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Evaluating deep learning EEG‑based mental 
stress classification in adolescents with autism 
for breathing entrainment BCI
Avirath Sundaresan1,6  , Brian Penchina1,6  , Sean Cheong1,6  , Victoria Grace2,3,6  , 
Antoni Valero‑Cabré3,4,5,6   and Adrien Martel5,6*   

Abstract 

Mental stress is a major individual and societal burden and one of the main contributing factors that lead to patholo‑
gies such as depression, anxiety disorders, heart attacks, and strokes. Given that anxiety disorders are one of the most 
common comorbidities in youth with autism spectrum disorder (ASD), this population is particularly vulnerable to 
mental stress, severely limiting overall quality of life. To prevent this, early stress quantification with machine learning 
(ML) and effective anxiety mitigation with non-pharmacological interventions are essential. This study aims to investi‑
gate the feasibility of exploiting electroencephalography (EEG) signals for stress assessment by comparing several ML 
classifiers, namely support vector machine (SVM) and deep learning methods. We trained a total of eleven subject-
dependent models-four with conventional brain-computer interface (BCI) methods and seven with deep learning 
approaches-on the EEG of neurotypical (n=5) and ASD (n=8) participants performing alternating blocks of mental 
arithmetic stress induction, guided and unguided breathing. Our results show that a multiclass two-layer LSTM RNN 
deep learning classifier is capable of identifying mental stress from ongoing EEG with an overall accuracy of 93.27%. 
Our study is the first to successfully apply an LSTM RNN classifier to identify stress states from EEG in both ASD and 
neurotypical adolescents, and offers promise for an EEG-based BCI for the real-time assessment and mitigation of 
mental stress through a closed-loop adaptation of respiration entrainment.
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1  Introduction
Individuals with autism spectrum disorder (ASD) often 
demonstrate deficits in social communication skills and 
restricted or stereotyped behaviors and interests [1]. This 
causes those with ASD to experience states of cogni-
tive and emotional overload, leading to increased stress 
and ultimately anxiety symptoms [2]. Although there 
is significant overlap between stress and anxiety, stress 
is best understood as the physiological and psychologi-
cal response towards stressors; anxiety is the persistence 

of stress even in the absence of these stressors. The 
comorbidity of anxiety disorders and ASD in children 
and adolescents has been studied extensively with 40% 
to 85% of individuals with ASD aged 6 to 18 having at 
least one form of anxiety [3–5]. Unfortunately, individu-
als with ASD are uniquely vulnerable to the deleterious 
effects of stress because of their hyper- or hyporeactiv-
ity to sensory inputs, as well as difficulties with accurate 
stress detection and coping with stressful situations [6]. 
Given the frequency in which anxiety co-occurs in ASD, 
in conjunction with the hurdles in education, long-term 
functional impairments, reduction in quality of life, and 
increased caregiver burden [7–13], a more comprehen-
sive understanding of comorbidities in ASD as well as 
personalized intervention methods to relieve clinical 
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symptoms of the disease and improve emotional and 
physical well-being for individuals with ASD is needed. 
Incidentally, anxiety and the design of appropriate inter-
vention methods have been identified by the autism com-
munity and clinicians as a key priority with researchers 
emphasizing the need for more precise measures of anxi-
ety [14]. Moreover, the lack of objective and continuous 
measurements of stress is particularly detrimental for 
a population already affected by an inability to express 
inner experiences and calls for novel methods to identify 
individualized stress markers in real-time [15]. Among 
the triggers identified, such as challenging sensory expe-
riences or social demands, anxiety related to academic 
expectations is thought to have the greatest impact on 
school performance for ASD children and adolescents 
[16, 17].

Concurrently, a growing number of studies have dem-
onstrated the efficacy of stand-alone meditation, relaxa-
tion and breathing practices for improving well-being, 
mental health and managing stress [18–20]. Although 
the underlying mechanisms are not yet fully understood, 
breathing practices such as ‘anatomically optimized res-
piration’, i.e. controlled, slow diaphragmatic breathing 
through the nose in the range of 6-10 breaths per min-
ute (brpm) or resonance frequency breathing, 4.5 to 6.5 
brpm for adults and 6.5 to 9.5 brpm for children, have 
been found to procure significant physiological benefits 
[21, 22], reduce physiological and psychological stress 
[23] and even improve sustained attention performance 
[24]. Prior studies have shown that breath-control can 
address physiological correlates of anxiety, including 
heart rate variability [22, 25], a well-validated quantita-
tive stress indicator [26]. Notably, breath-control has 
been found to significantly decrease test anxiety in stu-
dents in an educational setting [27]. Moreover, a recent 
review by Zaccaro et al. [28] found that controlled slow 
breathing (<10 brpm) had a significant impact on auto-
nomic nervous system activity, especially in the theta 
(3–7 Hz), alpha (8–14 Hz) and beta (15–30Hz) bands 
of the electroencephalogram (EEG), linked to improved 
cognitive performance during attentional and executive 
functions [29]. Although these findings, taken together, 
speak to the promise of using controlled slow breathing 
as a simple, low-cost and non-pharmacologic interven-
tion [23] to mitigate anxiety, optimized efficacy hinges on 
assessing an individual’s current level of stress and ideal 
respiration parameters in real-time.

