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ABSTRACT: Future changes in the frequency of extreme drought events are of vital importance for risk assessment and

relevant policy making. But a reliable estimation of their probability is intrinsically challenging due to limited available

observations or simulations.Here, we use two large ensemble simulations, 50members fromCanESM2 and 40members from

CESM1 under the future RCP8.5 scenario, to elaborate a reliable projection of the 100-yr drought events (once in a century)

under different warming levels. It is however necessary to first remove systematic biases for the simulated temperature and

precipitation through a bias-correction method based on quantile mapping. Droughts are diagnosed with the standardized

precipitation evapotranspiration index (SPEI), which considers both precipitation and potential evapotranspiration (PET,

involving temperature). The results show that the frequency of extreme droughts increases with the continued global

warming. Some differences between the two ensembles are also observed, especially for high warming levels. The China-

averaged probability of 100-yr droughts that occur once in a century in the current climate increase by a factor of 1.52 (1.44)

and 1.90 (2.02) under 1.58C and 28Cwarming levels in CanESM2-LE (CESM1-LE), respectively. A simple statistical scheme

shows that the increasing future risk of extreme droughts is mainly due to the increasing effect of PET on the occurrence of

extreme drought events, while the effect of precipitation almost keeps constant with global warming.

KEYWORDS: Drought; Extreme events; Statistical techniques; Asia

1. Introduction

Drought, one of the main natural causes of agricultural, eco-

nomic, and environmental damages, is expected to be aggravated

under global warming (Dai 2011; Sheffield et al. 2012; Zhao and

Dai 2015; Sun et al. 2019). Areas around the world suffering se-

vere droughts have more than doubled from 1970 to 2002, and

catastrophic events have frequently been reported in many

countries (Kallis 2008; Trenberth et al. 2014; Cook et al. 2015;

Williams et al. 2020). China, located in the East Asian monsoon

area, is one of the regions in the world suffering large economic

losses related to frequent droughts. The direct economic loss

caused by drought disaster increased at a rate of 4.8 billion yuan

per year over the past 12 years for eastern China (2004–15) (Shi

et al. 2020).

Studies have shown that frequent extreme drought events have

beenobservedacrossChina in recent decades (Li andMa2015;Ma

et al. 2017). Yu et al. (2014) found that the number of severe and

extreme droughts increased across China during the period from

1951 to 2010, especially for the northwestern and northeastern

parts of China. Southwestern China has witnessed frequent ex-

treme droughts in recent years (Lu et al. 2011, 2014; Yang et al.

2015),with record-breaking events in the summerof 2006, from the

autumn of 2009 to the spring 2010, and the summer of 2011 (Wang

et al. 2014). The long-lasting drought from autumn 2009 to spring

2010 resulted in economic losses of 19 billion yuan (Barriopedro

et al. 2012; Zhang et al. 2012). Southern China, a region generally

considered as humid, is also experiencing more frequent droughts

than ever before (Fischer et al. 2011; Zhang et al. 2017). The

evolutionof extremedroughts overChina in awarming climate has

raised widespread concern among local authorities and civilian

societies. A reliable projection of the frequency of extreme

droughts over China in the future is very important for developing

mitigation and adaption strategies for agriculture, water resources,

and human health.

Global climate models (GCMs) are the main tool for pro-

jecting future climate. However, raw GCMs are generally at

coarse spatial resolutions, unable to conduct the projection at

regional scale. The statistical downscaling technique is widely

used to produce regionally relevant future projection (Chen

et al. 2013; Guo et al. 2020). The downscaling procedure gen-

erally includes two major steps: 1) An interpolation is first

applied to covert climate variables from the GCM’s grid to

stations with reliable observed data of present-day climate. 2)
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Abias correction is then used to remove the biases in historical

and future simulations by establishing relationships between

the model and observation for the historical period, and ap-

plying them for the future projection.

