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MESURES CENTRALES POUR LES GRAPHES
MULTIPLICATIFS, REPRÉSENTATIONS D’ALGÈBRES

DE LIE ET POLYTOPES DES POIDS

by Cédric LECOUVEY & Pierre TARRAGO

Abstract. — To each finite-dimensional representation of a simple Lie algebra
is associated a multiplicative graph in the sense of Kerov and Vershik defined from
the decomposition of its tensor powers into irreducible components. It was shown
in [11] and [12] that the conditioning of natural random Littelmann paths to stay in
their corresponding Weyl chamber is controlled by central measures on this type of
graphs. Using the K-theory of associated C∗-algebras, Handelman [8] established a
homeomorphism between the set of central measures on these multiplicative graphs
and the weight polytope of the underlying representation. In the present paper, we
make explicit this homeomorphism independently of Handelman’s results by using
Littelmann’s path model. As a by-product we also get an explicit parametrization
of the weight polytope in terms of drifts of random Littelmann paths. This explicit
parametrization yields a complete description of harmonic and c-harmonic func-
tions for the Littelmann path model describing the iterated tensor product of an
irreducible representation.
Résumé. — Nous associons un graphe multiplicatif au sens de Vershik et Kerov

à chaque représentation de dimension finie d’une algèbre de Lie simple en consi-
dérant la décomposition de ses produits tensoriels successifs en représentations
irréductibles. Pour chacune de ces représentations de dimension finie, il a été mon-
tré en [11] et [12] que le conditionnement d’un chemin de Littelmann aléatoire à
rester dans la chambre de Weyl est décrit par les mesures centrales sur le graphe
multiplicatif associé. En utilisant la K-théorie des C∗-algèbres correspondantes,
Handelman a établi un homéomorphisme entre l’ensemble des mesures centrales
sur un de ces graphes multiplicatifs et le polytope des poids de la représentation
sous-jacente. Dans cet article, nous rendons explicite l’homéomorphisme d’Handel-
man en utilisant les modèles de chemins de Littelmann. On obtient en conséquence
une paramétrisation du polytope des poids en termes de dérives de chemins de
Littelmann aléatoires. La paramétrisation explicite donne une description com-
plète des fonctions harmoniques et c-harmoniques pour les modèles de chemins
de Littelmann décrivant les itérations de produits tensoriels d’une représentation
irréductible.

Keywords: représentation d’algèbre de Lie, mesure harmonique, chemin de Littelmann.
2020 Mathematics Subject Classification: 05E10, 17B10, 31C35.
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1. Introduction

Consider a simple finite-dimensional Lie algebra g of rank d over C and
its root system in Rd. Let P be the corresponding weight lattice and fix
∆ a dominant Weyl chamber. Then P+ = P ∩∆ is the cone of dominant
weights of g. Denote by S = {α1, . . . , αd} the underlying set of simple
roots. To each dominant weight δ ∈ P+ corresponds a finite-dimensional
representation V (δ) of g of highest weight δ. In [14] Littelmann associated
to every representation V (δ) a set B(δ) of paths in Rd with length 1 starting
at 0 and ending in the set Πδ of weights of V (δ). Random Littelmann paths
can then be defined first by endowing B(δ) with a suitable probability
distribution, next by considering random concatenations of paths in B(δ).
In [11] and [12] distributions on the set B(δ) are defined as morphisms from
P to R>0. This is equivalent to associating to each simple root αi a real ti
in ]0,+∞[. It is then shown that these random paths and their conditioning
to stay in the Weyl chamber ∆ are controlled by the representation theory
of g. In fact, one obtains particular central distributions on the set ΓRd

n of
paths of any length n > 1 (obtained by concatenating n paths in B(δ)).
By central distributions we mean that the probability of a finite path only
depends on its length and its end. Equivalently, we get a central measure
on the set of infinite concatenations ΓR of paths in B(δ) (see Section 2).
Write H(Rd) for the set of central measures on ΓR and H(∆) for the

subset of H(Rd) of central measures on Γ∆, the set of infinite trajecto-
ries remaining in ∆. By Choquet’s Theorem both sets H(Rd) and H(∆)
are simplices so they are essentially determined by their minimal bound-
aries ∂H(Rd) and ∂H(∆). Write K(δ) for the convex hull of Πδ and set
K(δ)+ = ∆∩K(δ) . For walks in the Weyl chambers, the characterization
of the sets ∂H(Rd) and ∂H(∆) has been obtained by Handelman in [8]
and [9] using an important work of Price [17, 18], by proving that they
are respectively homeomorphic to K(δ) and K(δ)+. Nevertheless, Handel-
man did not explicit the homeomorphisms. Their existence is established
by considering the central measures as traces on certain C∗-algebras and
then using analytic tools. In particular, a central element of the proof is
the extension of traces on C∗-algebras using K-theory (a short explanation
of these arguments is given in Section 3.4).
The goal of this paper is essentially threefold: first we make explicit both

homeomorphisms by using the Weyl characters of g (see Theorem 3.1), next
we give an algebraic proof of Handelman’s results and finally we connect
them with more recent works on conditioned random walks or Brownian
motions, generalizations of the Pitman transform and asymptotic Young
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tableaux (see [2, 4, 5, 11, 12, 13, 16, 20]). As a corollary of these results,
we describe the set of harmonic and c-harmonic functions corresponding to
the aforementioned random walks. Finally, we get a law of large numbers
for random walks distributed according the central measures we obtain.
Our two last results seem quite disconnected from the initial algebraic
setting in representation theory, and we conjecture that they still hold
for a very broad class of random paths. Our approach extends that of
Kerov and Vershik to which it essentially reduces when V (δ) is the defining
representation of g = sln. Nevertheless, numerous difficulties arise when
considering the general case of dominant weights of any simple algebra g,
which explains the involved machinery used in the proof of Handelman.
Our methods to determine ∂H(Rd) and ∂H(∆) are quite similar. So we
will now give its main steps only in the case of ∂H(∆).
We first need to show that the characterization of ∂H(∆) is equivalent to

that of the extremal harmonic functions on the growth graph G(∆) associ-
ated with Γ∆. This growth graph is rooted, graded and multiplicative: its
vertices label the basis B = {(sλ, n) |V (λ) irreducible component of V (δ)⊗n
and n > 1} of a commutative algebra T̂+

δ (here sλ is the Weyl character
of V (λ)). We then establish that the extremal nonnegative harmonic func-
tions on G(∆) are in bijection with the algebra morphisms from T̂+

δ to R
that are nonnegative on B. Next, we prove that all these morphisms are
obtained by associating to each simple root αi, i = 1, . . . , n a real in [0, 1].
The difficulty here comes from the fact that two such associations can yield
the same morphism. So to obtain a genuine parametrization, we need to
restrict ourselves to a subset [0, 1]dδ (see (4.5) for a precise definition) of
[0, 1]d whose combinatorial description is in terms of the δ-admissible sub-
sets of S introduced in [21]. Finally, in Proposition 6.4, we show that our
set [0, 1]dδ also parametrizes the simplex K(δ)+ by considering, for each
d-tuple in [0, 1]dδ , the drift of the corresponding random Littelmann path
appearing in the construction of [11] and [12].
The paper is organized as follows. In Section 2, we recall some back-

ground on random paths and central measures on multiplicative graphs.
We also apply the Ring Theorem of Kerov and Vershik to relate extremal
harmonic functions on a multiplicative graph to nonnegative morphisms of
the underlying algebra. The main result is written down in Section 3 where
we also introduce the algebras T̂ δ and T̂+

δ ; a sketch of Handelman’s argu-
ments is proposed at the end of Section 3. Section 4 gives the description
of ∂H(Rd). Here, we define our set [0, 1]dδ and relate it to the geometry
of the polytope K(δ). The description of ∂H(∆) is deduced from that of
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∂H(Rd) in Section 5. It is worth noticing that we need here (as in the result
of Kerov and Vershik) a classical theorem relating polynomials with non
positive roots to totally positive sequences. Another important ingredient
in the proof is the use of certain plethyms of Schur and Weyl characters of
g. Finally, Section 6 relates both descriptions of ∂H(Rd) and ∂H(∆) to the
drift of random Littelmann paths. Notably it explains how the polytope
K(δ) can be simply parametrized by using the set [0, 1]dδ . A nomenclature
with all recurring notations is provided at the end of the manuscript.

2. General probabilistic framework

We present here a general probabilistic model of random paths in a do-
main, which is well suited to study probabilistic aspects of Littelmann paths
and their asymptotics. We introduce first a discrete version of paths in a
vector space.

2.1. Random paths on a lattice

Let d > 0 and let Λ be a lattice of Rd with rank d. We shall denote by
#S the cardinality of any set S.

Definition 2.1.

(1) Let n > 0. A path π on Λ of length n is a piecewise linear function
π : [0, n] → Rd with π(0) = 0, π(i) ∈ Λ for all i ∈ {0, . . . , n}, and
π(x) ∈ Qd for all x on which π is not differentiable. The path π is
called infinitesimal if n = 1.

(2) An infinite path on Λ is a piecewise linear function π : [0,+∞[→ Rd
with π(0) = 0, π(i) ∈ Λ for all i ∈ N, and π(x) ∈ Qd for all x on
which π is not differentiable.

The length of the path π on Λ is denoted by l(π) ∈ N∪{+∞} . We write
π.τ for the concatenation of two finite paths π and τ . Let X be a countable
set of infinitesimal paths and let Ω be a domain of Rd such that 0 ∈ Ω; from
now on, the set X is fixed and is not mentioned in the various notations.
A path π is called X-valued if π is the concatenation of infinitesimal paths
coming from X: equivalently,

(
π|[i,i+1] − π(i)

)
∈ X for all i > 1. In the

sequel, any path is always considered as X-valued. The set of infinite X
-valued paths (resp. finite X-valued paths and X-valued paths of length
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n > 1) whose image is included in Ω is denoted by ΓΩ (resp. by ΓΩ
fin and

ΓΩ
n ). For x, y ∈ Λ, we denote by ΓΩ(x, y) the set of infinitesimal paths
π ∈ X such that π(1) = y − x and x + π ⊂ Ω, and we write x ↗ y when
#ΓΩ(x, y) 6= 0. Finally, we denote by ΓΩ

n (y) the set of finite paths of length
n ending at y.
In order to consider random infinite paths in Ω, we need to define a σ-

algebra on ΓΩ. Let τ be a finite path of length n, and let ΓΩ(τ) be the
set {π ∈ ΓΩ | l(π) > n, π|[0,n] = τ}. We consider the coarsest σ-algebra
containing all the sets ΓΩ(τ) for τ ∈ ΓΩ

fin. The set M1(ΓΩ) of probability
measures on ΓΩ is considered with the initial topology with respect to
the evaluation maps on the sets ΓΩ(τ), τ ∈ ΓΩ

fin. By Tychonov’s Theorem,
M1(ΓΩ) is a compact set with respect to this topology.

2.2. Central random paths

Definition 2.2. — A probability measure Pon ΓΩ is called central if
there is a function p : Λ× N→ R+ such that

P
(
ΓΩ(π)

)
= p(y, n),

for all π ∈ ΓΩ
n (y) with y ∈ Λ, n > 0. A random path in ΓΩ is called central

if the induced measure is central.

Similarly, we could have defined central measure on ΓΩ
fin by similar means.

It is then easily seen that any central measure supported on Γfin(Ω) is a
convex combination of uniform measures on the sets ΓΩ

n (y) with y ∈ Λ
and n > 1. Therefore, the main interesting phenomena arise for central
measures supported on ΓΩ. The set of central measures supported on ΓΩ

is denoted by H(Ω).
Let P ∈ H(Ω). Then, by Definition 2.2 there exists a function p : Λ×N→

R+ such that
P(ΓΩ(π)) = p(y, n),

for all π ∈ ΓΩ
n (y) with y ∈ Λ and n > 1. Let x ∈ Λ, and suppose that π is

a finite path in ΓΩ
n (x). A path τ of length n + 1 ending at y ∈ Λ satisfies

τ|[0,n] = π if and only if τ|[0,n] = π and τ[n,n+1] is an infinitesimal path
joining x to y. Therefore, ΓΩ(π) can be decomposed as

ΓΩ(π) =
∐
y∈Λ

∐
τ∈ΓΩ(x,y)

ΓΩ(π.τ).

TOME 70 (2020), FASCICULE 6
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Thus,
P
(
ΓΩ(π)

)
=
∑
y∈Λ

∑
τ∈ΓΩ(x,y)

P
(
ΓΩ(π.τ)

)
,

which translates into the relation

(2.1) p(x, n) =
∑
y∈Λ

#ΓΩ(x, y)p(y, n+ 1)

for x ∈ Λ ∩Ω such that ΓΩ
n (x) 6= ∅. Describing the set of solutions to (2.1)

is very complicated in general. It is known however that H(Ω) is a convex
subset ofM1(ΓΩ) and even a Choquet simplex.

Definition 2.3. — The minimal boundary of ΓΩ is the unique subset
∂H(Ω) ⊂ H(Ω), such that any central measure P0 in H(Ω) admits a unique
integral representation

P0 =
∫
∂H(Ω)

Pdµ(P),

where µ is a probability measure on the set ∂H(Ω).

2.3. Central measures and Doob’s conditioning

We establish here some connections between central measures on random
paths and random walks on lattices. Indeed, any random path π ∈ ΓΩ

following a central measure P ∈ H(Ω) yields a random walk Z = (π(0) =
0, π(1), . . . ) on the lattice Λ∩Ω. The family of Markov kernels (Qn)n>0 of
Z can be explicitly given from the function p : Λ× N → R+ associated to
the central measure P. Indeed one can show that

Qn(x, y) = 1p(x,n)6=0
#ΓΩ(x, y)p(y, n+ 1)

p (x, n) .

