication is a potential mechanism that contributes to T cell
dysregulation in DS. Additionally, targeting of RUNX1 by CD82
is essential for macrophage phagosome arrest, required for the
intracellular growth of Mycobacterium tuberculosis (MBT), as
knockdown or knockout of CD82 or RUNX1 increased
antibacterial host defense (192). Thus, we speculate that under
MBT infection, RUNX1 overexpression, as occurs in WBCs in
DS according to the TrisomExplorer database, may reduce
macrophage response.

However, only some of these genes were found to be
overexpressed in subjects with DS under physiological
conditions. For example, Martinez et al. reported that ITGB2,
IFNAR1, IFNGR2, and B7 are not over-produced at the protein
level in T cells, B cells, monocytes, and neutrophils from patients
with DS (183); however, immune stimulation can alter their
protein expression.

Besides changes in gene expression, several other genetic
mechanisms of immune dysregulation in DS have been
proposed. Farroni and colleagues linked miR-155 and miR-
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125b, encoded on Chr21, to B cell defects in DS (193).
Additionally, the expression of miR-155 and miR-125b in
memory B cells and miR-125b in plasma cells is increased.
In-vitro inhibition of miR-155 changed the fate of B cells,
partially correcting the B cell defects observed in DS (Figure 4).

From an epigenetic perspective, Kerkel et al. found gene-
specific abnormalities of CpG methylation in peripheral blood
leukocytes and T cells in adults with DS (194). Many of the
differentially methylated genes are known to regulate lymphocyte
development and function, such as Transmembrane Protein 131
(TMEM131), Transcription Factor 7 (TCF7), CD247, SH3
Domain Binding Protein 2 (SH3BP2), Eukaryotic Translation
Initiation Factor 4E (EIF4E), Phospholipase D Family Member 6
(PLD6), Small Ubiquitin Like Modifier 3 (SUMO3), Nucleotide
Binding Oligomerization Domain Containing 2 (NOD2), and
Carnitine Palmitoyltransferase 1B (CPT1B) (194).
THE IMMUNOSENESCENT PHENOTYPE
OF DS

Although individuals with DS have significantly longer lifespan
nowadays, they often show early signs of aging-related disorders
(40, 46, 195) as well premature aging of multiple body
tissues (196).

Telomeres are chromosome ends consisting of highly
conserved TTAGGG repeats that progressively shorten with
age (197). Short-term T lymphocyte cultures from people with
DS and AD-related dementia have shorter telomeres than
T-lymphocytes from age- and sex-matched people with DS
with no dementia (198, 199). This phenomenon precedes late
stages of dementia in DS, as shorter telomere length was also
measured in adults with DS and mild cognitive impairment
(MCI) compared to age- and sex-matched individuals with DS
and without MCI (200).

Due to the presence of multiple immune-related genes within
Chr21, it is a complex feat to differentiate between developmental
and aging-related impairments in the immune system of
individuals with DS. Changes in the immune system of
individuals with DS may occur due to precocious aging or early
immune deficits followed by normal aging, though some lines of
evidence suggest it is not precocious immunosenescence (201).
Therefore, the mechanisms involved in age-related decreased
function of the immune system in individuals with DS are
complex and not well defined (24, 196).

A smaller thymus, as measured by thymus-thoracic ratio, can
be identified in fetuses with DS, which reflects thymic involution
and not hypoplasia (202–205). Infants with DS have small
thymuses with fewer lymphocytes, smaller thymic cortex, and
lack corticomedullary borders that resemble thymic involution
(19, 205). With age, the thymus is disposed to involute, and fewer
cells needed for adaptive immunity are produced, resulting in a
reduced repertoire of B and T cells in elderly individuals in
general, and especially those with DS (201).