Although cognitive or affective states such as stress are 
not directly observable externally nor reliably measurable 
through behavioral measures or subjective reports, devel-
opments in EEG-based brain-computer interfaces (BCIs) 
have increasingly permitted the continuous and real-time 
monitoring of mental states. Neuroadaptive technologies 

and passive brain-computer interfaces (pBCIs) aim at 
intelligent forms of adaptation in response to cognitive 
state assessments [30, 31]. The field of EEG-based BCIs 
has blossomed in recent years, largely on account of 
EEG’s high temporal resolution, non-invasiveness, rela-
tively low cost, and novel advances in the effectiveness 
and usability of acquisition systems [32, 33]. While BCIs 
have historically been employed in the context of assis-
tive technologies for severely impaired individuals [34, 
35], pBCIs have mainly been aimed at developing adap-
tive automation for real-world applications [36–38]. The 
central challenge of EEG-based pBCIs is to account for 
the high inter- and intra-individual variability of neuro-
physiological signals exhibited under particular cognitive 
states [39]. However, by averaging over a large enough 
number of samples it is possible to distill sufficiently spe-
cific brain activity patterns and train a machine learning 
classifier to learn to discern these patterns in real-time 
[40, 41]. This approach has already been successfully 
applied to monitor several cognitive states such as work-
load [42–44], vigilance [45–47], and fatigue [48, 49].

Neurofeedback involves monitoring a user’s mental 
state with EEG and providing feedback through a vari-
ety of modalities (visual, audio, tactile, etc.) to modulate 
particular biomarkers [50]. In conjunction with breath-
control, neurofeedback training has been shown to be 
a promising mitigatory tool for anxiety. For example, 
White et  al. [51] demonstrated that breathing-based 
visual neurofeedback reduces symptoms in patients with 
anxiety and depression, while acoustically mediated deep 
breathing neurofeedback was shown by Crivelli et al. [52] 
to diminish long-term stress and anxiety levels in young 
adults. The first step towards an EEG-based BCI able to 
monitor anxiety levels, identify an individual’s optimal 
breathing patterns, and adapt breathing entrainment 
parameters in real-time, is to determine whether mental 
stress can be classified on the basis of ongoing EEG data.

Classification algorithms are key elements of any EEG-
based BCI’s ability to recognize users’ EEG patterns and 
associated cognitive states. Among the large diversity of 
existing architectures and types of classifiers (for reviews 
see [53] and [54]), deep learning methods have recently 
emerged as methods of analysis that can consider neu-
rophysiological data in its entirety, including the time 
domain [54]. Convolutional neural networks are the 
most widely used deep learning algorithms in EEG analy-
sis [55], and have been shown to be effective in emotion 
detection [56, 57] and anxiety classification [58] in par-
ticular. Further, deep learning with convolutional neural 
networks (CNNs) have recently been shown to outper-
form the widely used filter bank common spatial pattern 
(FBCSP) algorithm [59] by extracting increasingly more 
complex features of the data [60]. Accordingly, we aimed 
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at comparing several classifiers previously used in EEG-
based BCIs for the classification of different states of anx-
iety in ASD and neurotypical adolescents. We employed 
classical machine learning methods, specifically support 
vector machines (SVMs) combined with FBCSP, which 
have been successfully applied to detect a wide range 
of covert cognitive and emotional states [53], includ-
ing mental stress detection [61–64]. Although classical 
classifiers present several drawbacks compared to deep 
learning (e.g. elaborate feature extraction and exten-
sive prior knowledge about the dataset [55, 65]), SVMs 
remain a useful benchmark against which deep learning 
methods can be evaluated.

