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Most phase I trials in oncology aim to find the maximum tolerated dose (MTD)
based on the occurrence of dose limiting toxicities (DLT). Evaluating the sched-
ule of administration in addition to the dose may improve drug tolerance.
Moreover, for some molecules, a bivariate toxicity endpoint may be more appro-
priate than a single endpoint. However, standard dose-finding designs do not
account for multiple dose regimens and bivariate toxicity endpoint within the
same design. In this context, following a phase I motivating trial, we proposed
modeling the first type of DLT, cytokine release syndrome, with the entire dose
regimen using pharmacokinetics and pharmacodynamics (PK/PD), whereas the
other DLT (DLTo) was modeled with the cumulative dose. We developed three
approaches to model the joint distribution of DLT, defining it as a bivariate
binary outcome from the two toxicity types, under various assumptions about
the correlation between toxicities: an independent model, a copula model and
a conditional model. Our Bayesian approaches were developed to be applied
at the end of the dose-allocation stage of the trial, once all data, including
PK/PD measurements, were available. The approaches were evaluated through
an extensive simulation study that showed that they can improve the perfor-
mance of selecting the true MTD-regimen compared to the recommendation of
the dose-allocation method implemented. Our joint approaches can also predict
the DLT probabilities of new dose regimens that were not tested in the study and
could be investigated in further stages of the trial.

K E Y W O R D S

Bayesian joint modeling, bivariate toxicity, cumulative probability of toxicity, dose regimen, early
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1 INTRODUCTION
Most phase I dose-finding trials in oncology aim to determine the maximum tolerated dose (MTD), which is defined as the
highest dose that does not exceed a predefined probability of dose-limiting toxicity (DLT), in a prespecified observational
window. The DLT is a binary outcome defined to summarize the patient’s toxicity profile and is usually derived from
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toxicity classification in severity grades according to the National Cancer Institute (NCI) Common Toxicity Criteria for
Adverse Events.1For instance, a DLT may be defined as the occurrence of a grade 3 or higher toxicity observed in at
least one organ. Algorithm-based designs, such as the 3+3,2 or model-based designs, such as the continual reassessment
method (CRM),3 are the most common adaptive approaches for recommending the MTD based on the occurrence of DLT.
Evaluating the schedule of administration, in addition to the dose, is increasingly being investigated during this phase
to improve drug tolerance. For example, lead-in dose step-up dosing is common in immunotherapy trials.4-8 However,
traditional designs reduce the entire dose regimen, defined by the NCI as “a treatment plan that specifies the dosage, the
schedule, and the duration of treatment”9, to a single value.

While a binary toxicity outcome is convenient in the context of small sample size, various types of DLT might not be
identified as equally important.10 Several authors have proposed to define a continuous toxicity score to differentiate the
types of toxicity10-12 and to define multiple toxicity constraints on the toxicity types and grades to define the MTD.13-16

Several methods have been developed to consider more complex schedules of administration. Dose-finding designs
have been proposed to evaluate the dose-schedule combination in a two-dimensional framework.17,18 The toxicity out-
come can also be modeled in a longitudinal setting where a dose regimen composed of multiple administrations of the
same or various doses is evaluated. Legedza and Ibrahim19 proposed modeling the repeated treatment administrations
using the total amount of drug in the body based on pharmacokinetic principles. Other methods account for the cumu-
lative effect of the dose regimens using a time to toxicity outcome and by modeling the total hazard of toxicity for the
dose regimen as the sum of the hazard of each administration.20-23 Another possibility, proposed by Fernandes et al,24 is
to estimate the conditional probability of toxicity at each administration given that no toxicity was observed in the previ-
ous administrations. Ursino et al25 developed a model for the cumulative probability of toxicity by accounting for the first
dose administered and the cumulative dose. Finally, to model the cumulative effect of multiple administrations, other
authors have included pharmacokinetic and pharmacodynamic (PK/PD) modeling in the dose regimen recommendation.
Günhan et al26 considered latent PK profiles to measure drug exposure in a Bayesian adaptive model, and Gerard et al
proposed complete PK/PD modeling to assess the relationship between the dose regimen and a specific toxicity outcome.

Motivating trial

This work is based on an ongoing first-in-human dose-escalation trial of SAR44023427 administered as a single agent to
patients with relapsed or refractory acute myeloid leukemia, high-risk myelodysplastic syndrome or B-cell acute lym-
phoblastic leukemia (NCT0359495528). SAR440234 is a novel bispecific T-cell engager antibody that activates and redirects
cytotoxic T lymphocytes (CTLs) to enhance the CTL-mediated elimination of CD123-expressing tumor cells. Due to this
mechanism of action, the main toxicity expected in this trial is the cytokine release syndrome (CRS), which is a sys-
temic inflammatory response that has been associated with the peak of cytokine, considered as a pharmacodynamic
endpoint.29,30 Since repeated administrations of the drug can reduce the risk of CRS,31 dose regimens with a fixed intrapa-
tient dose-escalation scheme are evaluated in this trial as already proposed for other similar molecules.4-8 Namely, before
administrating repeatedly the steady-state dose, defined as the maximum dose the regimen should reach, patients are
treated with lower initial increasing doses, defined as the lead-in doses. This administration scheme attempts to decrease
the peak of cytokine observed when the steady-state dose is administered directly. The objective of the trial is to find the
MTD of SAR440234, and a standard dose-escalation procedure is implemented (3+3 design), in which each dose regimen
is associated with a single dose-level.32

Objective

To obtain a better estimate of the maximum tolerated dose regimen (MTD-regimen), defined as the dose regimen having
the probability of DLT closest to the toxicity target, at the end of the trial, a Bayesian dose regimen assessment method
(DRtox) was firstly developed.33 The DRtox proposed to model the binary CRS incorporating pharmacokinetic and phar-
macodynamic (PK/PD) modeling. Since the development of the DRtox, the investigators have gained knowledge about
the potential occurrences of other important dose-limiting toxicities (DLTo) that should be considered when recommend-
ing the MTD-regimen. Unlike the CRS, the PK/PD process generating the DLTo might be unknown.34 Moreover, the CRS
can be associated with several types of other toxicities.35-38 Thus, a new modeling approach that accounts for the poten-
tial interactions between the CRS and the DLTo and the multiple dose administrations was required. Since the CRS and
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DLTo are clinically different and can be distinguished, we propose to model the DLT as a bivariate binary endpoint with
the dose regimen, preserving the PK/PD approach for the CRS and adding a cumulative modeling approach for the DLTo.

The objective of this paper is to model the probability of DLT as a bivariate binary endpoint (CRS and DLTo) in the
context of multiple dose administrations in order to determine the MTD-regimen while preserving the modeling of the
CRS with PK/PD. As PK/PD measures are usually analyzed by batch and may therefore not be available in real time after
each cohort is treated, a complete sequential dose-allocation approach incorporating PK/PD can be difficult to perform
in practice. We then develop our modeling strategy to be performed at the end of the trial, that is, once all data have been
collected.