DNA methylation patterns generate an “epigenetic clock”,
which correlates to chronological age (206, 207). Using this
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paradigm, Mendioroz and coworkers reported accelerated aging
of CpG methylation patterns in DS during fetal and possibly
early post-natal development, but not during adulthood (208). In
fact, DNA methylation in T cells is elevated in individuals with
DS and is increasing at the same rate as in euploid individuals.
Younger individuals with DS, however, start at a higher level of
DNA methylation and display early epigenetic aging rather than
accelerated epigenetic aging (209). This remarkable finding
establishes that early epigenetic aging, but not accelerated
epigenetic aging, occurs in DS. Kerkel and colleagues
conducted DNA methylation profiling in peripheral blood
leukocytes from trisomy-21 subjects. They reported gains and
losses of DNA methylation that strongly affect approximately
100 genes that are uniformly distributed across chromosomes
(194). Interestingly, these methylation differences are not
associated with age effects, as fewer than 5% differentially
methylated CpG loci in DS show evidence of age-dependent
methylation (208, 209).

Some immune alterations in DS are age-dependent: a
decrease in absolute numbers of T lymphocytes (CD3+),
involving both CD4+ and CD8+ subsets, increased number of
activated T cells (CD3+, HLA-DR+), marked decreased numbers
of B lymphocytes (CD19+), increase in some subclasses of Ig, and
increase in the number of cells with markers of NK activity (41)
(Figure 3). This is accompanied by suboptimal antibody
responses to immunization (23, 66), as the initial response to
vaccines is generally adequate in individuals with DS but shows
lower mean titers and a need for more frequent booster
immunizations compared to individuals without DS (25).
Many of these immunological alterations are age-related and
can be enclosed in the spectrum of multiple signs of early
senescence of the immune system (41, 63). For example,
alterations in adaptive immunity, lack of diversity among naive
cells, and altered development of humoral immune responses
after vaccinations are all reminiscent of immuno-senescence
typically seen in the elderly (41, 68).

Individuals with DS are subjected to global immune dysregulation
and chronic inflammation (22), which is also implicated in aging
(210, 211). Therefore, early immunosenescence seen in DS may be
linked to life-long immune hyperactivity. Age-related decline in
immunity is characterized by stem cell exhaustion, telomere
shortening, and disruption of intercellular communication (212).
Indeed, chronic inflammation is closely linked to these molecular
and cellular deficits. DS co-morbidities such as cardiovascular
diseases, pulmonary diseases, and autoimmune conditions can also
contribute to telomere shortening and thus to senescence (212).
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Steady-state differentiation of hematopoietic stem and progenitor
cells into myeloid lineage cells is controlled by growth factors, such as
G-CSF, M-CSF, GM-CSF, and Flt3-L. Levels of these factors may be
modified during chronic inflammation by cytokines such as IFN-g
(212). Additionally, inflammation-induced DAMPs may result in
excessive TLR activation in immune cells, resulting in accelerated
cellular aging (212). Mitochondrial ROS production is increased in
DS (213) and thus may contribute to immunosenescence via a range
of different mechanisms (214).

In sum, changes in the immune system in individuals with DS,
compared to individuals without DS occur at early stages and
continue to affect individuals at an increased rate throughout their
lifetime, by mechanisms of telomere shortening, earlier epigenetic
aging, chronic inflammation, and immune hyperactivity.
CONCLUDING REMARKS

Despite the high prevalence of DS in the population, relatively
little is done to understand and protect adults with DS from
infections, including current and future pandemics. Analysis of
the immunological, epidemiological, and clinical landscape in DS
reveals the need for DS-tailored protective and therapeutic
strategies. Because of unique immune impairments and
heightened inflammatory responses, people with DS display a
suboptimal response to vaccines; they are more susceptible to
infections of the respiratory tract and have higher hospitalization
rates, complications, and mortality worldwide.
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186. Nikolich-Žugich J, Slifka MK, Messaoudi I. TheMany Important Facets of T-
Cell Repertoire Diversity. Nat Rev Immunol (2004) 4(2):123–32. doi:
10.1038/nri1292

187. Li Y, Sheftic SR, Grigoriu S, Schwieters CD, Page R, Peti W. The Structure of
the RCAN1:CN Complex Explains the Inhibition of and Substrate
Recruitment by Calcineurin. Sci Adv (2020) 6(27). doi: 10.1126/
sciadv.aba3681

188. Martin KR, Layton D, Seach N, Corlett A, Barallobre MJ, Arbones ML, et al.
Upregulation of RCAN1 Causes Down Syndrome-Like Immune
Dysfunction. J Med Genet (2013) 50(7):444–54. doi: 10.1136/jmedgenet-
2013-101522

189. Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of Transcription
Factors in T-Cell Differentiation and Function: The Role of Runx.
Immunology (2011) 132(2):157–64. doi: 10.1111/j.1365-2567.2010.03381.x

190. Zhong X, Wu Y, Liu Y, Zhu F, Li X, Li D, et al. Increased RUNX1 Expression
in Patients With Immune Thrombocytopenia. Hum Immunol (2016) 77
(8):687–91. doi: 10.1016/j.humimm.2016.06.004

191. Wong WF, Nakazato M, Watanabe T, Kohu K, Ogata T, Yoshida N, et al.
Over-Expression of Runx1 Transcription Factor Impairs the Development of
Thymocytes From the Double-Negative to Double-Positive Stages.
Immunology (2010) 130(2):243–53. doi: 10.1111/j.1365-2567.2009.03230.x

192. Koh HJ, Kim YR, Kim JS, Yun JS, Kim S, Kim SY, et al. CD82
Hypomethylation Is Essential for Tuberculosis Pathogenesis Via
Regulation of RUNX1-Rab5/22. Exp Mol Med (2018) 50(5):1–15. doi:
10.1038/s12276-018-0091-4

193. Farroni C, Marasco E, Marcellini V, Giorda E, Valentini D, Petrini S, et al.
Dysregulated miR-155 and Mir-125b Are Related to Impaired B-Cell
Responses in Down Syndrome. Front Immunol (2018) 9:2683. doi:
10.3389/fimmu.2018.02683

194. Kerkel K, Schupf N, Hatta K, Pang D, Salas M, Kratz A, et al. Altered DNA
Methylation in Leukocytes With Trisomy 21. PloS Genet (2010) 6(11):
e1001212. doi: 10.1371/journal.pgen.1001212

195. Baird PA, Sadovnick AD. Life Tables for Down Syndrome. Hum Genet
(1989) 82(3):291–2. doi: 10.1007/BF00291175

196. Zigman WB. Atypical Aging in Down Syndrome. Dev Disabil Res Rev (2013)
18(1):51–67. doi: 10.1002/ddrr.1128

197. Shay JW. Telomeres and Aging. Curr Opin Cell Biol (2018) 52:1–7. doi:
10.1016/j.ceb.2017.12.001

198. Jenkins EC, Ye L, Gu H, Ni SA, Duncan CJ, Velinov M, et al. Increased
“Absence” of Telomeres may Indicate Alzheimer’s Disease/Dementia Status
in Older Individuals With Down Syndrome. Neurosci Lett (2008) 440
(3):340–3. doi: 10.1016/j.neulet.2008.05.098

199. Jenkins EC, Ye L, Gu H, Ni SA, Velinov M, Pang D, et al. Shorter Telomeres
may Indicate Dementia Status in Older Individuals With Down Syndrome.
Neurobiol Aging (2010) 31(5):765–71. doi: 10.1016/j.neurobiolaging.
2008.06.001

200. Jenkins EC, Ye L, Velinov M, Krinsky-McHale SJ, Zigman WB, Schupf N,
et al. Mild Cognitive Impairment Identified in Older Individuals With Down
Syndrome by Reduced Telomere Signal Numbers and Shorter Telomeres
Measured in Microns. Am J Med Genet B Neuropsychiatr Genet (2012) 159B
(5):598–604. doi: 10.1002/ajmg.b.32066

201. Kusters MA, Verstegen RH, de Vries E. Down Syndrome: Is It Really
Characterized by Precocious Immunosenescence? Aging Dis (2011) 2
(6):538–45.
June 2021 | Volume 12 | Article 621440