For deep learning methods we selected EEGNet, a 
recently developed compact CNN for EEG-based BCIs 
[66], as well as the Deep ConvNet and the Shallow Con-
vNet developed by Schirrmeister et  al. [60]. Moreover, 
we also applied long short-term memory recurrent neu-
ral networks (LSTM RNNs), which are a type of neural 
net with the ability to “remember” long-term dependen-
cies far better than traditional RNNs, without the loss 
of short-term memory [67], and enable robust analysis 
of temporal trends in EEG data [68]. LSTM RNNs have 
also shown high accuracy in emotion detection [69], with 
LSTM RNN architectures performing better than CNN 
architectures on DEAP, a major EEG emotion analy-
sis dataset [55]. Hybrid deep neural networks combin-
ing both LSTM RNN and CNN architectures have also 
shown promising results on DEAP [70, 71]. Building 
upon these recent advancements, we implemented an 
LSTM RNN and a hybrid long short-term memory fully 
convolutional network (LSTM-FCN) [72] to classify 
states of mental stress from EEG.

The primary purpose of the present study is to assess 
the feasibility of real-time anxiety detection based on 
EEG signals and the identification of a robust classifier 
for prospective use in a pBCI able to identify the opti-
mal breathing patterns and alleviate anxiety in students 
with and without ASD. To our knowledge, this is the first 
study to examine the efficacy of deep learning-based EEG 
anxiety classifiers in comparison to classical methods. In 
addition, ours is the first attempt of EEG-based anxiety 
classification for both adolescents with autism and neu-
rotypical adolescents.

2 � Methods
2.1 � Participants and data acquisition
Eight students (1 female M: 15.13 SD: 1.45) diagnosed 
with autism, designated as participants L1-L8, from 
Learning Farm Educational Resources based in Menlo 
Park, (California), and five students (1 female M: 16.6 
SD: 0.55) with no known mental or neurological disor-
ders, designated as participants T1-T5, from The Nueva 

School in San Mateo, (California), voluntarily enrolled in 
the study. Participants and their parents or legal guard-
ians were informed extensively about the experiment 
and all gave written consent. The study was approved by 
an Institutional Review Board composed of an educator 
from Learning Farm Educational Resources, an admin-
istrator from The Nueva School, and a licensed mental 
health professional at The Nueva School.

Participants were seated in an isolated and dimly lit 
room at a viewing distance of approximately 70 cm of a 
16” LCD monitor with a refresh rate of 60Hz. 16-channel 
EEG data were acquired at 125Hz using an OpenBCI sys-
tem (Ag/AgCl coated electrodes + Cyton Board; https://​
openb​ci.​com/) placed according to the international 
10–20 system (channels: ‘Fp1’, ‘Fp2’, ‘C3’, ‘C4’, ‘P7’, ‘P8’, ‘O1’, 
‘O2’, ‘F7’, ‘F8’, ‘F3’, ‘F4’, ‘T7’, ‘T8’, ‘P3’, ‘P4’). The 16-electrode 
OpenBCI apparatus was selected as it maximized port-
ability, affordability, signal quality, and ease of use while 
minimizing the amount of electrodes, which is ideal for 
practical use of the mental stress detection system.

Participants were fitted with passive noise-canceling 
headphones to isolate them from ambient noise and 
to interact with the stress and breath modulating inter-
face. The audio-visual stimuli was designed in close 
collaboration with Muvik Labs (https://​muvik​labs.​io). 
The stimuli featured sequential trials of stressor, guided 
breathing, and unguided breathing sections (Fig. 1). The 
stimuli were procedurally generated by Muvik Labs’ Aug-
mented Sound TM engine to ensure timing precision and 
effectiveness through evidence-backed breathing inter-
ventions driven by principles of psychoacoustics and 
behavioral psychology [73].

Prior to the main procedure, participants were asked 
to complete the trait anxiety component of Spielberger’s 
State-Trait Anxiety Inventory for Children (STAI-C) 
[74], a well-validated state and trait anxiety screen used 
for typically developing youth that can also be accurately 
used to assess trait anxiety in children and adolescents 
with autism [75].

2.2 � Stress induction and alleviation
Following an initial EEG baseline recording for 120 sec 
(‘Baseline’), participants performed a 25  min session 
featuring stress induction and breath modulation tasks 
consisting of four main blocks. Each block began with a 
stressor featuring an augmented arithmetic number task, 
intensified by bright contrasting colors displaying num-
bers appearing sequentially, coupled with audible soni-
fied timers mapped to rising pitches similar to Shepard 
tones (powered by Muvik Labs Augmented Sound TM ) 
[73], with a 90 second time constraint.

