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ABSTRACT
The periodic microphases that self-assemble in systems with competing short-range attractive and long-range repulsive (SALR) interactions
are structurally both rich and elegant. Significant theoretical and computational efforts have thus been dedicated to untangling their proper-
ties. By contrast, disordered microphases, which are structurally just as rich but nowhere near as elegant, have not been as carefully considered.
Part of the difficulty is that simple mean-field descriptions make a homogeneity assumption that washes away all of their structural features.
Here, we study disordered microphases by exactly solving a SALR model on the Bethe lattice. By sidestepping the homogenization assump-
tion, this treatment recapitulates many of the key structural regimes of disordered microphases, including particle and void cluster fluids as
well as gelation. This analysis also provides physical insight into the relationship between various structural and thermal observables, between
criticality and physical percolation, and between glassiness and microphase ordering.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052111

I. INTRODUCTION

Periodic microphases (or mesophases) generically form in sys-
tems described by competing (effective) short-range attractive and
long-range repulsive (SALR) interactions. Similarly ordered struc-
tures have thus been reported in materials as diverse as block
copolymers, surfactants, colloidal suspensions, cell nuclei, and mag-
netic alloys.1–9 The material breadth and interest of this universal-
ity class have motivated the development of an extended array of
field theoretic, density functional, liquid state, and molecular sim-
ulation descriptions (see, e.g., Refs. 5 and 10–12). Numerical sim-
ulations and experiments suggest that disordered microphases are
also structurally quite rich, notably exhibiting cluster fluids of both
particles and voids as well as equilibrium physical gels.13–26 Disor-
dered microphase-based materials have even found technological
applications as filtration membranes.27 As equilibrium precursors to
periodic microphase formation, they are also of clear self-assembly
interest.

From the theoretical standpoint, disordered microphases have
received much less attention than their ordered (periodic) coun-
terparts. Standard mean-field descriptions simply wash away all

structural features of the high-temperature phase. Because disor-
dered microphases are spatially homogeneous on average, their
instantaneous density inhomogeneities do not naturally emerge
from standard treatments. Density-functional descriptions, for
instance, would require the consideration of higher-order density
terms beyond what current approaches do3,28,29 in order to carve
out the relevant structural properties. Liquid-state descriptions offer
more insight, especially about compressibility,30–32 but still do not
capture the full richness of the disordered microphase regime.15,29 As
a result, the various structural regimes of disordered microphases are
mostly described phenomenologically, especially for particle cluster
(or micelle) formation.2,33–36

A different road toward exact solutions of SALR models pro-
ceeds through the consideration of Cayley trees with finite connec-
tivity c + 1 > 2, for which the Bethe approximation is exact. While
the mean-field nature of these models limits the extent to which
they recapitulate finite-dimensional physics, their finite yet non-
trivial connectivity preserves a notion of distance between lattice
sites as well as local short-range correlations that are key to dis-
ordered microphases. They therefore naturally bypass the homo-
genization assumption of other mean-field treatments. Surprisingly,
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while the low-temperature periodic microphases of a variety of such
models were studied over a generation ago,37–42 their disordered
microphases were not similarly considered, possibly because the the-
oretical machinery then available was not yet fully developed.43,44

We here remediate this oversight to gain material insight into disor-
dered microphases. More specifically, we exactly solve a model SALR
Hamiltonian on locally tree-like graphs (Cayley-tree-like) to inves-
tigate the clustering crossover and its connection with the peak of
the heat capacity, as well as the interplay between percolation, glass
formation, and the ordered microphase regime.

The plan for rest of this article is as follows: Sec. II describes
the specific SALR model considered, Sec. III introduces the cavity
field equations to solve this model in the Bethe approximation, and
Secs. IV and V describe the various schemes used to study homo-
geneous and inhomogeneous phases, respectively. The results are
discussed in Sec. VI, and a brief conclusion follows in Sec. VII.

II. MODEL
The model SALR Hamiltonian is expressed in terms of occupa-

tion variables, ni = 0, 1,

H = −ε∑
⟨i,j⟩

ninj + κ1 ∑
⟨⟨i,j⟩⟩

ninj + κ2 ∑
⟨⟨⟨i,j⟩⟩⟩

ninj − μ∑
i

ni, (1)

where the first term encodes the nearest-neighbor attraction, with
ε > 0 setting the unit of energy, and the second and third terms
encode next- and next-next-nearest-neighbor repulsion, respectively
(see Fig. 1).41 The last term is akin to a uniform external field, which,
in this representation, is equivalent to fixing the chemical potential
and hence to tuning the system density. We consider this model on
a (locally) tree-like lattice of fixed connectivity c + 1 (see below for
a precise definition). In order to remain in a regime akin to what is
observed in three-dimensional simulations,18 we thus set

⎧⎪⎪
⎨
⎪⎪⎩

κ1 = κε,
κ2 = κε/(c + 1),

(2)

with κ parameterizing the overall repulsion strength and the c
+ 1 factor compensating for the exponential (instead of algebraic)
growth of the number of neighbors with distance on tree-like
(instead of real-space) lattices.