By the equality p(x, n) =
∑
y∈Λ #ΓΩ(x, y)p(y, n+ 1), Qn is a well-defined

Markov kernel. Note that this random walk is generally not homogeneous
in time, since the kernel Qn depends on n through p.
Doob’s conditioning is a standard way to produce random walks on Λ∩Ω

coming from central measures. Let Z be the random walk on Rd starting
at 0 and with Markov kernel

P(Zn+1 = y |Zn = x) = ΓR(x, y)
#X

ANNALES DE L’INSTITUT FOURIER
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for any x, y ∈ Λ. Note that this random walk actually comes from the
central measure P whose value is

P(ΓR(π)) = 1
(#X)n

for all π ∈ ΓRd
n with n > 0.

Definition 2.4. — Let c > 0. A function h : Ω ∩ Λ → R+ is a c-
harmonic function for the random path Z killed when exiting Ω if and
only if

h(x) = 1
c(#X)

∑
π∈X
x+π⊂Ω

h(x+ π(1)) = 1
c(#X)

∑
y∈Λ∩Ω

#ΓΩ(x, y)h(y).

Let c > 0 and assume that h is a c-harmonic function for Z. Then, the
Doob conditioning Zh of Z in Ω is given by the Markov kernel

P(Zhn+1 = y |Zhn = x) = 1h(x)>0
1

c(#X)
#ΓΩ(x, y)h(y)

h(x) ,

for y ∈ Λ∩Ω. The random walk Zh is well-defined because h is c-harmonic
and is time homogeneous. This random walk comes from the central mea-
sure Ph whose value is

Ph(ΓΩ(π)) =
(

1
c(#X)

)n
h(y)

for π ∈ ΓΩ
n (y) with n > 0 and y ∈ Λ ∩ Ω.

Conversely, suppose that P is a central measure with an associated func-
tion p such that p(x, n) = anh(x) for some function h : Λ ∩ Ω → R+ and
a > 0. Then, (2.1) yields

anh(x) =
∑
y∈Λ

#ΓΩ(x, y)an+1h(y),

which is equivalent to the relation h(x) = a
∑
y∈Λ #ΓΩ(x, y)h(y). Thus,

the function h is (a#X)−1-harmonic.
Hence, the set of c-harmonic functions for Z is homeomorphic to the set

of central measures P ∈ H(Ω) whose associated functions p have the form
p(x, n) =

(
1

#X·c

)n
h(x) with h : Λ ∩ Ω→ R+.

For any real c > 0, denote by Hc(Ω) the set of central measures coming
from c-harmonic functions. A quick computation shows that the random
walk Z induced by a central measure P is time homogeneous if and only if
P ∈ Hc(Ω) for some c > 0.

It is easily seen that Hc(Ω) is a convex subset of H(Ω) and we denote by
∂Hc(Ω) the set of extreme points of Hc(Ω). To the best of our knowledge,
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there is no general proof that ∂Hc(Ω) = ∂H(Ω) ∩Hc(Ω); in particular, an
answer to the following problem yields a nice description of ∂H(Ω).

Problem. — Do we have the decomposition ∂H(Ω) = tc>0∂Hc(Ω)?

In our case of study, this equality is proven by explicitly describing both
sets (see Section 3.3). As we shall explain in the following we do need here
to consider the closure of tc>0∂Hc(Ω).

2.4. Central measures on multiplicative graphs

We investigate here the general solution of (2.1) when the path concate-
nation on ΓΩ

fin encodes the multiplicative structure of an algebra. Let us
first give a brief overview of the general theory in the setting of graded
graphs before applying it to our situation.
So consider a rooted graded graph G = {∗} t

∐
n>1 Gn where Gn is

the set of vertices in level n (G0 = {∗} by convention). For any n > 0,
we can only have directed weighted arrows between vertices λ ∈ Gn and
µ ∈ Gn+1 with weight e(λ, µ). Such a graph is called multiplicative if there
exists a commutative algebra A and an injective map ι : G → A such
that ι(λ)ι(∗) =

∑
λ↗µ e(λ, µ)ι(µ). Here λ ↗ µ means we consider all the

neighbors µ of the vertex λ. We suppose that the graph is connected, which
means that for all µ ∈ G, the number of paths between the root and µ is
positive. The weight e(π) of a path π between the root and a vertex µ is
the product of all the weights of the edges of π.
Let K be the positive cone spanned by ι(G), and let AG be the unital

subalgebra of A generated by K. Denote by Mult(AG)+ ⊂ A∗G the set of
multiplicative functions on AG which are nonnegative on K and equal to 1
on ι(∗). Note that ι : G → AG induces a map ι∗ : A∗G → F (G,R) such that
ι∗(φ) = φ ◦ ι for any linear map φ : AG → R. Now denote by H(G) the set
of functions p : G → R+ such that

(2.2)


p(∗) = 1,
p(λ) =

∑
λ↗µ

e(λ, µ)p(µ) for any λ ∈ G.

We can characterize the set ∂H(G) of extremal points in H(G):

Proposition 2.5. — Suppose that K.K ⊂ K. Then, the map ι∗ yields
an homeomorphism between Mult+(AG) and the set ∂H(G).

The proof of this proposition is an application of the Ring Theorem of
Kerov and Vershik.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.6 ([7, Section 8.4]). — Let B be a unital commutative al-
gebra over R and K ⊂ B a convex cone satisfying the following conditions:

• K −K = B (K generates B).
• K.K ⊂ K (K is stable by multiplication).
• K is spanned by a countable set of elements.
• For all a ∈ B, there exists ε > 0 such that 1− εa ∈ K.

If L denotes the convex set of linear forms on B which are nonnegative
on K and map 1B to 1, then φ is an extreme point of L if and only if φ is
multiplicative (meaning that φ(ab) = φ(a)φ(b) for all a, b ∈ B).

We give now the proof of Proposition 2.5.

Proof. — Let B = AG/〈ι(∗) = 1〉 and let pr : AG → B be the canonical
projection; denote by K̃ the projection of the cone R+ Id +K in B. Since
K.K ⊂ K and {1,K} spans AG , K̃.K̃ ⊂ K̃ and K̃ spans B. Since G has a
countable set of vertices, K̃ is spanned by a countable set of elements. Note
that there is a bijection between the elements of H(G) and the linear forms
on B which are nonnegative on K̃ and equal to 1 on 1: indeed h ∈ H(G)
if and only if h(µ) =

∑
µ↗ν e(µ, ν)h(ν). Thus, for f ∈ A∗G , ι∗(f) ∈ H(G)

if and only if f(ι(∗)ι(µ)) = f(ι(µ)); equivalently, this means that f factors
through B. The fact ι∗(f) is nonnegative on G is then equivalent to the
fact it is nonnegative on K̃. We also have [ι∗(f)](∗) = 1 if and only if
f(pr ◦ι(∗)) = f(1) = 1.
Let a ∈ B, and let us show that there exists ε such that 1−εa ∈ K̃. Since

K̃ − K̃ = B, and 1 − b ∈ K̃ for all b ∈ −K̃, we can suppose without loss
of generality that a ∈ K̃. It is thus enough to prove that for µ ∈ G, there
exists ε such that 1− εpr ◦ι(µ) ∈ K. Suppose that µ has rank n. Since the
graph is connected, there exists a path π0 of weight e(π0) between ∗ and µ.
By iteration of the relation coming from the multiplicative structure of G,
ι(∗)n =

∑
ν∈G, rk(µ)=n(

∑
π:∗→µ e(π))ι(ν). Thus ι(∗)n−e(π0)ι(µ) belongs to

K. Since pr(ι(∗)n) = 1, 1− e(π0) pr ◦ι(µ) belongs to K̃. Therefore, we can
apply Theorem 2.6 to (B, K̃), which yields that the extreme linear maps
among the set of linear maps on B which are nonnegative on K̃ and equal
to 1 on 1 are the multiplicative ones. Since there is a bijection between
multiplicative maps on B which are nonnegative on K̃ and multiplicative
maps on AG which are nonnegative on K and equal to 1 on ι(∗), the proof
is complete. �

In order to apply the previous result to central random paths on Λ ∩Ω,
we need to relate ΓΩ to a graded graph.

TOME 70 (2020), FASCICULE 6
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Definition 2.7. — The growth graph of ΓΩ is the rooted graded graph
G(Ω) with

• set of vertices of rank n: the set Gn(Ω) = {(x, n) ∈ Λ ∩ Ω × N,
ΓΩ
n (x) 6= ∅},

• a directed weighted edge between (x, n) ∈ Gn(Ω) and (y, n + 1) ∈
Gn+1(Ω) with weight #ΓΩ(x, y).

It is readily seen that the weighted sum on paths in G(Ω) between
the root (0, 0) and (y, n) is equal to #ΓΩ

n (y). Moreover, the sets H(Ω)
and H(G(Ω)) are canonically homeomorphic through the equivalence be-
tween (2.1) and (2.2).

3. Littelmann paths in Weyl chambers

We describe a class of random paths coming from the representation
theory of semi-simple Lie algebras.

3.1. Background

We consider a simple Lie group G over C and its Lie algebra g. Let
R ⊂ V be the set of roots of g regarded as a finite subset of the Euclidean
vector space V with scalar product 〈 · , · 〉. We fix R+ a subset of positive
roots and S = {α1, α2, . . . , αd} ⊂ R+ a basis of simple roots in R. The
Weyl group of g is denoted by W . This is the Coxeter group generated by
the reflections sαi associated to the simple roots. Thus for any x ∈ V and
any α ∈ S, we have

(3.1) sα(x) = x− 2〈α, x〉
〈α, α〉

α

Denote by ` the length function on W defined from S.
Write P for the weight lattice of g and ω1, . . . , ωd for its fundamental

weights so that we have

P =
d⊕
i=1

Zωi.

Let us denote by 6 the dominant order on P such that γ 6 γ′ if and only
if γ′− γ is a sum of simple roots. Let ∆ be the fundamental Weyl chamber
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of g with respect to S, which corresponds to the positive orthant on the
weight space

⊕d
i=1 Rωi. The cone of dominant weights is then

P+ = P ∩∆ =
d⊕
i=1

Z>0ωi.

Write Q+ the subset of P spanned by linear combinations of the simple
roots with nonnegative coefficients. We denote by R[P ] the ring group of
P over R with basis {eβ |β ∈ P}, and by R[Q+] the subalgebra of R[P ]
generated by Q+. Then

RW [P ] = {u ∈ R[P ] |w(u) = u,w ∈W}

is the character ring of g. To each λ ∈ P+ corresponds a simple finite-
dimensional representation of g we denote by V (λ). The Weyl character of
V (λ) is

sλ =
∑
γ∈P

Kλ,γe
γ

where Kλ,γ is the dimension of the weight space γ in V (λ). For t ∈ Rd>0

and γ ∈ P with γ =
∑d
i=1 γiωi, set tγ =

∏
16i6d exp(γi log(ti)), with the

convention tγ = +∞ when there exists 1 6 i 6 d such that ti = 0 and γi <
0. It is then possible to evaluate sλ on t ∈ (R+)d as sλ(t) =

∑
γ∈P Kλ,γtγ .

Hence, with our convention, sλ(t) = +∞ as soon as some ti vanishes, since
for any λ ∈ P+ and any 1 6 i 6 d, there exists γ ∈ P such that Kλ,γ 6= 0
and γi < 0. For µ > λ, denote by Sλ,µ the function

(3.2) Sλ,µ = e−µsλ =
∑
γ∈P

Kλ,γe
γ−µ

where for any γ such that Kλ,γ > 0, γ − µ is a linear combination of
the simple roots with nonpositive coefficients; for µ = λ, we simply write
Sλ, instead of Sλ,λ. By setting Ti = e−αi we thus obtain that Sλ,µ =
Sλ,µ(T1, . . . , Td) is polynomial in the variables T1, . . . , Td with nonnegative
integer coefficients. Recall also the Weyl dimension formula

dim(V (λ)) =
∏
α∈R+

(λ+ ρ, α)
(ρ, α) ,

where ρ = 1
2
∑
α∈R+

α. In particular, dim(V (λ)) is polynomial in the coor-
dinates of λ on the basis of fundamental weights.
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3.2. Random Littelmann paths

Now, fix a dominant weight δ ∈ P+ and denote by Πδ the set of weights of
the irreducible representation V (δ). Let Pδ be the sublattice of P generated
by Πδ. This defines subalgebras

R[Pδ] = {eβ |β ∈ Pδ} ⊂ R[P ]

and RW [Pδ] = {u ∈ R[Pδ] |w(u) = u} ⊂ RW [P ].

Finally write T+
δ the subset of P+ of weights λ such that V (λ) appears as

an irreducible component in a tensor power V (δ)⊗n, n > 0. Given λ and µ
in T+

δ , we clearly have λ+ µ in T+
δ .

Now let Aδ be the subalgebra of RW [P ] generated by the Weyl character
sλ with λ ∈ T+

δ . We have the inclusions

Aδ ⊂ RW [Pδ] ⊂ R[Pδ] ⊂ R[P ].

We denote by K(δ) the convex hull of the set Πδ: K(δ) is a polytope whose
extreme points are the elements w(δ) for w ∈W . The intersection of K(δ)
with the Weyl chamber ∆ is denoted by K(δ)+. By Littelmann’s paths
theory, there is a set B(δ) = {πi}16i6dimV (δ) of infinitesimal paths on Pδ,
with the following properties:

• πi(1) ∈ Πδ for all 1 6 i 6 dimV (δ),
• the multiplicity of the weight µ in V (δ)⊗n is equal to #ΓRd

n (µ),
• the multiplicity of the irreducible representation V (ν) in V (µ) ⊗
V (δ) is equal to #Γ∆(µ, ν) and the multiplicity of the irreducible
representation V (ν) in V (δ)⊗n is equal to #Γ∆

n (ν) for all µ, ν ∈ P+

and n > 0.
The set of infinite paths we are interested in is the set of infinite paths

starting at 0 with set of infinitesimal paths B(δ).