2 MODEL

Let  = {d1, ..., dL} be the set of doses that can be administered to patients and let 𝓢 = {S1, ...,SK} ⊂ S be the panel
of K dose regimens to be studied in the trial. The dose regimen Sk ∈  is defined as a sequence of J doses, Sk =
(dk,1, dk,2, ..., dk,J), administered at times t = (t1, t2, ..., tJ), where dk,j ∈ , j ∈ {1, ..., J} and k ∈ {1, ...,K}. Let n ∈ N be the
number of patients included in the trial. Let Y (1)

i,j be the binary CRS response and Y (2)
i,j be the binary DLTo response (another

DLT, different from the CRS) of patient i observed exactly after the jth administration. As we assume that both a CRS
and a DLTo can occur during the same administration, the binary DLT response Yi,j is defined as Yi,j = max

(
Y (1)

i,j ,Y (2)
i,j

)
.

Let Yi, Y (1)
i , and Y (2)

i be the global DLT, CRS, and DLTo responses of patient i at the end of the dose regimen, respec-
tively. Let s̃i = (di,1, di,2, ..., di,J) ∈ 𝓢 be the dose regimen planned for the ith patient. As we assume that the administration
of the drug is stopped if a DLT occurs (either a CRS or a DLTo), let ji be the final administration of patient i. Let
si = (di,1, di,2, ..., di,ji) ⊂ s̃i be the actual dose regimen received by patient i; this implies that si = s̃i if no DLT occurs. The
aim is to estimate the MTD-regimen at the end of the trial, and this is defined as the dose regimen with the probability of
DLT closest to the target toxicity rate 𝛿T . To define the prior distributions, let (𝜋1, ..., 𝜋K) be the initial guesses of the DLT
probabilities of dose regimens (S1, ...,SK), where a selected probability, 𝜋kT , is equal to the target 𝛿T .

The proposed modeling strategy is divided into three steps, as shown in Figure 1. In the first step, the CRS is modeled
via PK/PD outcomes using the DRtox approach.33 In the second step, the DLTo, using either a marginal or conditional
definition, is modeled via the cumulative dose to account for the multiple dose administrations. Finally, in the third step,
the DLT is modeled as a bivariate binary endpoint using both previous models under three approaches: the DRtox_indep
assumes independence between the two types of toxicity, the DRtox_copula models the correlation between them via a

F I G U R E 1 Illustration of the proposed modeling process of the bivariate toxicity endpoint at the end of the dose-escalation phase of
the trial
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copula model and the DRtox_cond accounts for the potential correlation between them via a conditional modeling. In the
following sections, the three steps are detailed.

2.1 CRS modeling

As the CRS is assumed to be linked to the peak of cytokine, considered a PD endpoint, we propose to model the binary
CRS using the logistic-DRtox approach33 that incorporates PK/PD modeling. The logistic-DRtox approach is performed
in three steps:

1. The continuous concentration response (PK) and cytokine response (PD) are linked to the dose regimen using non-
linear mixed effects models. The peak of cytokine rM

i is predicted for each patient i according to the received dose
regimen si.

2. The predicted peak of cytokine is used to model the binary CRS via the following Bayesian model:

logit
(
P

(
Y (1)

i = 1
))

= 𝛽0,1 + 𝛽1,1 log

(
rM

i

rM
kT

)
(1)

where 𝛽1,1 > 0 is required for the probability of CRS to increase with the peak of cytokine. We normalize the peak of
cytokine for prior elicitation using rM

kT
, which is the population value of the peak of cytokine of dose regimen SkT that

we initially guess to have a DLT probability of 𝛿T .
3. The posterior marginal CRS probability p(1)

k of dose regimen Sk is estimated by a Monte-Carlo method to integrate both
the PK/PD estimated variability and the posterior distributions resulting from the Bayesian logistic model. A point
estimate is obtained by the posterior mean.

Regarding prior distributions, we consider a normal distribution for the intercept, 𝛽0,1 ∼ 
(
𝛽0,1, 𝜎

2
𝛽0,1

)
, and a gamma

distribution for the slope to ensure positivity, 𝛽1,1 ∼ 𝛾

(
𝛼1,

𝛼1

𝛽1,1

)
, where 𝛼1 is the shape parameter, 𝛽0,1 = E[𝛽0,1] and 𝛽1,1 =

E[𝛽1,1]. The values of 𝛽0,1 and 𝛽1,1 are elicited from the prior guesses of the probability of CRS. Additional details on prior
elicitation can be found in Appendix A.

2.2 DLTo modeling

To perform the joint DLT modeling, we model either the marginal probability of DLTo (a DLT other than a CRS) or the
conditional probability of DLTo given that no CRS has occurred. Both approaches are based on the cumulative probability
of DLTo.

2.2.1 Marginal DLTo modeling

Contrary to the CRS, we do not assume that the DLTo is linked to a PD endpoint. To account for the multiple dose adminis-
trations that constitute the dose regimen, we model the cumulative probability of DLTo

25 for patient i at administration j,
and this is defined as:

p(2)cum

i,j = P

(
∃! l ∈ {1, ..., j} Y (2)

i,l = 1
)
=

j∑
l=1

P

(
Y (2)

i,1 = 0,Y (2)
i,2 = 0, ...,Y (2)

i,l−1 = 0,Y (2)
i,l = 1

)
. (2)

The likelihood is computed as
∏n

i=1

(
p(2)cum

i,ji
− p(2)cum

i,ji−1

)y(2)i
(

1 − p(2)cum

i,ji

)1−y(2)i from the following probabilities of experienc-
ing a DLTo and not experiencing a DLTo at administration j:

⎧⎪⎨⎪⎩
P

(
Y (2)

i,1 = 0,Y (2)
i,2 = 0, ...,Y (2)

i,j−1 = 0,Y (2)
i,j = 1

)
= p(2)cum

i,j − p(2)cum

i,j−1

P

(
Y (2)

i,1 = 0,Y (2)
i,2 = 0, ...,Y (2)

i,j−1 = 0,Y (2)
i,j = 0

)
= 1 − p(2)cum

i,j .
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Since we model two types of toxicity but with a standard joint target toxicity, we have to deal with very small marginal prob-
abilities of toxicity. Therefore, we propose to adapt the model proposed by Ursino et al25 for intrapatient dose-escalation.
As DLTo is only one type of the bivariate DLT, the number of observed DLTo is relatively small; thus we propose to reduce
the number of parameters to two as follows:

logit
(

p(2)cum

i,j

)
= 𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

j∑
l=1

di,l

)
(3)

where DkT =
∑J

l=1dkT ,l is the cumulative dose of the reference dose regimen, which we assume has a DLT
probability of 𝛿T . The posterior marginal probability of DLTo of dose regimen Sk is then defined as p(2)

k =

logit−1
(
𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

∑j
l=1di,l

))
. A point estimate is obtained by the mean of the posterior toxicity distribu-

tion.
Regarding prior distributions, we consider a normal distribution for the intercept 𝛽0,2 ∼ 

(
𝛽0,2, 𝜎

2
𝛽0,2

)
and the slope

𝛽1,2 ∼ 
(
𝛽1,2, 𝜎

2
𝛽1,2

)
, 𝛽0,2 = E

[
𝛽0,2

]
and 𝛽1,2 = E

[
𝛽1,2

]
. Values of 𝛽0,2 and 𝛽1,2 are elicited from the prior guesses of the

probability of DLTo. Additional details on prior elicitation can be found in Appendix A.

