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Two dimensional crystalline membranes in isotropic embedding space exhibit a flat phase with
anomalous elasticity, relevant e.g., for graphene. Here we study their thermal fluctuations in the
absence of exact rotational invariance in the embedding space. An example is provided by a mem-
brane in an orientational field, tuned to a critical buckling point by application of in-plane stresses.
Through a detailed analysis, we show that the transition is in a new universality class. The self-
consistent screening method predicts a second order transition, with modified anomalous elasticity
exponents at criticality, while the RG suggests a weakly first order transition.

PACS numbers: 64.60Fr,05.40,82.65Dp

Introduction and background. Experimental realiza-
tion of freely suspended graphene [1] and other exfoliated
crystals, following the 2004 pioneering works of Geim and
Novoselov [2], launched extensive research in electronic
and mechanical properties of two-dimensional crystalline
membranes[3, 4]. This led to a renaissance in the sta-
tistical mechanics of fluctuating elastic membranes, first
studied in the context of soft and biological matter three
decades ago [5–15]. Theoretical interest is also motivated
by the opportunity to explore the nontrivial and rich in-
terplay between field theory and geometry [12].

The most striking prediction is the existence of a low-
temperature stable “flat” phase of a tensionless crys-
talline membrane [5], that spontaneously breaks rota-
tional symmetry of the embedding space. This is in stark
contrast to canonical two-dimensional field theories for
which the Hohenberg-Mermin-Wagner theorems[16–18],
preclude spontaneous breaking of a continuous symme-
try in two dimensions.

In such elastic membranes, in a spectacular phe-
nomenon of order-from-disorder, thermal fluctuations in-
stead stiffen the long-wavelength (k−1) bending rigidity
κ0 → κ0k

−η, η > 0, via a universal power-law “corruga-
tion” effect, with membrane roughness scaling as hrms ∼
Lζ , with ζ = (4−D−η)/2[5, 12], where D is membrane’s
internal dimension, with D = 2 for the physical case. The
resulting anomalous elasticity is characterized by univer-
sal exponents, η, ζ and ηu = 4 −D − 2η determined ex-
actly by the underlying rotational invariance, with a scale
dependent Young modulus K0 → K0q

ηu . This was pre-
dicted, together with the values of the exponents, by a
variety of complementary methods [5, 6, 8, 9, 15]. It was
verified in numerical simulations [19] and continues to be
explored experimentally [20].

Most theoretical studies to-date have focused on stress-
free fluctuating membranes in an isotropic embedding
environment [5, 6, 8–10, 14, 15, 21–25], as appropriate
for e.g., soft matter realizations of a membrane in an
isotropic fluid (though see interesting generalizations for

spherical shells[26, 27]). However, many experiments on
graphene and other solid-state membranes (even some
suspended ones) may be subjected to embedding space
anisotropy and/or external stresses due to the presence
of a substrate [28–30], clamping[31–33], or electric and
magnetic fields[34, 35]. Orientational fields could also
be imposed by suspending the membrane in a nematic
solvent[59]. This was realized in Barium hexaferrite
platelets by the Ljubljana group[36–38] showing that
they form a ferromagnetic nematic, with membranes’
normals aligning with the nematic director and manip-
ulatable by an external magnetic field. It is interesting
to consider for instance the case of an uniaxial easy axis
field tending to order the membrane’s normal, and/or
the application of a boundary stress σ. In all previous
theoretical descriptions, the rotational invariance in the
embedding space was assumed and the response found
to be controlled by the thermal tensionless membrane
fixed point[6]. The case of weak field or stresses is
treated by simply introducing a cutoff for the isotropic
critical fluctuations, beyond a large scale ξ ∼ (κ/σ)ν ,
that diverges with a vanishing σ, where ν is a universal
exponent that we compute below. Such perturbations
then lead to an anomalous response, that in the context
of tension predicts a non-Hookean stress-strain relation
ε ∼ σα, with α = (D − 2 + η)/(2 − η) =D=2 η/(2 − η).
[7, 8, 14, 15, 24, 39–41].

In this Letter we describe such experimental geome-
tries, illustrated in Fig.1, where the imposed stress and
anisotropy lead to qualitatively richer and universal buck-
ling phenomenology. Generic buckling is a complex out-
of-plane instability of a sheet subjected to compression,
that results in a strongly distorted, non-perturbative
state. Recently, there has been significant interest and
progress in the study of isotropic buckling, with fo-
cus on effects of thermal fluctuations on the classical
problem of Euler buckling, stabilized only by finite size
effects.[32] Instead, here we focus on a gentler, continuous
anisotropic form of this transition, where the instability
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FIG. 1. A schematic illustration of a critical membrane tuned
to a buckling transition, subjected to an external in-plane
isotropic stress σij = 1

2
σδij , stabilized and balanced by an

external field ~E, which tends to align the normals (blue vec-
tors).

is controlled by a stabilizing external field. Specifically,
we consider an externally oriented membrane tuned to a
buckling transition by a compressional boundary stress
applied within the plane explicitly selected by the orien-
tational field [42]. The compressive stress can be tuned
to a critical value, σc to cancel out at quadratic order the
(embedding-space) rotational symmetry breaking fields.
Our key observation is that at this new buckling crit-
ical point (to which the isotropic flat membrane criti-
cal point[6] is unstable), although at harmonic order the
membrane appears to be rotationally invariant and stress-
free, thus exhibiting strong thermal fluctuations, it ad-
mits new important elastic nonlinearities that are not ro-
tationally invariant. These lead to a critical membrane,
tuned to the buckling point, that is, thus qualitatively
distinct from the conventional tensionless membrane[43].

Results. Subjecting a crystalline membrane to a
lateral compressive isotropic boundary stress σ, tuned
to a critical tensionless buckling point σc and stabi-
lized by an orienting field, we find a new buckling uni-
versality class, distinct from the isotropic tensionless
membrane[5, 6, 8, 9, 15]. We propose a model based
on symmetry arguments, supported by more detailed
considerations. We use two complementary approaches
to analyze the properties of the resulting critical state.
The first is the self-consistent screening approximation
(SCSA) which was found to provide an accurate descrip-
tion for the isotropic case [9, 15]. Thermal fluctuations
and elastic nonlinearities at the buckling transition lead
to a universal anomalous elasticity with exponent

ηanis = 0.754, (1)

characterizing the divergence of the effective length-scale
dependent bending rigidity κ(k) ∼ k−η. The in-plane
elastic moduli remain finite at the critical point, i.e.,
ηanis
u = 0 [45]. This is despite the fact that the five eigen-

couplings wi(q) ∼ q4−D−2η renormalize nontrivially, van-
ishing in the long wavelength limit. This is at variance

with the tensionless isotropic membrane for which SCSA
predicts universal exponents η ≈ 0.821, ηu ≈ 0.358 [9].
The corresponding roughness hrms ∼ Lζ of the critically
buckled membrane is characterized by a universal rough-
ness exponent

ζanis = 0.623, (2)

and it is thus rougher than a tensionless isotropic mem-
brane, with a roughness exponent ζ ≈ 0.59 [9].

We complement this SCSA calculation by an RG anal-
ysis in an expansion in ε = 4−D. It confirms the insta-
bility of the standard anomalous elasticity fixed point
of the isotropic, tensionless membrane, under break-
ing of the embedding space rotational symmetry. Let
us recall that for the isotropic membrane the elastic
nonlinearities destabilize the harmonic theory (i.e., the
Gaussian fixed point) beyond the length scale ξiso

NL ∼
( κ2

TK0
)

1
4−D . If the anisotropy perturbation is very weak,

e.g., w ∼ µ1,2, λ1,2 � K0 (see below for definitions of
these anisotropy parameters), the membrane still expe-
riences the standard isotropic anomalous elasticity up to
scales ξiso

NL, crossing over to the new anisotropic critical
behavior beyond the crossover length

ξanis
NL = ξiso

NL

(
K0

w

)1/ρ

, ρ =
εdc

dc + 24
+O(ε2), (3)

where ρ is the crossover exponent obtained from lin-
earization of the RG flow around the isotropic fixed point.
If the anisotropy perturbation is stronger, the thermal
fluctuations and elastic nonlinearities directly destabilize
the harmonic theory at scales of order ξiso

NL. Beyond these
scales, the RG flows to a new stable buckling critical
point, which, within the ε-expansion, is however accessi-
ble only for space codimension dc = d −D > 219, anal-
ogous to the crumpling transition found by Paczuski, et
al.[46]. For the physical case, dc = 1, we interpret the
resulting runaway flows as a weakly first order transition,
as for the standard crumpling transition. We note that
the SCSA is exact for the large dc limit, and confirm
that the two methods match in their common regime of
validity.

Model of anisotropic membrane buckling. The coordi-
nates of the atoms in the d-dimensional embedding space
are denoted ~r(x) ∈ Rd, with the atoms labeled by their
position x ∈ RD in the internal space. For graphene
D = 2, and atoms span a triangular lattice, described
here in the continuum limit. The deformations with re-
spect to the flat sheet are described by D phonon fields
uα(x), and dc = d−D height fields ~h ∈ Rdc (orthogonal

to the ~eα) as ~r(x) = (xα+uα(x))~eα+~h(x), where the ~eα
are a set of D orthonormal vectors. While the physical
case corresponds to d = 3 and dc = 1, it is useful to study
the theory for a general dc. The nonlinear strain tensor
measures the deformation of the induced metric relative
to the preferred flat metric, uαβ = 1

2 (∂α~r · ∂β~r − δαβ) '
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1
2 (∂αuβ +∂βuα+∂α~h ·∂β~h) to the accuracy needed here,
with the O((∂u)2) phonon nonlinearities irrelevant and
therefore neglected (see below). The tensor uαβ encodes
full rotational invariance in the embedding space, its ap-
proximate form being invariant under infinitesimal rota-
tions by θ, i.e., the O(θ2) term vanishes under the (ap-
parent) distortion u1 = x1(cos θ−1), h1 = x1 sin θ, which
corresponds to a rigid rotation, with the corresponding
vanishing of the exact strain tensor.

Here we build on the model of a rotationally invari-
ant tensionless membrane. Its Hamiltonian is the sum of
curvature energy and in-plane stretching energy

F1[~h, uα] =

∫
dDx

[
κ

2
(∂2~h)2 + τuαα + µ(uαβ)2 +

λ

2
(uαα)2

]
(4)

where κ is the bending modulus, λ, µ the in-plane Lamé
elastic constants. The parameter τ controls the preferred
extension of the membrane in the ~eα plane.

Based on symmetry considerations, complemented by
a model-building derivation (presented at the end of the
paper), external orientational and boundary stresses in-
troduce new relevant elastic nonlinearities, with five new
independent couplings, that by symmetry lead to a mod-
ified effective Hamiltonian F = F1 +F2, where F2 breaks
rotational invariance in the embedding space,

F2[~h, uα] =

∫
dDx

(
γ

2
(∂α~h)2 (5)

+
λ1

2
∂αuα(∂β~h)2 +

λ2

8
[(∂α~h)2]2

+µ1∂αuβ(∂α~h · ∂β~h) +
µ2

4
[∂α~h · ∂β~h]2

)
,

retaining in-plane isotropy and the h → −h invariance
as a feature of our geometry, preserving the equivalence
between the two sides of the membrane.

We now study the membrane with parameters tuned to
the thermal buckling critical point defined by the renor-
malized γR = 0. Integrating over the in-plane phonon
modes uα and, rescaling for convenience all elastic con-
stants by 1/dc, we obtain an effective Hamiltonian for
the height field,

F [~h] =

∫
dDx [

κ

2
(∂2~h)2 +

γ

2
(∂α~h)2] +

1

4dc

∫
dDx dDy

×∂α~h(x) · ∂β~h(x)Rαβ,γδ(x− y) ∂γ~h(y) · ∂δ~h(y), (6)

with a non-local quartic tensorial interaction, which in
Fourier space is given by[47]

Rαβ,γδ(q) =

5∑
i=1

wi (Wi)αβ,γδ(q). (7)

The Wi are five projectors in the space of four index
tensors, equal to bilinear combinations of longitudinal
PLαβ(q) = qαqβ/q

2 and transverse PT (q) = δαβ −PLαβ(q)

projectors on the wave vector q. The five ”bare cou-
plings” wi are given in the Supplementary Material (SM)
[51] in terms of the bare elastic moduli in (4) and (5), to-
gether with the basis tensors Wi. [57] The important
features are the following. When rotational symmetry
breaking is absent, γ = 0, µ1 = µ2 = λ1 = λ2 = 0, the
couplings w2, w4, w5 vanish and

w1 = µ , w3 = µ+ (D − 1)
µλ

λ+ 2µ
, (8)

leading to (the q dependence suppressed)

Rαβ,γδ = (w3 − w1)PTαβP
T
γδ + w1

1

2
(PTαγP

T
βδ + PTαδP

T
βγ),

(9)
which is the usual quartic coupling associated to F1.
When λ1 and λ2 are turned on, while µ1 = µ2 = 0, all wi
are nonzero except w2 = 0. Finally, when all couplings
in F2 are nonzero, all wi are nonzero.