3.3. Statements of the results

We recall that we consider the space of probability measures on each
Γ∆ with the initial topology with respect to the evaluation maps on the
cylinders Γ∆(τ), τ ∈ Γ∆

fin. We give an algebraic proof of the identification of
the minimal boundaries for random paths in ΓR and Γ∆ with the topological
spaces K(δ) and K(δ)+, respectively. In both cases, the homeomorphism
can be made explicit by the introduction of a natural parametrization

t : K(δ) −→ [0, 1]d ×W
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of K(δ) such that t(K(δ)+) ⊂ [0, 1]d × IdW (this parametrization is ex-
plained in Section 5). For m ∈ K(δ), we set t(m) = (tm, wm). The main
result of the paper is summarized in the following theorem:

Theorem 3.1.

(1) The map

P :
{
K(δ) −→ ∂H(Rd)

m 7−→ Pm

with Pm(ΓR(π)) = tnδ−wm(λ)
m

Sδ(tm) for n > 0 and π ∈ ΓRd
n (λ) is a homeo-

morphism between the set of extremal measures ∂H(Rd) and K(δ).
(2) The map

P+ :
{
K(δ)+ −→ ∂H(∆)

m 7−→ P+
m

with P+
m(Γ∆(π)) = Sλ,nδ(tm)

Sδ(tm)n for n > 0 and π ∈ Γ∆
n (λ) is a homeo-

morphism between the set of extremal measures ∂H(∆) andK(δ)+.

It is easy to see that the measures Pm and P+
m are indeed central. Note

moreover that for m ∈ K(δ)+, Littelmann’s theory yields that for π ∈
Γ∆
n (y), ∑
π̃∈Γ∆

n+1,π̃|[0,n]=π

P+
m(Γ∆(π̃))

= 1
Sδ(tm)n+1

∑
µ∈B(δ),π.µ∈Γ∆

n+1(y)

Sπ(n)+µ(1),nδ+x(tm)

= 1
Sδ(tm)n+1Sπ(n),nδ(tm)Sδ(tm)

=
Sπ(n),nδ(tm)
Sδ(tm)n = P+

m(Γ∆(π)),

so that P+
m is a well defined probability measure on Γ∆. The main point of

the result is to prove that P and P+ are bijective.

Remark 3.2. — In type Ad, when δ = ω1 is the first fundamental weight,
V (δ) can be regarded as the defining representation of sld+1 or more con-
veniently, of gld+1. The set ∂H(∆) is then homeomorphic to

K(δ)+ =
{

(p1, . . . , pn+1) ∈ Rd+1
∣∣∣∣ p1 > · · · > pn+1 > 0
and p1 + · · ·+ pn+1 = 1

}
and we recover the finite-dimensional version of the Thoma simplex.
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As a corollary of Theorem 3.1, we get the complete characterization
of c-harmonic measures killed when exiting ∆. Define the function ŝδ :
∂H(∆)→ R+ ∪ {∞} by ŝδ(P+

m) = sδ(tm).

Corollary 3.3. — For c > 0, the set ∂Hc(∆) is equal to

ŝ−1
δ ({cdimV (δ)}).

In particular,
• H1(∆) = ∂H1(∆) is a singleton corresponding to P+

0 ,
• and for c < 1, Hc(∆) = ∅.

This corollary gives a positive answer to the our Problem 2.3. We prove
Corollary 3.3 in Section 6.3. We discuss here a possible generalization of
the latter result. Let X be an arbitrary multiset of infinitesimal paths (or
alternatively a weight set of such paths). Set Ẑ(t) :=

∑
π∈X tπ(1) and

z = Ẑ(1). Finally, fix a cone C centered at 0 and denote by KC the set of
elements t ∈ Rd such that

∑
π∈X tπ(1)π(1) ∈ C.

A function f is c-harmonic for these paths if and only if

f(x) =
∑
π∈X
x+π⊂C

1
cz

wt(π)f(x+ π(1)).

We can use the same notation as in the case where X = B(δ) is the a set of
Littelmann paths associated to δ. Then, we conjecture that the following
general result holds:

Conjecture 3.4. — For c > 0, the set ∂Hc(∆) is homeomorphic to
Ẑ−1({cz}) ∩KC . In particular,

• for u = minKC Ẑ, Hu/z(∆) is a singleton.
• and for c < u/z, Hc(∆) = ∅.

This conjecture is a generalization of the conjecture of Raschel [19, Con-
jecture 1] for two dimensional random walks with bounded increments,
which asserts that such a random walk admits a unique harmonic function
killed on the boundary of a quarter plane. This special situation can be
seen in the above conjecture, in which case the minimum of Ẑ is exactly z.

3.4. The approach of Handelman and Price

The existence of the homeomorphisms of Theorem 3.1 can also be de-
duced from the main results of [8, 9], themselves based on fundamental re-
sults of [17, 18]. We review here their approach, and the reader could read
the aforementioned articles and references therein for a detailed proof.
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Let n denote the dimension of V (δ), and consider the adjoint representa-
tion ρ : G → GL(Mn(C)) which is defined by ρ(g)(M) = uδ(g)Muδ(g)−1,
where uδ is the irreducible representation associated with δ. Form the in-
finite tensor product A :=

⊗
Mn(C) as an inductive limit of the sequence

of finite-dimensional C∗-algebras (Mn(C)⊗k)k>1, where Mn(C)⊗k embeds
in Mn(C)⊗k+1 with the map X 7→ X ⊗ Idn. We can canonically associate
a structure of C∗-algebra to this inductive limit of C∗-algebras. Then, G
acts continuously on eachMn(C)⊗k and on A with the map ρ̃(g) :=

⊗
ρ(g)

(which means that g acts as ρ(g) on each component of the tensor product),
and we can therefore consider the C∗-algebra Aδ (resp. Aδk) of elements of
A (resp. Mn(C)⊗k) fixed by ρ. The algebra Aδ is the inductive limit of the
finite-dimensional C∗-algebras (Aδk)k>1, and the Bratteli diagram of this
inductive limit is exactly the growth graph of Γ∆. Therefore, the set of
central measures on Γ∆ is in bijection with the set of traces on Aδ.

Doing the same construction for the restriction of the representation δ

to the maximal torus T ⊂ G, we get another sequence of finite dimensional
C∗-algebras (ATk )k>1, whose inductive limit is denoted by AT . Similarly,
the Bratteli diagram of AT is exactly the growth graph of ΓR, and the set
of central measures on ΓR is in bijection with the set of traces on AT .
Note that we have the natural inclusion of C∗-algebras Aδ ⊂ AT . The

main result of [8] is that any extremal trace on Aδ extends to an extremal
trace on AT . To prove this, the author uses the bijection between the set
of traces on an approximately finite C∗-algebra A and the set of states on
its associated dimension group K0(A). Let us quickly explain the nature of
K0(A): a dimension group is a group with a notion of positive cone. By con-
sidering equivalence classes of projections on the ∗-algebra

⊕
k>1Mk(A),

one can canonically associate a dimension group K0(A) to each C∗-algebra
A; this dimension group is always a ring in our case. An important fact is
that an inclusion of C∗-algebras induces an inclusion of the associated di-
mension groups, and therefore the problem reduces to extend any state on
K0(Aδ) to a state on K0(AT ). Handelman managed to prove this in [8], and
the main ingredient of the proof is the non-trivial property that K0(AT ) is
a finitely generated K0(Aδ)-module.
Once proven that any trace on Aδ extends to a trace on AT , the problem

amounts to describe the set of traces on AT . In [9], the author achieves
this by proving that the set of faithful traces on AT is in bijection with the
interior of K(δ). Then, the identification of the set of faithful traces on Aδ
with the interior of K(δ)+ is done thanks to a result of [18], which asserts
that the Weyl group W acts transitively on the set of traces extending a
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particular faithful trace on AT . Finally, the case of non-faithful traces is
done by considering parabolic subgroups of G.

3.5. The extended algebra of characters

Our proof of Theorem 3.1 will mainly use algebraic properties of the
representations of the Lie algebra g. We define the extended algebra of
characters Âδ as follows:

• Âδ is isomorphic to Aδ × R[T ] as a vector space; for x ∈ Aδ, we
simply denote by (x, n) the element (x, Tn). A basis of Âδ is given
by the set B = {(sλ, n)}n>0,λ∈T+

δ
and the multiplicative structure

of Âδ is defined on B by the product

(sλ, n)× (sµ,m) = (sλsµ, n+m).

• We also denote by T̂+
δ the subalgebra of Âδ spanned by {(sλ, n) |λ ∈

T+
δ,n} where T

+
δ,n is the set of dominant weights λ such that V (λ) is

an irreducible component of V (δ)⊗n.
Likewise, we define the extended algebra of weights P̂ δ as follows
• P̂ δ is isomorphic to R[Pδ] × R[T ] as a vector space. A basis of P̂ δ
is given by the set {(eγ , n) |n > 0, γ ∈ Pδ}. The multiplicative
structure of P̂ δ is defined by the product

(eγ , n)× (eγ
′
,m) = (eγ+γ′ , n+m).

Write Tδ,n for the set of weights γ appearing with nonzero multiplicity
in the representation V (δ)⊗n. We shall also need the algebra T̂ δ defined as
follows

• T̂ δ is the subalgebra of P̂ δ spanned by the elements {(eγ , n) |n > 1,
γ ∈ Tδ,n}.

Note that the inclusion Aδ ⊂ R[Pδ] translates naturally into the inclusion
Âδ ⊂ P̂ δ and T̂+

δ ⊂ T̂ δ.
We can write the multiset of weights of δ in T̂ δ as Πδ = {(eγ1 , 1), . . . ,

(eγN , 1)} where each weight appears a number of times equal to its multi-
plicity. For any k = 0, . . . , N , let ek(X1, . . . , XN ) be the k-th elementary
symmetric function in the variables X1, . . . , XN . Define the polynomial
Φ(X) ∈ T̂ δ[X] by

Φ(X) =
∏
γ∈Πδ

(X + (eγ , 1)).
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Proposition 3.5. — We have

(3.3) Φ(X) =
N∑
k=0

(ek(eγ1 , . . . , eγN ), k)XN−k

and for any k = 0, . . . , N, the expression (ek(eγ1 , . . . , eγN ), k) decomposes
as a sum of elements (sλ, n) ∈ T̂+

δ with positive integer coefficients. In
particular, we have Φ(X) ∈ T̂+

δ [X].

Proof. — Recall that ek ((eγ1 , 1), . . . , (eγN , 1)) is the k-th elementary
symmetric function in minus the roots of the polynomial Φ. Hence, ek(eγ1 ,

. . . , eγN ) is the plethysm of the elementary symmetric function ek by sδ.
This means that

ek(eγ1 , . . . , eγN ) = char
(

k∧
V (δ)

)
is the character of the k-th exterior power of the representation V (δ). Since∧k

V (δ) is a submodule of V (δ)⊗k, its character indeed decomposes as a
sum of characters in {sλ |V (λ) ∈ V (δ)⊗k} with positive integer coefficients.

�

Corollary 3.6. — T̂+
δ is integrally closed in T̂ δ.

Proof. — Let T̂+
δ denote the integral closure of T̂+

δ in T̂ δ. We have T̂+
δ ⊂

T̂ δ by definition. Conversely, since T̂+
δ is a ring and T̂ δ is generated by the

monomials (eγ , 1) with γ ∈ Πδ, it suffices to prove that each such (eγ , 1)
belongs to T̂+

δ . But −(eγ , 1) is a root of Φ(X) which is, by the previous
proposition, a monic polynomial with coefficients in T̂+

δ . Therefore −(eγ , 1)
and (eγ , 1) are integers over T̂+

δ and thus belong to T̂+
δ . �

4. Minimal boundary of ΓR

4.1. Algebraic description of the growth graph

Let G(Rd) be the growth graph of ΓR and G(∆) be the one of Γ∆. Namely,
the set Gn(Rd) of vertices of rank n of the graph G(Rd) are pairs (γ, n)
where γ is a weight of Pδ such that ΓRd

n (γ) 6= ∅, and the weight of the edge
between (γ, n) and (γ′, n + 1) is #ΓR(γ, γ′). From the graph embedding
of Section 2.4, the set of extreme central measures on ΓR is in bijection
with the set of extreme points of the convex set ∂H(G(Rd)) of nonnega-
tive harmonic functions p : G(Rd) → R+ with p(0, 0) = 1 and the same
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holds for G(∆). An important feature of G(Rd) is that this graded graph is
multiplicative: it is related to the algebra T̂ δ as follows.

Proposition 4.1. — G(Rd) is a multiplicative graph associated with
the algebra P̂ δ with the injective map

ι :


G(Rd) −→ P̂ δ

(γ, n) 7−→ (eγ , n), n > 1
7−→ (sδ, 1),

and ι(G(Rd))= T̂ δ. In particular, ∂H(G(Rd)) is homeomorphic to Mult(T̂ δ)+

through the map

ι∗ :
{

Mult(T̂ δ)+ −→ ∂H(G(Rd))
f 7−→ f ◦ ι.

Proof. — Since #ΓR(γ, γ′) = Kδ,γ′−γ , the following equality holds for
(γ, n) ∈ Gn(Rd):

ι(γ, n)ι(∗) = (eγ , n)
(∑
κ∈Πδ

Kδ,κe
κ, 1
)

=
∑
κ∈Πδ

Kδ,κ(eγ+κ, n+ 1)

=
∑
γ′∈Pδ

γ′−γ∈Πδ

Kδ,γ′−γ(eγ
′
, n+ 1)

=
∑
γ′∈Pδ

#ΓR(γ, γ′)ι(γ′, n+ 1).

Thus, G(Rd) is a multiplicative graph associated with P̂ δ through the map
ι. Note that by construction, the sub-algebra of P̂ δ generated by the ele-
ments {ι(γ, n)}(γ,n)∈G(Rd) is precisely T̂ δ: the last part of the proposition
is deduced from Proposition 2.5. �

4.2. Characterization of the multiplicative maps on T̂ δ

The set of extreme central measures on G(Rd) is thus given by the set
of positive morphisms from T̂ δ to R which take the value 1 on (sδ, 1). We
will prove in this subsection the following result:
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Proposition 4.2. — Let f ∈ Mult(T̂ δ)+. There exists a multiplicative
map φ : R[Q+]→ R+ and an element w ∈W such that

f(eγ , n) = 1
φ(Sδ)n

φ(enδ−w(γ)),

for all (eγ , n) ∈ T̂ δ.