In the framework of this general approach, a few studies were

reported in the literature investigating drought in China. For ex-

ample, based on phase 5 of the Coupled Model Intercomparison

Project (CMIP5), Yao et al. (2020) studied the evolution of

droughts for the period 2011–2100 by using the standardized

precipitation evapotranspiration index (SPEI). They found that

the frequency of dry conditions (with SPEI , 21) would in-

crease in the future, especially over northwest China. Wang

et al. (2014) reported a similar investigation, with a downscaling

technique (spatial disaggregation) applied to CMIP5 models,

for the assessment of future drought in Southeast China. They

found that the futurewarmingwill producemore extremedrought

events quantified by SPEI (SPEI,22) due to the rapid increase

of PET, which exceeds the precipitation increasing with global

warming progresses.

It is worthy of note that the drought frequency defined and

used in these studies was based mainly on a fixed threshold

of the drought index, which allowed accounting for the

number of severe or extreme droughts. The same method-

ology was also found in Leng et al. (2015) and Miao et al.

(2020). Despite its efficacy and simplicity, this intuitive

methodology is inaccurate for rare events with small prob-

abilities. Much more effort needs to be made within the

probabilistic perspective. And this constitutes the primary

motivation for our present study, targeting changes in

drought events that occur once every 100 years in the current

climate. Although the occurrence probability of such events

is low, they could seriously impact the ecological environ-

ment and economic and social development. We should

immediately recognize that, due to the limitation of ade-

quate samples, it is difficult to accurately estimate the

probability of extreme droughts.

There are two methodological approaches to assess ex-

treme events, either with a direct sampling method if there

are sufficient samples or using a statistical model (e.g., gen-

eralized extreme values) when extreme records are short

(Kharin et al. 2013; Li et al. 2018). The latter needs to assume

that extreme events follow a given probability distribution.

The probability of unobserved extreme events can be esti-

mated by extrapolating sample statistics of limited records.

Large ‘‘initial-condition’’ ensemble experiments have been

developed in recent years (Jeffrey et al. 2013; Kay et al. 2015;

Rodgers et al. 2015; Maher et al. 2019), providing an oppor-

tunity to use sampling to estimate probability of extremes.

Ensemble members from each experiment are subjected to

the same external forcing but are started from different ini-

tial conditions. Multiple realizations from one model can

provide a satisfactory sampling of extreme events, which can

allow us to study the extreme events with return period of

more than 100 years by means of sampling, without the re-

quirement of fitting to any probability distribution (Sippel

et al. 2015; Lehner et al. 2016; Tanaka et al. 2018; Deser et al.

2020). Van der Wiel et al. (2019) compared those two meth-

odologies and reported that the large ensemble approach can

improve the estimation of extreme events with long return

period, and reduce the uncertainties in the risk of such ex-

treme events in their risk projection in the future.

The focus of this paper is on the changes in the frequency of

extreme droughts under different global warming levels over

China by using two large ensemble simulations from theCanadian

Centre for Climate Modeling and Analysis (CCCma) second-

generation Canadian Earth System Model (CanESM2-LE)

and the National Center of Atmospheric Research (NCAR)

Community Earth SystemModel version 1 (CESM1-LE). Zhao

et al. (2020) also used those two large ensembles to investigate

meteorological and hydrological droughts in North America.

Our work, focusing on China, complements Zhao et al. (2020)

and can provide useful information for the development of ad-

aptation strategies to the increasing occurrence of drought

hazards in China. For this purpose, we need to understand how

extreme droughts change under different warming levels and for

the whole territory of China. Furthermore, with a simple sta-

tistical scheme, our work will also help to assess possible influ-

ences of PET and precipitation on the future risk of extreme

droughts.Our research is expected to provide useful information

for the local stakeholders and policymakers.

The structure of this paper is as follows: section 2 and

section 3 introduce the data and methods, respectively. The

projected frequency of extreme drought event is presented in

section 4, followed by a discussion in section 5. Finally, section 6

summarizes the conclusions.

2. Data

a. Observation dataset

We used daily precipitation and temperature data collected

by the China Meteorological Administration from 726 meteo-

rological stations covering the period from 1961 to 2017 (avail-

able online at http://data.cma.cn/data/cdcdetail/dataCode/

A.0029.0001.html). Rigorous quality control procedures

have been applied to this dataset by theNationalMeteorological

information center (Qian and Lin 2005). We finally selected 603

stations with no missing values in the record for any year during

this period. These 603 stations are shown in Fig. 1.