Timed mental arithmetic has been extensively used 
to induce stress [76, 77]; for our specific mental stress 
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induction paradigm, we chose a widely used mental 
arithmetic task (for an overview see [63]) and simplified 
it to minimize the possibility of overstimulating par-
ticipants with ASD. The mental stress induction was fol-
lowed by a period of breathing for 200 seconds. The first 
and third breathing periods had participants breathe at 
their own pace (unguided breathing) while the second 
and fourth breathing periods presented participants with 
a custom-generated breathing entrainment system, guid-
ing breath airflow in and out of lungs at a relaxing pace 
of around 6 brpm [78, 79] with both visual (i.e. growing/
shrinking circle outlining the air flow volume of target 
respiration speed) and auditory guides (musical patterns 
featuring nature sounds that mimic the sound of inhala-
tion and exhalation; Muvik Labs Augmented Sound TM ). 
Following each mental arithmetic task and breathing 
period, participants were prompted to rate their current 
stress levels on a 5-point Likert scale, with 1 indicating 
“very relaxed” and 5 indicating “very stressed”.

2.3 � EEG signal processing and training data selection
MNE [80], an open-source Python tool for EEG analysis, 
was employed to filter EEG data from all 16 channels. In 
preparation for classification analysis, EEG time-courses 
were high-pass filtered at 1 Hz to remove slow trends and 
subsequently low-pass filtered at 50Hz to remove line 
noise. The routine clinical bandwidth for EEG is from 
0.5 to 50Hz [81]. However, significant sinusoidal drift 
was observed on the 0.5Hz-1Hz interval and therefore 
the interval was excluded in the selected bandpass filter 
range.

The data of two participants were rejected from all 
analyses due to unusually high impedances at the time of 
recording, which was confirmed offline by visual inspec-
tion: participant L1 from the ASD group, and participant 
T3 from the neurotypical group. Preprocessing of the 
EEG data was kept to a minimum to mimic online condi-
tions found in a real-time BCI scenario.

For training sample preparation, a cropped training 
strategy was employed. The number of samples extracted 
for the different classifiers are shown in Table 1. Samples 
with a length of 1 or 5s were extracted per participant 
from the EEG recorded during the ‘Stressor’, ‘Guided 
Breathing’, ‘Unguided Breathing’, and ‘Baseline’ periods 
of the procedure and were assigned corresponding labels.

2.4 � Neural signal classification
We performed classification analysis on the selected EEG 
training samples using an SVM model with FBCSP, three 
CNN models, three LSTM RNN models, and a hybrid 
LSTM-FCN model. While all deep learning models were 
multiclass (‘Stressor’, ‘Baseline’, ‘Guided Breathing’ and 
‘Unguided Breathing’), the SVM classifiers were binary 
(‘Guided Breathing’ vs ‘Stressor’, ‘Unguided Breathing’ 
vs ‘Stressor’, ‘Unguided Breathing’ vs ‘Guided Breathing’, 
& ‘Baseline’ vs ‘Stressor’), as is conventional for the clas-
sification of multiple classes with SVMs [82]. We opted 
to avoid using calculated features as inputs in favor of 
an end-to-end learning method with filtered EEG signal 
value inputs from all 16 channels. In addition, as differ-
ent EEG channels represent neural signals from differ-
ent areas of the brain, we elected not to combine channel 
data to preserve spatial information.

Fig. 1  Experimental design of the procedure. Participants performed four blocks, each consisting of a mental arithmetic task followed by an anxiety 
self-report, a period of rest, either guided breathing entrainment or unguided breathing, a second anxiety self-report and lastly another rest period
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For the FBCSP-SVM, the EEG recording was divided 
in the time domain into samples of 1s and partitioned in 
the frequency domain using 9 filter bank band-pass fil-
ters from 4Hz to 40Hz prior to feature extraction, which 
was achieved with the common spatial pattern (CSP) 
algorithm, i.e. a linear map maximizing the variance dif-
ference between two classes [83]. The binary SVM clas-
sifiers used a radial basis function kernel with a gamma 
value of 1/360 and a regularization parameter (C) of 1.6. 
We implemented a number of FBCSP-SVM variants, 
such as multiclass SVM (baseline, stressor, guided and 
unguided breathing) with polynomial or sigmoid kernels 
and a 5 sec EEG sample length; these models were not 
included in the comparison due to lower classification 
performance. The FBCSP-SVMs were implemented with 
the sklearn library in Python and for validation samples 
were apportioned at a ratio of 80:20 for train and test 
dataset.