https://doi.org/10.1097/00042737-200103000-00008
https://doi.org/10.1002/(SICI)1096-9136(199802)15:2%3C160::AID-DIA537%3E3.0.CO;2-J
https://doi.org/10.1002/(SICI)1096-9136(199802)15:2%3C160::AID-DIA537%3E3.0.CO;2-J
https://doi.org/10.1111/eci.13429
https://doi.org/10.1007/s10875-011-9625-4
https://doi.org/10.1016/j.jpeds.2005.06.032
https://doi.org/10.1016/j.jpeds.2005.06.032
https://doi.org/10.4049/jimmunol.172.12.7603
https://doi.org/10.3389/fimmu.2018.00302
https://doi.org/10.1186/s13063-021-05072-4
https://doi.org/10.1186/s13063-021-05072-4
https://doi.org/10.2217/IMT.15.74
https://doi.org/10.1186/s12979-019-0164-9
https://doi.org/10.1006/clim.2002.5220
https://doi.org/10.1006/clim.2002.5220
https://doi.org/10.1016/j.vaccine.2015.06.101
https://doi.org/10.1097/INF.0b013e3181ff85a8
https://doi.org/10.1097/INF.0b013e3181ff85a8
https://doi.org/10.1097/00005176-200410000-00007
https://doi.org/10.3389/fimmu.2012.00157
https://doi.org/10.3389/fimmu.2018.00952
https://doi.org/10.1073/pnas.0709321105
https://doi.org/10.1016/j.ajpath.2016.04.001
https://doi.org/10.3389/fimmu.2018.02716
https://doi.org/10.3324/haematol.2011.044578
https://doi.org/10.1016/j.humimm.2016.05.004
https://doi.org/10.1155/2019/4567106
https://doi.org/10.1186/gb-2005-6-6-223
https://doi.org/10.1038/nri1292
https://doi.org/10.1126/sciadv.aba3681
https://doi.org/10.1126/sciadv.aba3681
https://doi.org/10.1136/jmedgenet-2013-101522
https://doi.org/10.1136/jmedgenet-2013-101522
https://doi.org/10.1111/j.1365-2567.2010.03381.x
https://doi.org/10.1016/j.humimm.2016.06.004
https://doi.org/10.1111/j.1365-2567.2009.03230.x
https://doi.org/10.1038/s12276-018-0091-4
https://doi.org/10.3389/fimmu.2018.02683
https://doi.org/10.1371/journal.pgen.1001212
https://doi.org/10.1007/BF00291175
https://doi.org/10.1002/ddrr.1128
https://doi.org/10.1016/j.ceb.2017.12.001
https://doi.org/10.1016/j.neulet.2008.05.098
https://doi.org/10.1016/j.neurobiolaging.2008.06.001
https://doi.org/10.1016/j.neurobiolaging.2008.06.001
https://doi.org/10.1002/ajmg.b.32066
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Illouz et al. Immune Dysregulation in Down Syndrome
202. Karl K, Heling KS, Sarut Lopez A, Thiel G, Chaoui R. Thymic-Thoracic Ratio
in Fetuses With Trisomy 21, 18 or 13. Ultrasound Obstet Gynecol (2012) 40
(4):412–7. doi: 10.1002/uog.11068

203. Larocca LM, Lauriola L, Ranelletti FO, Piantelli M, Maggiano N, Ricci R,
et al. Morphological and Immunohistochemical Study of Down Syndrome
Thymus. Am J Med Genet Suppl (1990) 7:225–30. doi: 10.1002/
ajmg.1320370745

204. De Leon-Luis J, Santolaya J, Gamez F, Pintado P, Perez R, Ortiz-Quintana L.
Sonographic Thymic Measurements in Down Syndrome Fetuses. Prenat
Diagn (2011) 31(9):841–5. doi: 10.1002/pd.2783

205. Moreira-Filho CA, Bando SY, Bertonha FB, Silva FN, Costa Lda F, Ferreira
LR, et al. Modular Transcriptional Repertoire and MicroRNA Target
Analyses Characterize Genomic Dysregulation in the Thymus of Down
Syndrome Infants. Oncotarget (2016) 7(7):7497–533. doi: 10.18632/
oncotarget.7120

206. Thompson MJ, Chwialkowska K, Rubbi L, Lusis AJ, Davis RC, Srivastava A,
et al. A Multi-Tissue Full Lifespan Epigenetic Clock for Mice. Aging (2018)
10(10):2832–54. doi: 10.18632/aging.101590

207. Horvath S. DNA Methylation Age of Human Tissues and Cell Types.
Genome Biol (2013) 14(10):R115. doi: 10.1186/gb-2013-14-10-r115

208. Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, et al. Trans
Effects of Chromosome Aneuploidies on DNA Methylation Patterns in
Human Down Syndrome and Mouse Models. Genome Biol (2015) 16:263.
doi: 10.1186/s13059-015-0827-6

209. Yu YE, Xing Z, Do C, Pao A, Lee EJ, Krinsky-McHale S, et al. Genetic and
Epigenetic Pathways in Down Syndrome: Insights to the Brain and Immune
System From Humans and Mouse Models. Prog Brain Res (2020) 251:1–28.
doi: 10.1016/bs.pbr.2019.09.002
Frontiers in Immunology | www.frontiersin.org 20
210. Bektas A, Schurman SH, Sen R, Ferrucci L. Human T Cell
Immunosenescence and Inflammation in Aging. J Leukoc Biol (2017) 102
(4):977–88. doi: 10.1189/jlb.3RI0716-335R

211. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, et al. Source
of Chronic Inflammation in Aging. Front Cardiovasc Med (2018) 5:12. doi:
10.3389/fcvm.2018.00012

212. Jose SS, Bendickova K, Kepak T, Krenova Z, Fric J. Chronic Inflammation in
Immune Aging: Role of Pattern Recognition Receptor CrosstalkWith the Telomere
Complex? Front Immunol (2017) 8:1078. doi: 10.3389/fimmu.2017.01078

213. Perluigi M, Butterfield DA. Oxidative Stress and Down Syndrome: A Route
Toward Alzheimer-Like Dementia. Curr Gerontol Geriatr Res (2012)
2012:724904. doi: 10.1155/2012/724904

214. Passos JF, Saretzki G, Ahmed S, NelsonG, Richter T, Peters H, et al. Mitochondrial
Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent
Senescence. PloS Biol (2007) 5(5):e110. doi: 10.1371/journal.pbio.0050110

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Illouz, Biragyn, Iulita, Flores-Aguilar, Dierssen, De Toma,
Antonarakis, Yu, Herault, Potier, Botte,́ Roper, Sredni, London, Mobley, Strydom
and Okun. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
June 2021 | Volume 12 | Article 621440

https://doi.org/10.1002/uog.11068
https://doi.org/10.1002/ajmg.1320370745
https://doi.org/10.1002/ajmg.1320370745
https://doi.org/10.1002/pd.2783
https://doi.org/10.18632/oncotarget.7120
https://doi.org/10.18632/oncotarget.7120
https://doi.org/10.18632/aging.101590
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/s13059-015-0827-6
https://doi.org/10.1016/bs.pbr.2019.09.002
https://doi.org/10.1189/jlb.3RI0716-335R
https://doi.org/10.3389/fcvm.2018.00012
https://doi.org/10.3389/fimmu.2017.01078
https://doi.org/10.1155/2012/724904
https://doi.org/10.1371/journal.pbio.0050110
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Immune Dysregulation and the  Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome
	Overview
	Genetics of DS
	Worldwide Prevalence of DS
	Changes in Lifespan of Individuals With DS

	Infectious Diseases in Adults With DS
	Respiratory Tract Infections
	Respiratory Syncytial Virus (RSV)
	Influenza Virus
	SARS-CoV-2

	Infectious Diseases in DS: Hospitalization Rate and Length

	Interplay Between Immune Dysregulation and Infectious Diseases in DS
	Dysregulation of Innate Immunity in DS
	Dysregulation of Innate Immune Cell Types in DS
	Granulocytes
	Monocytes
	Natural Killer Cells

	Differences in Toll-Like Receptor Signaling
	Anomalies in Fc&gamma;R Receptor Signaling
	Interferon Hyperactivity
	Dysregulation of the Complement Cascade

	Dysregulation of Adaptive Immunity in DS
	Dysregulation of the T Cell Lineage
	B Cell Dysfunction in DS
	Dendritic Cells in DS

	Aberrant Cytokine and Chemokine Signaling in DS
	Implications for Vaccine Efficacy in DS

	Genetic Basis for Immune Dysregulation and Increased Burden of Infections in DS
	The Immunosenescent Phenotype of DS
	Concluding Remarks
	Author Contributions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