The characteristics of climate over China vary significantly

from region to region due to China’s large geographic extent

and complex terrain. To better understand future changes in

extreme droughts in different regions, it is helpful to divide the

whole Chinese territory into subregions.We used six subregions

(Fig. 1): northwest China (NW: 358–508N, 748–1058E), southwest
China (SW: 208–358N, 908–1058E), northeast China (NE: 428–
558N, 1058–1348E), north China (NC: 358–428N, 1058–1258E),
the Yangtze River valley (YZ: 288–358N, 1058–1238E), and

southeast China (SE: 188–288N, 1058–1208E). In this way, dif-

ferent subregions show different climate characteristics. This

definition of subregions has also been widely used in previous

studies (Ma et al. 2015; Qiu et al. 2017).

b. Model dataset

We used two large initial-condition ensembles to try to ro-

bustly assess the change in the frequency of extreme droughts
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over China under different warming levels. The first one was

conducted with the CanESM2 at a spatial resolution of 2.88 3
2.88, referred to hereafter as the CanESM2 large ensemble

(CanESM2-LE), CanESM2-LE consists of 50 members for the

period 1950–2100, each subject to identical external radiative

forcing but beginning from slightly different atmospheric ini-

tial conditions (Arora et al. 2011; Kirchmeier-Young et al.

2017). Following the CMIP5 design protocol, observed natural

and anthropogenic forcing was applied for the historical period

from 1950 to 2005 and representative concentration pathway

8.5 (RCP8.5) radiative forcing was used for 2006–2100. Five

simulations covering the 1850–1950 historical period were

performed to generate five different states of the ocean in 1950.

Then, 10 coupled ocean–atmospheric simulations were run

from each of these five historical simulations using randomly

perturbed initial conditions (in 1950), for a total of fifty 150-yr

simulations over the 1950–2100 period.

The second large initial-condition ensemble is made up of 40

simulations, derived from CESM1 (CESM1-LE; Kay et al.

2015). CESM1-LE has a horizontal resolution of approximately

18 in latitude and longitude. Themodel ensemblemembers were

generated by beginning from a slightly perturbed initial tem-

perature field within the range of round-off errors for each re-

alization. As in CanESM2-LE, the CMIP5 historical forcing was

applied before 2005 and RCP8.5 radiative forcing was applied

from 2006 until the end of twenty-first century in CESM1-LE.

More description of CESM1-LE is given in Kay et al. (2015).

Daily precipitation and temperature from 1961 to 2100 were

used in both ensembles.

3. Method

a. Drought index

A few drought indices can be used to characterize and quan-

tify droughts and their properties. These include the Palmer

drought severity index (PDSI), standardized precipitation index

(SPI), and SPEI. Different indices have their own advantages

and limitations in drought monitoring. Among them, SPEI is

widely used, due to its multiscale nature and ability to identify

different types of drought (Vicente-Serrano et al. 2010). SPEI

quantifies the extent of atmospheric water surplus or deficit

relative to long-term average conditions by standardizing the

difference between precipitation and potential evapotranspira-

tion (PET).

In this study, we used Thornthwaite’s method to calculate

PET. We know that the Penman–Monteith approach is thought

to give a more realistic estimation of PET. However, it requires

additional variables including solar radiation, relative humidity,

wind speed, and sunshine duration. Although model outputs

include these fields, there are no adequate observational data of

these variables for their bias correction. Thus, we choose the

Thornthwaite method to calculate PET, which has the advan-

tage of requiring only the monthly temperature (Thornthwaite

1948). The difference between these two methods over China

was reported bymany researchers, who pointed out that a slight

difference was found in humid regions while the difference in

arid regions was quite large (Li et al. 2014, 2017; Chen and Sun

2015). In this study, SPEI at a time scale of 12 months was used

to represent the drought, because 12-month SPEI can well

represent the precipitation deficit for the entire year.