2.2.2 Conditional DLTo modeling

The conditional DLTo model is very similar to the marginal DLTo model. We define the conditional cumulative probability
of DLTo, given that no CRS has occurred, as follows:

p(2)cum

i,j⋆ = P

(
∃! l ∈ {1, ..., j} Y (2)

i,l = 1|||Y (1)
i = 0

)
. (4)

The conditional cumulative model is applied on a subset of the population, that is, on the patients who
do not experience a CRS. The likelihood is computed similarly to that of the marginal DLTo model as∏n

i=1,Y (1)
i =0

(
p(2)cum

i,ji⋆
− p(2)cum

i,ji−1⋆

)y(2)i
(

1 − p(2)cum

i,ji⋆

)1−y(2)i .
We consider the same model as the one proposed in Section 2.2.1, and it is defined as:

logit
(

p(2)cum

i,j⋆

)
= 𝛽0,2⋆ + exp

(
𝛽1,2⋆

)
log

(∑j
l=1di,l

DkT

)
. (5)

The posterior conditional probability of DLTo given that no CRS has occurred of dose regimen Sk is then defined

as p(2)
k⋆ = logit−1

(
𝛽0,2⋆ + exp

(
𝛽1,2⋆

)
log

(∑J
l=1dk,l

DkT

))
. A point estimate is obtained by the mean of the posterior toxicity

distribution.
We consider the same prior distributions as those of the marginal model described in Section 2.2.1.

2.3 Joint DLT modeling

The final step is to model the probability of DLT from the joint probability of CRS and DLTo. The probability of DLT of
dose regimen Sk is defined as:

pk = P

(
Y = 1|||Sk

)
= 1 − P

(
Y = 0|||Sk

)
= 1 − P

(
Y (1) = 0,Y (2) = 0|||Sk

)
. (6)

Different assumptions can be used when modeling the joint probability of CRS and DLTo. The easiest assumption
is to consider that both toxicities are independent (conditionally on the dose regimen). However, we can also assume a
correlation between the two toxicities;35-38 for example, a patient experiencing one kind of toxicity may be more sensi-
tive to the drug than others and therefore be at higher risk of experiencing other toxicities. We propose three approaches
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to compute the probability of DLT starting from the probabilities of CRS and DLTo using a marginal or conditional
formulation.

2.3.1 Independent model: DRtox_indep

The first assumption that can be raised is that Y (1) and Y (2) are independent (conditionally on the dose regimen Sk). In
this case, the posterior distribution of DLT can be directly expressed from the posterior marginal probabilities of CRS and
DLTo defined in Sections 2.1 and 2.2.1 as follows:

pk = 1 − P

(
Y (1) = 0|||Sk

)
P

(
Y (2) = 0|||Sk

)
= 1 −

(
1 − p(1)

k

)(
1 − p(2)

k

)
. (7)

The probability of DLT pk is then estimated as the mean of the posterior distribution.

2.3.2 Copula model: DRtox_copula

When dependence between both toxicities is assumed, the joint probability of DLT can be modeled via a copula distribu-
tion defined from the marginal distribution of each toxicity. In this case, the modeling process is performed in two steps.
First, marginal models are developed for the CRS and the DLTo, as shown in Sections 2.1 and 2.2.1. Then, the copula
model is fitted on all patients from the resulting point estimates of the marginal probabilities of each toxicity of all dose
regimens estimated from the two previous models.

We consider the popular class of Archimedeans copulas39 that have already been used in phase I trials when mod-
eling both toxicity and efficacy40-42 or in combination trials of two agents.43,44 The Archimedean copula has an explicit
distribution defined from the marginal distributions of each variable and an association parameter as follows:

C𝛼

(
p(1)

k , p(2)
k

)
= Φ−1

𝛼

(
Φ𝛼

(
p(1)

k

)
+ Φ𝛼

(
p(2)

k

))
, (8)

where Φ𝛼 is a continuous, strictly decreasing and convex function and Φ−1
𝛼 is its inverse.

Let ki be the level of the dose regimen administered to patient i. As we assume that both toxicities can be distinguished,
we can define the binary bivariate model in terms of the four possible outcomes as follows45:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p11
i = P

(
Y (1)

i = 1,Y (2)
i = 1

)
= C𝛼

(
p(1)

ki
, p(2)

ki

)
p01

i = P

(
Y (1)

i = 0,Y (2)
i = 1

)
= p(2)

ki
− C𝛼

(
p(1)

ki
, p(2)

ki

)
p10

i = P

(
Y (1)

i = 1,Y (2)
i = 0

)
= p(1)

ki
− C𝛼

(
p(1)

ki
, p(2)

ki

)
p00

i = P

(
Y (1)

i = 0,Y (2)
i = 0

)
= 1 − p(1)

ki
− p(2)

ki
+ C𝛼

(
p(1)

ki
, p(2)

ki

) (9)

The log-likelihood is then computed as:

n∑
i=1

y(1)i y(2)i log
(

p11
i
)
+ y(1)i

(
1 − y(2)i

)
log

(
p10

i
)
+
(

1 − y(1)i

)
y(2)i log

(
p01

i
)
+
(

1 − y(1)i

)(
1 − y(2)i

)
log

(
p00

i
)
. (10)

The toxicity probability of dose regimen Sk is then defined as pk = p(1)
k + p(1)

k − C𝛼

(
p(1)

k , p(2)
k

)
. We consider the

Clayton distribution, which is defined as C𝛼

(
p(1)

k , p(2)
k

)
=
(

max
(

p(1)
k

−𝛾
+ p(2)

k
−𝛾

− 1, 0
))−1∕𝛾

, where 𝛾 is the associa-
tion parameter. We assume a positive association between both toxicities and therefore consider a gamma distri-
bution for the prior on 𝛾 . Another popular choice for the copula distribution is the Farlie-Gumbel-Morgenstern
distribution (Web Appendix B.3 of Data S1). The probability of DLT pk is estimated as the mean of the posterior
distribution.
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2.3.3 Conditional model: DRtox_cond

In this approach, we assume an association between both toxicities and express the joint distribution of DLT using a
conditional formulation. As we assume that the CRS has a tendency to occur at the beginning of the dose regimen while
the DLTo occurs at the end, we express the posterior distribution of DLT from the posterior marginal probability of CRS
(Section 2.1) and the posterior conditional probability of DLTo (Section 2.2.2) given that no CRS has occurred, as follows:

pk = 1 − P

(
Y (1) = 0|||Sk

)
P

(
Y (2) = 0|||Y (1) = 0,Sk

)
= 1 −

(
1 − p(1)

k

)(
1 − p(2)

k⋆

)
. (11)

The probability of DLT pk is then estimated as the mean of the posterior distribution.