SCSA analysis. The form (6) is suitable to apply the
SCSA method, which is exact in the limit of large dc.
The calculation is performed in the SM [51] and par-
allels the one in Section IV. A of [15]. Consider the
two point correlation of the height field in Fourier space,
〈hi(k)hj(k′)〉 = G(k)(2π)dδd(k + k′)δij . If we neglect
the quartic nonlinearities in (6) we find G(k) = G(k) =
1/(γk2 + κk4). The nonlinearities lead to a nonzero
self-energy Σ(k) = G(k)−1 − γk2 − κk4. Together with
the renormalized interaction tensor, R̃(q), it satisfies the
SCSA equations

Σ(k) =
2

dc

∫
q

kα(kβ − qβ)(kγ − qγ)kδR̃αβ,γδ(q)G(k− q)

(10)

R̃(q) = R(q)−R(q)Π(q)R̃(q) (11)

where Π(q) encodes the screening of the in-plane elastic-
ity by out of plane fluctuations

Παβ,γδ(q) =
1

4

∫
p

vαβ(q,q−p)vγδ(q,q−p)G(p)G(q−p)

(12)
and vαβ(p,p′) = pαp

′
β + p′αpβ . One can decompose

Π(q) =
∑5
i=1 πi(q)Wi(q) and R̃(q) =

∑5
i=1 w̃i(q)Wi(q),

where w̃i(q) are the momentum dependent renormal-
ized couplings. Looking for a solution which behaves at
small k as G(k) ' Z−1

κ /k4−η, and evaluating the inte-
grals πi(q) [51] one finds that they diverge at small q
as πi(q) ' Z−2

κ aiq
−(4−D−2η) where ai = ai(η,D). From

(11) we find that the renormalized couplings are softened
at small q as w̃i(q) ∝ Z2

κciq
ηu , with ηu = 4−D− 2η and

ci = 1/ai for i = 1, 2 and(
c3 c4
c4 c5

)
'
(
a3 a4

a4 a5

)−1

(13)

Inserting this into the self-energy equation (10) and per-
forming the integrals we find that the factors of Zκ cancel
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and the self-consistent equation, which implicitly deter-
mines η as a function of D, dc is given by

dc
2

=
∑
i=1,2

bi
ai

+
b3a5 − b4a4 + b5a3

a3a5 − a2
4

, (14)

where bi = bi(η,D) are self-energy integrals, given with
the ai(η,D) in the SM. Note that here we have considered
the case where all bare couplings wi are nonzero. For a
physical membrane, D = 2, (14) reduces to finding the
root of a cubic equation

dc =
24(η − 1)2(2η + 1)

(η − 4)η(2η − 3)
. (15)

For dc = 1 we obtain our main result (1). For large dc
we find η = 2/dc + O(1/d2

c). The roughness of a size L
membrane is characterized by hrms = 〈h2〉1/2 ' Lζ where
ζ = (4−D − η)/2. Hence for dc = 1 we find ζ = 0.623.

One can define renormalized amplitude ratio as

lim
q→0

w̃i(q)

w̃j(q)
=
ci
cj

(16)

for any pair (i, j) such that the bare couplings wi, wj are
nonzero. Near D = 4 we find that these renormalized
couplings take values such that the interaction energy
becomes v1

2 [(∂α~h)2]2 + v2(∂α~h · ∂β~h)2, i.e., local in the

fields ∂α~h. This property however does not hold for D <
4, e.g., one finds c2/c1 = (D + η − 2)/(2 − η) instead of
unity for D = 4, η = 0. Thus the critical point requires a
fully non-local five coupling description. The ci are given
in [51]. In the physical case of D = 2 and dc=1 we find

ci = {1

2
, 0.302, 0.338,−0.029, 0.173}, (17)

and the universal λ/µ = −0.978 and the Poisson ratio
(not to be confused with external stress),

σanis = −0.968, (18)

to be contrasted with σ = −1/3 for an isotropic tension-
less membrane[9, 15]

There are other fixed points that lie in the invari-
ant subspaces of the SCSA equations. The rotation-
ally invariant membrane corresponds to bare couplings
w2 = w4 = w5 = 0. The corresponding renormalized
couplings also vanish, which amounts to b2 = b4 = b5 = 0
in (14), leading to

dc
2

=
b1
a1

+
b3
a3
, (19)

which is precisely the SCSA equation for the anomalous
flat phase of the isotropic membrane, leading forD = 2 to
η = 4

dc+
√

16−2dc+d2c
, and η ' 0.821, ζ = 0.590 for dc = 1

[9, 15]. Near D = 4 one recovers η = 12
dc+24ε+O(ε2) from

the Aronovitz-Lubensky’s ε-expansion[6]. Another fixed

manifold is w2 = 0, corresponding to a choice of bare
couplings so that (µ+ µ1)2 = µ(µ+ µ2), which includes
the choice µ1 = µ2 = 0, leading to w̃2(q) = 0 and

dc
2

=
b1
a1

+
b3a5 − b4a4 + b5a3

a3a5 − a2
4

. (20)

This leads to yet another fixed point with slightly differ-
ent exponents. For D = 2 and dc = 1 we find η = 0.854
and ζ = 0.573. Near D = 4 we find η = 18

dc+36ε+ O(ε2).
Universal amplitude ratios have c2 = 0.

RG analysis. As a nontrivial check and for further in-
sight, we have complemented this SCSA calculation and
results using an RG analysis, controlled by an ε = 4−D
expansion near D = 4. We have calculated the one-
loop corrections to the Hamiltonian (6) and obtained
the RG equations for the five dimensionless couplings
ŵi = wi/κ

2C4Λ−ε` of the form ∂`ŵi = εŵi + aijkŵjŵk,
where the aijk and details of the calculation are given in
[51]. The anomalous dimension of the out-of-plane height
field h defines the exponent η given by

η =
1

12
(10ŵ1 − 18ŵ2 + 5ŵ3 + 3ŵ5 − 6ŵ44) , (21)

with ŵ44 =
√

3ŵ4, and evaluated at the fixed point of
interest ŵ∗i (see below). The anomalous dimension of the
phonon field is given by

ηu =
1

12
(ŵ1 − ŵ2). (22)

The isotropic membrane corresponds to the space ŵ2 =
ŵ4 = ŵ5 = 0, which is preserved by the RG flow and
along which

∂`ŵ1 = − 1

12
ŵ1 ((d+ 20)ŵ1 + 10ŵ3) , (23)

∂`ŵ3 = − 5

24
ŵ3 ((d+ 4)ŵ3 + 8ŵ1) . (24)

The isotropic membrane fixed point is ŵ∗1 = 12ε
d+24 , ŵ∗3 =

24ε
5(d+24) , corresponding to µ̂∗ = 12ε

24+d , λ̂∗ = −4ε
24+d [6]. Di-

agonalizing the RG flow for ŵi = ŵ∗i + δŵi around this
fixed point in the larger space of five couplings shows
that, in addition to the two negative eigenvalues −1 and
− dc
dc+24 within the plane δŵ1,3 of the isotropic membrane,

(i) there is a marginal direction mixing δŵ1,3,4 (eigen-
value 0) (ii) there are two unstable directions with eigen-
values dc

dc+24 with δw2,5 nonzero (in the large dc limit this
eigenspace is purely along δw2,5). Hence, consistent with
the SCSA findings, the isotropic membrane fixed point
is unstable to anisotropy of the orientational field and
external boundary stress.

To determine where the general flow goes we searched
for attractive fixed points of the RG equations. We found
one such fixed point in the subspace of couplings ŵi at
which, the interaction energy is fully local in the gradi-
ents ∂α~h and parameterized by two couplings v1, v2 as
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defined above. This subspace is preserved by the RG
and also arises in the study of the crumpling transition.
In fact the RG flow within this subspace is identical to
the one obtained in [46] with d replaced by dc. It ad-
mits a stable FP for dc > 219. Here we demonstrated
that this FP is fully attractive in the space of the five
couplings. Hence the RG approach is consistent, around
D = 4, with the SCSA (which is exact for large dc and
any D), predicting a new fixed point for membrane in
anisotropic embedding space. For the physical membrane
D = 2 and dc = 1, while the SCSA predicts this new
”anisotropic buckling transition” to be continuous, the
RG, if extrapolated from D = 4, suggests a weakly first
order transition, as argued for the crumpling transition
[22, 23, 46].

To reach the new anisotropic buckling critical point
requires tuning γ = γc, so that γR = 0. Slightly away
from criticality the correlation length is long but finite,
ξ ∼ |δγ|−ν , diverging with a vanishing δγ = γ − γc.
Linearizing the RG flow around the fixed point yields
δγ(L) ∼ δγLθ, where θ = − ε

dc
(1 − 66

dc
+ O( 1

d2c
)), see the

SM [51]. By balancing κ(ξ)ξ−4 ∼ δγ(ξ)ξ−2 and using
that κ(ξ) ∼ ξη we obtain the correlation length exponent
as ν = 1/(2 + θ − η).

Model development. Until now we argued for the model
(4,5) based on symmetry considerations. Here, as illus-
trated in Fig.1, we develop an explicit model of a mem-
brane undergoing buckling in the absence of rotational
invariance in the embedding space. We consider an elas-
tic membrane in an external field ~E (taken along the
z-axis) that aligns the membrane’s normal n̂ along the
field. We thus expect the energy density to be a mono-
tonic function of n̂ · ~E, namely of the small tilt angle
θ,

Horient =
α1

2
θ2 +

α̃2

4
θ4 + . . . , (25)

with α1 > 0, α̃2 > 0. Combining this orienta-
tional field energy with the Hamiltonian for an elas-
tic membrane[12, 15], subjected to an in-plane compres-
sional boundary stress σ > 0, isotropic in the membrane’s
xy plane, and using that, to lowest order θ ∼ |∂αh|, we
obtain,

H =
κ

2
(∂2h) + µu2

αβ +
λ

2
u2
αα + σ∂αuα

+
α1

2
(∂αh)2 +

α2

4
(∂αh)4 + . . . . (26)

We note that the external stress, σ is an in-plane
boundary term, that induces a stress-dependent inward
displacement of the membrane’s edges. Observing that
σ∂αuα = σuαα − 1

2σ(∂αh)2, the rotationally invariant
strain component σuαα can be accommodated by sim-
ply changing the preferred extension of the membrane
without breaking the embedding space rotational sym-
metry (i.e., it amounts to a redefinition of the parame-
ter τ in (4), which determines the preferred membrane’s

projected area [52]). The negative in-plane strain ∂αuα
induced by positive σ can be relieved by a membrane
tilt, (∂αh)2 > 0, stress-free in the actual plane of the
membrane. The lowering of the energy associated with
the membrane tilt is then given by the second term, i.e.,
Hσ = − 1

2σ(∂αh)2, which, neglecting bending energy and
boundary conditions, is unbounded, since tilt is uncon-
strained in the absence of the orientational field. Putting
these ingredients together and rescaling xy coordinate
system, we obtain the Hamiltonian governing a buckling
transition of a membrane in an orientational field,

H =
κ

2
(∂2h) + µu2

αβ +
λ

2
u2
αα

+
γ

2
(∂αh)2 +

α2

4
(∂αh)4 + . . . , (27)

where γ = α1 − σ is the critical parameter which can
be tuned to γc to reach the buckling transition (with
γc = 0 at T = 0), studied in here. As detailed in SM, we
can estimate the buckling stress σc based on a model of
homeotropic alignment of a membrane in a nematic sol-
vent (using typical values of Frank elastic constants)[59]
and a model of a ferroelectric membrane aligned by an
electric field. These give σc ∼ 1 − 10eV/µm2, with the
thermal fluctuation corrections to γ that we show in SM
to be subdominant.

Conclusion. To summarize, in this Letter, in con-
trast to previous works on tensionless crystalline mem-
branes, we studied a thermal elastic sheet tuned by an
external boundary stress to a critical point of a buck-
ling transition, stabilized by an orientational field. We
find that this breaking of embedding rotational symmetry
has profound effects, and leads to a new class of anoma-
lous elasticity, that we have explored in detail here using
the SCSA and RG analyses. With much recent interest
in elastic sheets, most notably graphene and other van
der Waals monolayers, we hope that our predictions will
stimulate further experiments to probe the rich univer-
sal phenomenology predicted here for an elastic mem-
brane tuned to a buckling transition in an anisotropic
environment. We also expect that ideas explored here
can be extended to a richer class of anomalously elastic
media.[56, 58]

Note Added: We have recently became aware of an
ongoing work by S. Shankar and D. R. Nelson on a mem-
brane subjected to a boundary stress or strain, which, in
contrast to our work only breaks embedding rotational
symmetry at the boundary.
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Supplementary Material for Thermal buckling transition of crystalline membranes

We give the principal details of the calculations described in the main text of the Letter.

A. Projectors and tensor multiplication

Here we consider four index tensors, such as Rαβ,γδ(q) introduced in the text, which are symmetric in α ↔ β, in
γ ↔ δ and in (α, β) ↔ (γ, δ). The product of such tensors is defined as (T · T ′)αβ,γδ = Tαβ,γ′δ′T

′
γ′δ′,γδ, the identity

being Iαβ,γδ = 1
2 (δαγδβδ + δαδδβγ). We recall the definition [15] of the five ”projectors” Wi, i = 1, . . . , 5, which span

the space of such four index tensors

(W3)αβ,γδ(q) =
1

D − 1
PTαβP

T
γδ , (W5)αβ,γδ(q) = PLαβP

L
γδ , (28)

(W4)αβ,γδ(q) = (W4a)αβ,γδ(q) + (W4b)αβ,γδ(q) , (29)

(W4a)αβ,γδ(q) =
1√
D − 1

PTαβP
L
γδ , (W4b)αβ,γδ(q) =

1√
D − 1

PLαβP
T
γδ , (30)

(W2)αβ,γδ(q) =
1

2
(PTαγP

L
βδ + PTαδP

L
βγ + PLαγP

T
βδ + PLαδP

T
βγ) , (31)

W1(q) =
1

2
(δαγδβδ + δαδδβγ)−W3(q)−W5(q)−W2(q) , (32)

W1(q) +W3(q) =
1

2
(PTαγ(q)PTβδ(q) + PTαδ(q)PTβγ(q)) (33)

where PTαβ = δαβ − qαqβ/q2 and PLαβ = qαqβ/q
2 are the standard transverse and longitudinal projection operators

associated to q. The first two projectors W1,W2 are mutually orthogonal and orthogonal to the other three. Note
that while R, being symmetric, can be expressed in terms of the symmetric tensors Wi, i = 1, ..5, we will need at some
intermediate stages of the calculations some products (such as Π ∗ R see below), which are not symmetric. Hence
we introduced W a

4 and W b
4 , which together with Wi, i = 1, 2, 3 and W5 make the representation complete under

tensor multiplication. The rules for the tensor multiplication T ′′ = T ′ ∗ T of the tensors T =
∑3
i=1 wiWi +w4aW4a +

w4bW4b + w5W5 and T ′ =
∑3
i=1 w

′
iWi + w′4aW4a + w′4bW4b + w′5W5 are

w′′1 = w′1w1 , w′′2 = w′2w2 ,

(
w′′3 w′′4a
w′′4b w′′5

)
=

(
w′3 w′4a
w′4b w′5

)(
w3 w4a

w4b w5

)
, (34)

with T ′′ =
∑3
i=1 w

′′
iWi + w′′4aW4a + w′′4bW4b + w′′5W5.