b. Global warming levels

In this paper, the occurrence probability of extreme droughts

(100-yr events in the current climate) is projected under the

specific global warming levels, including 18, 1.58, 28, 38, and 48C
above the preindustrial level. CanESM2 produced, with ob-

served historical forcing, a five-member ensemble for 1850–2005

in the framework of CMIP5, which allows us to estimate the

global mean surface temperature (GMST) during the preindus-

trial period (1860–1900). The GMST in the preindustrial period

in CESM1-LE was directly calculated in its first run. The time

series of GMST anomalies relative to preindustrial was first

smoothed with a 9-yr moving average. The first year when the

smoothed GMST curve crosses the specific warming level was

then considered as the center for the target warming window (21

years), with two 10-yr periods around. This time slice selection

method is widely used to estimate the future climate under fixed

warming threshold (Sun et al. 2018; Shi et al. 2018). The 21-yr

periods corresponding to these warming levels are listed in

Table 1. The 1.08C warming level is used to represent the cur-

rent climate, which has actually warmed up about 118C com-

pared with the preindustrial period based on observations

(World Meteorological Organization 2019). As noticed previ-

ously, CanESM2 has a higher transient climate response (TCR)

TABLE 1. The 21-yr period when global mean surface tempera-

ture reaches to 1.08, 1.58, 2.08, 3.08, and 4.08C relative to preindus-

trial period for CanESM2-LE and CESM1-LE.

Model 1.08C 1.58C 2.08C 3.08C 4.08C

CanESM2-LE 1990–2010 2004–24 2017–37 2038–58 2056–76

CESM1-LE 2006–26 2020–40 2032–52 2051–71 2070–90

FIG. 1. Location of 603 stations used in this study and the six

subregions of China: northwest China (NW: 358–508N, 748–1058E),
southwest China (SW: 208–358N, 908–1058E), northeast China (NE:

428–558N, 1058–1348E), north China (NC: 358–428N, 1058–1258E),
the Yangtze River valley (YZ: 288–358N, 1058–1238E), and south-

east China (SE: 188–288N, 1058–1208E). The small inset in the

bottom right represents the South China Sea.
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than CESM1; that is, the time when GMST reaches a fixed

warming threshold is earlier in CanESM2 than in CESM1.

c. Bias correction

The output of climate models does not usually reproduce the

statistical properties of observations at stations in the current

climate due to limited spatial resolution, simplified physics, and

incomplete knowledge of the climate system. Failing to correct

these biases may result in unrealistic historical simulation and

future projection.Many researchers have pointed out that GCMs

underestimate the precipitation in humid regions (south China)

but overestimate it in arid regions (western China) (Jiang et al.

2015; Ou et al. 2013). Meanwhile, cold biases have also been

found in many GCMs. This paper used a bias-correction method

based on quantile mapping to reduce model errors (Chen et al.

2013, 2019). To deal with the issue of spatial scale difference

between model output and station observation, we used an in-

verse distance-weighted interpolation method to convert or

downscale daily precipitation and temperature from model

grid to the observed network of 603 stations across China.

The interpolation was followed by the bias correction of the

model output to match with observed data for each station. The

bias correction that we used involves distribution-based quantile

mapping technique. It is worthy of note that, for daily precipita-

tion, the local intensity scaling was first applied to ensure that the

number of wet days (.0.1mm day21) simulated by a model

is consistent with what observation. The gamma function was

used for the daily precipitation probability distribution, which

constitutes a good approximation for the probability distribution of

both observed and simulated precipitation. The bias-corrected data

of future projection were generated by replacing the model pre-

cipitation by its value resampled from the gammadistribution fitted

to the observations and associated with the same quantile. This

method was found to perform well when used on GCMs outputs

over China, especially for extremes (Yang et al. 2018; Yao et al.

2018). As for temperature, the bias correction follows the same

approach as for precipitation, but an empirical distributionwas used

to match the observed distribution through a transfer function.

The correction was calibrated in the observed reference period

(1985–2005) and the period inmodelwhen the simulatedwarming

is closest to the observed warming (1992–2012 for CESM1-LE

and 1978–98 for CanESM2-LE). The correction was applied 1) to

the current climate (18Cwarming, relative to preindustrial) to

evaluate the performance of bias correction with its observed

21-yr period (1998–2018), and 2) to future warming climate to

produce a bias-corrected climate projection.

d. Return period of extreme drought index

CanESM2-LE and CESM1-LE provide a sampling of 1050

(503 21) and 840 (403 21) model years, respectively. And this

for each of our period of investigation. Such a large sampling

allows us to directly compute drought events with large return

periods (up to 100 years) using an empirical distribution. In this

work, an unbiased estimation formula was used to calculate the

future return period T for an extreme drought event in the

current climate. This method has been commonly used in cli-

matology research (Cunnane 1978; Folland and Anderson 2002;