3 SIMULATION STUDY

3.1 Simulation settings

We defined two sets of dose regimens based on the motivating trial, Set A and Set B, as shown in Table 1. Each set included
six dose regimens, where each dose regimen was defined with intra-patient dose-escalation. Each dose regimen was
defined as a sequence of seven doses administered at days (t1 = 1, t2 = 5, t3 = 9, t4 = 13, t5 = 17, t6 = 21, t7 = 25) where
the dose was increased during the first four administrations to reach the steady-state dose, that was repeated for the last
three administrations. In both sets, we assumed that the six dose regimens were completely ordered in terms of toxicity
as the doses administered in the dose regimens were increased when increasing the level of the dose regimen. Set A and
Set B shared common dose regimens (S1, S5 and S6), but Set B included an accelerated component since the middle dose
regimens (from S2 to S4) reached higher steady-state doses more quickly than in Set A. Simulations under another set of
dose regimens (Set C) that differs from the motivating trial are available in the supporting information (Web Appendix C
of Data S1). The dose regimen escalation in Set C was slower than in Set A and Set B because the higher the steady-state
dose is, the slower it is reached.

Both toxicities, CRS and DLTo, were simulated under different assumptions. The CRS was simulated from the cytokine
PD profile as proposed by Gerard et al.33 The PK/PD models used for CRS simulation were inspired by the published
models on blinatumomab, which is another bispecific T-cell engager that binds to CD3 on T-cells and to CD19 on tumor
cells.31,46 To simulate the CRS from the cytokine profile, we defined a threshold 𝜏T for the cytokine response and assumed

T A B L E 1 Dose regimens defined in Set A and Set B used in the simulation study (in
μg/kg) where each dose regimen Sk is defined as the sequence of seven doses administered
at days (t1=1, t2=5, t3=9, t4=13; t5=17, t6=21, t7=25)

t1 t2 t3 t4 t5 t6 t7

Set A S1 1 5 10 20 20 20 20

S2 1 5 10 25 25 25 25

S3 1 5 10 30 30 30 30

S4 1 5 10 45 45 45 45

S5 5 10 25 75 75 75 75

S6 10 25 50 100 100 100 100

Set B S1 1 5 10 20 20 20 20

S2 1 5 10 30 30 30 30

S3 1 5 10 40 40 40 40

S4 1 5 10 50 50 50 50

S5 5 10 25 75 75 75 75

S6 10 25 50 100 100 100 100
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that a CRS occurred if this threshold was exceeded, that is, Y (1)
i,j = 1 if 𝛼iri,j ≥ 𝜏T , where 𝛼i is a log-normally distributed

measure of subject sensitivity. The true probability of CRS, p(1)
T (Sk), of each dose regimen Sk was computed using a

Monte-Carlo method. Additional details on the PK/PD simulation and estimation can be found in Appendix B.1.
To create an association between the CRS and the DLTo, we simulated the DLTo conditionally on the CRS status.

For example, if a patient experiences a CRS, s/he may be more sensitive to the drug and, consequently, would have a
higher probability of DLTo than a patient without CRS. We therefore simulated the DLTo from the conditional probability
of DLTo at each administration (1) given that no DLTo had occurred in the previous administrations and (2) given that
the patient would experience a CRS at some point. This conditional probability was inspired by the model proposed by
Fernandes et al to account for the current and previous drug administrations as follows:

logit
(
P

(
Y (2)

i,j = 1||| (Y (2)
i,j−1 = 0, ...,Y (2)

i,1 = 0
)
;Y (1)

i = 1
))

= a + b log
(

di,j
)
+ c log

(
Di,j−1 + 1

)
, (12)

where di,j represents the dose given to patient i during the jth administration and Di,j =
∑j

l=1di,j is the cumu-
lative dose using the convention Di,0 = 0. Let 𝜃 = (a, b, c) be the simulation parameters and f𝜃

(
dj,Dj−1

)
=

logit−1 (a + b log
(

dj
)
+ c log

(
Dj−1 + 1

))
be the simulation model.

The conditional probability of DLTo for patient i given that s/he would not experience CRS was defined from the
previous model as follows:

P

(
Y (2)

i, j = 1||| (Y (2)
i, j−1 = 0, ...,Y (2)

i, 1 = 0
)
;Y (1)

i = 0
)
= 1

𝜆
P

(
Y (2)

i, j = 1||| (Y (2)
i, j−1 = 0, ...,Y (2)

i, 1 = 0
)
;Y (1)

i = 1
)

= 1
𝜆

f𝜃
(

di, j,Di, j−1
)
, (13)

where 𝜆 represents the risk ratio of experiencing a DLTo during administration j (given that no DLTo was experienced
before) for patients who would experience a CRS vs patients with no CRS. A value of 𝜆 = 1 denotes independence between
the CRS and the DLTo, 𝜆 > 1 represents positive association and 𝜆 < 1 represents negative association.

The marginal probability of DLTo was computed from the previous conditional probabilities and from the marginal
probability of CRS as follows:

p(2)
T (Sk) = 1 −

J∏
j=1

(
1 − f𝜃

(
dk, j,Dk, j−1

))
p(1)

T (Sk) −
J∏

j=1

(
1 − 1

𝜆
f𝜃
(

dk, j,Dk, j−1
))(

1 − p(1)
T (Sk)

)
. (14)

Finally, the joint probability of DLT of dose regimen Sk was computed as follows:

pT(Sk) = 1 −
J∏

j=1

(
1 − 1

𝜆
f𝜃
(

dk, j,Dk, j−1
))(

1 − p(1)
T (Sk)

)
. (15)

Details of the mathematical development are provided in Appendix B.2.
We studied six main dose regimen toxicity scenarios, which are represented in Figure 2. Each toxicity scenario was

defined by the marginal probabilities of DLT, CRS, and DLTo and the conditional probabilities of DLTo given CRS and
DLTo given no CRS. The target probability of DLT was defined as 𝛿T = 0.30. Scenarios 1 to 5 were built on Set A of dose
regimens while Scenario 6 was built on Set B. The six toxicity scenarios studied various distributions of the probabilities
of DLT, CRS, and DLTo and various associations between the CRS and the DLTo. The latter association was measured
for each scenario as the average risk ratio over the set of dose regimens of experiencing a DLTo for patients who would
experience a CRS versus those who would not experience a CRS. In Scenario 1, the true MTD-regimen was S4, which had
similar probabilities of CRS and DLTo. The CRS and DLTo were positively correlated with an average risk ratio of 1.85,
meaning that, on average, a patient experiencing a CRS has 1.85 times greater risk of also experiencing a DLTo than that
of a patient not experiencing a CRS. In Scenario 2, the association between the CRS and the DLTo was increased to an
average risk ratio of 5.91. In Scenarios 3 and 4, the true MTD-regimen remained S4, but the proportion of each type of
toxicity varied with a higher probability of DLTo and CRS in Scenarios 3 and 5, respectively. Finally, the MTD-regimen
changed to dose regimens S6 and S2 for Scenarios 5 and 6, respectively. Additional scenarios are available in the supporting
information (Web Appendix A.3 of Data S1).
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F I G U R E 2 Definitions of the six toxicity scenarios in terms of the probabilities of dose limiting toxicity (DLT), cytokine release
syndrome (CRS), and other DLT (DLTo). For each scenario, the marginal probabilities of DLT, CRS, and DLTo of each dose regimen are
represented as solid lines, while the conditional probabilities of DLTo given CRS and no CRS are represented as dotted lines. The target
probability of DLT is represented by a dashed horizontal line

For each scenario, we first simulated 1000 trials with a modified CRM3 using a two-parameter logistic regression model
based on a skeleton for the dose-allocation rule. The skeleton, that reduced the dose regimen into a single dose level, was
defined from the initial guesses of the probabilities of DLT that were set to (0.06, 0.12, 0.20, 0.30, 0.40, 0.50), leading to
kT = 4 for the dose regimen of reference. The CRM sequentially included 30 patients with cohorts of size 3 and recom-
mended a MTD-regimen (simplified to a dose-level) at the end of the dose-escalation stage. We then computed our joint
modeling approaches at the end of each simulated trial using all available information to recommend the MTD-regimen.