B. Integration over in-plane deformations

The integration over the phonon fields uα(x) of the Gibbs measure ∼ e−F [~h,uα]/T , with F = F1 + F2 given by (4)

and (5) leads to the Gibbs measure ∼ e−F [~h]/T for the height fields with an effective Hamiltonian of the form (6) in
the text (we set τ = 0). To perform it we use a method slightly different from the one in e.g. [15] Section III B. Let
us introduce the elastic matrix

Cµ,λαβ,γδ = λδαβδγδ + µ(δαγδβδ + δαδδβγ) (35)

and denote ũαβ = 1
2 (∂αuβ + ∂βuα) and Aαβ = 1

2∂α
~h · ∂β~h. We then rewrite the model F = F1 + F2 as

F [u,~h] =

∫
dDx

[
κ

2
(∇2h)2 +

1

2
Cµ,λαβ,γδũαβ ũγδ + ũαβC

µ+µ1,λ+λ1

αβ,γδ Aγδ +
1

2
Cµ+µ2,λ+λ2

αβ,γδ AαβAγδ

]
(36)

We must treat separately the contributions of the in plane strains which are uniform (i.e. with zero momentum), and
those with nonzero wavevector, i.e. the phonons.
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B.1 Phonon integration: nonzero wavevector

.
We recall the phonon field propagator

〈uα(q)uβ(q′)〉 = T (2π)DδD(q + q′)

(
PTαβ(q)

µq2
+

PLαβ(q)

(2µ+ λ)q2

)
(37)

from which the in-plane strain correlator at nonzero wavevector is obtained as

〈ũαβ(q)ũγδ(q
′)〉 = T (2π)DδD(q + q′)Dαβ,γδ(q) (38)

with, for q 6= 0,

Dαβ,γδ(q) =
1

4

[
q̂αq̂γ

(
PTβδ(q)

µ
+
PLβδ(q)

2µ+ λ

)
+ 3 permutations

]
(39)

This tensor has a simple expression in terms of the projectors (suppressing the indices and the q dependence)

D =
1

2µ
W2 +

1

2µ+ λ
W5 (40)

The integration over the phonon field in (36) using (37) is then a simple quadratic Gaussian integral leading to the
form given in Eq. (6) in the main text

Feff(~h) =
1

dc

∫
q 6=0

Rαβ,γδ(q)Aαβ(−q)Aγδ(q) (41)

where the interaction tensor is

R =
1

2
Cµ+µ2,λ+λ2 − 1

2
Cµ+µ1,λ+λ1 ·D · Cµ+µ1,λ+λ1 (42)

Thanks to the projectors its explicit calculation is easy. One decomposes

Cµ,λ = 2µ(W1 +W2 +W3 +W5) + λ[(D − 1)W3 +
√
D − 1W4 +W5] (43)

and uses the above multiplication rules for the Wi’s. One obtains

Rαβ,γδ(q) =

5∑
i=1

wiWi(q) (44)

in terms of the five ”elastic constants” wi

w1 = µ+ µ2 (45)

w2 = µ+ µ2 −
(µ+ µ1)2

µ

w3 = µ+ µ2 +
(D − 1)

2
(λ+ λ2 −

(λ+ λ1)2

λ+ 2µ
)

w44 =
1

2
(D − 1)

(
λ+ λ2 −

(λ+ λ1)(λ+ λ1 + 2µ+ 2µ1)

λ+ 2µ

)
, w44 =

√
D − 1w4

w5 =
1

2

(
λ+ λ2 + 2µ+ 2µ2 −

(λ+ λ1 + 2µ+ 2µ1)2

λ+ 2µ

)
Note that this is true under the condition that the phonon propagator is positive definite i.e.

µ > 0 , 2µ+ λ > 0 (46)
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Note also that the interaction Rαβ,γδ(q) given above is understood to explicitly exclude the zero-mode q = 0, which
we address below. The stability of the zero-mode requires µ > 0 and 2µ+Dλ > 0, which is a more stringent condition.

Note that when µ1 = µ2 = 0 one has w2 = 0. When in addition λ1 = λ2 = 0 one has w2 = w4 = w5 = 0 and

w1 = µ , w3 = µ+ (D − 1)
µλ

λ+ 2µ
(47)

as given in the text. Note that in general there are 5 couplings wi and 6 original couplings. Inversion thus determines
only the following five ratio as

µ+ µ2 = w1 (48)

(µ+ µ1)2

µ
= w1 − w2

(λ+ λ1)2

µ
=

4 (w1 − w2) (w1 − w3 + w44) 2

(D (w1 − w5)− w3 + w5 + 2w44) 2

λ+ λ2 =
2
(
w2

44 − (D − 1) (w1 − w3) (w1 − w5)
)

(D − 1) (D (w1 − w5)− w3 + w5 + 2w44)

λ

µ
=

2(D − 1) (w1 − w2)

D (w1 − w5)− w3 + w5 + 2w44
− 2

Here µ+ µ2 and λ+ λ2 are the two h4 vertex couplings in the original u, h theory (before integrating phonons) and

and (λ+λ1)2

µ and (µ+µ1)2

µ are the natural uhh vertex couplings combination appearing in perturbation theory. Finally

λ/µ is a ratio of elastic constants. Hence the overall elastic constant scale, µ, remains undetermined and must be
calculated separately from the u, h theory. Note that combining the above equations, one also obtains the following
ratio

λ+ λ1

µ+ µ1
=

2(w3 − w1 − w44)

D (w1 − w5)− w3 + w5 + 2w44
(49)

Finally, in the case µ2 = µ1 = 0 one has w2 = 0 and one can invert the above relations for all remaining couplings

µ = w1 , λ = −2w1 (−Dw5 + w1 − w3 + w5 + 2w44)

D (w1 − w5)− w3 + w5 + 2w44
(50)

λ1 =
2w1 (−Dw5 + w5 + w44)

D (w1 − w5)− w3 + w5 + 2w44
, λ2 =

2w44 (2(D − 1)w1 + w44)− 2(D − 1)w5 ((D − 2)w1 + w3)

(D − 1) (D (w1 − w5)− w3 + w5 + 2w44)
(51)

consistent with the above result.
One can also ask about necessary conditions for the quartic form in the effective stretching energy (6) to be positive

definite. Positivity of the quartic form

kα1 (q− k1)αRαβ,γδ(q)kβ3 (q− k3)δ (52)

for any choice of k1,k3,q implies for instance: (i) choosing all ki aligned with q

w5 > 0 (53)

(ii) choosing k3 = k1 and considering various limits we also find

w2 > 0 , (D − 2)w1 + w3 > 0 (54)

Finally, note that one must have w1 ≥ w2 for the above equations (48) to make sense.

B.2 zero-mode

We must treat separately the uniform part of the nonlinear strain tensor, uαβ(q = 0). It is the sum of the uniform
part of the in-plane strain tensor, which we denote ũ0

αβ and of A0
αβ = 1

2 [(∂αh)(∂βh)](q = 0). The energy per unit
volume associated to this zero-mode is

f(ũ0, A0) = µ(ũ0
αβ +A0

αβ)2 +
λ

2
(ũ0
αα +A0

αα)2 + λ1ũ
0
ααA

0
αα + 2µ1ũ

0
αβA

0
αβ + µ2(A0

αβ)2 +
λ2

2
(A0

αα)2, (55)
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which can be rewritten as

f(ũ0, A0) =
1

2
Cµ,λαβ,γδũ

0
αβ ũ

0
γδ + ũ0

αβC
µ+µ1,λ+λ1

αβ,γδ A0
γδ + (µ+ µ2)(A0

αβ)2 +
λ+ λ2

2
(A0

αα)2. (56)

Minimizing the energy over the D(D+ 1)/2 independent components of the in-plane strain tensor ũ0
αβ (or integrating

the Gibbs measure, which is equivalent since the energy is quadratic in the ũ0
αβ) we obtain the minimum

[ũ0
min]αβ = −[Cµ,λ]−1

αβ,γ′δ′C
µ+µ1,λ+λ1

γ′δ′,γ,δ A0
γ,δ = −µ+ µ1

µ
A0
αβ +

λµ1 − λ1µ

µ(2µ+Dλ)
δαβA

0
γγ , (57)

where we have used that

[Cµ,λ]−1
αβ,γδ =

−λ
2µ(2µ+Dλ)

δαβδγδ +
1

4µ
(δαγδβδ + δαδδβγ). (58)

Plugging back this minimum into the energy we find

feff [h] = f0(u0
min, A

0) =
1

2
C̄αβ,γδA

0
αβA

0
γδ, (59)

where

C̄ = Cµ+µ2,λ+λ2

αβ,γδ − Cµ+µ1,λ+λ1 · [Cµ,λ]−1 · Cµ+µ1,λ+λ1 . (60)

Upon explicit calculation the final result is

feff [h] = (µ2 − 2µ1 −
µ2

1

µ
)(A0

αβ)2 +
1

2
(λ2 −

Dλ1 (2λ+ λ1)µ− 2λµ2
1 + 4λ1µ (µ+ µ1)

µ(Dλ+ 2µ)
)(A0

αα)2. (61)

Note that it vanishes when the new terms breaking rotational symmetry are absent i.e. when µ1 = µ2 = λ1 = λ2 = 0.
These zero-mode terms are thus generated only by the bulk anisotropy since we are working in the fixed stress setting
and freely integrate over the zero-mode of the in-plane strain. We leave their study for the future [58].

B.3 Stability

Here we note that we can rewrite

F1 + F2 =

∫
dDx

[κ
2

(∂2~h)2 + τuαα +
γ

2
(∂α~h)2 + fel

]
. (62)

Using the traceless tensors and the traces as

fel = µ

(
ũαβ −

1

D
δαβ ũγγ +

µ+ µ1

µ
(Aαβ −

1

D
δαβAγγ)

)2

+
2µ+Dλ

2D

(
ũαα +

2(µ+ µ1) +D(λ+ λ1)

2µ+Dλ
Aαα

)2

(63)

+µ̂2

(
Aαβ −

1

D
δαβAγγ

)2

+B2A
2
αα, (64)

with

µ̂2 = µ+ µ2 −
(µ+ µ1)2

µ
(65)

B2 =
1

2D

(
2(µ+ µ2) +D(λ+ λ2)− (2(µ+ µ1) +D(λ+ λ1))2

2µ+Dλ

)
, (66)

where we recall that Aαβ = 1
2∂α

~h · ∂β~h. Let us set τ = 0. Note that µ̂2 = w2 as defined in (45). Hence we see that,
since the traceless part and the trace are independent, for w2 > 0 and B2 > 0 the last two square terms imply that
at the minimum energy (which is zero) one must have Aαβ = 0, and, in turn from the two first squares, ũαβ = 0.

Hence in that case uα = 0, ~h = 0 is indeed the stable ground state. We note that, in contrast, in the rotationally
invariant case (i.e., setting µ1 = µ2 = λ1 = λ2), the same reasoning leads to the zero energy minimum condition,
uαβ = ũαβ + Aαβ = 0, instead of the above anisotropic condition of ũαβ and Aαβ vanishing separately. This is
expected since in isotropic embedding space, rotations of the membrane do not change its energy.

C. SCSA analysis

Below we present the details of the SCSA analysis that was outlined in the main text, following closely the calculation
in Ref.15.
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C.1. SCSA equations

The SCSA is given by the pair of coupled equations (10) and (11) given in the text for the self-energy Σ(k) =
G(k)−1 − κk4 and for the renormalized interaction R̃αβ,γδ(q). The equation (11) involves tensor multiplication. We

can thus decompose Π(q) =
∑5
i=1 πi(q)Wi(q) and R̃(q) =

∑5
i=1 w̃i(q)Wi(q), as indicated in the text, where w̃i(q) are

the momentum dependent renormalized couplings and πi(q) are polarization integrals calculated below. The rules for
the tensor multiplication were given in the previous section. Since the tensors Rαβ,γδ(q), R̃αβ,γδ(q) and Παβ,γδ(q)
are symmetric in α ↔ β, in γ ↔ δ and in (α, β) ↔ (γ, δ), they can be parameterized in terms of five couplings (i.e.,
with w4a = w4b = w4).

We can now solve the equation (11) and find the renormalized couplings w̃i(q) as

w̃1(q) =
w1

1 + w1π1(q)
, w̃2(q) =

w2

1 + w2π2(q)
, (67)(

w̃3(q) w̃4(q)
w̃4(q) w̃5(q)

)
=

(
w3 w4

w4 w5

)((
1 0
0 1

)
+

(
π3(q) π4(q)
π4(q) π5(q)

)(
w3 w4

w4 w5

))−1

. (68)

These can be substituted into (10) to express the self-energy as

Σ(k) =
2

dc

∑
i=1,5

∫
q

w̃i(q)G(k− q)kα(kβ − qβ)(Wi)αβ,γδ(q)kγ(kδ − qδ) , (69)

The above equations form a closed set of SCSA equations for the five renormalized elastic coupling constants w̃i(q),
together with the self energy Σ(k). The complete Dyson equation for the self-energy contains an additional UV
divergent ”tadpole” diagram contribution, which scales as k2. The integral in (69) also contains a component that
scales as k2 at small k. Both contributions have been substracted by tuning the bare coefficient γ in order to sit at
the critical point.