The Deep ConvNet CNN architecture [60] is composed 
of 4 convolution-max-pooling blocks. The first block, 
with 25 2D temporal convolutional filters of size (1, 5), 25 
2D spatial convolutional filters of size (1, 64), and a max 
pooling layer, was especially designed to process the EEG 
input. The subsequent convolution-max-pooling blocks 
each have a 2D convolutional layer and a max pooling 
layer, with 50, 100 and 200 convolutional filters per block, 
respectively. Finally, a 4 neuron dense layer with softmax 
activation produces the output (see Fig. 2A). The Shallow 
ConvNet CNN architecture is a modification of the Deep 
ConvNet to mimic the transformations of FBCSP. The 
Shallow ConvNet retains the first convolution-max-pool-
ing block of the Deep ConvNet, albeit with a larger kernel 
size of 13 for the temporal convolution layer. This block 
performs similar transformations as the bandpass filter 
and CSP spatial filtering algorithm of the FBCSP work-
flow. Following the convolution-max-pooling block, the 
architecture contains a squaring nonlinearity function, 
an average pooling layer, and a logarithm activation func-
tion [60]. A 4 neuron dense layer with softmax activation 
produces the output (see Fig. 2B).

We trained three original LSTM RNN models, with 
one, two and three LSTM layers, respectively. The three-
layer LSTM RNN model consists of three LSTM lay-
ers, two dense hidden layers, and a dense output layer. 
The first LSTM layer, containing 50 neurons, receives 
the input. The second and third LSTM layers contain 
40 neurons. The number of neurons in the LSTM lay-
ers was informed by the amount calculated and used by 
Tsiouris et al. [84] and Alhagry et al. [69], and adjusted to 
our EEG data to prevent underfitting and overfitting. Fol-
lowing the third LSTM layer, we include a dropout layer 
to reduce overfitting [85] with a dropout rate of 0.5. The 
first dense layer contains 20 neurons and uses a sigmoid 

activation function. Following the first dense layer, we 
include another dropout layer with a dropout rate of 0.5. 
The second dense layer consisted of 10 neurons and used 
a rectified linear unit (ReLU) as an activation function. 
The dense output layer of 4 neurons used softmax acti-
vation. The two-layer LSTM architecture is obtained by 
omitting one 40 neuron LSTM layer, and the one-layer 
LSTM architecture is obtained by omitting both 40 neu-
ron LSTM layers (see Fig. 2C).

The EEGNet CNN architecture [66] used comprised 
8 2D convolutional filters of size (1, 64), a Depthwise 
Convolution layer of size (16, 1) to learn multiple spa-
tial filters for each temporal filter, a Separable Convolu-
tion layer of size (1, 16), and a 4 neuron dense layer with 
softmax activation (see Fig. 2D). In the LSTM-FCN [72] 
architecture, EEG time series input is simultaneously fed 
into an LSTM block, composed of an 8 neuron LSTM 
layer and a dropout layer with rate of 0.8, and an FCN 
block composed of 128 1D temporal convolutional layers 
of size 8, 256 1D temporal convolutional layers of size 5, 
and 128 1D temporal convolutional layers of size 3. The 
outputs of the LSTM and FCN blocks are then concate-
nated and passed into a 4 neuron dense output layer with 
softmax activation (see Fig. 2E).

All deep learning architectures were implemented with 
the Keras machine learning library in Python, and were 
trained over 1000 EEG epochs with a batch size of 200. 
While training, we implemented the Adam optimization 
algorithm [86] with a learning rate of 0.001 in place of the 
standard stochastic gradient descent (SGD) algorithm. 
During validation, EEG samples for deep learning were 
apportioned at a ratio of 70:30 to the train dataset and 
test dataset, respectively.

3 � Results
3.1 � Behavioral results
On average, participants self-reported higher levels of 
mental stress on the 5-point scale following the stress 
induction periods, with average stress scores of 1.54, 
2.04, and 1.62 prior to 2nd, 3rd, and 4th stress induction 
periods, respectively, and average scores of 3.00, 2.88, and 
3.12 following the same stress induction periods. A series 
of Wilcoxon signed-rank tests were employed to compare 
the self-reported stress scores before and after each stress 
induction period across all participants; the tests indi-
cated that post-stressor stress scores were significantly 
higher than the pre-stressor scores, with Z test statistics 
of −  3.19, −  2.49, and −  2.62, and p-values of 0.00143, 
0.0127, and 0.00879, for the 2nd, 3rd, and 4th stress 
induction periods, respectively. As the participants were 
prompted for their self-reported mental stress level fol-
lowing every stressor and breathing period, stress scores 
prior to the 1st stress induction period were not collected 
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and hence the 1st stress induction period was not consid-
ered in the behavioral data analysis. Accompanied by the 
precedents in the literature, these results reinforce our 
confidence that the selected experimental paradigm can 
reliably induce mental stress in the participants.