Note that the element φ(enδ−w(γ)) is well-defined: indeed, if (eγ , n) ∈ T̂ δ,
then the weight γ appears in the representation V (δ)⊗n and w(γ) is thus
smaller than nδ with respect to the roots order relative to the set of simple
roots S. Therefore, nδ − w(γ) ∈ Q+.
Let f be a multiplicative map on T̂ δ. Since f is multiplicative and T̂ δ is

generated by the set Π̃δ := {(eγ , 1), γ ∈ Πδ}, f is completely determined by
its values on Π̃δ. We can also extend naturally the action of W by setting
w.(eγ , n) = (ew(γ), n). We suppose from now on that f ∈ Mult(T̂ δ)+. Let

(4.1) Mf =
∑
γ∈Πδ

Kδ,γf(γ, 1)γ.

The vectorMf belongs to Rd, thus there exists w ∈W such that w(Mf ) ∈
∆. Replacing f by f ◦ w−1 gives another multiplicative map on T̂ δ such
that

Mf◦w−1 =
∑
γ∈Πδ

Kδ,γ(f ◦ w−1)(eγ , 1)γ ∈ ∆

and we have f = (f ◦ w−1) ◦ w.

Lemma 4.3. — Assume that Mf ∈ ∆ and let α ∈ S. For all γ ∈ Πδ

such that

f(eγ , 1) = 0 −→ f(eγ−α, 1) = 0.

In particular, f(eδ, 1) 6= 0.

Proof. — It is a classical result in the representation theory of g that for
any weight γ ∈ Πδ and any simple root α ∈ S such that γ − α /∈ Πδ, we
must have 〈γ, α〉 6 0. Also if both γ and γ − α belong to Πδ but γ − 2α
does not, one has 〈γ − α, α〉 < 0.
Now let α ∈ S, and suppose that there exists γ ∈ Πδ such that γ − α ∈

Πδ, f(eγ , 1) = 0 and f(eγ−α, 1) 6= 0. If γ′ is another weight of Πδ such that
f(eγ′ , 1) 6= 0, then necessarily γ′ − α 6∈ Πδ: indeed, if γ′ − α ∈ Πδ, then

f(eγ
′−α, 1)f(eγ , 1) = f(eγ+γ′−α, 2) = f(eγ−α, 1)f(eγ

′
, 1) 6= 0,
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which contradicts the fact that f(eγ , 1) = 0. For all γ′ ∈ Πδ, γ′ − α 6∈ Πδ

implies that 〈γ′, α〉 6 0: thus, f(eγ′ , 1) 6= 0 implies that 〈γ′, α〉 6 0. We get〈 ∑
γ′ 6=γ−α

Kδ,γ′f(eγ
′
, 1)γ′, α

〉
6 0.

Since f(eγ−α, 1) 6= 0 and from the previous argument, we get γ− 2α 6∈ Πδ.
This impose 〈γ − α, α〉 < 0 as claimed below. Finally,

〈Mf , α〉 = Kδ,γ−αf(eγ−α, 1)〈γ − α, α〉+
∑

γ′ 6=γ−α
Kδ,γ′f(eγ

′
, 1)〈γ′, α〉 < 0,

which contradicts the fact thatMf ∈ ∆. Let γ ∈ Πδ be such that f(eγ , 1) 6=
0. Since γ ∈ Πδ, there exists a finite sequence (xi)16i6r in S such that
δ −

∑j
i=1 xi ∈ Πδ for all 1 6 j 6 r and δ −

∑r
i=1 xi = γ. Thus, from the

first part of the lemma, f(eδ−
∑j

i=1
xi , 1) 6= 0 for all 1 6 j 6 r; in particular,

f(eδ−x1 , 1) 6= 0, and applying again the first part of the lemma yields that
f(eδ, 1) 6= 0. �

We can now prove Proposition 4.2:
Proof of Proposition 4.2. — Let f ∈ Mult(T̂ δ)+ be such that Mf ∈ ∆.

Let α ∈ S. If for all γ ∈ Πδ such that f(eγ , 1) 6= 0 we have γ−α 6∈ Πδ, then
set φ(eα) = 0. Otherwise, let γ ∈ Πδ be such that f(eγ , 1) 6= 0 and such that
γ − α ∈ Πδ, and set φ(eα) = f(eγ−α,1)

f(eγ ,1) . Then, φ(eα) is independent of the
choice of γ. Indeed, if γ′ is another weight satisfying the same hypothesis,
then

f(eγ , 1)f(eγ
′−α, 1) = f(eγ+γ′−α, 2) = f(eγ−α, 1)f(eγ

′
, 1),

so that finally,
f(eγ−α, 1)
f(eγ , 1) = f(eγ′−α, 1)

f(eγ′ , 1) .

Note that we have in particular proven that for all γ ∈ Πδ such that
γ + α ∈ Πδ and f(eγ+α, 1) 6= 0, we have

(4.2) f(eγ , 1)
f(eγ+α, 1) = φ(eα).

Let φ : R[Q+] → R+ be the multiplicative map obtained by extending
multiplicatively the map φ defined on {eα, α ∈ S} and by specifying the
value φ(1) = 1. Recall the dominant order 6 on the weight lattice P : γ 6 γ′
if and only if γ′ − γ is a sum of simple roots. Let us prove by induction on
the dominant order that f(eγ , 1) = f(eδ, 1)φ(eδ−γ) for γ ∈ Πδ. For γ = δ

the result is straightforward. Let γ ∈ Πδ and suppose that the result is true
for all γ′ > γ. There exists α ∈ S such that γ + α ∈ Πδ. If f(eγ+α, 1) = 0,
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then f(eγ , 1) = 0 by Lemma 4.3; in particular, f(eγ , 1) = φ(eα)f(eγ+α, 1).
By the induction hypothesis, f(eγ+α, 1) = f(eδ, 1)φ(eδ−(γ+α)), and finally,

f(eγ , 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ).

If f(eγ+α, 1) 6= 0, then by (4.2) and by the induction hypothesis,

f(eγ , 1) = φ(eα)f(eγ+α, 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ).

Let (γ, n) ∈ T̂ δ, and let γ1, . . . , γn ∈ Πδ such that γ =
∑n
i=1 γi. Then, by

multiplicativity of f and the result above, we have

f(eγ , n) = f
(
e
∑n

i=1
γi , n

)
=

n∏
i=1

f(eγi , 1) =
n∏
i=1

f(eδ, 1)φ(eδ−γi)

= f(eδ, 1)nφ
(
enδ−

∑n

i=1
γi
)

= f(eδ, 1)nφ(enδ−γ)

Since f(sδ, 1) = 1, we have on the one hand∑
γ∈Πδ

Kδ,γf(eγ , 1) = 1.

On the other hand, from the previous result,∑
γ∈Πδ

Kδ,γf(eγ , 1) =
∑
γ∈Πδ

Kδ,γf(eδ, 1)φ(eδ−γ) = f(eδ, 1)φ(Sδ).

Thus, f(eδ, 1) = 1
φ(Sδ) , which ends the proof of the proposition in the case

Mf ∈ ∆.
Now assume that f is a general nonnegative multiplicative function on

T̂ δ. Let w ∈ W be such that Mf◦w−1 ∈ ∆. By the first part of the proof,
there exists φ ∈ Mult(R[Q+])+ such that f ◦w−1(eγ , n) = 1

φ(Sδ)nφ(enδ−γ).
Thus, composing f ◦ w−1 with w yields that f(eγ , n) = 1

φ(Sδ)nφ(enδ−w(γ))
for (γ, n) ∈ T̂ δ. �

Remark 4.4. — Suppose that φ(eα) 6= 0 for all α ∈ S. Then, the map φ
extends to a homomorphism φ : R[P ]→ R+ with the formula

φ(eγ) =
∏
α∈S

φ(eα)rα

for γ =
∑
α∈S rαα with rα ∈ Q for any α ∈ S. In this case,

f(eγ , n) = f(eδ, 1)nφ(eλ−nδ) =
(
f(eδ, 1)
φ(eδ)

)n
φ(eγ).
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Since, f(sδ, 1) = 1, f(eδ,1)
φ(eδ) = φ(sδ)−1. Hence, when φ(eα) > 0 for all α ∈ S,

f can be written on T̂ δ as

f(eγ , n) = φ(eγ)
φ(sδ)n

,

with φ : P → R+ a multiplicative map.
In this case, for (sλ, n) ∈ T̂+

δ , we also have

f(sλ, n) = φ(sλ)
φ(sδ)n

,

where the restriction φ : Aδ → R+ is again a multiplicative map.

Let us reformulate the results of this section by introducing the map
Φ : Mult(R[Q+])+ ×W → Mult(T̂ δ)+ defined by

(4.3) Φ(φ,w)(eγ , n) = 1
φ(Sδ)

φ(enδ−w(γ)).

Proposition 4.2 yields that the map Φ is surjective. Since R[Q+] is the free
commutative algebra generated by {eα, α ∈ S}, Mult(R[Q+])+ is isomor-
phic to (R+)d through the map θ : Mult(R[Q+])+ → (R+)d given by

(4.4) θ(φ) = (φ(eαi))16i6d

for φ ∈ Mult(R[Q+])+. The composition of Φ with θ−1 yields thus a sur-
jective map (R+)d ×W → Mult(T̂ δ)+. Since Φ is not necessarily injective,
the latter map is not bijective. The lack of injectivity comes from two facts:
first, ifMf lies at the intersection of two Weyl chambers, thenMf◦w−1 ∈ ∆
for several w ∈W . Next, some degeneracy may occur when δ is orthogonal
to some simple roots. The goal of the next subsection is to overcome the
second problem.

4.3. Dominant faces of the weight polytope

Let f ∈ Mult(T̂ δ)+ such that Mf ∈ ∆; it is possible to give a geometric
description of the set Πδ(f) := {γ ∈ Πδ | f(eγ , 1) 6= 0)}. A face of the poly-
tope K(δ) is the intersection of K(δ) with a supporting hyperplane (that is
K(δ) is contained in one of the two half-spaces defined by this hyperplane).
A dominant face F is a face of the polytope K(δ) such that F ∩ ∆ 6= 0.
We denote by ΠF the intersection of Πδ with F . By an indecomposable
component of a subset S′ ⊂ S we mean a maximal subset of S′ consisting
of mutually non-orthogonal simple roots.
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Definition 4.5. — A subset S′ ⊂ S of simple roots is δ-admissible if
each indecomposable component of S′ contains a simple root which is not
orthogonal to δ.

Observe that, according to this definition, the empty set is a δ -admissible
subset, since it has no indecomposable component. Write 〈S′〉 for the linear
span of S′. For each subset S′ ⊂ S, denote byWS′ the Weyl group generated
by the elements sα′ , α′ ∈ S′ (where W∅ is simply {Id}). We will use the
following results which comes from [21].

Theorem 4.6. — Assigning to each δ-admissible subset S′ ⊂ S the
polytope FS′ = Conv(w′δ |w′ ∈ WS′) yields a one-to-one correspondence
between δ-admissible subsets of S and dominant faces of the polytopeK(δ).
Moreover, the set ΠFS′ = Πδ ∩ FS′ coincides with the set (δ + 〈S′〉) ∩ Πδ

and dimFS′ = #S′

Let us denote by SF the δ-admissible subset of simple roots associated
to the dominant face F by the previous theorem. We get the following
characterization Πδ(f).

Proposition 4.7. — Assume Mf belongs to ∆. Then, there exists a
dominant face F of the weight polytope K(δ) such that Πδ(f) = ΠF .

Before proving Proposition 4.7, let us prove the following lemma:

Lemma 4.8. — Let S′ ⊂ S and γ ∈ Πδ such that δ − γ =
∑
α∈S′ kαα

with kα > 0 for all α ∈ S′. Then, S′ is δ-admissible and γ ∈ FS′ .

The proof of this lemma uses ingredients similar to those of Vinberg
in [21].

Proof. — Suppose γ can be written as

γ = δ −
∑
α∈S′

kαα,

with S′ a subset of S and kα ∈ N∗ for α ∈ S′. Since γ ∈ Πδ, there exists
a sequence (γi)06i6t with t =

∑
α∈S′ kα such that γi ∈ Πδ, γ0 = γ, γt = δ

and γi+1 − γi ∈ S. Since for all γ ∈ Πδ, δ − γ is a sum of simple roots
with nonnegative coefficients, for all 0 6 i 6 t − 1 we have γi+1 − γi ∈ S′
and #{0 6 i 6 t − 1 | γi+1 − γi = α} = kα for α ∈ S′. This implies in
particular that γi ∈ δ + 〈S′〉 for all 0 6 i 6 t. Let α ∈ S′: since kα > 0,
there exists 0 6 iα 6 t − 1 such that γiα+1 − γiα = α. This yields that
dim(K(δ)∩ (δ+ 〈S′〉) = #S′. Let L be the linear form such that L(α) = 1
for α ∈ S \S′ and L(α) = 0 for α ∈ S. For γ ∈ Πδ, δ− γ is a sum of simple
roots with positive coefficients, thus L(γ) 6 L(δ), with equality if and only
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if γ ∈ δ + 〈S′〉. Thus, (K(δ) ∩ (δ + 〈S′〉) is a face of the polytope K(δ).
Since dim(K(δ)∩(δ+〈S′〉) = #S′, the set S′ is δ -admissible by [21, p. 10].
Finally, K(δ) ∩ (δ + 〈S′〉) = FS′ and γ ∈ FS′ because FS′ has dimension
#S′. �

Lemma 4.9. — ΠF ⊂ Πδ(f) if and only if φ is nonzero on SF .