Regarding the prior distributions, we evaluated the amount of information provided by the prior through the effective
sample size (ESS) which represents the number of “hypothetical patients” used to define the prior distribution.47 For
the CRS model, we considered 𝜎𝛽0,1 = 2 and 𝛼 = 5, for the DLTo model, we considered 𝜎𝛽0,2 = 2 and 𝜎𝛽1,2 = 1, and for the
Clayton copula, we considered 𝛾 ∼ 𝛾 (1, 1) leading to an approximated ESS of 2. Details on prior elicitation are provided
in Appendix A and results with various ESS are provided in Web Appendix B.1 of Data S1.

All simulations were performed in the R environment48 using Monolix software49 for PK/PD estimation and Stan50

for Bayesian analysis.
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3.2 Simulation results

We evaluated the performance of each of our three proposed joint approaches using the proportion of correct selection
(PCS), the estimation of the dose-toxicity curve and the ability of the methods to predict the toxicity probability of new
dose regimens.

3.2.1 PCS of the MTD-regimen

We compared the results of the DRtox_indep, DRtox_copula, and DRtox_cond with those of the logistic CRM. The perfor-
mance of each method was evaluated with respect to the PCS, which is defined as the proportion over the 1000 trials for
which the correct MTD-regimen was selected. The proportions of selecting each dose regimen in all scenarios are shown
in Table 2. The results of additional scenarios can be found in Web Appendix A.3 of Data S1.

In Scenarios 1 to 4, where the true MTD-regimen is S4, the DRtox_indep, DRtox_copula, and DRtox_cond outperform
the CRM by 10% in terms of the PCS. All three joint methods achieve very similar results and are robust to an unbal-
anced distribution of the probabilities of CRS and DLTo, as illustrated in Scenarios 3 and 4. In Scenario 2, defined with a
higher association between the CRS and the DLTo, the DRtox_copula and DRtox_cond seem to perform better than the
DRtox_indep as they account for the dependence between both toxicities. Indeed, in this scenario, more patients experi-
ence both toxicities (CRS and DLTo) and therefore the DRtox_indep overestimates the probability of DLT. In Scenarios
1 to 4, the DRtox_copula has a higher proportion of trials in which the overdosing regimen S5 is recommended as the
MTD-regimen than the DRtox_indep and DRtox_cond, but this proportion is lower than or similar to that of the CRM.

In Scenario 5, where the true MTD-regimen is S6, the CRM has higher PCS than those of the DRtox_indep and
DRtox_cond but similar results to those of the DRtox_copula. In this scenario the MTD-regimen is the last dose regimen of
the panel; therefore fewer DLT, particularly fewer DLTo, are observed. Indeed, on average, 5 DLT with 1.9 DLTo occur per
trial in Scenario 5, vs 7.7 DLT and 3.8 DLTo in Scenario 1. In this scenario, the higher performance of the DRtox_copula
and the CRM can be explained by their tendency to recommend higher dose regimens which was observed in Scenarios
1 to 4.

Scenario 6 was built on Set B which included an accelerated part for the first dose regimens to rapidly reach high
steady-state doses. In this scenario, where S2 is the true MTD-regimen, all three joint models yield similar results and still
outperform the CRM.

All three joint models still perform better than the CRM in cases of independence or negative association between the
CRS and the DLTo (Web Appendix A.3 of Data S1).

We evaluated the influence of the prior distribution by comparing the results obtained with a prior ESS of 0.2, 2,
and 7, the results can be found in Web Appendix B.1 of Data S1. Increasing the prior ESS leads to better results when
the prior guesses of DLT probabilities are close to the truth (Scenarios 1-4 where S4 is the true MTD-regimen), but also
when the initial guesses of DLT probabilities underestimate the true DLT probabilities (Scenario 6 where S2 is the true
MTD-regimen). However, increasing the prior ESS leads to poorer results when the initial guesses of DLT probabilities
overestimate the true DLT probabilities (Scenario 5 where S6 is the true MTD-regimen). We also evaluated the impact of
considering a gamma distribution for the DLTo model and a log-normal distribution for the CRS model, and observed
only a limited impact (Web Appendix B.2 of Data S1). We also evaluated the effect of a noninformative distribution on the
DRtox_copula parameter, that is, 𝛾(0.1, 0.1). In this case, the results of the DRtox_copula are similar to the DRtox_indep
(Web Appendix B.3 of Data S1). We also evaluated our methods after an empiric CRM and observed only limited impact
on our proposed methods (Web Appendix B.4 of Data S1). Finally, we studied our methods on another set of dose regimens
that is very different from the motivating trial to vary the timing of toxicity occurrences (Web Appendix C of Data S1). In
this new set, our three joint models and the CRM have similar PCS so our three joint models do not improve the PCS but
they can predict the probabilities of DLT of new dose regimens, and this will be developed in Section 3.2.3.

3.2.2 Estimation of the toxicity curves

Gerard et al33 showed that when only CRS occur, the DRtox leads to a better estimation of the entire dose regimen CRS
relationship than the CRM. When enabling the occurrence of DLTo, the probability of CRS is still well estimated with the
DRtox. The joint probability of DLT is also well estimated around the MTD-regimen for all three joint approaches and
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T A B L E 2 Proportions of selecting each dose regimen Sk as the MTD-regimen over the 1000 trials in the six main toxicity scenarios.
For each scenario, the marginal probabilities of dose limiting toxicity (DLT), cytokine release syndrome (CRS), and other DLT (DLTo) are
defined, and the association between the CRS and DLTo is represented by the average risk ratio (RR). Results are presented for the three
joint approaches (DRtox_indep, DRtox_copula, and DRtox_cond) and the continual reassessment method (CRM). The proportions of
correct selection (PCS) of the MTD-regimen are represented in bold