3.2 � Model performance
The performance for the FBCSP-SVM classifiers of each 
participant are shown in Table  1. The average classifi-
cation accuracy was highest for the binary classifica-
tion of ‘Baseline’ vs ‘Stressor’ (87.88%) and lowest for 
‘Unguided Breathing’ vs ‘Stressor’ (78.28%). That the 

baseline and unguided breathing conditions had the 
lowest level of demands imposed on participants, and 
yet classification against the stressor condition yielded 
both the highest and lowest accuracy, suggests that 
muscle activity did not bias the classifiers significantly.

The three CNN models, Deep ConvNet, Shallow 
ConvNet, and EEGNet, yielded average classification 
accuracies of 58.80, 62.84, and 61.18%, respectively 
(see Table 2). The LSTM-FCN yielded an average clas-
sification accuracy of 62.97% across all four classes. 
The two-layer LSTM RNN classifier yielded an aver-
age accuracy of 93.27% on the test data across all four 
classes, outperforming the 73.53% average accuracy of 

Fig. 2  Diagram of the model architectures for the A Deep ConvNet, B Shallow ConvNet, C LSTM RNN, D EEGNet and E LSTM-FCN. Note: the first 
grayed layer of the LSTM RNN was only implemented for the two- and three-layer LSTM while the second grayed layer is only applicable to the 
three-layer LSTM
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the one-layer LSTM RNN and the 76.06% average accu-
racy of the three-layer classifier (see Table 3).

It is important to note that due to the longer length of 
the unguided and guided breathing periods compared to 
the stressor and the baseline periods, more samples were 
extracted from the unguided and guided breathing peri-
ods, creating an unbalanced dataset. Although this can 
lead to issues since an unbalanced dataset can artificially 

inflate the accuracy metric, the two-layer LSTM RNN 
model used here demonstrated high class-wise sensitiv-
ity and specificity during validation (see Fig.  3), leading 
us to the conclusion that the unbalanced dataset was not 
a cause for concern.

3.3 � LSTM RNN performance with individual variation
We were interested in investigating the relationship 
between the classification accuracy of the two-layer 
LSTM model (the best performing model) and pre-exist-
ing mental conditions. First, we wished to see if there was 
a significant difference between model accuracy for par-
ticipants with autism and neurotypical participants. On 
average, the two-layer LSTM model accuracy for a partic-
ipant with autism was 93.33%, while the model accuracy 
for a neurotypical participant was 93.15%. A Mann-
Whitney U test was conducted to compare model accu-
racy for the participants with autism and neurotypical 
participants and found no significant difference between 
model accuracy for the two groups (p=0.566), indicat-
ing that the two-layer LSTM model performed similarly 
regardless of whether the participant had autism. We also 
wished to understand whether an individual’s persistent 
(trait) anxiety can influence the performance of the two-
layer LSTM RNN. We employed Spearman correlation 
to compare model accuracy and individual STAI-C trait 
anxiety scores (see Table 4); higher STAI-C scores indi-
cate higher trait anxiety. The analysis yielded a Spear-
man’s rho of 0.0393, indicating virtually no correlation 
between trait anxiety and the two-layer LSTM RNN 
performance.

4 � Discussion
To the best of our knowledge, in this study we propose 
for the first time a deep learning-based classifier for 
decoding mental stress, a complex and covert state, from 
scalp EEG signals in youth with ASD. Our results show 
that states of mental stress can be accurately assessed in 
adolescents with and without ASD as well as in adoles-
cents with varying levels of baseline anxiety. We com-
pared classification accuracy of 4 binary FBCSP-SVM 
models and 7 multiclass deep learning models. These 
classifiers were employed to classify the EEG recorded 

Table 1  Classification accuracies of the FBCSP-SVM classifiers 
per participant and classification (‘Guided Breathing’ vs ‘Stressor’, 
‘Baseline’ vs ‘Stressor’, ‘Unguided Breathing’ vs ‘Guided Breathing’, 
and ‘Guided Breathing’ vs ‘Stressor’)

Participant Guided vs 
Stressor 
(%)

Baseline vs 
Stressor (%)

Unguided vs 
Guided (%)

Unguided vs 
Stressor (%)

L2 98.75 97.92 100.00 96.30

L3 80.00 95.83 75.00 80.56

L4 68.75 91.67 70.00 75.93

L5 81.25 91.67 87.50 77.78

L6 67.50 81.25 57.50 71.30

L7 87.50 81.25 97.50 90.74

L8 90.00 93.75 86.25 70.37

T1 90.00 93.75 76.25 71.30

T2 83.75 89.58 91.25 83.33

T4 72.50 79.17 73.75 69.44

T5 65.00 70.83 71.25 74.04

Average 80.45 87.88 80.57 78.28

Table 2  Class-wise and overall accuracies for the Deep ConvNet, 
Shallow ConvNet, and EEGNet CNN classifiers