Proof. — Suppose that ΠF ⊂ Πδ(f). Let αi0 ∈ SF . Since f(eγ , 1) is
nonzero for γ ∈ ΠF , by Lemma 4.3 and the definition of φ it suffices to
prove that there exists γ ∈ ΠF such that γ + αi0 ∈ ΠF or γ − αi0 ∈ ΠF .
Since SF is δ-admissible, dimF = #SF ; F = Conv(w.δ |w ∈ WSF ) and
dimF = #SF , thus there exists w ∈ WF such that δ − w.δ =

∑
α∈SF kαα

with kαi0 > 0. This implies the existence of γ ∈ ΠF such that γ+α0 ∈ ΠF .
Since ΠF ⊂ Πδ(f), f(eγ+αi0 , 1) 6= 0 and f(eγ , 1) 6= 0, and thus

φ(αi0) = f(eγ , 1)
f(eγ+αi0 , 1) 6= 0.

Conversely, suppose that φ is nonzero on SF . By Theorem 4.6, ΠF =
(δ+ 〈SF 〉)∩Πδ. Since f(eδ, 1) 6= 0 and φ is nonzero on SF , f is nonzero on
ΠF by Proposition 4.2. �

We turn now to the proof of Proposition 4.7.
Proof. — We order the set of dominant faces by the inclusion order; note

that the set of dominant faces is a lattice with respect to this order, and we
denote by F ∨ F ′ the supremum of two dominant faces F and F ′: F ∨ F ′
is the smallest dominant face containing both F and F ′. Let γ ∈ Πδ such
that f(eγ , 1) 6= 0, and let F be the smallest dominant face containing γ.
The weight γ can be written as

γ = δ −
∑
α∈SF

kαα

with kα ∈ N. Necessarily, we have kα > 0 for all α ∈ SF . Otherwise,
Lemma 4.8 would imply that γ belongs to a smaller dominant face of K(δ).
Let (γi)06i6t with t =

∑
α∈S′ kα be a sequence of Πδ such that γi ∈ Πδ,

γ0 = γ, γt = δ and γi+1 − γi ∈ SF . Since f(eγ0 , 1) 6= 0, Lemma 4.3 yields
that f(eγi , 1) 6= 0 for 0 6 i 6 t. Let α ∈ SF : since kα > 0, a similar
deduction as in the proof of the previous lemma yields that there exists
0 6 i 6 t− 1 such that γi+1 − γi = α. Therefore,

φ(eα) = f(eγi , 1)
f(eγi+1 , 1) 6= 0.

Since φ(eα) 6= 0 for α ∈ SF , f(eγ , 1) is nonzero on Πδ ∩ (δ − 〈SF 〉), and
ΠF ⊂ Πδ(f). We have thus proven that if a weight γ is in Πδ(f), then the
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intersection of Πδ with the smallest dominant face containing γ is also in-
cluded in Πδ(f); hence, Πδ(f) is an union of sets ΠF , where F are dominant
faces.
Let F and F ′ be two dominant faces such that ΠF ,ΠF ′ ⊂ Πδ(f), and

let us show that ΠF∨F ′ ⊂ Πδ(f). Note first that F ∨ F ′ = FSF∪SF ′ : on
the first hand, the smallest vector space containing both 〈SF 〉 and 〈SF ′〉 is
〈SF ∪SF ′〉. On the other hand, since SF and SF ′ are δ-admissible, SF ∪SF ′
is again δ-admissible. It suffices thus to show that ΠFSF∪SF ′

⊂ Πδ(f). But
Lemma 4.9 yields that φ(eα) is nonzero for α ∈ SF and α ∈ SF ′ . Thus,
φ(eα) is nonzero for α ∈ SF ∪ SF ′ and ΠFSF∪SF ′

⊂ Πδ(f). Let F0 be the
supremum of {F dominant face of K(δ),ΠF ⊂ Πδ(f)}. By the previous
argument, ΠF0 ⊂ Πδ(f). Let γ ∈ Πδ(f) and let F be the smallest dominant
face of K(δ) containing γ. By the first part of the proof, ΠF ⊂ Πδ(f).
Thus F ⊂ F0 and γ ∈ F0: this proves that Πδ(f) ⊂ ΠF0 , and finally
Πδ(f) = ΠF0 . �

Corollary 4.10. — Let f ∈ Mult(T̂ δ)+ be such that Mf ∈ ∆. There
exists a unique φ∈Mult(R[Q+])+ such that Φ(φ, Id)=f and {α, φ(eα) 6=0}
is a δ-admissible subset of S.

Proof. — Let φ be such that Φ(φ, Id) = f . By Proposition 4.7, there
exists a dominant face F of K(δ) such that ΠF = Πδ(f). Lemma 4.9 yields
that φ is nonzero on SF . Let α ∈ SF : then, there exists γ ∈ Πδ such that
γ ∈ ΠF , γ − α ∈ ΠF ; thus, f(eγ , 1) 6= 0 and f(eγ−α, 1) 6= 0. Therefore, the
value of φ on α has to be equal to f(eγ−α,1)

f(eγ ,1) . Hence, there exists at most
one φ such that {α, φ(eα) 6= 0} is the δ-admissible subset SF . Such a map
φ exists, since f is zero on Πδ \Πδ(f).
Suppose that there exists a bigger δ-admissible subset SF ( S′ such

that φ is nonzero on S′. Then by Lemma 4.9, ΠFS′ ⊂ Πδ(f). But by
Theorem 4.6, there is a bijection between dominant faces and δ-admissible
subsets: therefore, Πδ(f) = ΠF ( ΠFS′ ⊂ Πδ(f), which is a contradiction.
Thus, there exists exactly one map φ such that Φ(φ, Id) = f and {α ∈ S,
φ(eα) 6= 0} is a δ-admissible subset (and this δ-admissible subset has to
be SF ). �

4.4. Identification of the minimal boundary

We give in this subsection a complete description of the minimal bound-
ary by describing Mult(T̂ δ)+.
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Lemma 4.11. — Let f ∈ Mult(T̂ δ)+ be such that Mf ∈ ∆, and let
φ ∈ Mult(R[Q+])+ be such that Φ(φ, Id) = f . Then φ(eα) ∈ [0, 1].

Proof. — Let f ∈ Mult(T̂ δ)+ be such that Mf ∈ ∆ (see (4.1)). Let
φ ∈ Mult(R[Q+])+ be a morphism associated with f by Proposition 4.2,
and let α ∈ S. Since Mf ∈ ∆, 〈Mf , α〉 > 0. Moreover,

〈Mf , α〉 =
∑
γ∈Πδ

Kδ,γf(eδ, 1)φ(eδ−γ)〈γ, α〉.

By invariance of Πδ under the symmetry sα, γ ∈ Πδ implies that sα(γ) ∈
Πδ. Since s2

α = Id and since sα(γ) = γ if and only if 〈α, γ〉 = 0, we have
by (3.1)

〈Mf , α〉 = f(eδ, 1)
∑
γ∈Πδ
〈γ,α〉>0

Kδ,γ(φ(eδ−γ)− φ(eδ−sα(γ)))〈γ, α〉

= f(eδ, 1)
∑
γ∈Πδ
〈γ,α〉>0

Kδ,γφ(eδ−γ)(1− φ(eα)
2〈γ,α〉
〈α,α〉 )〈γ, α〉.

If φ(eα) > 1, then (1−φ(eα)
2〈γ,α〉
〈α,α〉 ) < 0 for all γ ∈ Πδ such that 〈γ, α〉 > 0,

and thus 〈Mf , α〉 < 0: this would contradict the choice of f . Therefore,
φ(eα) 6 1. �

The set {1, . . . , d} is identified with S by ordering the set of simple roots,
and for S′ ⊂ S, we denote by WS′ the set of minimal right-coset represen-
tatives with respect to S′ : namely,

WS′ = {w ∈W | `(sw) > `(w) for s ∈ S′}

where ` is the length function on the Coxeter group W . For x ∈ ∆, we
denote by Sx the set {α ∈ S, 〈α, x〉 = 0}.

Lemma 4.12. — Let x ∈ Rd and let y be the unique element of Wx

belonging to ∆. There exists a unique element w ∈WSy such that wx = y.

Proof. — Let Wy be the parabolic subgroup generated by Sy. Then, Wy

is the stabilizer of y. In particular, the set {w ∈ W,w(y) = x} is a left
coset of Wy in W , and thus the set {w ∈ W,w(x) = y} is a right coset
of Wy in W . By [10, 1.10], there exists a unique w̃ ∈ WSy such that
{w ∈ W,w(x) = y} = w̃Wy. Thus, there exists a unique w̃ ∈ WSy such
that w̃(x) = y. �
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For each d-tuple t = (t1, . . . , td), denote by 0c(t) the set of indices i such
that ti 6= 0 and by 1(t) the set of indices i such that ti = 1. Now consider
the set [0, 1]dδ such that

(4.5) [0, 1]dδ := {t ∈ [0, 1]d |0c(t) is δ-admissible}.

Example 4.13. — Assume, the root system considered is of type C2 re-
alized in R2 = Rε1 + Rε2. Then, the simple roots are α1 = ε1 − ε2
and α2 = 2ε2. If we choose δ = ω1 = ε1, the δ-admissible subsets of
{α1, α2} are ∅, {α1} and {α1, α2}. Indeed, {α2} is not δ-admissible since
ω1 is orthogonal to α2. The condition 0c(t) is δ-admissible is equivalent
to (t1, t2) ∈]0, 1[2, (t1, t2) = (t1, 0) with t1 > 0 and (t1, t2) = (0, 0). Hence
[0, 1]dδ = [0, 1]2ω1

=]0, 1]× [0, 1] ∪ {(0, 0)}.

The set [0, 1]dδ will turn out to be a natural parametrization of K(δ)+.
Then, we will prove in Section 6 that there exists a natural map t : K(δ)→
[0, 1]dδ ×W , written as t(m) = (tm, wm), such that t(K(δ)+) = [0, 1]dδ × Id.
Remind the definition of the maps Φ and θ in (4.3) and (4.4).

Proposition 4.14. — The map Φ ◦ θ−1 yields a bijection Ψ between
Mult(T̂ δ)+ and

(4.6) S = {(t, w) ∈ [0, 1]dδ ×W |w ∈W 1(t)}.

Proof. — Let f ∈ Mult(T̂ δ)+. Let y be the unique point in W (Mf ) ∩∆
and denote by Sy the set {α ∈ S | 〈α, y〉 = 0}. By Lemma 4.12, there
exists a unique w ∈ WSy such that w(Mf ) = y. Thus, by Proposition 4.2,
Corollary 4.10 and Lemma 4.11, there exists a unique φ ∈ Mult(R[Q+])+

such that Φ(φ,w) = f and {α ∈ S |φ(eα) 6= 0} is a δ-admissible subset.
In order to conclude, we just have to show that φ(eα) = 1 if and only if
〈α,w(Mf )〉 = 0: but, as in the proof of Lemma 4.11, we have

〈α,w(Mf )〉 = 〈w−1(α),Mf 〉 =
∑
γ∈Πδ

Kδ,γf(eγ , 1)〈w−1(α), γ〉

=
∑
γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈w−1(α), γ〉

=
∑
γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈α,w(γ)〉

=
∑
γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−γ)〈α, γ〉
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= 1
φ(Sδ)

∑
γ∈Πδ
〈α,γ〉>0

Kδ,γ(φ(eδ−γ)− φ(eδ−sα(γ)))〈α, γ〉

= 1
φ(Sδ)

∑
γ∈Πδ
〈γ,α〉>0

Kδ,γφ(eδ−γ)(1− φ(eα)
2〈γ,α〉
〈α,α〉 )〈α, γ〉,

where the fourth inequality is due to the fact that w yields a bijection
on the set of weights which satisfies the relation Kδ,w(γ) = Kδ,γ for each
γ ∈ Πδ. Thus, 〈Mf , α〉 = 0 if and only φ(eα) = 1. �

Note that the bijection Ψ in the above proposition is explicitly given
by Proposition 4.2: for t ∈ [0, 1]dδ , denote by φt the unique element of
Mult(R[Q+])+ such that {φt(α) 6= 0} is δ- admissible and Φ(φt, w) =
Ψ(t, w). Then,

(4.7) Ψ(t, w)(eγ , n) = 1
φt(Sδ)n

φt(enδ−w(γ)) = tnδ−w(γ)

Sδ(t)n ,

for (eγ , n) ∈ T̂ δ.

Remark 4.15. — The restriction of the set of parameters (t, w) ∈ [0, 1]d×
W to the set S defined in (4.6) is only useful to ensure the injectivity of
the map Ψ. It is however still possible to define an element of Mult(T̂ δ)+

by applying the map Φ ◦ θ−1 to any element (t, w). The lack of injectivity
without the restriction of the parameters can be seen in the following ex-
ample: consider the Lie algebra of type A2 with set of simple roots {α1, α2}
and choose δ = ω1, the first fundamental weight. Then, (ω1, α2) = 0, and
thus any weight γ 6= ω1 of Πω1 is written γ = ω1−k1α1−k2α2 with k1 > 0:
hence, if t1 = 0, we have φ(eω1−γ) = δγ,ω1 for all value of t2. On the other
hand, the ω1 -admissible subsets of {α1, α2} are ∅, {α1} and {α1, α2}. Thus
the empty ω1-admissible subset ∅ yields the unique choice of t2 such that
t1 = 0 and 0c(t) is ω1 -admissible, namely t2 = 0. The latter procedure has
singled out a particular choice of parameters t1 = 0, t2 = 0 among all the
choices of t yielding the map φ(eω1−γ) = δγ,ω1 .

A straightforward application of Proposition 4.1 yields the following
corollary:

Corollary 4.16. — The map ι ◦Ψ gives a bijection between the min-
imal boundary ∂H(Rd) and the set

S = {(t, w) ∈ [0, 1]dδ ×W |w ∈W 1(t)}.
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5. Minimal boundary of Γ∆

In this section, we use the description of ∂H(Rd) to get the one of ∂H(∆).