Scenario Set RR Method S1 S2 S3 S4 S5 S6

1 A 1.85 pT 0.10 0.14 0.18 0.30 0.45 0.60

p(1)
T 0.05 0.07 0.1 0.18 0.22 0.30

p(2)
T 0.06 0.08 0.1 0.17 0.34 0.50

DRtox_indep 0 4 24 55 16 2

DRtox_copula 0 2 20 55 20 3

DRtox_cond 0 3 25 55 16 2

Logistic CRM 0 4 22 46 22 5

2 A 5.91 pT 0.10 0.13 0.18 0.30 0.42 0.53

p(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_indep 0 4 27 48 16 3

DRtox_copula 0 3 17 52 24 5

DRtox_cond 0 3 23 52 18 4

Logistic CRM 0 4 18 42 26 10

3 A 1.81 pT 0.11 0.15 0.18 0.30 0.45 0.59

p(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_indep 1 3 22 57 15 2

DRtox_copula 1 2 16 58 20 2

DRtox_cond 1 3 22 58 15 2

Logistic CRM 1 5 22 48 19 5

4 A 1.90 pT 0.09 0.13 0.17 0.30 0.44 0.59

p(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_indep 0 3 24 56 14 2

DRtox_copula 0 2 19 56 20 4

DRtox_cond 0 3 24 55 15 2

Logistic CRM 0 4 20 46 23 7

5 A 1.97 pT 0.03 0.04 0.05 0.11 0.17 0.30

p(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_indep 0 0 0 4 29 67

DRtox_copula 0 0 0 3 20 77

DRtox_cond 0 0 0 4 29 67

Logistic CRM 0 0 0 2 21 77

(Continues)
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T A B L E 2 (Continued)

Scenario Set RR Method S1 S2 S3 S4 S5 S6

6 B 1.70 pT 0.16 0.30 0.43 0.55 0.73 0.86

p(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_indep 20 64 15 1 0 0

DRtox_copula 14 63 21 2 0 0

DRtox_cond 19 65 15 1 0 0

Logistic CRM 17 56 24 3 0 0

the CRM. Both the DRtox_indep and DRtox_copula estimate the marginal probability of DLTo, while the DRtox_cond
estimates the conditional probability of DLTo given that no CRS has occurred. The latter conditional probability is well
estimated by the DRtox_cond, while the marginal probability is underestimated by the DRtox_indep and DRtox_copula
(and estimated to be similar to the previous conditional probability) in all six main scenarios. Indeed, estimating the
marginal probability of DLTo requires estimating the conditional probability of DLTo given CRS. The latter probability
can only be estimated when both toxicities occur at the same time as drug administration is stopped when a DLT (either
a CRS or DLTo) occurs. However, CRS tend to occur at the beginning of the dose regimen, mainly at the first and fourth
administrations, while most DLTo occur starting from the fourth administration. Thus, both toxicities rarely occur at
the same time, and CRS occurrence may prevent future DLTo from occurring. This topic will be further developed in
the discussion. Figures that illustrate the estimation of the different toxicity probabilities can be found in the supporting
information (Web Appendix A.2 of Data S1).

3.2.3 Prediction of new dose regimens

Our three proposed joint approaches and the CRM are able to recommend the MTD-regimen in the panel of the trial.
However, alternative dose regimens may increase the efficacy of the drug while maintaining an acceptable probabil-
ity of toxicity. For example, dose regimens where a lower steady-state dose is administered sooner or where a higher
steady-state dose is administered later could be of interest. As the DRtox_indep, DRtox_copula, and DRtox_cond model
the relationship between the entire dose regimen and the probability of DLT, they can predict the probability of DLT of
new dose regimens that were not administered in the trial. For example, in Scenario 1, S4 = (1, 5, 10, 45, 45, 45, 45) μg/kg
is selected for the MTD-regimen in more than 50% of trials where the steady-state dose of 45 μg/kg is administered start-
ing from the fourth administration. We are able to predict the probabilities of two new dose regimens. For dose regimen
Snew1 = (5, 10, 30, 30, 30, 30, 30) μg/kg, having a true DLT probability of 0.27, the steady-state dose is decreased to 30 μg/kg
but is administered earlier, from t3. For dose regimen Snew2 = (1, 5, 10, 30, 60, 60, 60) μg/kg, having a true DLT probabil-
ity of 0.31, the steady-state dose is increased to 60 μg/kg but is administered later, from t5. The estimated probabilities of
DLT of the six initial dose regimens of the trial and the predicted probabilities of DLT of Snew1 and Snew2 are displayed in
Figure 3. All approaches yield good estimations of the DLT probability of S4, but only the DRtox_indep, DRtox_copula, and
DRtox_cond can predict the DLT probabilities of Snew1 and Snew2 that are close to the target. The three joint approaches
can therefore help the clinical team find alternative dose regimens that can be investigated for efficacy in further stages
of the trial, for example, in an expansion cohort.

The DRtox_indep, DRtox_copula, and DRtox_cond have similar precision in predicting new dose regimens with DLT
probabilities close to the target in case of various associations between the CRS and the DLTo (Web Appendix A.3 of
Data S1).

3.3 Example from a single simulated trial

We illustrate our proposed methods on one hypothetical trial inspired by the motivating example. The trial was simu-
lated under Scenario 2 with the settings specified in Section 3.1: it was conducted using a modified logistic CRM where
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F I G U R E 3 Violin plots of the estimated probabilities of dose limiting toxicity (DLT) in Scenario 1 for the six dose regimens of the panel
and two additional dose regimens (Snew1 and Snew2), on 1000 trials with the three proposed joint approaches and the continual reassessment
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represents the toxicity target, and the solid line represents the true DLT probabilities
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F I G U R E 4 Inclusion process of the simulated trial under a modified continual reassessment method (CRM). The type of dose limiting
toxicity (DLT) is specified by the type of point, and the administration of occurrence of each type of DLT is given. The global number of DLT
observed in each cohort of three patients is provided under each horizontal bar

patients were included by cohorts of size 3 until a maximum of 30 patients included. The toxicity target was 0.30. The
inclusion process and the timing of occurrence of each type of toxicity are represented in Figure 4. During the trial,
8 DLT were observed, with 4 CRS and 6 DLTo. For example, at cohort 5, three patients were included at dose regi-
men S4 = (1, 5, 10, 50, 50, 50, 50) μg/kg administered at days (t1 = 1, t2 = 5, t3 = 9, t4 = 13, t5 = 17, t6 = 21, t7 = 25). One
of the three patient experienced a DLT, which was both a CRS and a DLTo at administration t4. As drug administra-
tion is stopped when a DLT occurs, this patient only received the dose regimen composed of the four initial doses:
(1, 5, 10, 50) μg/kg. The CRM estimated (0.11, 0.15, 0.22, 0.30, 0.39, 0.47) for the posterior mean probabilities of DLT
of S1 to S6, therefore S4 was estimated as the MTD-regimen. We can apply our proposed methods at the end of
the trial.
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CRS model

1. The PK/PD models (Appendix B.1) are fitted to the sampled individual concentrations and cytokine responses. Popu-
lation and individual PK/PD parameters as well as the individual maximum peak of cytokine are estimated (see Web
Appendix A.1 of Data S1 for the fitted cytokine response on one patient).