Zhang and Singh 2006; Zhao et al. 2020):

T5
N1 0:2

m2 0:4
, (1)

where N represents the number of extreme samples (840 for

CanESM2-LE and 1050 for CESM1-LE) used. The series of N

values being ranked in ascending order, the rank of an event

corresponding to a specific chosen return period (e.g., 100-yr

event) is the following:

m5 (N1 0:2)/1001 0:4. (2)

The future return period of the event with rank m in current

climate can be estimated with Eq. (1). This estimation can

ensure that the estimated return period is an optimal unbiased

one for the underlying gamma distribution.

In practice, the smallest annual SPEI values for each model

year were first calculated from monthly SPEI to constitute our

samples of extreme droughts. We can then estimate the SPEI

value with 100-yr return period by applying Eq. (2) in current

climate, and to deduce the return period of this SPEI value

under different warming levels by using Eq. (1).

A 100-yr drought represents a drought event that occurs on

average once every 100 years. In other words, it has a proba-

bility of occurrence of 1/100 for each year. The return period

of a current 100-yr drought in future climate reflects the change

in drought frequency. The event will become more frequent if

the future return period is shorter and less frequent if the fu-

ture return period is longer. We also use the risk ratio (or

probability ratio, denoted as PR) defined by PR 5 P1/P0 to

assess risk changes at regional level: P1 represents the future

probability of a current 100-yr drought event, and P0 repre-

sents its current probability (e.g., 1/100 5 0.01).

4. Results

a. Performance of the ensemble simulations

The raw and bias-corrected annual total precipitation is first

evaluated in current climate in the two ensembles. As shown in

Fig. 2, the two ensembles generally overestimate the annual total

precipitation over northern China with maximum biases (over

200%) over north-central China. But the two ensembles under-

estimate annual total precipitation over southeastern China with

maximum negative biases reaching nearly 60%. The bias cor-

rection can reduce the bias remarkably, to a level smaller than

10% over southern China and 20% over north China. In addi-

tion, it is of utmost importance to examine the model perfor-

mance in simulating the seasonal variation of precipitation.

Generally, those two bias-corrected ensembles can well repro-

duce the annual cycle of precipitation, especially for CESM1-LE

due to its higher spatial resolution (figure not shown).

Figure 3 displays the raw and bias-corrected annual cycle of

temperature averaged across China in the two ensembles, to-

gether with the observed counterpart. The raw ensemble un-

derestimates temperature year-round, especially in winter. For

example, CanESM2-LE underestimates the observed January

temperature by 18C and CESM1-LE by 38C. The bias-corrected
temperature shows a good agreement with observation with cold

biases significantly reduced.

Overall, the bias-corrected ensembles can both well re-

produce the characteristics of observed precipitation and
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temperature, which gives us some confidence for their future

projection.

b. Changes in the frequency of extreme droughts under

different warming levels

We mostly focus on changes of the current 100-yr droughts in

different future warming climates (Fig. 4), because changes for an

event of long return period always led to large socioeconomic

losses. The distribution of drought events with other long return

periods is similar to that of the 100-yr event, with just some dif-

ferences inmagnitude (figure not shown). The frequency of 100-yr

extreme droughts in both ensembles increases with global warm-

ing. However, the pattern shows differences between them, espe-

cially for lowwarming levels. InCanEMS2-LE, parts of central and

eastern China show a decrease in probability of 100-yr events. In

CESM1-LE, the regions with a decrease are located in southeast

China, southwestChina, and southernChina. Thepattern becomes

more consistent between the two ensembles under higherwarming

levels, with the largest increase over northwestern China and a

decrease over parts of southwestern China.

Precipitation and temperature are the two main factors con-

tributing to the development of extreme droughts, the former

FIG. 2. Spatial pattern of bias for climatology of total annual precipitation during the current climate in the raw ensemble and bias-

corrected ensemble relative to observation for (left) CanESM2-LE and (right) CESM1-LE.