To solve the above SCSA equations at the critical point, we look for a solution with the long wavelength form
G(k) ' Z−1

κ /k4−η. The πi(q) integrals have been calculated in the Appendix B of [15]. They diverge for small q as:

πi(q) ' Z−2
κ ai(η,D)q−(4−D−2η) . (70)

For the amplitudes ai(η,D) we find

a1 = 2A , a2 = A
2(2− η)

D + η − 2
, a3 = A(D + 1) , a4 = A

√
D − 1(D + 2η − 3) , (71)

a5 =
A

D − 2 + η
(−22 + 31D − 10D2 +D3 + 43η − 32Dη + 5D2η − 24η2 + 8Dη2 + 4η3) ,

with

A = A(η,D) =
Γ(2− η −D/2)Γ(D/2 + η/2)Γ(D/2 + η/2)

4(4π)D/2Γ(2− η/2)Γ(2− η/2)Γ(D + η)
. (72)

To compute the self-energy we define the amplitudes bi(η,D) through:∫
q

q4−D−2η|k− q|−(4−η)kα(kβ − qβ)(Wi)αβ,γδ(q)kγ(kδ − qδ) = bi(η,D)k4−η . (73)

The explicit calculation in the Appendix B of [15] gives

b1 = B(D − 2)(D + 1) , b2 = −B (D − 1)(D2 − 4 + 2η)

D − 2 + η
, b3 = B(D + 1) , (74)

b4 = 2B
√
D − 1(2η − 3) , b5 =

B

D − 2 + η
(−22 + 15D − 2D2 + 43η − 16Dη − 24η2 + 4Dη2 + 4η3) ,

where

B = B(η,D) =
Γ(η/2)Γ(D/2 + η/2)Γ(2− η)

4(4π)D/2Γ(2− η/2)Γ(D/2 + η)Γ(D/2 + 2− η/2)
. (75)



13

C.2. Anisotropic fixed point

Let us first search for a solution to the SCSA equations when all the bare couplings wi are nonzero. This corresponds
to the ”anisotropic fixed point” discussed in the text. In the limit q→ 0 we find from (68)

w̃1(q) ' 1

π1(q)
, w̃2(q) ' 1

π2(q)
, ,

(
w̃3(q) w̃4(q) ,
w̃4(q) w̃5(q)

)
'
(
π3(q) π4(q)
π4(q) π5(q)

)−1

. (76)

independent of the bare values, as long as they are nonzero. Substituting Eqs.(68),(72),(75) into (69) we see that
factors of Zκ cancel and we find the self-consistent equation:

dc
2

=
∑
i=1,2

bi(η,D)

ai(η,D)
+
b3(η,D)a5(η,D)− b4(η,D)a4(η,D) + b5(η,D)a3(η,D)

a3(η,D)a5(η,D)− a4(η,D)2
. (77)

Putting everything together, after considerable simplifications, the equation determining the exponent η =
ηanis(D, dc) is found to be:

dc =
D(D + 1)(D − 4 + η)(D − 4 + 2η)(2D − 3 + 2η)Γ[ 1

2η]Γ[2− η]Γ[η +D]Γ[2− 1
2η]

2(2− η)(5−D − 2η)(D + η − 1)Γ[ 1
2D + 1

2η]Γ[2− η − 1
2D]Γ[η + 1

2D]Γ[ 1
2D + 2− 1

2η]
, (78)

which in D = 2 reduces to

dc =
24(η − 1)2(2η + 1)

(η − 4)η(2η − 3)
. (79)

as given in the main text, leading to ηanis(D = 2, dc = 1) = 0.753645... In the limit of large dc, the solution of (78)
behaves as

ηanis(D, dc) '
C(D)

dc
+O(1/d2

c) , C(D) =
(D − 4)2(2D − 3)Γ(D + 2)

2(5−D)(D − 1)Γ
(
2− D

2

)
Γ
(
D
2 + 2

)
Γ
(
D
2

)2 ,
with C(2) = 2. As discussed in [15] the leading coefficient C(D) in the 1/dc expansion is an exact result, while the
higher orders are specific to the SCSA.

We note that the above equation (78) is the same as the one obtained for the crumpling transition, replacing d
by dc. Hence, studying our new fixed point amounts, formally, to studying the crumpling transition fixed point in
embedding space dimension d = 1 instead of d = 3. Not surprisingly then, the leading term in the large dc expansion
above then coincides with the one in the 1/d expansion for the crumpling transition of Ref. 6. We can also expand
our SCSA prediction in ε = 4−D, finding

ηanis(D, dc) '
25

3dc
(4−D)3 +O((4−D)3), (80)

consistent with the vanishing of the leading order O(ε) of ηanis(D, dc) found below in the section on the RG calculation.
This new ”anisotropic” membrane fixed point is characterized by several universal amplitude ratio. As discussed

in the text, from (76) we obtain

w̃i(q) ' Z2
κciq

4−D−2η/A (81)

ci = 1/ai for i = 1, 2 ,

(
c3 c4
c4 c5

)
'
(
a3 a4

a4 a5

)−1

Inserting the w̃i(q) into (48), we obtain the renormalized couplings of the u, h theory. More precisely we obtain the
h4 couplings µ̃(q) + µ̃2(q), λ̃(q) + λ̃2(q), and the uh2 couplings (µ̃(q) + µ̃1(q))2/µ̃(q) and (λ̃(q) + λ̃1(q))2/λ̃(q). These
four couplings thus vanish as q4−D−2η at small q. In addition we obtain the ratio λ̃(q)/µ̃(q) which has a finite limit
at small q. The determination of µ̃(q) however requires an additional calculation (see below), with the result that
µ̃(q) ∼ qηu where ηu is now an independent exponent (at variance with the rotationally invariant case where one has
ηu = 4 −D − 2η). For this anisotropic fixed point, ηu = 0, i.e. µ̃(0) is finite. Hence we find that µ̃2(q) → −µ̃(0) at
small q, so that the h4 coupling can vanish at small q as µ̃(q) + µ̃2(q) ∼ q4−D−2η, and similarly for λ̃2(q). A similar
property holds for the uh2 couplings.
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Let us now determine the amplitude ratio, which are universal at the fixed point. From (81) we obtain the amplitude
ratio in the long wavelength limit as

lim
q→0

w̃i(q)

w̃j(q)
=
ci
cj

(82)

for any pair (i, j), with, using (71) and (81) we obtain

c1 =
1

2
, c2 = −D + η − 2

2(η − 2)
, c3 =

1

4

(
1−D

(D + 3)(D + η − 1)
+

D

η − 2
− 8

(D + 3)(D + 2η − 5)
+ 2

)
(83)

c4 = −
√
D − 1(D + η − 2)(D + 2η − 3)

4(η − 2)(D + η − 1)(D + 2η − 5)
, c5 =

(D + 1)(D + η − 2)

4(η − 2)(D + η − 1)(D + 2η − 5)
(84)

Note that these values of the ci assume that all bare wi are nonzero hence they are valid only at the anisotropic fixed
point. Inserting the value of η for D = 2 and dc=1 we find, at the anisotropic fixed point

ci(D = 2, dc = 1) =

{
1

2
, 0.30234, 0.338287,−0.0292957, 0.173248

}
(85)

From this, using (48), we find limq→0 λ̃(q)/µ̃(q) = −0.978449 and the Poisson ratio σR(q) = λ̃(q)

2µ̃(q)+(D−1)λ̃(q)
=

−0.957808
Note that for D = 2 and large dc we find, up to O(1/d2

c) terms

ci =

{
1

2
,

1

2dc
,

1

3
+

1

36dc
,

1

12dc
,

1

4dc

}
(86)

Hence for D = 2, the anisotropic membrane fixed point converges as dc → +∞ to the one of the isotropic membrane
since w̃2, w̃4, w̃5 are parametrically smaller in that limit than w̃1 and w̃3 (which span the couplings of the isotropic
membrane). However, from (83) we can state that these two fixed points are different at infinite dc for D > 2. In this
limit one can simply set η → 0 in (83) and one finds for the anisotropic fixed point

lim
dc→+∞

ci =

{
1

2
,
D − 2

4
,
D2 − 9D + 22

40− 8D
,

(D − 3)(D − 2)

8(D − 5)
√
D − 1

,
−D2 +D + 2

8 (D2 − 6D + 5)

}
(87)

while for the isotropic one ci = { 1
2 , 0,

1
D+1 , 0, 0}, see below. Hence, for dc = +∞, the anisotropic fixed point leaves

the isotropic subspace as D increases from D = 2 to D = 4.

As mentionned in the text, there is an interesting subspace of couplings which corresponds to a purely local
interaction between the gradient fields ∂α~h

Rαβ,γδ =
µ0

2
(δαγδβδ + δαδδβγ) +

λ0

2
δαβδγδ. (88)

for some constants denoted µ0 and λ0 (these are denoted 4v2 and 4v1 respectively in the main text). It is realized by
the choice

w1 = w2 = µ0, w3 =
1

2
(D − 1)λ0 + µ0, w4 =

1

2

√
D − 1λ0, w5 =

1

2
λ0 + µ0 . (89)

Note that the two eigenvalues of the matrix formed by the wi, i = 3, 4, 5, are then µ0, and µ0 + 1
2Dλ. Replacing dc

by d this is also the subspace corresponding to the bare action of the Landau theory for the crumpling transition [46].
This subspace is preserved by the one-loop RG in an expansion in D = 4, as we will see in the next section.

However, for any fixed D < 4, it is not preserved by the RG flow in the large dc limit (hence it is also not preserved
by the SCSA). In D = 4 at large dc it is indeed preserved (consistent with the RG), since in that case one has

lim
dc→+∞

ci =

{
1

2
,

1

2
,

1

4
,− 1

4
√

3
,

5

12

}
(90)

which indeed belongs to the subspace (89). However, from the above discussion, we expect the two-loop corrections
in the RG to fail to preserve this subspace. This indicates that the study of the RG of the crumpling transition to
higher order in ε will be qualitatively different from the one given in [46], a subject we leave for future investigation.
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C 3. RG flow associated to the SCSA equations

It is instructive to recast the SCSA equations into an RG flow. We start with large dc, and discuss general dc below.
The SCSA equations allow one to obtain the exact RG beta function to leading order in 1/dc in any dimension D.
Indeed, taking a derivative ∂` = −q∂q on both sides of equations (67) we obtain,

∂`w̃i(q) = − w2
i

(1 + wiπ1(q))2
(−q∂q)πi(q) = −w̃i(q)2(−q∂qπi(q)) ' −w̃i(q)2κ−2εq−εai(0, D) (91)

where we have used (70) setting η → 0, i.e., using the bare propagator with Zκ = κ. The natural dimensionless
coupling for the RG is

ŵi := w̃i(q)κ
−2q−ε (92)

In terms of these couplings we obtain the RG equation for dc = +∞, exact for any ε = 4−D,

∂`ŵi = εŵi − εai(0, D)ŵ2
i , i = 1, 2 (93)

∂`

(
ŵ3 ŵ4

ŵ4 ŵ5

)
= ε

(
ŵ3 ŵ4

ŵ4 ŵ5

)
− ε
(
ŵ3 ŵ4

ŵ4 ŵ5

)(
a3(0, D) a4(0, D)
a4(0, D) a5(0, D)

)(
ŵ3 ŵ4

ŵ4 ŵ5

)
(94)

The fixed point of these RG equations which describes the anisotropic membrane for dc = +∞ is then ŵi = ŵ∗i with

ŵ∗i =
1

ai(0, D)
, i = 1, 2 ,

(
ŵ∗3 ŵ∗4
ŵ∗4 ŵ∗5

)
=

(
a3(0, D) a4(0, D)
a4(0, D) a5(0, D)

)−1

(95)

is consistent with the above analysis (81). The calculation of the exponent η to leading order O(1/dc) is then as
follows. If one calculates −k∂k(Σ(k)/k4) from (69) one obtains a convergent integral. Replacing w̃i(q) = κ2qεŵi in
(69) and using (73) we can write the RG function η = η(ŵ) as

η = −k∂k(Σ(k)/k4) =
2

dc

∑
i=1,5

b̃i(D)ŵi , b̃i(D) = lim
η→0

ηbi(η,D), (96)

where in the r.h.s we used η as a regulator to obtain the needed (finite) integral. One can then easily check that at
the fixed point (95) the exponent η = η(ŵ∗) recovers the result η ' C(D)/dc predicted by the self-consistent equation
(77).

In the above RG equations (93) we have neglected the renormalization of κ which is subdominant in 1/dc. We can
now take it into account and define accordingly the running RG couplings as ŵi := w̃i(q)κ

−2q2η−ε = w̃i(q)κ̃(q)−2q−ε.
This allows to write the SCSA equations as RG flow equations for any dc as follows

∂`ŵi = (ε− 2η)ŵi − (ε− 2η)ai(D, η)ŵ2
i , i = 1, 2 (97)

∂`

(
ŵ3 ŵ4

ŵ4 ŵ5

)
= (ε− 2η)

(
ŵ3 ŵ4

ŵ4 ŵ5

)
− (ε− 2η)

(
ŵ3 ŵ4

ŵ4 ŵ5

)(
a3(D, η) a4(D, η)
a4(D, η) a5(D, η)

)(
ŵ3 ŵ4

ŵ4 ŵ5

)
, (98)

where the η RG function, η = η(ŵ), is defined as

η := −k∂kκ̃(k) = −k∂k(Σ(k)/k4) =
2

dc
η
∑
i=1,5

bi(η,D)ŵi. (99)

The fixed point of these RG equations, corresponding to all bare wi being nonzero, i.e., the anisotropic membrane
fixed point, is given by

ŵ∗i =
1

ai(D, η∗)
, i = 1, 2 ,

(
ŵ∗3 ŵ∗4
ŵ∗4 ŵ∗5

)
=

(
a3(D, η∗) a4(D, η∗)
a4(D, η∗) a5(D, η∗)

)−1

, (100)

where η∗ is determined by (99) at the fixed point. Equivalence with the full SCSA equation (77) is then immediately
follows.

Other fixed points
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As discussed in the main text, there are a number of other subspaces which are preserved by renormalization within
the SCSA method (hence also at large dc). These can be labeled as Si1,...in , with 1 ≤ i1 < i2 < · · · < in ≤ 5, where
the only nonzero bare couplings wi are wi1 , . . . win . For those with w4 = 0, i.e., i1, . . . , in ∈ {1, 2, 3, 5}, there are
four with n = 1, five with n = 2 (that is S12, S13, S15, S23, S25) together with S123 and S125 (note that w4 = 0 is not
preserved unless one has also w3 = 0 or w5 = 0). Then, one has S345, S1345, S2345, S12345 with w4 6= 0. In each of
these subspaces there is a fixed point denoted by Pi1,...in . It is obtained from (100) by setting to zero the ŵ∗i not in
the set {i1, . . . , in} (disregarding their corresponding equation, except a4 which must be set to zero when ŵ4 = 0).