Average accuracy (%) Deep 
ConvNet 
(%)

Shallow 
ConvNet (%)

EEGNet (%)

Stressor (%) 60.73 49.14 59.31

Unguided breathing (%) 59.38 56.25 60.38

Guided breathing (%) 53.76 81.07 59.99

Baseline (%) 61.34 64.90 61.18

Average (%) 58.80 62.84 60.21

Table 3  Class-wise and overall accuracies for the 1-Layer, 2-Layer, and 3-Layer LSTM RNN classifiers and the hybrid LSTM-FCN classifier

Highest classification accuracy are highlighted in bold

Average accuracy (%) 1-Layer LSTM (%) 2-Layer LSTM (%) 3-Layer LSTM (%) LSTM-FCN (%)

Stressor (%) 63.95 90.82 74.75 57.19

Unguided breathing (%) 62.89 91.19 70.43 57.52

Guided breathing (%) 80.09 94.57 67.76 72.32

Baseline (%) 73.53 96.50 76.07 64.84

Average (%) 70.12 93.27 72.26 62.97
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from ASD and neurotypical adolescents performing a 
task with periods of stress induction (‘Stressor’), resting 
state (‘Baseline’), guided breathing (‘Guided Breathing’) 
and unguided breathing (‘Unguided Breathing’). The best 
classification accuracy was achieved with the multiclass 
two-layer LSTM at 93.27%.

The 4 binary FBCSP-SVM classifiers performed as fol-
lows: 80.45% for ‘Guided Breathing’ vs ‘Stressor’, 87.88% 
for ‘Baseline’ vs ‘Stressor’, 80.57% for ‘Unguided Breath-
ing’ vs ‘Guided Breathing’, and 78.28% for ‘Unguided 
Breathing’ vs ‘Stressor’. The FBCSP-SVM performed best 
when classifying between the pre-task onset resting state 
epoch (‘Baseline’) and the stress induction (‘Stressor’) 

conditions, which could be due to the rest periods impos-
ing the least, and the stress condition the most, demands 
on the participants. Interestingly, the classifier performed 
relatively well for ‘Unguided Breathing’ vs ‘Guided 
Breathing’ classes, although these two conditions were 
similar in terms of stimuli and demands imposed on the 
participants. Despite our binary FBCSP-SVM classifiers 
reaching a satisfactory overall classification accuracy of 
around 82% across all 4 condition pairs, there are several 
trade-offs pertaining to the use of SVM when compared 
to deep learning. Although SVMs require less optimizing 
parameters, these learning models do not suffer from the 
problem of local minima, and are less computationally 
demanding than neural networks, they are constrained 
to a small number of features [87], even when these fea-
tures are extracted by algorithms [88]. In addition, SVMs 
cannot consider a robust set of EEG timepoints, ren-
dering them unable to examine the EEG time domain, 
which is a critical dimension for analyses [88]. Contrast-
ingly, LSTMs are well able to handle temporal informa-
tion, given their ability to choose to remember or discard 
information depending on contextual information. None-
theless, due to their low computational complexity, SVMs 
remain one of the most popular types of classifiers for 
EEG-based BCI, in particular for online scenarios. Not-
withstanding that adaptive implementations of SVM have 
been found to be superior to their static counterparts, 
they often require fully retraining the classifier with new 
incoming data, resulting in a much higher computa-
tional complexity and thus a lack of online applicability 
[53]. Conversely, with deep learning methods adaptation 
can be achieved by retraining the input layer with new 

Fig. 3  A 2-Layer LSTM RNN model confusion matrix. B 2-Layer LSTM RNN odel precision-recall curve

Table 4  2-Layer LSTM RNN classification accuracy and trait 
anxiety per participant

Participant 2-Layer LSTM RNN classification 
accuracy (%)

STAI-C trait 
anxiety 
score

L2 92.83 37

L3 92.83 32

L4 93.72 24

L5 93.69 30

L6 92.57 33

L7 93.72 32

L8 93.97 46

T1 92.83 25

T2 93.08 37

T4 93.47 42

T5 93.24 28
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incoming data. LSTMs in particular are inherently adap-
tive and thus well suited for real-time scenarios, as their 
predictions are conditioned by past input. In addition, 
unlike SVMs, deep learning networks can automatically 
adjust and optimize their parameters, essentially alleviat-
ing the need for feature extraction and requiring far less 
processing and prior knowledge regarding the original 
EEG dataset [55, 65]. Lastly, while some multiclass SVMs 
have been found to outperform neural networks [89], our 
attempts with multiclass FBCSP-SVMs produced incon-
sistent results with accuracies ranging between chance-
level and 90%.