5.1. Algebraic description of the growth graph of Γ∆

The growth graph G(∆) of Γ∆ admits a description similar to the one
of ΓR. The set Gn(∆) of vertices of rank n of the graph G(∆) are pairs
(λ, n) where λ is a weight of P+

δ such that Γ∆
n (λ) 6= ∅ (i.e., there is at least

a path of length n from 0 to λ). The weight of the edge between (λ, n)
and (µ, n+ 1) is just #Γ∆(λ, µ). Moreover, we have the following algebraic
description of G(∆):

Proposition 5.1. — G(∆) is a multiplicative graph associated with the
algebra Âδ with the injective map

ι :


G(∆) −→ Âδ
(λ, n) 7−→ (sλ, n), n > 1

7−→ (sδ, 1),

and ι(G(∆)) = T̂+
δ . In particular, ∂H(G(∆)) is isomorphic to Mult(T̂+

δ )+

through the map

ι∗ :
{

Mult(T̂+
δ )+ −→ ∂H(G(∆))
f 7−→ f ◦ ι.

Proof. — By Littelmann’s path theory, the following equality holds for
(λ, n) ∈ Gn(∆):

ι(λ, n)ι(∗) = (sλ, n)(sδ, 1) =
∑
µ∈Aδ

#Γ∆(λ, µ)(sµ, n+ 1).

Thus, G(∆) is a multiplicative graph associated with Âδ with the map ι.
We have ι(G(∆)) = T̂+

δ by construction and the last part of the proposition
follows from Proposition 2.5. �

Now we are going to connect the sets Mult(T̂+
δ )+ and Mult(T̂ δ)+ of

nonnegative multiplicative maps defined on T̂+
δ and T̂ δ, respectively.
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5.2. Relation between Mult(T̂ δ)+ and Mult(T̂+
δ )+

Recall that T̂+
δ is a subalgebra of T̂ δ. Thus we have a restriction map

Res : Mult(T̂ δ)+ → Mult(T̂+
δ )+. The following proposition is an important

step in the description of Mult(T̂+
δ )+.

Proposition 5.2. — The restriction map Res yields a surjection from
{f ∈ Mult(T̂ δ)+ |Mf ∈ ∆} to Mult(T̂+

δ )+.

The proof of this proposition requires some preparation. Let f be a mul-
tiplicative map from T̂+

δ to R+. By Corollary 3.6 and by Corollary 4 in [3,
p. 35], f can be extended to a morphism f̃ from T̂ δ to C. The first task is
to prove that f̃ ∈ Mult(T̂ δ)+.
We need to recall a classical result by Aissen, Edrei, Schoenberg and

White on polynomials with real coefficients having negative zeros.

Theorem 5.3 ([1]). — Consider a polynomial P (T ) = amT
m +

am−1T
m−1 + · · · + a1T + a0 ∈ R[T ]. Then P has only real and nonpos-

itive zeros if and only if the sequence a0, a1, . . . , am, 0, 0, 0, . . . is totally
positive, that is if and only if all the minors of the infinite matrix

a0 0 0 0 · · ·
a1 a0 0 0 · · ·
a2 a1 a0 0 · · ·
a3 a2 a1 0 · · ·
...

. . . . . . . . . · · ·


are nonnegative.

Proposition 5.4. — Any morphism f̃ defined on T̂ δ which extends the
positive morphism f belongs to Mult(T̂ δ)+.

Proof. — Let f̃ be a morphism extending f . Set ϕ(T ) = f̃(Φ)(T ) that is

ϕ(T ) =
∏
γ∈Πδ

(T + f̃(eγ , 1)).

By using the same arguments as in the proof of Proposition 3.5, we obtain
that the coefficients of ϕ(T ) are the

f̃(ek(eγ1 , . . . , eγN ), k) ∈ C, k = 0, . . . , N.

The minors of the matrix defined from the coefficients of ϕ(T ) as in The-
orem 5.3 admit a classical description in terms of Schur functions (see [15,
p. 42]). These Schur functions are symmetric polynomials in infinitely many
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variables indexed by partitions (nonincreasing sequences of nonnegative in-
tegers). Let us write PN the set of partitions with length at most N and
for such a partition L let |L| be the sum of its components. We then have

f̃(sL(eγ1 , . . . , eγN ), |L|), L ∈ PN
where sL(eγ1 , . . . , eγN ) is the plethysm of the Schur function sλ in N vari-
ables X1, . . . , XN by the Weyl character sδ. If we consider any young sym-
metrizer cL of shape L in R[Sl], the group algebra of the symmetric group
Sl (see [6]), the space

cL · V (δ)⊗l such that l = |L|

has indeed the structure of a g-module and

sL(eγ1 , . . . , eγN ) = char
(
cL · V (δ)⊗l

)
.

This shows that sL(eγ1 , . . . , eγN ) decomposes as a sum of characters in
{sλ |λ ∈ δ⊗|L|} with nonnegative integer coefficients. In particular, (sL(eγ1 ,

. . . , eγN ), |L|) belongs to T̂+
δ and therefore we get that f̃(sL(eγ1 , . . . ,

eγN ), |L|), equal to f(sL(eγ1 , . . . , eγN ), |L|), is real nonnegative since f is
assumed nonnegative. By Theorem 5.3 this shows that −f̃(eγ , 1) is real
nonpositive for any γ ∈ Πδ. Finally we obtain that f̃(eγ , 1) is real nonneg-
ative for any γ ∈ Πδ and thus f̃ takes real nonnegative values on T̂ δ. �

Proof of Proposition 5.2. — Let f ∈ Mult(T̂+
δ )+. By Proposition 5.3,

there exists f̃ ∈ Mult(T̂ δ)+ such that f̃(sλ, n) = f(sλ, n) for (sλ, n) ∈ T̂+
δ .

Let w ∈ W and (sλ, n) ∈ T̂+
δ : since w−1 yields a multiplicity preserving

bijection on Πλ,

(f̃ ◦ w)(sλ, n) =
∑
γ∈Πλ

Kλ,γ f̃(ew(γ), n) =
∑
γ∈Πλ

Kλ,w−1(γ)f̃(eγ , n)

=
∑
γ∈Πλ

Kλ,γ f̃(eγ , n) = f̃(sλ, n).

Thus, for all w ∈W , (f̃ ◦w)|T̂+
δ

= f̃ |T̂+
δ
. Let w ∈W be such thatMf̃◦w ∈ ∆

and set g = f̃ ◦w. Then, g is an element of Mult(T̂ δ)+ such that Res(g) = f

and Mg ∈ ∆. �

Consider the map

(5.1) Ψ+ :
{

[0, 1]dδ −→ Mult(T̂+
δ )+

t 7−→ ft

where ft is such that ft(sλ, n) = Sλ,nδ(t)
Sδ(t)n .

Corollary 5.5. — The map Ψ+ is surjective.
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Proof. — Consider f in Mult(T̂+
δ )+. By Proposition 5.2, f can be re-

garded as the restriction of a multiplicative function in Mult(T̂ δ)+ we shall
also denote by f . By the previous proposition, we know there then exists
t ∈ [0, 1]dδ such that f(sλ, n) = Sλ,nδ(t)

(Sδ(t))n for any (sλ, n) ∈ G(∆). �

5.3. Injectivity of the map Ψ+

It remains to show that the map Ψ+ is injective.

Lemma 5.6. — Let t ∈ [0, 1]dδ . For any (λ, n) ∈ T̂+
δ we have

1 6 Sλ,nδ(t)
tnδ−λ 6 dim(V (λ)).

Proof. — On the first hand,

Sλ,nδ(t) =
∑
γ∈Πλ

Kλ,γtnδ−γ > tnδ−λ,

which yields 1 6 Sλ,nδ(t)
tnδ−λ . On the other hand, since ti 6 1 for all 1 6 i 6 d

and γ 6 λ for the dominant order,

Sλ,nδ(t) =
∑
γ∈Πλ

Kλ,γtnδ−γ 6
∑
γ∈Πλ

Kλ,γtnδ−λ 6 dimV (λ)tnδ−λ,

yielding the other inequality
Sλ,nδ(t)
tnδ−λ 6 dim(V (λ)). �

Corollary 5.7. — Let t = (t1, . . . , td), τ = (τ1, . . . , τd) be such that
Ψ+(t) = Ψ+(τ). Then Sδ(t) = Sδ(τ).

Proof. — For all n > 1, (nδ, n) ∈ T̂+
δ . Thus, by Lemma 5.6, we have

1 6 Snδ,nδ(t) 6 dim(V (nδ)) and 1 6 Snδ,nδ(τ) 6 dim(V (nδ)).

This yields
1

dim(V (nδ)) 6
Snδ,nδ(t)
Snδ,nδ(τ) 6 dim(V (nδ)).

But
Snδ,nδ(t)
Snδ,nδ(τ) = Sδ(τ)nΨ(t1, . . . , td)(snδ, n)

Sδ(t)nΨ(τ1, . . . , τd)(snδ, n) = Sδ(τ)n

Sδ(t)n ,

for Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd). Therefore, we have the inequality
1

dim(V (nδ)) 6
(
Sδ(τ)
Sδ(t)

)n
6 dim(V (nδ)).

Since dim(V (nδ)) is polynomial in n, necessarily Sδ(t) = Sδ(τ). �
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The proof of the injectivity uses the combinatorics of Littelmann paths.
We refer the reader to [14] for an introduction, the definition and the basic
properties of the operators fα, α ∈ S we shall need in our proofs. We recall
that B(δ) denotes the set of Littelmann paths obtained by applying any
sequence of operators fα to a fixed infinitesimal path π0 in ∆ such that
π0(1) = δ. The weight wt(µ) of any path π ∈ B(δ) is then defined by
wt(π) = π(1).

We introduce moreover the following decomposition of a δ-admissible
subset S′ ⊂ S.

Definition 5.8. — Let S′ ⊂ S be δ-admissible and α ∈ S. A Dynkin
subchain of type α and length r is a sequence (αi1 , αi2 . . . , αir ) of simple
roots in S′ such that αi1 = α, 〈αir , δ〉 6= 0 and 〈αij , αij+1〉 6= 0 for 1 6
i 6 r− 1. The depth d(α) of α (relatively to S′) is the minimal length of a
Dynkin subchain of type α.

Alternatively, the depth of α relatively to a δ-admissible subset S′ ⊂ S

is the distance of α to a simple root non-orthogonal to δ in the Dynkin
subdiagram induced by S′. Note that any simple root of a δ-admissible
subset belongs to at least one Dynkin subchain, since it belongs to an
indecomposable root system which is not orthogonal to δ.

Lemma 5.9. — Let δ ∈ P+ and α ∈ S be such that 〈δ, α〉 6= 0. Then
there exists (µ, n) ∈ T̂+

δ such that nλ− µ = α.

Proof. — Suppose that 〈δ, α〉 > 0, and thus δ − α ∈ Πδ. Recall that We
denote by π0 the Littelmann path ofB(δ) with weight δ. Then, wt(fα(π0))=
δ−α. Also one can write fα(π0) = π0−vα where v is a continuous function
from [0, 1] to itself such that v(1) = 1. We have

〈fα(π0)(t), α〉 = 〈π0(t), α〉 − v(t)〈α, α〉 > −〈α, α〉,

and for all simple root α′ 6= α and t ∈ [0, 1], we have

〈fα(π0)(t), α′〉 = 〈π0(t), α′〉 − v(t)〈α′, α〉 > 0,

because π0 lies in the Weyl chamber ∆ and 〈α, α′〉 6 0. Consider an in-
teger n > 2 such that 〈(n − 1)δ, α〉 > 〈α, α〉. Then, from the two previ-
ous inequalities, π∗(n−1))

0 ∗ fα(π0) lies in ∆. Thus, wt
(
π
∗(n−1)
0 ∗ fα(π0)

)
=

(n − 1)δ + (δ − α) is the highest weight of an irreducible component of
B(δ)⊗n, and ((n− 1)δ + (δ − α), n) = (nδ − α, n) ∈ T̂+

δ . One concludes by
setting µ = nδ − α. �

The latter result can be generalized along a Dynkin subchain and yields
the following Lemma:
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Lemma 5.10. — Let S′ ⊂ S be δ -admissible and let α ∈ S′. There
exists (λ, n) ∈ P̂+

δ such that nδ − λ = α+
∑
α′∈S′, d(α′)<d(α) kα′α

′.

Proof. — Let S′ ⊂ S be a δ-admissible subset. We will prove the result
by induction on the depth of the simple root. For d(α) = 1, the result is
given by Lemma 5.9. Let r > 2. Suppose that the result is proven for all
roots of depth at most r − 1, and let α be a root in S′ of depth r. Let
(α = αi1 , αi2 , . . . , αir ) be a Dynkin chain of minimal length of type α. By
minimality, αij has depth r−j+1 for 2 6 j 6 r. Since d(αi2) = r−1, there
exists (λ′, l) ∈ T̂+

δ such that lδ−λ′ = αi2 +
∑
d(α′)<d(αi2 ) kα′α

′. If α′ is such
that d(α′) < d(αi2), then necessarily 〈α, α′〉 = 0 (otherwise, there would
exist a Dynkin subchain of type α and length smaller than r); likewise,
since d(α) > 2, 〈δ, α〉 = 0. Thus,

〈λ′, α〉 =
〈
lδ − αi2 −

∑
d(α′)<d(αi2 )

kα′α
′, α

〉
= −〈αi2 , α〉 > 0.

Let π be a Littelmann path in B(δ)⊗l lying in ∆ with weight λ′. One
can consider π as a Littelmann path of highest weight for the irreducible
representation V (λ′). Since 〈α, λ′〉 > 0, λ′−α is a weight of V (λ′). Applying
Lemma 5.9 yields the existence of m > 1 such that π∗m ∗ fα(π) lies in the
Weyl chamber. Thus, π∗m ∗ fα(π) correspond to a highest weight path in
(B(δ)⊗l)⊗m. On the other hand,

wt(π∗m ∗ fα(π)) = mλ′ − α = lmδ − α−mαi2 −m
∑

d(α′)<d(αi2 )

kα′α
′

= lmδ − α−
∑

d(α′)<d(α)

k′α′α
′,

with k′α > 0. Setting λ = lmδ − α−
∑
d(α′)<d(α) k

′
α′α
′ and n = lm, we get

an element (λ, n) ∈ T̂δ+ satisfying the hypothesis of the Lemma. �

Corollary 5.11. — Let (t1, . . . , td), (τ1, . . . , τd)∈ [0,1]dδ and i∈{1, . . . , d}
be such that ti = 0 and τi 6= 0. Then, Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd).