FIG. 3. Observed (black), raw (blue), and bias-corrected (red) annual cycles of temperature averaged across China

for (left) CanESM2-LE and (right) CESM1-LE.
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mainly through the influence on evapotranspiration, and the

latter by directly changing the available water on the surface. To

investigate the relevant mechanism underlying the changes of

extreme droughts, it is essential to study the contribution of

precipitation and temperature to the occurrence of extreme

droughts. The future changes in annual total precipitation (rel-

ative change) and annual mean temperature (absolute change)

relative to current climate under different warming levels are

displayed in Figs. 5 and 6, respectively.

A notable feature in Fig. 5 is that the precipitation exhibits a

uniform increase across China with the most notable increase

in northwestern China. The patterns exhibit little difference

between the two ensembles in eastern China. A larger increase

in northern China than in southern China can be found in

CanESM2-LE. Taking the 38C warming climate as an ex-

ample, the precipitation increase exceeds 15% in northern

China, whereas the increase is no more than 10% in southern

China. But a larger increase in southern China than in

northern China can be found in CESM1-LE.

Changes in temperature, another important variable deter-

mining drought, are highlighted in Fig. 6. A homogenous warm-

ing pattern can be seen across the whole region, with greater

warming in western and northeastern China, and weaker warm-

ing in southeasternChina. This spatial structure is generally stable

FIG. 4. The return period of 100-yr drought events in the current climate under different warming levels in

CanESM2-LE and CESM1-LE.
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among the different warming climates. However, the magnitude

of warming increases with a rise in global mean temperature for

both ensembles. For example, when the global temperature

warms by 1.58C, the increase in mean temperature exceeds 0.58C
relative to the current climate over most of China, and exceeds

18Cover northwesternChina.When global warming reaches 48C,
the temperature exceeds 38C over most parts of the region, and

northwestern China experiences a warming of more than 48C.
The pattern of temperature changes shows no direct link with

changes in the frequency of extreme droughts.

The changes in precipitation and temperature share a similar

pattern with the largest increases appearing in northwestern

China. More precipitation could bring fewer droughts, but warmer

temperature could enhance evaporation from the soil, producing

more droughts. The effect of temperature changes on extreme

droughts is somewhat counteracted by the projected increase in

precipitation. Thus, future changes in drought frequency can

have complex behaviors because of the competition effect be-

tween changes in precipitation and temperature.

We used risk ratio to quantify the changes in probability of

current extreme 100-yr events under different warming levels.

Figure 7 shows the area-weighted averaged risk ratio for whole

China and its subregions. The area-weighted averaging has

been a widely used approach in climate change research (Zhai

et al. 2005; Sun et al. 2014; Yin and Sun 2018).We first divide all

of China into boxes of 2.58 3 2.58 in latitude and longitude and

then calculate each box value as the mean of all available

station data in the box. The box value is set as missing when no

FIG. 5. Projected changes in annual total precipitation under different warming levels relative to the current climate

for CanESM2-LE and CESM1-LE.
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stations fall into the box. Finally, the regional average was

obtained as the general mean of all boxes in the region with

area as weight. Note that SPEI based on the Thornthwaite

equation may produce large errors when it is used to monitor

drought conditions over northwestern China. This is partly due

to the amplified effect of temperature enhancement in the arid

region, intrinsically related to the Thornthwaite approach,

which has beenwidely reported in previous research (Chen and

Sun 2015). Thus, we exclude the NW subregion from our re-

gional analysis.

In general, the probability of extreme droughts is projected

to increase in response to global warming. The magnitude of

risk ratio in CESM1-LE is larger than that in CanESM2-LE,

especially under higher warming levels. The average probability

across China for the 100-yr event increases by a factor of 1.52

(1.44), 1.90 (2.02), 2.82 (3.83), and 4.43 (7.93) under the four

warming levels in CanESM2-LE (CESM1-LE), respectively.

Generally, the risks ratio in all subregions increase with global

warming, especially for higher warming levels. The future

changes in probability show large distinctions among subre-

gions and exhibit a notable difference between the two large

ensembles. Two subregions located in south China, SE andYZ,

exhibit larger increase in risk ratio than other subregions for

CanESM2-LE, while NC and NE in north China show larger

increase for CESM1-LE. For SW, a weak increase in occur-

rence of extreme drought event can be seen in CESM1-LE,

whereas a slight decrease in the risk ratio can be found for

CanESM2-LE.