Their associated SCSA equation is obtained as dc
2 =

∑5
i=1 bi(η,D)ŵ∗i . Let us give some examples.

1. The fixed point P13 describes the isotropic flat phase. Its exponent η is determined by dc
2 = b1

a1
+ b3
a3

i.e., Eq. (19)

in the main text, leading to the well known value η = 4/(1 +
√

15) = 0.820852.., ζ = 1
7 (8 −

√
15) = 0.589574..

for the exponents describing out-of-plane fluctuations of the physical membrane D = 2, dc = 1. The amplitudes
are c1 = A/a1 and c3 = A/a3 which gives ci = { 1

2 , 0,
1

D+1 , 0, 0}, leading to limq→0 λ̃(q)/µ̃(q) = − 2
D+2 and to

the universal Poisson ratio, σR = −1/3 within the SCSA.

2. The fixed point S1345 has ŵ∗2 = 0 and describes the case where µ2 = µ1 = 0. The exponent η is determined by
(20) in the text, which for D = 2 gives

dc
2

=
93

5(η − 4)
+

6

η − 2
+

1

η
+

16

15− 10η
+ 8. (101)

For dc = 1 one finds η = 0.853967, and ζ = 0.573016. The amplitudes ci are then given by (83), where one sets
c2 = 0. For D = 2, dc = 1 inserting the above value of η one finds

ci =

{
1

2
, 0, 0.346325,−0.0550542, 0.233302

}
. (102)

Note that the manifold ŵ2 = 0 is however not preserved within the ε-expansion (see analysis in section below).

Remark. One bonus of these RG equations, as compared to the original self-consistent equations, is that one can
determine the direction of the RG flow, the Hessian around each fixed point, and the various crossovers in the flow. For
instance, to determine the Hessian around a fixed point ŵ∗i , with associated exponent η∗, we need the variation of η.

Variation of (99) around the fixed point gives δη = −
∑5
j=1 bjδŵj∑5
k=1 b

′
kŵ
∗
k

, where we have denoted ai ≡ ai(D, η∗), bi ≡ bi(D, η∗),
a′i ≡ ∂ηbi(D, η)|η=η∗ , b

′
i ≡ ∂ηbi(D, η)|η=η∗ . Using this, one can obtain the Hessian, and the flow around the fixed

point. We defer this study to the future[58].

D. Renormalization group calculation for the h4 theory

Here we present the details of the one-loop RG calculation for the quartic model h4 defined in Eq. (6) of the main
text. The power-counting is the same as in the standard φ4 O(N) model with quartic nonlinearities which are relevant
for D < Duc = 4. This allows us to control the RG analysis by an expansion in ε = 4−D around D = 4 [53–55] Here
we will simply display the calculation using the momentum shell RG, i.e introducing a running UV cutoff Λ` = Λe−`

and integrating the internal momentum in the shell Λ`e
−d` < q < Λ`. However, we have checked all of our formula

also using dimensional regularization for D < 4 with the external momentum as an IR cutoff.
In the critical theory there are two types of relevant one-loop corrections, the correction to the h4 vertex δR and

the correction to the bending rigidity δκ. Away from criticality one also needs to calculate the correction to γ.

D 1. Correction to the quartic interaction

Having constructed the generic vertex Rαβ,γδ(q), the analysis of the diagrams is then quite similar to that of the
O(N) model[53–55]. There are three distinct channels contributing to the renormalization of Rαβ,γδ(q), with only
one of them taken into account in the large dc and SCSA analysis. The corrections to the quartic coupling can be
written as the sum

δR = δR(1) + δR(2) + δR(3) (103)
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depicted by the three diagrams in Fig.2.

The contribution from the first (vacuum polarization) diagram, proportional to dc, is given by the following integral

δR
(1)
αβ,γδ(q) = −Tdc

κ2
Rαβ,γ′δ′(q)Rγ′′δ′′,γδ(q)

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′(qδ′ − pδ′)pγ′′(qδ′′ − pδ′′)

p4|q− p|4
, (104)

≈ −Tdc
κ2

Rαβ,γ′δ′(q)Rγ′′δ′′,γδ(q)

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′pδ′pγ′′pδ′′

p8
(105)

where in the second line we have kept only the leading terms in D = 4.

Similarly, the contribution from the second (vertex correction) diagram is given by

δR
(2)
αβ,γδ(q,k3) = −4

T

κ2
symRαβ,γ′δ′(q)

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′(qδ′ − pδ′)pγ′′(qδ′′ − pδ′′)Rγ′′γ,δ′′δ(p− k3)

p4|q− p|4
, (106)

≈ −4
T

κ2
Rαβ,γ′δ′(q)

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′pδ′pγ′′pδ′′Rγ′′γ,δ′′δ(p)

p8
(107)

where sym denotes the symmetrization (α, β)↔ (γ, δ). Finally, the contribution from the third (box) diagram is

δR
(3)
αβ,γδ(q,k1) = −4

T

κ2

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′(qδ′ − pδ′)pγ′′(qδ′′ − pδ′′)Rαγ′,γδ′(k1 − p)Rγ′′β,δ′′δ(k2 + p)

p4|q− p|4
, (108)

≈ −4
T

κ2

∫ Λ`

Λ`e−d`

dDp

(2π)D
pγ′pδ′pγ′′pδ′′Rαγ′,γδ′(p)Rγ′′β,δ′′δ(p)

p8
. (109)

where we recall that q = k1 + k2. Note that one should symmetrize with the crossed diagram but at the level of the
last step exchanging γ′′ and δ′′ does not make a difference.

To evaluate these integrals we now insert the decomposition Rαβ,γδ(q) =
∑5
i=1 wi(Wi(q))αβ,γδ and use the defi-

nitions and the properties of the projectors summarized in Section A. We further use the formula for the angular
averages (denoted 〈. . . 〉, where k̂ = k/|k|) 〈k̂αk̂β〉 = 1

D δαβ and 〈k̂αk̂β k̂γ k̂δ〉 = 1
D(D+2) (δαβδγδ + δαγδβδ + δαδδγβ)[15].

Denoting δw = (δw1, δw2, δw3, δw4, δw5) the one loop corrections to the couplings wi from the first diagram are

δw =
−dc

D(D + 2)

(
2w2

1, 2w
2
2, (D + 1)w2

3 + 2
√
D − 1w4w3 + 3w2

4, w4(
√
D − 1w4 + 3w5) + w3(Dw4 +

√
D − 1w5 + w4),

(D + 1)w2
4 + 2

√
D − 1w5w4 + 3w2

5

)
× T

κ2

∫ Λ`

Λ`e−d`

dDp

(2π)D
1

p4
(110)

The contribution of the second diagram reads

δw =
−4

D(D + 2)

(
w1(2w5 − w2), w2(2w5 − w2),

w2

2
((D2 − 3)w3 +

√
D − 1(D + 1)w4) + w5(Dw3 +

√
D − 1w4 + w3),

w2((D2 − 1)w3 +
√
D − 1(D2 +D − 4)w4 + (D2 − 1)w5) + 2w5((D − 1)w3 +

√
D − 1(D + 4)w4 + (D − 1)w5)

4
√
D − 1

,

w5(
√
D − 1w4 + 3w5) +

w2

2
(
√
D − 1(D + 1)w4 + (D − 1)w5)

)
× T

κ2

∫ Λ`

Λ`e−d`

dDp

(2π)D
1

p4
(111)

The contribution of the third diagram reads

δw =
−1

D(D + 2)

((
D2 − 2

)
w2

2 + 4Dw5w2 + 8w2
5,
(
D2 − 2

)
w2

2 + 4Dw5w2 + 8w2
5,

(D2 +D − 3)w2
2 + 4(D + 1)w2

5 + 4w5w2,
√
D − 1(w2 − 2w5)2, (D2 − 1)w2

2 + 4(D − 1)w5w2 + 12w2
5

)
T

κ2

∫ Λ`

Λ`e−d`

dDp

(2π)D
1

p4

where we have kept the explicit factors D in the geometric factors.
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FIG. 2. Feynman diagrams for one-loop corrections to the quartic vertex Rαβ,γδ(q), with (a) ”vacuum polarization” δR
(1)
αβ,γδ(q),

(b) ”vertex correction” δR
(2)
αβ,γδ(q,k3), (c) ”box diagram” δR

(3)
αβ,γδ(q,k1).

D 2. Correction to the bending rigidity κ

The correction to the self-energy to first order in perturbation theory O(R) can be read off from (69) as

δΣ(k) =
2T

κ
kαkδ

∫
q

(kβ + qβ)(kγ + qγ)Rαβ,γδ(q)
1

|k + q|4
(112)

from which we will identify the corrections to κ and γ from the small external momentum k expansion

δΣ(k) = δγ k2 + δκ k4 +O(k6) (113)

The calculation of (112) proceeds by inserting again Rαβ,γδ(q) =
∑5
i=1 wi(Wi(q))αβ,γδ, performing the expansion

at small k of the numerator, and the resulting contractions of indices. In the course of the calculation one needs the
leading behavior near D = 4 and expansion in k of three integrals. One uses the expansion

1

|k + q|4
=

1

q4
(1− 4

k · q
q2
− 2

k2

q2
+ 12

(q · k)2

q4
+O(k3)) (114)

The first integral is∫
dDq

(2π)D
1

|q + k|4
qα =

∫
dDq

(2π)D
qα
q4

(
1− 4

k · q
q2

+O(k2)

)
= −4kβ

δαβ
D

∫
dDq

(2π)D
1

q4
+O(k2) (115)
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It can also be obtained by taking the ratio limb→0,D→4
Iα(a=2,b)
I(a=2,b) = −pα using Eqs. A34 and A43 in [15].

The second integral is ∫
dDq

|q + k|4
qαqβqγ
q2

=

∫
dDq

q4

qαqβqγ
q2

(
1− 4

k · q
q2

+O(k2)

)
(116)

= − 4

D(D + 2)
(δαβkγ + δαγkβ + kαδβγ)

∫
dDq

(2π)D
1

q4
+O(k2) (117)

One can check that this is also the result from A34 and A51 in [15], i.e. limb→0,D→4,D=2a+2b
Iαβγ(a=2,b+1)

I(a=2,b) , being

careful to obey the constraint D = 2a+ 2b when taking the limits.
The third integral is∫

dDq

|q + k|4
qαqβ =

∫
dDq

q4
qαqβ

(
1− 4

k · q
q2
− 2

k2

q2
+ 12

(q · k)2

q4

)
(118)

=
δαβ
D

∫
dDq

(2π)D
1

q2
− 2k2 1

D
δαβ

∫
dDq

(2π)D
1

q4
+

12

D(D + 2)
kγkδ(δαβδγδ + δαγδβδ + δαδδβγ)

∫
dDq

(2π)D
1

q4
(119)

=
δαβ
D

∫
dDq

(2π)D
1

q2
+

(
1

D
δαβ(−2 +

12

D + 2
)k2 +

24

D(D + 2)
kαkβ

)∫
dDq

(2π)D
1

q4
(120)

It can also be obtained from limb→0,D→4
Iαβ(a=2,b)
I(a=2,b) = pαpβ from A34 and A48 in [15].

We finally obtain the corrections δγ and δκ as

δγ =
2T

κ

((D − 1)w2 + 2w5)

2D

∫
dDq

(2π)D
1

q2
= |D→4

2T

κ

1

8
(3w2 + 2w5)

∫
dDq

(2π)D
1

q2
(121)

δκ =
2T

κ

−
(
D2 +D − 2

)
w2 + (D − 2)(D + 1)w1 +Dw3 − 6

√
D − 1w4 − 2Dw5 + w3 + 11w5

D(D + 2)

∫
dDq

(2π)D
1

q4
(122)

= |D→4
2T

κ

1

24

(
10w1 − 18w2 + 5w3 − 6

√
3w4 + 3w5

)∫ dDq

(2π)D
1

q4
(123)

where we will calculate the remaining integral using momentum shell
∫

dDq
(2π)D

1
q4 →

∫ Λ`
Λ`e−d`

dDq
(2π)D

1
q4 . The correction

δγ (given by a UV divergent integral) obtained above is analogous to the usual non universal shift in the critical
temperature for O(N) models, and of little interest to us since we will tune the bare γ so that the system is at its
critical point γR = 0 (i.e. γ + δγ = 0). Said otherwise, the bare term in the model is 1

2 (γ − γc)(∇h)2.

D 3. Final RG equations

We now use that the integral
∫ Λ`

Λ`e−d`
dDp

(2π)D
1
p4 = CD

1
ε (eεd`− 1)Λ−ε` = C4Λ−ε` d`+O(ε) with ε = 4−D and C4 = 1

8π2 .

We define the scaled dimensionless coupling

w̃i =
T

κ2
wiC4Λ−ε` (124)

To derive the flow equation we calculate ∂`w̃i taking into account (i) the rescaling (ii) the sum of the three diagrams
which correct R (specifying D = 4) leading to δw̃i = βi[w̃]d` =

∑
j,k cijkw̃jw̃kd` (iii) the extra term from the correction

δ(κ−2) = − 2
κ3 δκ which leads to the η function, η[w̃]. This leads to the RG equation

∂`w̃i = εw̃i + βi[w̃]− 2η[w̃]w̃i , η[w̃] =
∂`κ

κ
(125)

where (123) leads to (from now on for notational convenience we will suppress the tilde on w)

η[w] =
1

12
(10w1 − 18w2 + 5w3 + 3w5 − 6w44) (126)
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gives the η exponent at the fixed point. Putting all together, the final RG equations are (with w44 =
√

3w4)

∂`w1 = εw1 +
1

12

(
−(dc + 20)w2

1 + 2 (19w2 − 5w3 − 5w5 + 6w44)w1 − 7w2
2 − 4w2

5 − 8w2w5

)
(127)

∂`w2 = εw2 +
1

12

(
−(dc − 31)w2

2 − 20w1w2 − 2 (5w3 + 9w5 − 6w44)w2 − 4w2
5

)
∂`w3 = εw3 +

1

24

(
− 5dcw

2
3 − dcw2

44 − 2dcw3w44 − 17w2
2 + 46w3w2

−10w44w2 − 20w2
3 − 20w2

5 − 40w1w3 + 24w3w44 − 4w5 (w2 + 8w3 + w44)

)
∂`w44 = εw44 +

1

24

(
− w44 (5(dc + 4)w3 + (dc − 24)w44 + 40w1)− w5 (3(dc + 2)w3 + (3dc + 28)w44)

−3w2
2 + (−15w3 − 3w5 + 56w44)w2 − 18w2

5

)
∂`w5 = εw5 +

1

72

(
−9(dc + 12)w2

5 − 6w5 ((dc − 10)w44 + 20w1 − 27w2 + 10w3)− 5
(
dcw

2
44 + 9w2

2 + 6w44w2

))

Large dc limit. In the above RG equations (127) the couplings wi have not been rescaled by 1/dc. If one rescales
them, and then take the large dc limit one obtains

∂`w1 = εw1 −
w2

1

12
, ∂`w2 = εw2 −

w2
2

12
, ∂`w3 = εw3 −

1

24

(
5w2

3 + 2w44w3 + w2
44

)
, (128)

∂`w44 = εw44 −
1

24
(3w5 (w3 + w44) + w44 (5w3 + w44)) , ∂`w5 = εw5 −

1

72

(
9w2

5 + 6w44w5 + 5w2
44

)
.