Proof. — Note that 0ct and 0cτ are δ-admissible subsets by definition of
[0, 1]dδ . Since τi 6= 0, i ∈ 0cτ . Thus, by Lemma 5.10, there exists (λ, n) ∈ T̂+

δ

such that λ = nδ − αi −
∑

j∈0cτ
d(αij )<d(αi)

kαijαij . Since τj > 0 for all j ∈ 0cτ ,

Ψ(τ1, . . . , τd)(sλ, n) = Sλ,nδ(τ)
Sδ(τ)n >

τnδ−λ

Sδ(τ)n = 1
Sδ(τ)n τi

∏
j∈0cτ

d(αj)<d(αi)

τ
kαj
j > 0.
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On the other hand, any weight of V (λ) has the form λ −
∑
α∈S rαα for

some integer coefficients rα > 0; thus, since ti = 0, for any weight µ =
λ−

∑
α∈S rαα of V (λ) we have

tnδ−µ = ti
∏
j∈0cτ

d(αj)<d(αi)

t
kαj
j

∏
αj∈S

t
rαj
j = 0.

Thus, Ψ(t1, . . . , td)(sλ, n) = 0 6= Ψ(τ1, . . . , τd)(sλ, n). This yields that
Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd). �

Proposition 5.12. — The map Ψ+ is injective.

Proof. — Let (t1, . . . , td), (τ1, . . . , τd)∈ [0, 1]dδ be such that Ψ(t1, . . . , td)=
Ψ(τ1, . . . , τd). In this case, Corollary 5.7 yields that Sδ(τ) = Sδ(t). By
Corollary 5.11, we can assume that 0ct = 0cτ , and we will denote this set S′:
we recall that the set of simple roots is identified with {1, . . . , d}, so that
S′ corresponds to a δ-admissible subset of S. We shall prove that tj = τj
for any j ∈ S′ by induction on the depth of the simple root αj . Suppose
that αj ∈ S′ is such that d(αj) = 1. By Lemma 5.10, there exists n > 1
such that (nδ − αj , n) ∈ T̂+

δ . Thus, (nkδ − kαj , kn) ∈ T̂+
δ for all k > 1.

Since Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd), we have
1

Sδ(t)knSknδ−kαj ,knδ(t) = 1
Sδ(τ)knSknδ−kαj ,knδ(τ),

which simplifies into Sknδ−kαj ,knδ(t) = Sknδ−kαj ,knδ(τ) because Sδ(t) =
Sδ(τ). By Lemma 5.6, we have

1 6
Sknδ−kαj ,knδ(t)

tkj
6 dimV (knδ − kαj),

and
1 6

Sknδ−kαj ,knδ(τ)
τkj

6 dimV (knδ − kαj).

Thus,
1

dimV (knδ − kαj)
6

(
tj
τj

)k
6 dimV (knδ − kαj).

Since dimV (knδ − kαj) is polynomial in k, necessarily tj = τj . Let i > 2,
and suppose that we have proven that tj = τj for all j such that d(αj) < i.
Let αl be such that d(αl) = i. By Lemma 5.10, there exists (λ, n) ∈ T̂+

δ

such that nδ − λ = αl +
∑
α′∈S′, d(α′)<d(α) kα′α

′, with kα′ > 0. Thus, for
all k > 1, (kλ, kn) ∈ T̂+

δ . As in the previous case, this implies that

Skλ,knδ(t) = Skλ,knδ(τ),
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yielding together with Lemma 5.6 the inequality

(5.2) 1
dimV (kλ) 6

(
t
τ

)nkδ−λ
6 dimV (kλ).

But nkδ − kλ = kαl + k
∑
j∈0ct , d(αj)<d(αl) kαjαj , and by the induction

hypothesis, tj = τj for all j ∈ 0ct, d(αj) < d(αl). Thus

tnkδ−λ

τnkδ−λ
= tkl
τkl
.

Since dimV (kλ) is polynomial in k, (5.2) yields that tlτl = 1 as expected. �

Corollary 5.13. — The map Ψ+ is a bijection from [0, 1]dδ to
Mult(T̂+

δ )+. In particular, ∂H(∆) is isomorphic to [0, 1]dδ .

6. Mean vector of a central measure

In this section, we identify the set S with K(δ) in order to complete the
proof of Theorem 3.1. At the end of this section we prove Corollary 3.3.

6.1. The mean vector ~M

Let us introduce the map

~M :
{

S −→ K(δ)
(t, w) 7−→MΨ(t,w).

Recall that the mean vector Mf has been defined in (4.1) for any multi-
plicative map f ∈ Mult(T̂ δ)+. Here we have

(6.1) MΨ(t,w) = 1
Sδ(t)

∑
γ∈Πδ

Kδ,γtδ−w(γ)γ.

For I ⊂ {1, . . . , d}, denote by WI the parabolic subgroup generated by the
simple roots αi for i ∈ I.

Example 6.1. — Resume Example 4.13 with δ = ω1 in type C2. Then
V (δ) is the defining representation of g = sp4(C) whose weights γ are
±ε1 ± ε2. Thus δ − γ runs over the set {0, α1, α1 + α2, α1 + 2α2}. For
(t, w) = ((t1, t2), Id) on gets

(6.2) ~M(t, Id) = 1
1 + t1 + t1t2 + t21t2

(
(1− t21t2)ε1 + (t1 − t1t2)ε2

)
.
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Lemma 6.2. — Let (t, w) ∈ S. Then MΨ(t,w) ∈ (w′)−1(∆) if and only
if w′ ∈W1(t)w.

Proof. — Let αi ∈ S. By (6.1), we get as in the proof of Proposition 4.14

〈MΨ(t,w), w
−1(αi)〉 = 1

Sδ(t)
∑
γ∈Πδ
〈γ,αi〉>0

Kδ,γtδ−γ(1− t
2 〈γ,αi〉〈αi,αi〉
i )〈γ, αi〉.

Since each ti is in [0, 1], 〈MΨ(t,w), w
−1(αi)〉 > 0 for 1 6 i 6 d and hence

w(MΨ(t,w)) ∈ ∆. Moreover, 〈MΨ(t,w), w
−1(αi)〉 = 0 if and only if ti = 1.

Therefore, w(MΨ(t,w)) ∈ w′(∆) if and only if w′ is a product of reflections
sαi such that ti = 1. Applying w−1 to the latter result yields the proof of
the Lemma. �

Proposition 6.3. — The map ~M is injective.

Proof. — Let (t, w) and (t′, w′) be two elements of S such that ~M(t, w) =
~M(t′, w′). We simply denote by M this common value. Lemma 6.2 implies
that W1(t)w = W1(t′)w

′. Since w and w′ are both minimal right coset
representatives of W1(t′)w, we must have w = w′. Thus, W1(t) = W1(t′)
which implies that 1(t) = 1(t′). Let F and F ′ be the dominant faces cor-
responding to the δ-admissible set 0ct and 0ct′ , respectively. By the results
of Section 4.3, M ∈ w−1(

◦
F ) (where

◦
F the interior of the face F ) and

M ∈ w′−1(
◦
F ′). Since w = w′, we must have F = F ′ and thus 0ct = 0ct′ . Let

(Xl)l>0, (X ′l)l>0 be two random walks with initial position X0 = X ′0 = 0
and respective transition matrices

P(Xl+1 = γ |Xl = γ′) = Kδ,γ−γ′
tδ−w(γ−γ′)

Sδ(t) ,P(X ′l+1 = γ |X ′l = γ′)

= Kδ,γ−γ′
t′δ−w(γ−γ′)

Sδ(t′)
.

Both random walks have meanM , thus it follows by the local limit theorem
for large deviations (see for instance Theorem 4.2.1 in [11]) that for any
sequences of weights (γl)l>1, (γ′l)l>1 such that γl− lM = o(l2/3), γ′l− lM =
o(l2/3), and P(Xl = γl) 6= 0,P(Xl = γ′l) 6= 0, we have

(6.3) P(Xl = γl) ∼ P(Xl = γ′l),

and the same relation holds for (X ′l)l>1. Let i ∈ 0ct. For l > 1, let (γl, l) ∈
T̂+
δ be such that γl is an element of Pδ ∩ lF at minimal distance from lM

and set γ′l = γl−αi. Then, P(Xl = γl) 6= 0. SinceM belongs to the interior
of F , γ′l ∈ Pδ ∩ lF for l large enough: thus, P(Xl = γ′l) 6= 0 for l large
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enough. The sequences (γl − lM)l>1 and (γ′l − lM)l>1 are bounded, thus
the local limit Theorem applies and

(6.4) P(Xl = γl) ∼ P(Xl = γ′l)

as l goes to infinity. Since X comes from a central measure,

(6.5) P(Xl = γl) = #ΓRd
l (γl)

tnδ−γl(
Sδ(t)

)l .
Using (6.3) with (6.5) yields that

#ΓRd
l (γl)

#ΓRd
l (γ′l)

∼ tγ
′
l−γl = t−1

i and #ΓRd
l (γl)

#ΓRd
l (γ′l)

∼ t′γ
′
l−γl = t′−1

i .

Thus ti = t′i. �

We can now prove the main result of this subsection:

Proposition 6.4. — The map ~M is a bijective map from S to K(δ)
such that ~M([0, 1]dδ × Id) = K(δ)+.

Proof. — The injectivity of ~M has already been proven in Proposition 6.3.
Let us prove that ~M is surjective. Recall that Ψ is a restriction of the map
Φ◦θ−1 : [0, 1]d×W → Mult(T̂ δ)+ defined at the end of Section 4.2, and that
both maps have the same image; thus, it is enough to prove that the map ~M

extended to the domain [0, 1]d×W by the formula ~M(t, w) = MΦ◦(θ−1(t),w)

is surjective. Let us first prove that ~M|[0,1]d×Id is surjective onto K(δ)+. Let
1 6 i 6 d be such that 〈δ, αi〉 6= 0: then, αi is a δ-admissible set, and the
dominant face associated with αi is one-dimensional. Let Σ : Rd → R be
the function defined by

Σ(u) = log(Sδ(eu1 , . . . , eud)) = log

∑
γ∈Πδ

Kδ,γe
u.(δ−γ)

 .

Then,

∇Σ(u) =

 1
Sδ(eu1 , . . . , eud)

∑
γ∈Πδ

Kδ,γ(δi − γi)eu.(δ−γ)


16i6d

= δ − ~M((eu1 , . . . , eud), Id).

Moreover, we can show that Σ is a convex function. To do this, introduce
the random variable X such that P(X = δ−γ) = Kδ,γ

Sδ(eu1 ,...,eud )e
u.(δ−γ). The

Hessian matrix of Σ at u is exactly the covariance matrix of the random
variable X, which is nonnegative. Since this is true for all vector u ∈ Rd,
Σ is indeed convex. Since Σ is a convex function and (R−)d is convex,
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the set ∇Σ(R−)d) is a convex set. We have thus proven that the set {δ −
~M(eu1 , . . . , eud , Id)|u ∈ (R−)d} = δ− ~M(]0, 1]d, Id) is convex, which implies
by continuity that ~M([0, 1]d, Id) is also convex.
Let xi = Fi ∩ ∂∆ (that is, xi is the projection of δ on α⊥i ). Then, a

classical reasoning yields that K(δ)+ is a convex polytope whose extreme
points are the elements δ, 0 and {xi}16i6d, 〈αi,δ〉>0. Let us prove that the
extreme points of K(δ)+ are in the image of ~M . Note first that M(1, Id) =
0, yielding that 0 ∈ ~M([0, 1]d × Id). Moreover, since ~M(0, Id) = δ, δ ∈
~M([0, 1]d× Id). Let 1 6 i 6 d be such that 〈αi, δ〉 6= 0. Let us set (αi, δ) :=
2〈αi,δ〉
〈αi,αi〉 . For 1 6 l 6 (δ, αi), Kδ,δ−lαi = 1, since the only element of B(δ)
ending at δ − lαi is f lαi(π0); thus, we have

~M((δij)16j6d, Id) = 1
Sδ((δij)16j6d)

(αi,δ)∑
l=0

Kδ,δ−lαi(δ − lαi)

= 1∑(αi,δ)
l=0 Kδ,δ−lαi

(αi,δ)∑
l=0

δ −
(αi,δ)∑
l=0

lαi


= 1

(αi, δ) + 1

((
(αi, δ) + 1

)
δ −

(αi, δ).
(
(αi, δ) + 1

)
2 αi

)

=δ − (αi, δ)
2 αi = xi,

and xi belongs to ~M([0, 1]d × Id). Similarly, if (tl) is a sequence of [0, 1]d
converging to 0, then ~M(tl, Id) converges to ~M(0, Id). Hence, 0, δ and
{xi}16i6d, 〈αi,δ〉>0 are in the closure of ~M([0, 1]d × Id). Since ~M([0, 1]d ×
Id) is convex, this yields that K(δ)+ ⊂ ~M([0, 1]d × Id). By Lemma 6.2,
~M([0, 1]d, Id) ⊂ K(δ)+, so that finally ~M([0, 1]d, Id) = K(δ)+. Since
~M(t, w) = w−1 ~M(t, Id), ~M([0, 1]d ×W ) =

⋃
w∈W w(K(δ)+) = K(δ). �

Example 6.5. — With the notation and results of Examples 4.13 and 6.1,
one verifies that all the pairs (t1, t1) ∈ [0, 1]2 with t1 = 0 give the same
mean vector, namely (0, 0) which is already obtained by considering (0, 0) ∈
[0, 1]2ω1

. The set K(δ)+ coincide with the triangle with vertices (0, 0), (0, 1),
(1/2, 1/2) intersection of the convex hull of the vectors ±ε1,±ε2 with the
Weyl chamber ∆ = {(x1, x2) |x1 > x2 > 0}. It is parametrized by [0, 1]2ω1

through the map ~M detailed in (6.2).
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6.2. Proof of Theorem 3.1

We give the proof of Theorem 3.1 by gathering the different results we
have established in the previous sections. We only detail the proof for
∂H(Rd), the arguments for ∂H(∆) being similar.