With regard to the multiclass deep learning models, the 
Deep ConvNet CNN performed with an overall accuracy 
of 58.80%, the Shallow ConvNet CNN with 62.84%, the 
EEGNet CNN with 61.18%, the LSTM-FCN with 62.97%, 
the one-layer LSTM with 73.53%, the two-layer LSTM 
with 93.27% and the three-layer LSTM with 72.26%. The 
high classification accuracies achieved with the LSTM 
architecture presumably is a result of its ability to learn 
time dependencies within the data. Indeed, the retention 
property is useful in mental state monitoring, as con-
sidering the past activations of the EEG can drastically 
improve the prediction of target variables and the brain 
activity patterns leading up to, and associated with, spe-
cific cognitive states. The inherent nature of deep learn-
ing models, with hidden layers obscuring intermediate 
processes occurring within the models, makes it chal-
lenging to definitively identify the exact cause for the 
reduction in performance with the addition of a third 
LSTM layer. However, it is generally understood that 
stacking LSTM layers can render the model prone to 
overfitting [90] as well as the vanishing gradient prob-
lem, in which network weights fail to update significantly 
over time and model training becomes stagnant [91, 92], 
phenomena that could explain the lower accuracy of the 
three-layer LSTM. Empirically, it has been shown that a 
second LSTM layer often provides a significant boost in 
classification accuracy over a single LSTM [84, 93, 94]; 
however, the addition of a third LSTM layer or more can 
have little to no effect on performance [55, 93, 94], and 
in some cases additional layers can hinder model training 
and convergence, and in turn degrade performance [91]. 
Consequently, our leading hypothesis finds that the mar-
ginal increase in model complexity between the two-layer 
and three-layer LSTM further complicated model train-
ing while adding comparatively limited improvements, 
leading to a net loss in model performance.

There are some caveats to consider in the interpreta-
tion of our results. First, given that anxiety varies signifi-
cantly with context and individual, and cannot therefore 
be induced reliably and equivalently across participants, 
we utilized mental stress induction via mental arithmetic 

as a proxy for anxiety. Second, our experiment was 
designed to induce anxiety as efficiently as possible and 
thus minimize the time under stress to avoid any undue 
strain on the participants. Conversely, more time was 
required for relaxation to set in and the breathing rate to 
normalize; as a result the time for the mental arithmetic 
task and the guided or unguided breathing differed. Thus, 
learning models were trained on an unbalanced dataset, 
with more ‘Unguided Breathing’ and ‘Guided Breath-
ing’ EEG samples than ‘Stressor’ and ‘Baseline’ samples, 
with the potential of artificially inflating model accuracy. 
However, this is unlikely to be a concern for the two-layer 
LSTM RNN model, which exhibited high sensitivity and 
specificity metrics across all classes. Lastly, it should be 
noted that a potential drawback of LSTM RNNs, and 
of deep learning algorithms in general, is over-reliance 
upon large datasets. To this regard, the same classifica-
tions performed with smaller datasets including only 
2 or 3 conditions led to poorer performance (data not 
shown). However, the experimental 2-layer LSTM accu-
racy metrics were likely not impacted by a smaller sample 
size and were indicative of the model’s real-world per-
formance due to every trained model’s very high dem-
onstrated sensitivity, specificity, and predictive ability; 
we found the 2-layer LSTM models were not only suc-
cessful in identifying true positives across all classes but 
also when rejecting false positives in a statistically signifi-
cant manner in each and every one of our test subjects. 
Indeed, one major drawback of deep learning is the need 
for large amounts of data, an issue we aim to remedy in a 
future study involving a much larger set of participants, 
both neurotypical and ASD, as well as a more diverse set 
of stress induction tasks. Given that we have identified 
a viable classifier for the monitoring of cognitive states 
related to anxiety, the goal of forthcoming studies will 
be to refine and validate the two-layer LSTM RNN deep 
learning model for prospective implementation in a per-
sonalized pBCI. Such a system will be capable of moni-
toring for periods of stress and hone in on an individual’s 
optimal respiration patterns by adapting the breathing 
entrainment parameters in a closed-loop manner.

In summary, the goal of this study was to compare 
several learning models or classifiers on their abil-
ity to assess mental stress levels from EEG recordings 
performed on adolescent students to determine the 
feasibility of an EEG-based BCI capable of real-time 
identification and the mitigation of anxiety through 
optimized respiration entrainment. Of the different 
classifiers we compared, two-layer LSTM yielded the 
highest classification accuracy (93.27%), opening new 
avenues of decoding covert mental states for BCI-
based neuroadaptive applications to benefit youth with 
autism.
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