FIG. 6. As in Fig. 5, but for temperature.
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To illuminate possible reasons explaining the future changes of

extreme droughts, we now examine the influence of precipitation

and PET, two key ingredients, in the future risk of extreme

droughts. We designed two additional experiments. In the first

one, the drought index, noted hereafter as SPEI1 is calculated by

holding PET at its mean annual cycle in the current climate and

only allowing precipitation to vary. The future probability of a

given SPEI value in this situation would be smaller compared to

the normal situation (both PET and precipitation changing with

time), since the effect of increasing PET in drier conditions is

suppressed in SPEI1. We can use fraction of probability due to

PET (PEF), defined as (P 2 P1)/P 3 100%, to quantify the in-

fluence of changing PET on the future risk of extreme droughts,

where P is the future probability of the current 100-yr drought.

In the second experiment, SPEI2, PET varies but precipi-

tation is held at its mean annual cycle value in current climate.

The opposite effect is expected, since increasing precipitation

would alleviate droughts. The future probability of a given

SPEI value, derived from SPEI2, would be larger compared

to the normal situation. It is useful to define the fraction of

probability to precipitation (PF) as (P2 2 P)/P2 3 100% to

quantify the influence of precipitation changes on the future

risk of extreme droughts. PEF and PF were calculated for each

station and area-weight averaged over China and over the six

subregions. We used them to assess future risk of extreme

droughts. Results are displayed in Fig. 8.

In general, PEF shows a higher increase magnitude than PE

does, with GMST significantly rising across China. That is to

say, the importance of PET as a contributor to the future risk of

extreme droughts will increase in the future, which is the main

reason why the two ensembles (from two different models)

produce both more frequent extreme droughts under warming

climate. The importance of precipitation, a factor of alleviation

of future risk of extreme droughts, seems to keep constant in

the future. Over the SW region, the importance of PEF and PE

both show increase trend with warming in the two models with

larger increase in PEF and smaller increase in PF across all

warming levels, which makes SW to become the weakest changes

in probability of extreme drought among all subregions. This

condition also happens over NE in CanESM2-LE.

5. Discussion

The results that we presented in this paper are based on two

large ensemble simulations, which allows us to accurately es-

timate the occurrence probability of extreme droughts by

providing enough statistical samples. We also applied a simple

quantile-mapping bias correction to model outputs, and we

succeed in obtaining a good performance in simulating both

precipitation and temperature in China. We are thus more

confident in our future projection of extreme drought events.

Remarkable differences, however, do exist between the two

ensembles, with a larger increase in CESM1-LE than in

CanESM2-LE. Southwestern China even shows opposite sign

of changes. At this stage of our investigation, we presume that

results from CESM1-LE are more reliable since it has a higher

FIG. 7. Spatially averaged of future changes in 100-yr extreme droughts in the current climate under 1.58, 28, 38, and 48C for CanESM2-

LE (magenta) and CESM1-LE (green) for the whole of China and its subregions (NE, NC, YZ, SE, SW). The dashed horizontal line

represents a PR equal to one.
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spatial resolution and a better performance in reproducing

extreme droughts in its current climate.

Despite the requirement of computational resources

in performing large ensemble simulations, a few modeling

groups are beginning to release data of their large-ensemble

simulations. This will allow us to explore results from multi-

ple models and reduce uncertainties arising from differ-

ent climate models. GCMs exhibit quite a large diversity in

changes of drought events at the subregional scale. Thus,

more accurate future projection of extreme drought events at

the regional scale relies on adequate dynamical downscaling

techniques that we can apply on large ensemble simulations

to consider key physical processes determining climate ex-

tremes (Huang et al. 2018; Roberts et al. 2018). In addition,

these two large ensemble experiments give only the future

simulation under the RCP8.5 emission scenario, which is

close to the current climate emission scenario, so it is im-

portant to study the uncertainty that stems from different

emission scenarios.

It is inevitable that our results may exhibit differences with

those derived from the traditional CMIP5 approach exploring

the multimodel ensemble. This is especially expected at the

subregional scale. For example, Wang et al. (2014) reported

that the change of extreme drought events (SPEI,22.5) over

southwest China will rise rapidly in the future, with the in-

crease rate of PET exceeding that of precipitation.