• By Corollary 4.1, ∂H(Rd) is homeomorphic to Mult(T̂ δ)+ through
the map η : Mult(T̂ δ)+ → ∂H(Rd) defined by

η(f)(ΓR(τ)) = f(γ, n)

for any path τ ∈ ΓR of length n ending at γ. Since Mult(T̂ δ)+ is
compact, ∂H(Rd) is a compact space.

• By Proposition 4.14 the map Ψ : S → Mult(T̂ δ)+ given by

Ψ(t, w)(γ, n) = 1
Sδ(t)n tnδ−w(γ)

is a bijection.
• Finally, by Proposition 6.4, the map ~M : S → K(δ) given by

~M(t, w) = 1
Sδ(t)

∑
γ∈Πδ

Kδ,γtδ−w(γ)γ

is also a bijection.
Therefore, the map P : K(δ) → ∂H(Rd) given by P = η ◦ Ψ ◦ ( ~M−1) is

also a bijection. Note that from the previous results, for m ∈ K(δ),

Pm(ΓR(τ)) = 1
Sδ(tm)n (tm)nδ−w(γ),

for all paths τ of length n ending at γ. It remains to show that P is indeed
an homeomorphism. Since K(δ) and ∂H(Rd) are compact, it suffices to
prove that P or P−1 is continuous. But for P ∈ ∂H(Rd),

P−1(P) =
∑

τ∈B(δ)

P
(
ΓR(τ)

)
τ(1).

Thus P−1 is continuous, which concludes the proof of Theorem 3.1. The
same proof holds for ∂H(∆) with K(δ)+ and the map P+ introduced in
the statement of the Theorem.
For a metric space X, denote byM1(X) the set of probability measures

on X with respect to its Borel σ-algebra; we consider M1(X) as a topo-
logical space with the weak convergence topology. As a straightforward
corollary of Theorem 3.1, we get the following integral representation of
H(Rd) and H(∆).

ANNALES DE L’INSTITUT FOURIER



CENTRAL MEASURES ON MULTIPLICATIVE GRAPHS 2401

Corollary 6.6. — The topological spaces H(Rd) and H(∆) are home-
omorphic toM1(K(δ)) andM1(K(δ)+), respectively through the maps

P :


M1(K(δ)) −→ H(Rd)

µ 7−→
∫
K(δ)

Pmdµ(m)

and

P :


M1(K(δ)+) −→ H(∆)

µ 7−→
∫
K(δ)+

P+
mdµ(m).

We prove now that a random path in Γ∆ following the harmonic measure
P+
m admits a law of large numbers with drift m. In the case of a random

path in ΓR following the central measure Pm, the result is clear from the
definition of Pm and the classical law of large numbers for random walks.
The case of P+

m is more complicated, since the random path is constrained
to remain in a domain. However, the result still holds true.

Proposition 6.7. — Let πm be a random path in Γ∆ following the
harmonic measure P+

m. Denote by τm(n) the position of the path after n
steps. Then, almost surely,

1
n
τm(n) −→ m,

as n goes to infinity.

Proof. — Denote by τ̃m the random path in ΓR following the harmonic
measure Pm. By [13, Theorem 4.12], we have the equality in law

τm = Pαi1 . . .Pαir (τ̃m),

where w0 = sαi1 . . . sαir is a minimal length decomposition of the longest
element of W , and each operator Pα is the Pitman transformation associ-
ated with the root α. We recall that the definition of the operator Pα on a
path τ ∈ ΓR is given by

Pα(τ)(t) = τ(t)−
(

inf
s∈[0,t]

2〈τ(s), α〉
〈α, α〉

)
α

and we set P = Pαi1 . . .Pαir . By a large deviation principle,∥∥∥∥1
t
(τ̃m)|[0,t] −m Id|[0,t]

∥∥∥∥
∞
−→
t→+∞

0

with probability one. Thus, for s ∈ [0, t] and α ∈ S,∣∣∣∣1t 2〈τ̃m(s), α〉
〈α, α〉

− 2〈ms,α〉
〈α, α〉

∣∣∣∣ 6 ε(t),
TOME 70 (2020), FASCICULE 6
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with ε(t) converging to 0 when t goes to infinity with probability one. Since
m ∈ K(δ)+, 〈m,α〉 > 0, and thus infs∈[0,t] s

2〈m,α〉
〈α,α〉 = 0. Hence,∣∣∣∣1t inf

s∈[0,t]

2〈τ̃m(s), α〉
〈α, α〉

α

∣∣∣∣ 6 ε(t)|α| −→t→+∞
0,

and finally 1
tPα(τ̃m)(t) ∼ 1

t τ̃m(t) → m as t goes to +∞, with probability
one. Iterating this result for Pαi1 , . . . ,Pαir yields that

1
t
P(τ̃m)(t) −→

t→+∞
m

with probability one. We conclude by observing that P(τ̃m) is equal in law
to τm. �

6.3. c-harmonic functions killed on the boundary of ∆

We end this section by proving Corollary 3.3. We recall that ŝ is the map
from ∂H(∆) to R+ ∪ {∞} defined by

ŝ(P+
m) =

∑
γ∈P

Kδ,γtγm.

Note that the range of tm is exactly [0, 1]dδ by Proposition 6.4.
Proof of Corollary 3.3. — Suppose that P ∈ Hc(∆). By Corollary 6.6,

there exists µ ∈ M1(K(δ)+) such that P =
∫
K(δ)+ P+

mdµ(m). Since P ∈
Hc(∆), there exists p : Λ ∩∆→ R+ such that

P(Γ∆(π)) = p(x)
(cdimV (δ))n ,

for π ∈ Γ∆
n (x).

We first prove that the support of µ is included in {P+
m|tm ∈]0, 1]d}. Let

x ∈ Λ ∩∆ and let n0 > 1 be such that Γ∆
n0

(x) 6= ∅. Let π = (πn)n>1 be a
sequence of paths such that πn ∈ Γ∆

un(x) with un → +∞ when n goes to
infinity (un being such that Γ∆

un(x) is nonempty, which is always possible
since Γ∆

n0
(x) 6= ∅). Then (cdimV (δ))unP(Γ∆(πn)) is constant and equal to

p (x). Hence, by the expression of P and Theorem 3.1,

(6.6) p(x) = (cdimV (δ))unP(Γ∆(πn))

= (cdimV (δ))un
∫
K(δ)+

P+
m(Γ∆(π))dµ(m).

Suppose that m is such that ŝδ(P+
m) = +∞. This means that there exists

1 6 i 6 d such that (tm)i = 0. Thus, by Proposition 4.7, P+
m(Γ∆(π)) is
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nonzero only if π ∈ Γ∆
n (y) for y ∈ nδ + nΠF , where F is a fixed dominant

face whose dimension is strictly smaller than K(δ). Hence, the distance of
x to nδ+nΠF goes to infinity with n, which implies that P+

m(Γ∆(πn)) = 0
for n large enough. We can thus assume that the support of µ is included
in {P+

m | tm ∈ ]0, 1]d}.
For tm ∈ ]0, 1]d, sx(tm) ∈ R for all x ∈ P+ and we have

Sx,unδ(tm)
Sδ(tm)un = tunδm sx(tm)

tunδm (sδ(tm))un
= sx(tm)
ŝδ(P+

m)un
,

where Sx,unδ is the normalized character as defined in (3.2). Thus, with
Theorem 3.1, (6.6) becomes

(cdimV (δ))unP(Γ∆(πn)) =
∫
K(δ)+

(cdimV (δ))un Sx,unδ(tm)
Sδ(tm)un dµ(m)

=
∫
K(δ)+

(cdimV (δ))un sx(tm)
ŝδ(P+

m)un
dµ(m),

where we have used that the support of µ is in {P+
m|tm ∈]0, 1]d}. In order

that the right hand-side of the latter expression does not go to infinity, we
must have µ(ŝ−1

δ [0, cdimV (δ)[) = 0. Then, we have

p(x) = lim
n→+∞

∫
K(δ)+

(
cdimV (δ)
ŝδ(P+

m)

)un
sx(tm)dµ(m)

=
∫
ŝ−1
δ

({c dimV (δ)})
sx(tm)dµ(m),

and the support of µ is ŝ−1
δ ({cdimV (δ)}). Finally,

∂Hc(∆) ⊂ ŝ−1
δ ({cdimV (δ)}).

Its is readily seen that ŝ−1
δ ({cdimV (δ)}) ⊂ Hc(∆) ∩ ∂H(∆) by the

expression of P+
m from Theorem 3.1, and by the characterization of c-

harmonic functions from Section 2.3; since Hc(∆) is a convex subset of
H(∆), Hc(∆) ∩ ∂H(∆) ⊂ ∂Hc(∆). Finally, ∂Hc(∆) = ŝ−1

δ ({cdimV (δ)}),
which proves the first part of the corollary.
For the second part of the corollary, a quick computation yields that

s̃δ : (u1, . . . , ud) 7→ log(sδ(eu1 , . . . , eud)) is strictly convex on Rd: as in
the proof of Proposition 6.4, the Hessian matrix of s̃δ at u is actually the
covariance matrix of a non-degenerate random variable. Thus, s̃δ admits a
unique minimum on Rd, which is located at the unique vector u0 such that
∇s̃δ(u0) = 0. Since

∇s̃δ(t) = 1
sδ(t)

∑
γ∈P

Kδ,γe
u·γγ = ~M(e−u1 , . . . , e−ud , Id)eu·δ
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and ~M(1) = 0, the minimum of s̃δ is at 0. Hence, the minimum for sδ is at
1, and thus min∂H∞(∆) ŝδ = ŝδ

(
P+

1
)

= dimV (δ). The second part of the
corollary is a straightforward deduction of this fact. �

Note that the proof of the latter corollary gives an explicit expression of
the harmonic function associated with the central measure P+

m.

αi simple roots, p. 2362
∆ dominant Weyl chamber, p. 2362
` length function on W , p. 2370
ΓΩ
n (y) set of paths of length n in Ω ending at y, p. 2365
γ, β weight of g, p. 2370
ΓΩ set of infinite paths included in Ω, p. 2365
ΓΩ(τ) paths of Γ(Ω) starting by τ , p. 2365
ΓΩ(x, y) set of infinitesimal paths in Ω between x and y, p. 2365
ΓΩ

fin set of finite paths included in Ω, p. 2365
ΓΩ
n set of paths of length n in Ω, p. 2365
Âδ extended algebra of characters, p. 2376
P̂ δ extended algebra of weights, p. 2376
Λ lattice in Rd, p. 2364
λ, δ dominant weights of g, p. 2371
[0, 1]dδ subset of [0, 1]d defined in (4.5), p. 2387
Pm harmonic measure of ∂H(Rd) with drift m ∈ Rd, p. 2373
P+
m harmonic measure of ∂H(∆) with drift m ∈ ∆, p. 2373

R[P ]W character ring of g, p. 2371
Aδ subalgebra of RW [P ] generated by sλ with λ ∈ T+

δ , p. 2372
G(Ω) rooted graph associated to ΓΩ, p. 2370
H(G) harmonic functions on the multiplicative graph G, p. 2368
H(Ω) minimal boundary of ΓΩ, p. 2366
H(Ω) set of central measures on ΓΩ, p. 2365
Hc(Ω) set of central measures coming from c-harmonic functions, p. 2367
M1(ΓΩ) space of probability measures on ΓΩ, p. 2365
Mult(A)+ multiplicative functions on A nonnegative on the cone K ⊂ A,

p. 2368
ωi fundamental weight of g, p. 2370
∂H(G) extremal points of ∂H(G), p. 2368
P,P0 central/harmonic probability measure on ΓΩ, p. 2365
π, τ paths on Λ, p. 2364
Πδ set of weights of V (δ), p. 2362
Πδ(f) subset of Πδ on which f is nonzero, p. 2382
ΠF intersection of Πδ with the dominant face F , p. 2382
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Ψ+ map defined in Corollary 5.5, p. 2392
~M mean vector map defined in Section 6.1, p. 2396
AG algebra generated by the vertices of a multiplicative graph, p. 2368
B(δ) set of Littelmann paths associated to V (δ), p. 2362
d dimension of g, p. 2362
eβ abstract variable corresponding to the weight β, p. 2371
F dominant face of K(δ), p. 2382
h c-harmonic function with respect to Z, p. 2367
K(δ) convex hull of Πδ, p. 2362
K(δ)+ intersection of K(δ) with ∆, p. 2362
Kλ,γ dimension of the weight space γ in V (λ), p. 2371
l(π) length of π, p. 2364
Mf drift associated to the multiplicative function f , p. 2379
P weight lattive, p. 2362
p multiplicative function associated to P, p. 2365
P+ cone of dominant weights, p. 2362
Pδ sublattice of P generated by Πδ, p. 2372
Q+ subset of P+ spanned by S over Z, p. 2371
R set of roots of g, p. 2370
R+ set of positive roots, p. 2370
S set of simple roots, p. 2362
sαi reflection associated to αi, p. 2370
Sλ,µ, Sλ normalized character defined in (3.2), p. 2371
sλ Weyl character of V (λ), p. 2371
T+
δ dominant weights λ such that V (λ) appears in some tensor power

V (δ)⊗n, n > 0, p. 2372
Tδ,n weights appearing with nonzero multiplicity in V (δ)⊗n, p. 2376
Ti shortcut for e−αi , p. 2371
V (δ) irreducible representation associated to δ, p. 2362
W Weyl group of g, p. 2370
WS′ set of minimal right-coset representative with respect to S′ ⊂ S,

p. 2386
X set of infinitesimal paths, p. 2364
Z canonical random walk generated by X, p. 2366
g finite dimensional Lie algebra, p. 2362
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