2. The CRS model is then fitted, the estimated posterior means of 𝛽0,1 and 𝛽1,1 are −2.40 and 2.78, respectively.
3. The peak of cytokine at each dose regimen is simulated for 600 hypothetical patients from the population PK/PD

parameters. The peak of cytokine can also be predicted for dose regimens that were not tested in the trial.
4. The posterior probabilities of CRS are estimated. The marginal probabilities of CRS are estimated by the mean of the

posterior distributions: (0.05,0.07,0.09,0.17,0.22,0.28) for S1 to S6.

DLTo model

1. The cumulative marginal (and conditional given no CRS) probabilities of DLTo are modeled with the cumulative dose
received. The estimated posterior means of 𝛽0,2

(
𝛽0,2⋆

)
and 𝛽1,2

(
𝛽1,2⋆

)
are −1.39 (−1.88) and 0.05 (0.31), respectively.

2. The marginal posterior probabilities of DLTo (and conditional posterior probabilities of DLTo given no CRS) are esti-
mated. The marginal probabilities of DLTo (and the conditional probabilities of DLTo given no CRS) are estimated
by the mean of the posterior distributions: (0.11 (0.06), 0.13 (0.08), 0.15 (0.09), 0.21 (0.15), 0.33 (0.28), 0.41 (0.39))
for S1 to S6.

DLT model

1. DRtox_indep: The posterior DLT probabilities are estimated from the marginal posterior probabilities of CRS and
DLTo. The marginal probabilities of DLT are estimated by the mean of the posterior distributions: (0.15, 0.19, 0.23,
0.34, 0.48, 0.58) for S1 to S6.

2. DRtox_copula: The DLT probabilities are modeled from the mean estimates of the marginal probabilities of CRS
and DLTo with the Clayton copula. The marginal probabilities of DLT are estimated by the mean of the posterior
distributions: (0.13, 0.17, 0.20, 0.30, 0.43, 0.52) for S1 to S6.

3. DRtox_cond: The posterior DLT probabilities are estimated from the marginal posterior probabilities of CRS and the
conditional posterior probabilities of DLTo given no CRS. The marginal probabilities of DLT are estimated by the mean
of the posterior distributions: (0.11, 0.14, 0.18, 0.29, 0.44, 0.56) for S1 to S6.

A figure of the posterior distributions can be found in Web Appendix A.1 of Data S1. The CRM and our three
approaches lead to the same MTD-regimen recommendation, that is S4. As two patients experienced both a CRS and a
DLTo, the DRtox_indep overestimates the probability of DLT of S4 while the DRtox_copula and DRtox_cond correctly
estimate it because they account for the correlation between both toxicities. Moreover, as our methods model the rela-
tionship between the entire dose regimen and the probability of DLT, they can predict the probability of DLT of additional
dose regimens that were not administered in the trial. For example, we can define the following additional dose regimen
(5, 10, 30, 30, 30, 30, 30) μg/kg than may have a clinical relevance because it reaches a lower value of the steady-state dose
but earlier than S4. The DRtox_indep, DRtox_copula, and DRtox_cond predict 0.29, 0.26, and 0.24 for the probability of
DLT of this new dose regimen, respectively. Therefore, at the end of the trial, our proposed methods support the rec-
ommendation of the CRM, and are able to propose an alternative dose regimen that could be evaluated in an expansion
cohort.

4 DISCUSSION

The aim of this work was to model the probability of DLT defined from the occurrence of two types of toxicity (CRS and
DLTo) in multiple dose administrations, that is, when dose regimens were administered, assuming that the CRS and the
DLTo might be associated. We developed a modeling approach for the DLTo in addition to the existing DRtox approach that
provides the CRS modeling with PK/PD. We proposed three approaches to model the joint distribution of DLT using the
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independence assumption (DRtox_indep), a copula model (DRtox_copula), and a conditional formulation (DRtox_cond).
Through an extensive simulation study, the three joint approaches were able to recommend the MTD-regimen in a set of
dose regimens and to predict the DLT probability of new dose regimens that could be investigated in later stages of the
trial. These methods were developed to be used when the dose allocation process is finished and once all data are gathered,
especially once PK/PD measurements have already been analyzed using a population PK/PD approach. However, our
methods should not be applied if the trial is stopped very early in the inclusion process and when not enough data is
gathered to guaranty a feasible and/or reliable estimation of the parameters.

In most cases, the PCS of the three proposed methods were higher than that of the CRM. When the interaction between
the DLTo and CRS was increased, the DRtox_copula and DRtox_cond gave better results as these two approaches account
for the association between toxicities. When the MTD-regimen was the last dose regimen of the set and therefore few
DLT were expected, the CRM had better performance than our proposed methods. In this case, as very few DLTo were
observed, distinguishing between the different dose regimens was challenging for the cumulative DLTo model built on
the cumulative dose. A simpler model that does not account for repeated doses could be fit on the DLTo to increase the
PCS, but with such a model, prediction of new dose regimens would no longer be possible (Web Appendix A.4 of Data S1).

In addition to the potential gain in PCS compared to standard dose-escalation methods, one important feature of our
proposed methods is that they were able to propose alternative dose regimens that could have a better clinical benefit than
the existing dose regimens, in terms of efficacy for example. Indeed, our joint approaches model the relationship between
the entire dose regimen and the probability of DLT and can therefore predict the DLT probability of new dose regimens.
This prediction was accurate in our simulation settings, but is dependent on the number of patients included and the
number of DLTs observed, as well as on the confidence in the PK/PD estimates. These potential new dose regimens need
to be discussed by the trial stakeholders to determine the most suitable ones to be included in the expansion cohorts.

One limitation of the DRtox_indep and DRtox_copula was that the marginal probability of DLTo seemed to be under-
estimated (Web Appendix A.2 of Data S1). Indeed, from our motivating trial, CRS were expected to be observed at the
beginning of the dose regimens, while DLTo occurred at the end. Once a CRS was observed, the administration of the
drug was stopped, so there was no possibility left to observe any DLTo that might have occurred later in the planned drug
administrations. This issue is different from censoring or competitive risks because the DLTo could be observed at the
same time as the CRS. However, as drug administration was stopped, the patient did not receive the remaining adminis-
trations of the entire dose regimen that may have caused a DLTo. The DRtox_cond accounted for this issue as it modeled
the conditional probability of DLTo given that no CRS had occurred. A second limitation was associated with the use of
copula models. Cunanan and Koopmeiners51 showed that in the context of phase I/II trials, using a copula model instead
of an independent model does not improve the performance in terms of correct dose selection, even in cases with highly
correlated outcomes. They suggested adding a strong prior information on the correlation parameter of the copula mod-
els. In our case, we used an informative prior (𝛾(1, 1)) and observed that when using a noninformative prior (𝛾(0.1, 0.1)),
the performance of the model could be decreased. We also observed that the DRtox_copula was more likely to recommend
overdosing regimens than the DRtox_indep and DRtox_cond. Finally, as our modeling strategy requires multiple steps of
modeling, it should only be considered when enough data is gathered. It should also be performed in close collaboration
with pharmacometricians to be more confident about PK/PD models and estimates.