Recall that wi here is in fact the rescaled coupling w̃i given in (124). Hence comparing with (92) (the factor T being
omitted there) we see that we can identify wi ≡ 1

8π2 ŵi. Inserting into (128) we obtain a set of RG equations for the

ŵi which, as one can check using limε=4−D→0 εai(D, 0) = 1
192π2 {2, 2, 5,

√
3, 3} and w44 =

√
D − 1w4, agree exactly

with the RG equations at large dc (93) for D = 4. Finally note that η[w] = O(1/dc) at large dc consistent with the
SCSA and large dc expansion.

D 4. Analysis of the RG equations

Instability of the isotropic membrane fixed point. The case of the rotationally invariant membrane is
obtained setting w2 = w4 = w5 = 0, which is a manifold preserved by the RG. The RG flow (127) then reduces within
this subspace (w1, w3) to

∂`w1 = εw1 −
1

12
w1 ((dc + 20)w1 + 10w3) , (129)

∂`w3 = εw3 −
5

24
w3 ((dc + 4)w3 + 8w1) . (130)

We recall that in that subspace (w1, w3) are related to (µ, λ) via w1 = µ and w3 = µ+ (D− 1) µλ
λ+2µ as obtained from

(45), and given in (8) in the text. Using that relation one can derive RG equations for µ and λ which can be checked
to be identical to the one in Ref. [6] (taking into account a difference by a factor of 4 in the definition of µ, λ there).
There are four fixed points{

w1 → 0, w3 →
24ε

5(dc + 4)

}
,

{
w1 →

12ε

dc + 24
, w3 →

24ε

5(dc + 24)

}
, {w1 → 0, w3 → 0} ,

{
w1 →

12ε

dc + 20
, w3 → 0

}
,

(131)
which correspond to (in the same order [57])

(µ, λ) = (0, 0); (
12ε

24 + dc
,
−4ε

24 + dc
); (0,

2ε

dc
); (

12ε

20 + dc
,
−6ε

20 + dc
) . (132)
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The second one is the standard fixed point which describes the isotropic flat membrane within the ε-expansion
[6]. The third one describes the fixed connectivity fluid (zero shear modulus), that is a model for nematic elastomer

membranes[56]. The fourth one is located on the line where the bulk modulus vanishes, i.e. 2µ+Dλ = 2(D−1)w1w3

Dw1−w3
= 0

which separates the thermodynamically stable and unstable regions of parameters, and controls the transition between
these regions. The exponent η is given by

η = η[w] =
5

12
(2w1 + w3) =

5µ(λ+ µ)

2(λ+ 2µ)
(133)

and gives ηiso = 12ε
24+dc

for the isotropic membrane, as in [6].
Let us now discuss the stability of the isotropic membrane to the non-rotationally invariant terms (due to an

external orienting field ~E) in the model. For this we calculate the eigenvalues and associated eigenvectors (represented
as columns) of the Hessian around the isotropic fixed point, which are given by{

0,− εdc
dc + 24

,
εdc

dc + 24
,

εdc
dc + 24

,−ε
}

(134)
16

dc+24 − 1
2 − 19dc+78

5(dc+12) − 19dc−6
3(dc+12)

5
2

0 0 1
5 (−dc − 2) −dc3 0

− 2(dc+8)
5(dc+24) 1 − 23dc−24

25(dc+12) −
26(dc−6)
15(dc+12) 1

1 0 0 1 0
0 0 1 0 0

 . (135)

The second and last columns are the two stable directions which are also obtained if one diagonalises the flow inside
the isotropic subspace. In the full space of five couplings however, we see that the isotropic fixed point is unstable in
two directions, with eigenvalue ρ = εdc

dc+24 , and marginal in a third direction.
Crossover for small anisotropy. To discuss the effect of a small anisotropy let us first recall the analysis of the

length scales in the isotropic membrane. The dimensionless couplings w̃1, w̃3 (we temporarily restore the tilde) at
scale L are of order

w̃1,3 ∼
TK0

κ2
L4−D , L < Lanh ∼ (

κ2

TK0
)1/(4−D) , (136)

w̃1,3 ' w̃∗1,3 ∼
TK0(L)

κ(L)2
L4−D , L > Lanh , (137)

where Lanh is the length scale below which the harmonic theory holds (and the elastic moduli and bending rigid-
ity equal their bare values). For L > Lanh these are corrected and one has κ(L) ∼ κ(L/Lanh)η and K0(L) ∼
K0(L/Lanh)−(4−D−2η). The length Lanh is itself determined when w̃1,3 reach numbers of order unity, of order their
value at the fixed point.

Consider now the model in presence of very small bare symmetry breaking couplings µ1, µ2, λ1, λ2 assumed to be of
the same order. Then, from (45) the bare w0

2, w
0
5, w

0
44 are linear combinations of those, hence small and of the same

order. These couplings are relevant and grow as

w̃i ∼
Tw0

i

κ2
L4−D , L < Lanh , (138)

w̃i ∼
Tw0

i

κ2
L4−D

anh (
L

Lanh
)ρ , L > Lanh , (139)

where w0
i denote any linear combination of the bare symmetry breaking couplings (i = 2, 4, 5) and ρ was calculated

above in the ε expansion. The length scale Lanis beyond which anisotropy will change the property of the system is
obtained when w̃i becomes of order unity, hence

Lanis ∼ Lanh(
K0

w0
i

)1/ρ , ρ =
εdc

dc + 24
+O(ε2) , (140)

whenever w0
i ∼ µ1,2, λ1,2 � K0.

Search for new fixed points
We now study the RG flow (127) in the five parameter space, for general codimension dc.
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For the physical case, dc = 1, we find 12 real fixed points. However all of them are repulsive, one with two unstable
directions, the others with even more. Hence around D = 4 there is no perturbative fixed point and we have a
runaway RG flow.

We find that an attractive fixed point exists only for high enough dc. The situation is very similar to the one for
the crumpling transition, with d replaced by dc. For instance, for dc = 220 we find one, and only one, fully attractive
fixed point

wi = {0.05063, 0.05063, 0.01912, −0.03150, 0.04012}, (141)

with eigenvalues −1.,−0.86129,−0.86129,−0.46296,−0.08355 One can check that this fixed point lies in the manifold

w1 = w2 = µ0 , w3 =
1

2
(D − 1)λ0 + µ0 , w4 =

1

2

√
D − 1λ0 , w5 =

1

2
λ0 + µ0 , (142)

with µ0 = 0.050628 and λ0 = −0.021002 This is the manifold mentioned in the text which leads to a purely local
interaction between the tangent fields, i.e.

Rαβ,γδ(q) =
µ0

2
(δαγδβδ + δαδδβγ) +

λ0

2
δαβδγδ . (143)

One can check by inserting (142) into (127) that this manifold is preserved by the RG. Furthermore, inside this
manifold one can check inserting (142) into (126) that η[w] = 0 to the order O(ε), and that the RG flow can be
written as

∂`µ0 = εµ0 +
1

12

(
−(dc + 21)µ2

0 − λ2
0 − 10λ0µ0

)
, (144)

∂`λ0 = ελ0 +
1

12

(
−(6dc + 7)λ2

0 − 2(3dc + 17)λ0µ0 − (dc + 15)µ2
0

)
. (145)

Defining u = µ and v = λ/2 + µ/4 one can check that these equations are identical to the Eqs. (5a,b) in Ref. [46]
(for their u, v) setting there K4 = 1/4. Hence they are identical to those of the crumpling transition but with d→ dc.
From [46] we know that this fixed point exists only for d > 219. This fixed point, which we interpret here as describing
the anisotropic membrane in its flat phase at the buckling transition found here within the RG in the D = 4 − ε
expansion is the one found within the SCSA (and large dc) expansion described in the Section D4. While in the RG
it disappears near D = 4 for dc < 219, within the SCSA it survives for the physical dimension D = 2 and dc = 1.
Hence while the RG suggests a fluctuation driven first order transition in the physical dimension, the SCSA suggests
a continuous transition. The question of which is the most accurate description is beyond the scope of the present
work and would presumably require numerical simulations, as was the case for the crumpling transition (see e.g. [23]
for discussion and references).

E. Renormalization group for the u, h theory

Here we perform the one loop RG study on the u, h theory given in (35), (36), i.e. before integration over the
phonons. It allows to obtain some extra information (the renormalization of µ) and provides a useful check on the
RG flow of the previous Section. We can rewrite the model as

F [u,~h] =

∫
dDx

1

2
(∇2h)2 +

1

2
(Gu)−1

αβuαuβ + uαC
µ+µ1,λ+λ1

α,γδ Aγδ +
1

2
Cµ+µ2,λ+λ2

αβ,γδ AαβAγδ , Cµ,λα,γδ = −∂βCµ,λαβ,γδ ,

(146)
where we have defined, in Fourier space, the uhh vertex

C1
α,γδ(q) = Cµ+µ1,λ+λ1

α,γδ (q) = −i ((λ+ λ1)qαδγδ + (µ+ µ1)(δαδqγ + δαγqδ)) , (147)

and the bare phonon propagator

(Gu)−1
αβ(q) = µPTαβ(q) + (λ+ 2µ)PLαβ(q) . (148)

Here we calculate the corrections to the vertices, hence we evaluate to lowest order in the perturbation theory in
the nonlinearities, the vertices of the effective action Γuu,Γuhh,Γhhhh. These vertices will give us the corrections
respectively to (µ, λ), (µ1, λ1) and (µ2, λ2). The corresponding diagrams are shown in the Fig.3.
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FIG. 3. Feynman diagrams for one-loop corrections to the renormalized vertices in the u−h description of the critical buckling
membrane.

E. 1 Calculation of Γuu

Let us calculate the one loop corrections to the phonon propagator, given by the single diagram in Fig.3. The
effective action for the u2 term is given, to one loop, as

1

2

∫
q

u(q) · Γuu(q) · u(−q) =

∫
q

1

2
uα(q)uβ(−q)[G−1

αβ(q)− Cµ+µ1,λ+λ1

α,γδ (q)Cµ+µ1,λ+λ1

α′,γ′δ′ (−q)〈Aγδ(q)Aγ′δ′(−q)〉0] ,

(149)

where here and below · denotes index summations. We have the following average, performed with the quadratic
action

〈Aγδ(q)Aγ′δ′(−q)〉0 =
1

2
dcΠγδ,γ′δ′(q) , Παβ,γδ(q) = sym

∫
p

pα(qβ − pβ)pδ(qγ − pγ)G(p)G(q− p) , (150)

which leads to

(Γuu)αβ(q) = G−1
αβ(q)− dc

2
Cµ+µ1,λ+λ1

α,γδ (q)Cµ+µ1,λ+λ1

α′,γ′δ′ (−q)Πγδ,γ′δ′(q) . (151)

Within the Wilson RG and to leading order in ε one has

Παβ,γδ(q) ' 1

κ2

∫
p

pαpβpδpγ
p8

=
1

κ2
Sαβ,γδ

∫
p

1

p4
, (152)

i.e., the dependence in the external momentum q � p is subdominant, where p is the internal momentum in the loop.
We have defined

S
(4)
αβ,γδ = Sαβ,γδ =

1

D(D + 2)
(δαβδγδ + δαγδβδ + δαδδβγ) . (153)

Hence we obtain

Γuu(q) = G−1(q)− dc
2κ2

C1(q) · S · (C1(−q))T
∫
p

1

p4
. (154)
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Replacing
∫
p

1
p4 → C4Λ−ε` and performing the contractions, one obtains the following corrections to µ and λ

δµ = − dc
12κ2

(µ+ µ1)2C4Λ−ε` d` , (155)

δλ = − dc
24κ2

[12(λ+ λ1)2 + 2(µ+ µ1)2 + 12(λ+ λ1)(µ+ µ1)]C4Λ−ε` d` .

Exponent ηu. The first equation can be rewritten to obtain the anomalous dimension of the phonon field, i.e the
exponent ηu defined by µ(L) ∼ L−ηu ,

ηu = − δµ

µd`
=
dc
12
gµ =

dc
12

(w̃1 − w̃2) , (156)

where we have defined the proper dimensionless coupling gµ = (µ+µ1)2

µκ2 C4Λ−ε` which we related to the w̃i using (45)

and (124). At the fixed point this gives the exponent ηu:
- at the isotropic membrane fixed point w̃2 = 0 and w̃1 = 12ε

dc+24 , leading to ηu = dcε
dc+24 . Since η = 12ε

dc+24 we check,
to first order in ε the exact relation (to all orders), ηu = ε− 2η guaranteed by rotational invariance [6].

- at the anisotropic membrane fixed point w̃1 = w̃2 hence ηu = 0 to order O(ε). The relation ηu = ε− 2η does not
hold (since η = 0 there, to O(ε)).