Our analyses revealed that the increasing PET may domi-

nate the risk rising of extreme drought events across China

from a simple statistical perspective, which is consistent with

previous works (Wang et al. 2014; Yao et al. 2020). However,

more research is needed to verify the robustness of the re-

sults. The calculation of PET in our paper relies on a simple

temperature-based equation. Contributions from factors other

than PET, such as relative humidity and wind speed, may also

play a role in the future changes of extreme drought at regional

scale. In addition, it is necessary to investigate the relative

contribution of precipitation deficits and temperature anoma-

lies to the risk of extreme drought events by designing appro-

priate experiments, which could reveal the mechanisms for

development of extreme drought events and shed light on the

future drought risk at the regional scale.

The two large ensemble simulations that we analyzed have

also been used in North America to study extreme meteoro-

logical droughts and hydrological droughts (Zhao et al. 2020).

We extended their work to a new domain, China, a country

acutely vulnerable to climate change. Due to the large geo-

graphic diversity, we furthermore divided the whole Chinese

territory into subregions to better describe and understand the

risk of extreme drought at local scale. CESM1-LE is believed

to be more confident for risk assessment in north China with

increasing frequency of extreme drought.

A comparison between our results with Zhao et al. (2020)

revealed that there are disparities (but also similarities) among

different regions of the world for future evolution of extreme

droughts response to global warming. For example, SPEI at the

12-month scale used in our research is largely representative

for the hydrological drought, comparable with Zhao et al.

(2020) targeting hydrological droughts through the utilization

of hydrological model driven by GCMs outputs. Most of our

results in China are consistent with what is shown in Zhao et al.

(2020) in North America. For example, future changes of

drought frequency exhibit a quite uniform pattern of increase

across those two domains. In addition, it is also interesting to

note, for both regions, that temperature increase seems to

play a more important role than precipitation does in driving

the future evolution of extreme drought.

FIG. 8. The area-weighted averaged of PEF and PF over China and its subregions (NE, NC, YZ, SE, SW) under

different warming levels for CanESM2-LE (magenta) and CESM1-LE (green).
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6. Conclusions

The lack of enough statistical samples is often an obstacle to

making reliable estimates of rare events of climate. Thanks to

the large ensemble simulations released by the international

climate modeling community, we have now enough statistical

samples to use simple and direct sampling methodology to

estimate probability of climate extremes. We used, in the

present work, two large ensemble simulations from CanESM2-

LE and CESM1-LE to project the change in frequency of ex-

treme droughts (events with a 100-yr return period) in China

under different warming climates. Nevertheless, the coarse

resolution of these GCMs still makes them subject to large

biases in reproducing the climate at regional scale. A bias-

correction method based on distribution quantile mapping was

applied to daily precipitation and temperature remove biases.

The bias-corrected data can well reproduce the observed

characteristics of precipitation in the current climate with a

huge reduction of wet biases in northern China and dry biases

in southern China. The cold bias in the raw data is also largely

reduced, especially in winter. The bias-removed data inspire

more confidence in the projection of future extreme droughts.

An unbiased estimation was used to calculate the return

period of extreme events and the future risks of extreme

droughts were projected across China and its subregions under

different warming levels. Our simple statistical scheme avoids

making hypothetical assumptions on distribution of extreme

events. Results show that the frequency of extreme droughts

will increase with global warming, especially under higher

warming levels. For China as a whole, the probability of a

100-yr drought in the current climate increases by factors of

1.52 (1.44), 1.90 (2.02), 2.82 (3.83), and 4.43 (7.93) under 1.58,
28, 38, and 48C warming levels in CanESM2-LE (CESM1-

LE), respectively. The future risk changes at local scale ex-

hibit large difference between two large ensemble simula-

tions, with a large increase in north China for CESM1-LE but

in south China for CanESM2-LE. The results from CESM1-

LE may inspire more confidence due to the model’s finer

spatial resolution.

The general increase of risk for a higher occurrence proba-

bility of extreme droughts is mainly due to the strong response

of our drought index to PET changes as global warming

progresses, with the PET effect of temperature surpassing

that of precipitation. That is, the increase of PET plays a more

and more important role in the increase of extreme droughts

across China.
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