In conclusion, in this work we proposed to model a bivariate binary toxicity outcome in the context of an intrapatient
dose-escalation early phase trial in oncology. We accounted for all types of DLT while allowing the explicit modeling of
the main type of toxicity expected (CRS) with PK/PD. Some dose-finding methods have been proposed that include PK
measures.26,52 However, as PK/PD measures are analyzed by batch (and therefore are not available in real time) and the
PK/PD models are developed after several cohorts of patients, a full sequential dose-allocation approach can be difficult to
perform in practice. Our approaches were developed to be computed at the end of the trial, so using all trial information,
including toxicities and PK/PD measures, is most practical. We have shown that even if the early phase trial is designed
with a standard dose-allocation method, modeling PK/PD and multiple dose administrations at the end of the trial can
allow the study stakeholders to make decisions about future development using all available information within a single
modeling process.
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APPENDIX A. PRIOR ELICITATION

The elicitation of prior distributions is based on the initial guesses of the probabilities of DLT(𝜋1, ..., 𝜋K) of dose regimens
(S1, ..., SK). SkT is the dose regimen of reference, where𝜋kT = 𝛿T . We initially assume that the probabilities of CRS and DLTo

are independent and equal, meaning that 𝜋k = 1 −
(

1 − 𝜋
(1)
k

)(
1 − 𝜋

(2)
k

)
= 1 −

(
1 − 𝜋

(1)
k

)2
= 1 −

(
1 − 𝜋

(2)
k

)2
, where 𝜋

(1)
k

and 𝜋
(2)
k are the initial guesses of the probabilities of CRS and DLTo, respectively. Therefore 𝜋

(1)
k = 𝜋

(2)
k = 1 −

√
1 − 𝜋k.
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For the CRS model, we consider 𝛽0,1 ∼  (𝛽0,1, 𝜎
2
𝛽0,1

) and 𝛽1,1 ∼ 𝛾(𝛼1,
𝛼1

𝛽1,1
), where 𝛽0,1 = E[𝛽0,1] and 𝛽1,1 = E[𝛽1,1]. By

construction, we have 𝛽0,1 = logit
(

1 −
√

1 − 𝛿T

)
with rM

i = rM
kT

. We can determine 𝛽1,1 using either only one dose regimen
(differing from the reference dose regimen SkT ), as follows:

logit−1

(
𝛽0,1 + 𝛽1,1 log

(
rM

k

rM
kT

))
= 𝜋

(1)
k , (A1)

where k ∈ {1, ...,K} and k ≠ kT , or multiple dose regimens, such as the neighbors of the reference dose regimen, as
follows:

𝛽1,1 = arg min
𝛽1,1

kT+1∑
k=kT−1

(
𝜋
(1)
k − logit−1

(
𝛽0,1 + 𝛽1,1 log

(
rM

k

rM
kT

)))2

. (A2)

For the DLTo model, we consider 𝛽0,2 ∼  (𝛽0,2, 𝜎
2
𝛽0,2

) and 𝛽1,2 ∼  (𝛽1,2, 𝜎
2
𝛽1,2

), where 𝛽0,2 = E[𝛽0,2] and 𝛽1,2 = E[𝛽1,2]. By

construction, we have 𝛽0,2 = logit
(

1 −
√

1 − 𝛿T

)
with

∑J
l=1di,l = DkT . We can determine 𝛽1,2 using either only one dose

regimen (differing from the reference dose regimen SkT ), as follows:

logit−1

(
𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

J∑
l=1

dk,l

))
= 𝜋

(2)
k , (A3)

where k ∈ {1, ...,K} and k ≠ kT , or multiple dose regimens, such as the neighbors of the reference dose regimen, as
follows:

𝛽1,2 = arg min
𝛽1,2

kT+1∑
k=kT−1

(
𝜋
(2)
k − logit−1

(
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)))2

. (A4)

APPENDIX B. SIMULATION STUDY

B.1 PK/PD models
The PK/PD models were inspired by published models on blinatumomab. For the PK, we considered a 1-compartment
infusion model,46 where the drug concentration was defined as follows:

C(t) =
J∑

j=1
1{t−tj>Tinfj

}
dk,j

Tinfj

1
kV

(
1 − e−kTinfj

)
e−k

(
t−tj−Tinfj

)
+ 1{t−tj≤Tinfj

& t−tj≥0}
dk,j

Tinfj

1
kV

{1 − e−k(t−tj)}, (B1)

where Tinfj is the duration of the infusion of the jth administration, V is the distribution volume, Cl is the clearance of
elimination, and k is the micro-constant defined as k = Cl

V
. We assumed that the delay between successive doses was

greater than the infusion duration, meaning that tj+1 − tj > Tinfj for j ∈ {1, ..., J − 1}.
For the PD, the objective was to model cytokine mitigation when intrapatient dose-escalation was implemented.

We simplified the model developed by Chen et al,31 which assumes that cytokine production is stimulated by the drug
concentration but inhibited by cytokine exposure through the AUC. We defined the cytokine response as follows:

dE (t)
dt

= EmaxC(t)H

ECH
50 + C(t)H

{
1 − ImaxAUCE (t)

IC50

KJ−1 + AUCE (t)

}
− kdegE (t) (B2)

where AUCE (t) is the cumulative cytokine exposure.
For both the PK and PD models, we considered a proportional error model with a value of 0.1. The values of the PK/PD

parameters used for the simulations were inspired by the estimated parameters of blinatumomab31,46 and are displayed in
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T A B L E B1 Definition and value of the pharmacokinetics and pharmacodynamics (PK/PD) parameters used for the simulation
study. Parameter estimate represents the fixed effect, and the coefficient of variation (CV) is the square root of the diagonal of the
variance-covariance matrix. These values are inspired by the parameters estimated on blinatumomab,31,46 with a modification of Imax

to observe cytokine mitigation after several administrations

Parameter Estimate (% CV) Unit Description

PK model Cl 1.36 (41.9) L/h Clearance of elimination

V 3.4 (0) L Volume of distribution

PD model Emax 3.59 . 105 (14) pg/mL/h Maximum cytokine release rate

EC50 1.104 (0) ng/mL Drug exposure for half-maximum release

H 0.92 (3) Hill coefficient for cytokine release

Imax 0.995 (0) Maximum inhibition of cytokine release

IC50 1.82 ⋅ 104 (12) pg/mL⋅h Cytokine exposure for half-maximum inhibition

kdeg 0.18 (13) h−1 Degradation rate for cytokine

K 2.83 (36) Priming factor for cytokine release

Table B1. For the estimation, we considered the parameters EC50, Imax and IC50 fixed and no random effects on V and H.
Estimation was performed with Monolix software (Lixoft SAS., 2019).

B.2 Computation of toxicity probabilities
The true marginal probability of DLT was computed as follows:

pT(Sk) = 1 − P
(

Y (1) = 0,Y (2) = 0
)

= 1 − P

(
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. (B3)

The true marginal probability of CRS was computed by simulations using a Monte-Carlo method. The marginal
probability of DLTo was computed as follows:

p(2)
T (Sk) = 1 − P
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J = 0
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