Note that one can also define the screening exponent ηw for the coupling constants wi such that wi(L) ∼ L−ηw . It
is given by the graphical corrections βi = δwi

wi
. Since the RG equation for the scaled dimensionless coupling w̃i reads

∂`ŵi = (ε − 2η(ŵ) − βi[w̃])w̃i, at any fixed point one must have βi = ε − 2η. In presence of anisotropy, βi becomes
different from ηu. The nonlinear interactions are still screened, since η < ε/2 at the anisotropic fixed point, but this
screening is not directly related to the renormalization of µ and λ.

E 2. Calculation of Γuhh

We now calculate the vertex corrections given by the three diagrams in Fig.3. They are corrections to the term
uhh in (146), which we write in the form ∫

q

uα(−q) δVα,βγ(q)Aβγ(q) . (157)

One obtains for the first diagram

δV
(1)
α,βγ(q) = −dc

2
(C1(q) · S · C2)α,βγ

1

κ2

∫
p

1

p4
, (158)

where C1(q) is the three index tensor given in (147) (i.e., the bare uhh vertex) and we denote here and below C2 the

four index tensor Cµ+µ2,λ+λ2

αβ,γδ (entering the bare h4 vertex) defined in (35). The second diagram gives the correction

δV
(2)
α,βγ(q) = −C1

α,α′α′′(q)Sα′β′α′′γ′C
2
β′β,γ′γ

1

κ2

∫
p

1

p4
. (159)

Finally, the third diagram gives, using that C1
β,γδ(q) = −iqαC1

αβ,γδ (where the momentum independent four index

tensor Cµ+µ1,λ+λ1

αβ,γδ is denoted C1)

δV
(3)
α,βγ(q) = C1

α,β′γ′(q)

[
S

(8)
β′γ′β′′γ′′s′s′′α′α′′

(
1

2µ+ λ
− 1

µ

)
+

1

µ
S

(6)
β′γ′β′′γ′′s′s′′δα′α′′

]
C1
α′s′,β′′βC

1
α′′s′′,γ′′γ

1

κ2

∫
p

1

p4
,

(160)

where we defined the 6 and 8 index symmetric tensors, schematically,

S
(6)
β′γ′β′′γ′′s′s′′ =

1

D(D + 2)(D + 4)
(δδδ + 14 terms) , (161)

S
(8)
β′γ′β′′γ′′s′s′′α′α′′ =

1

D(2 +D)(4 +D)(6 +D)
(δδδδ + 104 terms) . (162)
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Performing the contractions we obtain for i = 1, 2, 3

δV
(i)
α,βγ(q) = [Aiqαδβγ +Bi(qβδαγ + qγδαβ)]

1

κ2

∫
p

1

p4
. (163)

To display the results more compactly we define the new variables

Λi = λi + λ , Mi = µi + µ , i = 1, 2 . (164)

In terms of these variables the coefficients Ai, Bi read

A1 = −dc
12

(3Λ1 (2Λ2 +M2) +M1 (3Λ2 +M2)) , B1 = −dc
12
M1M2 , (165)

A2 =
1

12
(−3Λ1 (Λ2 + 5M2)−M1 (Λ2 + 7M2)) , B2 = − 1

12
M1 (Λ2 +M2) ,

A3 =
3Λ3

1µ+ Λ1M
2
1 (9λ+ 34µ) +M3

1 (5λ+ 14µ) + 13Λ2
1µM1

12µ(λ+ 2µ)
, B3 =

M1

(
Λ2

1µ+M2
1 (−(λ− 2µ)) + 4Λ1µM1

)
12µ(λ+ 2µ)

.

From these coefficients we directly obtain the corrections

δΛ1 = (A1 +A2 +A3)
1

κ2

∫
p

1

p4
, δM1 = (B1 +B2 +B3)

1

κ2

∫
p

1

p4
. (166)

Putting all contributions together and replacing
∫
p

1
p4 → C4Λ−ε` , we obtain, from the vertex corrections

δM1 =
1

12
M1

(
M2 (− (dc + 1))− Λ2 +

Λ2
1µ+M2

1 (−(λ− 2µ)) + 4Λ1µM1

µ(λ+ 2µ)

)
1

κ2
C4Λ−ε` d` , (167)

δΛ1 =
1

12

(
− dc (3Λ1 (2Λ2 +M2) +M1 (3Λ2 +M2))

+
3Λ3

1µ+ Λ1M
2
1 (9λ+ 34µ) +M3

1 (5λ+ 14µ) + 13Λ2
1µM1

µ(λ+ 2µ)
− 3Λ1 (Λ2 + 5M2)−M1 (Λ2 + 7M2)

)
1

κ2
C4Λ−ε` d` .

To recover the result for the isotropic membrane one sets Λi = λ and Mi = µ and the above corrections reduce to

δµ = − dc
12κ2

µ2C4Λ−ε` d` , (168)

δλ = − dc
12κ2

(
6λ2 + 6λµ+ µ2

)
C4Λ−ε` d` .

This simplification occurs because the second and third diagram exactly cancel due to rotational invariance. Indeed
the corrections (168) coincide with (155) (setting µ1 = λ1 = 0 there).

E. 3 Calculation of Γhhhh

We now calculate the corrections to the h4 vertex in (146). They are given by the six diagrams in Fig.3. We recall

that we denote C2 the four index tensor Cµ+µ2,λ+λ2

αβ,γδ which appears in the bare h4 vertex.

The first diagram gives the following correction to C2

δC2 = −dc
2
C2 · S · C2 1

κ2

∫
p

1

p4
. (169)

The second and third diagram give respectively

δC2
αβ,γδ = −2symC2

αα′,γγ′C
2
ββ′,δδ′Sα′β′γ′δ′

1

κ2

∫
p

1

p4
, δC2

αβ,γδ = −2C2
αβ,α′β′Sα′β′γ′δ′C

2
γγ′,δδ′

1

κ2

∫
p

1

p4
. (170)
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The fourth diagram is more complicated

δC2
αβ,γδ = −2C1

r1s1,αα′C
1
r2s2,γγ′C

1
r3s3,ββ′C

1
r4s4,δδ′

[
〈p̂α′ p̂β′ p̂γ′ p̂δ′ p̂s1 p̂s2 p̂s3 p̂s4 p̂r1 p̂r2 p̂r3 p̂r4〉

(
1

λ+ 2µ
− 1

µ

)2

(171)

+ (〈p̂α′ p̂β′ p̂γ′ p̂δ′ p̂s1 p̂s2 p̂s3 p̂s4 p̂r3 p̂r4〉δr1r2 + 〈p̂α′ p̂β′ p̂γ′ p̂δ′ p̂s1 p̂s2 p̂s3 p̂s4 p̂r1 p̂r2〉δr3r4)
1

µ

(
1

λ+ 2µ
− 1

µ

)
+

1

µ2
S

(8)
α′β′γ′δ′s1s2s3s4

δr1r2δr3r4

]
1

κ2

∫
q

1

q4
,

where 〈. . . 〉 denote angular averages and p̂ = p/p a unit vector. It was convenient to use that notational trick, rather
than the symmetric tensors of order 10 and 12, as it allows the contractions to be taken more easily. This is equal to

δC2
αβ,γδ =

(
− 2C1

r1s1,αα′C
1
r2s2,γγ′C

1
r3s3,ββ′C

1
r4s4,δδ′

1

µ2
S

(8)
α′β′γ′δ′s1s2s3s4

δr1r2δr3r4 (172)

−2

(
1

λ+ 2µ
− 1

µ

)2

(Λ1 + 2M1)4Sαβγδ

−2

(
1

λ+ 2µ
− 1

µ

)
1

µ
(Λ1 + 2M1)2[2((Λ1 + 2M1)2 −M2

1 )Sαβγδ +
M2

1

D
(δαγδβδ + δαδδβγ)]

)
1

κ2

∫
p

1

p4
.

The fifth diagram leads to the correction

δC2
αβ,γδ = sym 4C1

r1s1,αα′C
1
r2s2,γγ′C

2
β′β,δ′δ

[(
1

λ+ 2µ
− 1

µ

)
S

(8)
α′β′γ′δ′s1s2r1r2

+
1

µ
Sα′β′γ′δ′s1s2δr1r2

]
1

κ2

∫
q

1

q4
,(173)

and finally, the sixth diagram, to

δC2
αβ,γδ = sym 2C2

αβ,α′β′C
1
r1s1,δδ′C

1
r2s2,γγ′

[(
1

λ+ 2µ
− 1

µ

)
S

(8)
α′β′γ′δ′s1s2r1r2

+
1

µ
Sα′β′γ′δ′s1s2δr1r2

]
1

κ2

∫
q

1

q4
.(174)

Performing the contractions, in total we find for the corrections to the h4 vertex

δM2 =
1

12

[
−1

µ2(λ+ 2µ)2

(
µ2M2

2 (dc + 21) (λ+ 2µ)2 + Λ4
1µ

2 +M4
1

(
7λ2 + 44λµ+ 76µ2

)
(175)

+8Λ1µM1

(
2M2

1 (λ+ 4µ)− 5µM2(λ+ 2µ)
)

+ 2Λ2
1µ
(
2M2

1 (λ+ 8µ)− 5µM2(λ+ 2µ)
) 1

κ2
C4Λ−ε`

−20µM2M
2
1 (λ+ 2µ)(λ+ 4µ) + 8Λ3

1µ
2M1

)
− Λ2

2 + 2Λ2

(
Λ2

1µ+ 2M2
1 (λ+ 4µ) + 4Λ1µM1

µ(λ+ 2µ)
− 5M2

)]
1

κ2
C4Λ−ε` d` ,

and

δΛ2 =
1

12

[
]− Λ2

2 (6dc + 7)− 2Λ2M2 (3dc + 17) +M2
2 (− (dc + 15))−

(
Λ2

1µ+M2
1 (−(λ− 2µ)) + 4Λ1µM1

)
2

µ2(λ+ 2µ)2

+
4M2

(
Λ2

1µ+ 2M2
1 (λ+ 4µ) + 4Λ1µM1

)
µ(λ+ 2µ)

+
8Λ2

(
Λ2

1µ+ 2M2
1 (λ+ 4µ) + 4Λ1µM1

)
µ(λ+ 2µ)

]
1

κ2
C4Λ−ε` d` . (176)

To recover the result for the isotropic membrane one sets Λi = λ and Mi = µ and the above corrections reduce exactly,
once again, to (168). Here the simplification arises from the last five diagram cancelling due to rotational invariance.

E. 4 Final RG equations

We can now put together δµ, δλ from (155), δM1 = δµ + δµ1, δΛ1 = δλ + δλ1 from (167), and δM2 = δµ + δµ2,
δΛ2 = δλ + δλ2 from (175). This leads to the complete set of corrections to the six couplings, which is bulky and
which we will not display here in full (see below). Let us denote mi, i = 1, . . . , 6 these couplings. These corrections
read schematically δmi = dijkmjmk. To obtain the final RG flow one defines scaled dimensionless couplings m̃i, as in
(124), and take into account the corrections to κ as we did in (125), leading to ∂`m̃i = εm̃i+dijkm̃jm̃k−2η[w[m]]m̃i.
Here we denote w[m] the wi expressed as functions of the mi via the Eq. (45), and we have used the same formula
(126) for the η[w] function.
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To check that these are consistent with the RG equations obtained via the quartic theory in Section D, we simply
need to compare the above corrections δm and δw, i.e summing (110), (111) and (112) which can be written as
δwi = βi[w]d` = cijkwjwkd`. We have performed the check as follows. We have evaluated in two ways

δwi[m] =
∂wi[m]

∂mj
δmj =

∂wi[m]

∂mj
dijkmjmkd` , (177)

δwi[m] = cijkwj [m]wk[m]d` , (178)

and using w[m] from Eq. (45) we have shown using Mathematica that the two lines above are identical functions of
the mi. This provides a quite non trivial check of these two lengthy calculations. Hence the RG equation for the 5
couplings wi can be deduced from the one for the 6 couplings mi. The reverse is not true however, there is, in the
general case, additional information in the 6 coupling flow, as we discussed above in Section E. 1 it allows to obtain
δµ and from it we obtained there the exponent ηu, related to the anomalous dimension of the phonon field. Let us
indicate for completeness the combination of couplings which enters the exponent η

η =
1

12
(10w1 − 18w2 + 5w3 + 3w5 − 6w44) =

M1 (2Λ1µ+ 3λM1 + 5µM1)

2µ(λ+ 2µ)
. (179)

To express the RG flow it is natural to define the dimensionless ratio r = λ/µ and the four dimensionless coupling
constants associated to the nonlinear terms in the action

M̃2
1 =

M2
1

µκ2
C4Λ−ε` , Λ̃2

1 =
Λ2

1

µκ2
C4Λ−ε` , M̃2 =

M2

κ2
C4Λ−ε` , Λ̃2 =

Λ2

κ2
C4Λ−ε` , (180)

and then µ can still flow with eigenvalue ηu. Since the RG equations for these couplings are bulky let us only display
them here to leading order in large dc, and we have dropped the tilde for notational convenience

∂`r =
1

12
dc
(
−6Λ2

1 + rM2
1 − 6Λ1M1 −M2

1

)
, ∂`M1 =

ε

2
M1 +

1

24
M1

(
M2

1 − 2M2

)
dc , (181)

∂`Λ1 =
ε

2
Λ1 +

1

24
dc
(
−12Λ1Λ2 + Λ1M

2
1 − 6Λ2M1 − 6Λ1M2 − 2M2M1

)
, (182)

∂`M2 = εM2 −
1

12
M2

2 dc , ∂`Λ2 = εΛ2 +
1

12
dc
(
−6Λ2

2 − 6Λ2M2 −M2
2

)
. (183)

It is easy to see that the only attractive fixed point of these equations (and of the complete equations for any dc > 219)
is such that

M1 = 0 , Λ1 = 0 , M2 =
12

dc
+O(

1

d2
c

) , Λ2 = − 4

dc
+O(

1

d2
c

) . (184)

This is in agreement with the RG analysis using the h4 theory presented above. Indeed this anisotropic fixed point lies
in the manifold (142) in the wi variables, which in the current variables imply the constraints µ+µ1 = 0, µ0 = µ+µ2,

λ0 = λ + λ2 − (λ+λ1)2

λ+2µ . The fixed point (184) obeys these constraints and one can check that the values for M2 and

Λ2 are consistent with those for the fixed point of (144) at large dc (and in fact, as one can check, for any dc > 219).

Since the couplings M1 and Λ1 flow to zero exponentially with `, at the anisotropic fixed point we see that the flow
of r = λ/µ and the flow of µ, which is given (exactly) by

1

µ
∂`µ = − 1

12
M2

1 dc −
M1 (2Λ1 + (3r + 5)M1)

r + 2
(185)

lead to finite, but non-universal values for λ and µ. This is consistent with the exponent ηu = 0 as claimed above.

F. Renormalization group flow of γ

Until now we have assumed γ (and τ) to be tuned so that the system is at the critical point (the buckling transition),
i.e. γR = 0. Now we assume a small deviations away and calculate the RG flow of γ, and the associated (independent)
critical exponent ν. To check consistency, we perform the calculation both in the h4 theory and in the uh2 +h4 theory.
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F.1. Flow of γ in quartic h4 theory

To obtain the flow of γ to linear order in γ, we expand the height field propagator at small γ as

G(k) =
1

κk4 + γk2
=

1

κk4
− γ

κ2k6
+O(γ2) . (186)

Let us call here δΣ(k) = δγk2 +O(k4) the part of the self-energy proportional to O(γ) at small γ (there is also a O(1)
part calculated in Section D.2 which determines the shift in the critical point γc (see discussion there) but which is
of no interest to us here. To lowest order in perturbation theory the self-energy is given by two diagrams, the sunset
diagram in (112), leading to δγs, and the tadpole diagram δγt, with δγ = δγs + δγt. From the sunset diagram one
has from (112)

δΣs(k) = − γ

κ2
kαkγ

2

dc

∑
i=1,5

wi

∫
q

1

(k − q)6
(kβ − qβ)(Wi)αβ,γδ(q)(kδ − qδ) = δγs k2 +O(k4) . (187)

Within Wilson RG, to lowest order in ε one can write

δΣs(k) = − γ

κ2
kαkγ

2

dc

∑
i=1,5

wi

∫
q

qβqδ
q6

(Wi)αβ,γδ(q) = − γ

κ2
k2 2

dc

[(
1

2
− 1

2D

)
w2 +

1

D
w5

] ∫
q

1

q4
. (188)

In addition there is the tadpole contribution, leading to the O(γ) correction δγt

Σt(k) = kαkγR
0
αβ,γδ

∫
q

qγqδG(q) ⇒ δγtk2 = −γkαkγR0
αβ,γδ〈qγqδ〉

1

κ2

∫
q

1

q4
, (189)

where R0 is the k = 0 component of the vertex. From (59) it is equal to R0 = 1
2 C̄ where C̄ given in (60), and more

explicitly, from (61)

R0
αβ,γδ =

1

2

(
M2 −

M2
1

µ

)
(δαγδβδ + δαδδβγ) +

DλΛ2µ−DΛ2
1µ+ 2Λ2µ

2 + 2λM2
1 − 4Λ1µM1

2µ(Dλ+ 2µ)
δαβδγδ . (190)

Using 〈qγqδ〉 = 1
D δγδ, performing the contractions, one finds, for D = 4

δγt = −1

4
γ

(
2Λ2 +M2 −

(2Λ1 +M1) 2

(2λ+ µ)

)
1

κ2

∫
q

1

q4
. (191)

We can express the following combination using the wi

2Λ2 +M2 −
(2Λ1 +M1) 2

(2λ+ µ)
=

3w2 (3w3 + w5 + 2w44) + 4
(
w2

44 − 3w3w5

)
12w2 − 3w3 − 9w5 + 6w44

. (192)

Hence we obtain the flow for γ in terms of the rescaled couplings defined in (124), dropping the tilde (w̃i → wi) for
simplicity

∂`γ = −γ
[

1

dc

(
3

4
w2 +

1

2
w5

)
+

1

4

(
3w2 (3w3 + w5 + 2w44) + 4

(
w2

44 − 3w3w5

)
12w2 − 3w3 − 9w5 + 6w44

)]
. (193)

One can immediately check that for the isotropic membrane the right hand side vanishes exactly. This arises from
rotational invariance, there are no corrections to γ. Here the bare γ is tuned to the critical point γc and the flow
equation (193) is, more properly, the RG equation for the deviations to criticality γ → γ − γc.

If one now inserts the values for the couplings at the anisotropic fixed point, or more generally of any couplings
satisfying the constraints (142), one finds that the ratio appearing in (193) is of the form 0 divided by 0, i.e. it is
undetermined. We resolve this ambiguity in the next section by studying the u− h theory. To this end we study the
correlation length exponent related to the eigenvalue of γ.

Correlation length exponent ν
From the propagator (186) the bare correlation length is ξ0 =

√
κ/γ. Let us write (193) as ∂`γ = θγ. At the fixed

point γ(L) = γ0L
θ, where γ0 is the bare value. The correlation length ξ is defined by balancing κ(ξ)ξ−4 ∼ γ(ξ)ξ−2.

Taking into account that κ(ξ) ∼ ξη, we obtain

ξ = γ−ν0 , ν =
1

2 + θ − η
. (194)
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F.2. Flow of γ in quartic h, u theory

We now calculate the corrections to γ within the model described in (36),(35), and also in (146), whose RG was
studied in Section E. The nonlinear terms are

1

2
C1
αβγδ∂αuβ∂γ

~h · ∂δ~h+
1

8
C2
αβγδ(∂α

~h · ∂β~h)(∂γ~h · ∂δ~h),

where we recall that

C1,2
αβγδ = Λ1,2δαβδγδ +M1,2(δαβδγδ + δαβδγδ) (195)

in terms of the coupling defined in (164). In Fourier space, we recall that the propagator of the phonon field uα is
given by (37) and the propagator of the height field h field by (186).

The contribution to δγ = δγu + δγh is given by (i) two sunset diagrams, giving δγs
u and δγs

h: they correspond
respectively to expansion to second order in the cubic phonon vertex and to first order expansion in the quartic vertex
(ii) two tadpole diagrams δγt

u and δγt
h.

The ”sunset” diagram involving phonons gives the following correction, evaluated to lowest order in ε

δγs
u = − 1

2!

(
1

2

)2

23k̂γ k̂γ′C
1
αβγδC

1
α′β′γ′δ′

∫ >

q

(k− q)δ(k− q)δ′qαqα′

[κ(k− q)4 + γ(k− q)2] q2

[
PTββ′(q)

µ
+
PLββ′(q)

2µ+ λ

]
,

= −k̂γ k̂γ′C1
αβγδC

1
α′β′γ′δ′

∫ >

q

qδqδ′qαqα′

[κq2 + γ] q4

[
PTββ′(q)

µ
+
PLββ′(q)

2µ+ λ

]
,

= −k̂γ k̂γ′C1
αβγδC

1
α′β′γ′δ′

[
Λ2C4d`

κµ

(
δββ′〈qδqδ′qαqα′〉 −

µ+ λ

2µ+ λ
〈qδqδ′qαqα′qβqβ′〉

)
− γ

κ2µ

(
δββ′〈qδqδ′qαqα′〉 −

µ+ λ

2µ+ λ
〈qδqδ′qαqα′qβqβ′〉

)]
C4Λ−ε` d`. (196)

Using Mathematica and our spherical averages of product of qα’s, we find,

δγs
u = −1

4

(
Λ2

κ
− γ

κ2

)
µ(Λ2

1 + 4Λ1M1 + 10M2
1 ) + 3λM2

1

µ(2µ+ λ)
C4Λ−ε` d`.

(197)

The total correction δγs involving the (∂h)4 vertex is given by the sum of the sunset and tadpole diagram as

δγh = δγs
h + δγt

h =
2× 22

8
k̂αk̂γC

2
αβγδ

∫ >

q

qβqδ
κq4 + γq2

+
2× 2dc

8
k̂αk̂βC

2
αβγδ

∫ >

q

qγqδ
κq4 + γq2

,

=
1

4
C2
αβγδ

(
4

D
δβδk̂αk̂γ +

2dc
D
δγδk̂αk̂β

)∫ >

q

1

κq2 + γ
.

In D = 4 we find,

δγh =
1

4

(
Λ2

κ
− γ

κ2

)
[Λ2 + 5M2 + dc(2Λ2 +M2)]C4Λ−ε` d`.

(198)

We need to calculate the tadpole diagram involving the phonons. It arises from the term at zero momentum
A0
αβC

1
αβ,γδ〈ũ0

γδ〉 in the energy (56). The expectation value 〈ũ0
γδ〉 of the in-plane strain field is given in (57) as

〈ũ0〉 = −[Cµ,λ]−1C1〈A0〉. Hence we find

δγt
uk

2 = γ
dc
2
kαkβ [C1 · [Cµ,λ]−1 · C1]αβ,γδ〈qγqδ〉

1

κ2

∫
q

1

q4
(199)

leading to

δγt
u =

γ

4

dc (2Λ1 +M1) 2

2λ+ µ

1

κ2

∫
q

1

q4
. (200)
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Putting all four contributions together we obtain the O(γ) total correction as

δγ =
γ

4κ2

[
µ(Λ2

1 + 4Λ1M1 + 10M2
1 ) + 3λM2

1

µ(2µ+ λ)
− (Λ2 + 5M2) + dc

(
(2Λ1 +M1) 2

2λ+ µ
− (2Λ2 +M2)

)]
C4Λ−ε` d` , (201)

which leads to the RG flow equation by defining the dimensionless scaled couplings. One can check using (48), (49)
and (50) that the RG flow obtained here is formally identical to the one obtained in (193).

However, now one can check that the indeterminacy mentioned in the previous section is resolved. Indeed in the
expression (193) there is a factor M1 both in numerator and denominator, and since M1 = 0 at the anisotropic fixed
point this led to an ambiguous expression. However, above these factors cancel and the exponent θ at the fixed point
can be unambiguously determined from (201). One finds, setting M1 = Λ1 = 0

θ = −1

4
(dc(2Λ2 +M2) + Λ2 + 5M2) . (202)

We can insert M2 = ε
dc

(12 − 640
3dc

+ O( 1
d2c

)) and Λ2 = ε
dc

(−4 − 160
3dc

+ O( 1
d2c

)), which can be obtained from the RG in

the previous section, and obtain

θ = − ε

dc
(1− 66

dc
+O(

1

d2
c

)) . (203)

G. EFFECT OF THE PARAMETER τ

As indicated in the text, the parameter τ simply changes ζ, such that ζ2 is the ratio of the projected area of the
membrane on its preferred plane (here xy) to its internal size L2. To see this, we rewrite the energy density in F1 in
terms of trace and traceless parts of the nonlinear stress tensor

µ(uαβ −
1

D
δαβuγγ)2 +Bu2

αα + τuαα , (204)

where B = 2µ+Dλ
2D . Completing the square and defining uα = ũα − 1

2BD τxα, the energy density becomes

µ(ũαβ −
1

D
δαβ ũγγ)2 +B(ũαα)2 − τ2

2B
. (205)

Here ũα is the ”centered” phonon field and ũαβ = 1
2 (∂αuβ + ∂βũα + ∂α~h · ∂β~h) its associated nonlinear strain. The

new parameterization for the positions in the embedding space is thus

~rα = [ζxα + ũα]~eα + ~h , ζ = 1− 1

2BD
τ . (206)

In fact ζ is also the order parameter of the crumpling transition, and the term τuαα is identical to the term 1
2 t(∂α~r)

2

at the crumpling transition[46].

H. ESTIMATE OF THE BARE CRITICAL BUCKLING STRESS, σc

As discussed in the main text, the critical value of the bare buckling stress σc is determined by the parameter α1,
and in the presence of broken rotational symmetry of the embedding space the coupling α1 and thus critical stress
σc are nonzero in thermodynamic limit. This constrasts qualitatively with the the critical buckling stress of Euler
buckling, that is set by the finite system size and thus vanishes in the thermodynamic limit. To estimate α1, we can
consider two models of breaking embedding space rotational symmetry.

For model A, we consider a membrane in a nematic solvent with homeotropic nematic alignment of the director n̂,
with the membrane’s normal N̂ , given by energy density (per unit of membrane’s area) ε = c(n̂ · N̂)2. Now, tilting of
the membrane normal relative to the far field director field n̂∞ = ẑ, will create a long range power-law distortion[59].
Generically the distortion at angle θ will be on the scale of membrane’s linear dimension L, controlled by the Frank
free energy with elastic Frank constant K (with units of energy/length) and proportional to cos2 θ. The associated
coefficient c is thus obtained by integrating the nematic distortion strains (θ/L)2 over associated volume L3. The
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corresponding energy density (per unit of membrane area L2) is given by ε = 1
2 (K/L)θ2. Thus c = α1 = σc = K/L.

A typical scale for K ∼ 1pico-Newtons = 10eV/micron, which for a 10 micron membrane (e.g., graphene flake) gives,

σc ∼ 1eV/micron
2
. (207)

In model B, we consider an alignment of ferroelectric membrane with an external electric field ~E. This corresponds
to energy density ~p · ~E, where ~p is electric dipole 2D density. In a ferroelectric crystal 3D dipole density magnitude P
is roughly given by P = 10 micro-Coulombs/cm2 = 10−1 Coulomb/m2[38]. For an Angstrom thick membrane (like
graphene) this gives p = P × 10−10m = 10−11 Coulomb/m = 10 e/micron. For a typical switching field of E ∼ 106

V/m, this gives ~p · ~E = 10 eV/micron2, about 10 times larger σc than for model A estimate above.
One may worry that this critical stress value is shifted by the thermal fluctuation correction δγ, that we computed

in Sec. F.2, and estimate to be given by δγ ∼ T Λd−2

κ λ2. Noting that like α1, estimated above, λ2 is associated with
the rotational symmetry breaking of the embedding space, we thus expect λ2 ≈ α1. We then estimate fluctuation
shift in γ in a 2D graphene membrane (characterized by κ ≈ 1 eV) to be,

δγ = α1T/κ ≈ α1/40� α1. (208)

We thus conclude that we can neglect the fluctuations shift in γ in estimating the critical value of the buckling stress
σc given above and in the main text.
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