Note that by going from occupation to spin variables, i.e.,
si = 2ni − 1, it is straightforward to show that the Z2 symmetry of
the model is restored for

μ0 = (c + 1)(−ε + cκ1 + c2κ2)/2. (3)

This choice is indeed equivalent to canceling the external magnetic
field for spin variables and thus ensures that the average density
ρ = ⟨ni⟩ = 1/2. This symmetry reveals that the independent density
range is ρ ∈ [0, 1/2]. For the Z2 symmetric case, it is also possible to
calculate the frustration κ0 at which the energetic ground state tran-
sitions from gas–liquid coexistence (ferromagnetic) to layered with
a threefold periodicity (⟨3⟩ for layers with a period of λℓ = 6). For μ
given by Eq. (3), the energy per site of such a lamellar ground state
is indeed

eℓ =
ε
6
−
κ1c
3
−
κ2

6
(3c2
− 2c + 2). (4)

The point at which eℓ equates the gas–liquid coexistence ground
state energy per site—e f = 0 for Eq. (2)—is then

κ0 =
c + 1

5c2 + 2
. (5)

Recall that the Bethe approximation (see Sec. III) was originally
introduced for Cayley trees of fixed connectivity c + 1, which are
loop-less graphs with a finite fraction of sites lying on the boundary,
i.e., tree leaves. This hierarchical structure leads to exact recursion
relations that can be solved iteratively for a given boundary condi-
tion on these leaves. When the Gibbs measure is characterized by
more than one minimum, however, the fixed point of this recursion
can be strongly affected by the choice of boundary condition due
to the significant contribution of leaves even in the thermodynamic
limit of N →∞ nodes.43 One way to sidestep the issue is to define the
lattice as a random-regular graph (RRG) of fixed connectivity c + 1
with no trivial loops (joining a site to itself) nor multi-edges (distinct
edges joining the same sites). Extensive studies of such graphs have
indeed revealed that in the limit N →∞, typical RRGs have loop
lengths O(ln N).45 They are therefore locally tree-like, which makes
the Bethe approximation (locally) asymptotically exact. In addition,
the large loops implement an analog of self-consistent boundary
conditions without having to rely on external constraints. The result-
ing frustration, however, forbids the formation of the long-range
periodically modulated structures expected for the SALR model on

FIG. 1. (a) Schematic SALR radial inter-
action potential given by Eq. (1) as a
function of Hamming distance r on the
graph. In continuous space, the lattice
SALR interaction considered here is akin
to a square-well attraction of depth ε with
two repulsive steps of strength κ1 and
κ2 (not drawn to scale), respectively. (b)
Illustration of the configurations corre-
sponding to the cavity fields defined in
Eq. (6) for c = 11 and l = 4.
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Cayley trees at large κ and low T.37–42 This last aspect is further
explored in Sec. V.

III. CAVITY FIELDS AND RECURSION RELATIONS
The cavity method is the standard approach for solving a model

such as Eq. (1) on a RRG. This recursive scheme entails first select-
ing a node i of the lattice, for which one of the c + 1 edges—say,
the edge it has with node j, i↔ j—is removed, and hence the cav-
ity site i roots a semi-infinite branch of the tree. (For convenience
and without loss of generality, we denote the missing edge i↔ j as
the backward edge.) Taking c cavity sites and connecting them to a
new site through c edges produce a new cavity site with the same
statistical properties as its c neighbors. This procedure thus gives
rise to exact (in the thermodynamic limit) recursion relations for
the cavity fields. These are defined as the local marginal probabili-
ties of having specific configurations of the occupation variables on
a given cavity site once all other degrees of freedom on the branch
have been integrated out. This feat is possible, thanks to the tree-
like structure of RRGs, which implies that the c neighbors of a given
site i are uncorrelated in the absence of site i and thus have factoriz-
able joint probabilities. (See Ref. 44 for a detailed presentation of all
facets and subtleties of the cavity method in the context of optimiza-
tion problems and information theory. We also strongly recommend
consulting Sec. III A of Ref. 46 for a pedagogical explanation of the
method for the ferromagnetic Ising model.)

We now specialize to the model given by Eq. (1). For notational
convenience, we introduce the variable wi→j = ∑m∈∂i/jnm, which

counts the number of occupied neighbors of the cavity site i in
the absence of its backward neighbor j. The cavity fields are then
defined as the probabilities of having different occupancy configu-
rations of the cavity sites and of their neighbors (see Fig. 1 for an
illustration and Ref. 47 for a similar calculation for a model with
next-next-nearest-neighbor interactions),

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(i→j)
l ≡ Prob(ni = 0 & nj = 0 & wi→j = l),

F(i→j)
l ≡ Prob(ni = 0 & nj = 1 & wi→j = l),

O(i→j)
l ≡ Prob(ni = 1 & nj = 0 & wi→j = l),

R(i→j)
l ≡ Prob(ni = 1 & nj = 1 & wi→j = l).

(6)

For example, E(i→j)
l is the probability that cavity site i is empty

(ni = 0), with its backward site j also empty (nj = 0) and with l occu-
pied neighbors (with 0 ≤ l ≤ c), as depicted in Fig. 1 for c = 11 and
l = 4.

In order to write compact recursion relations for these objects,
we also introduce auxiliary functions of the local marginal proba-
bilities and of the variable q at inverse temperature β = 1/T (with
Boltzmann constant kB = 1),

φ̂(i→j)
q =

c

∑
m=0

φ(i→j)
m e−mqβκ2 , (7)

where φm = {Em, Fm, Om, Rm} corresponds to the different kinds of
cavity fields defined in Eq. (6). Considering the iteration process in
which c cavity sites {j1, . . . , jc} are connected to a new cavity site
i through c edges, we have

E(i→j0)

l = (Z(i→j0)

iter )
−1

e−β
l(l−1)

2 κ1
∑

1≤j1<⋅ ⋅ ⋅<jl≤c

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

Ô(jk→i)
l−1 ∏

jq∉{j1 ,...,jl}

Ê(jq→i)
l

⎤
⎥
⎥
⎥
⎥
⎦

,

F(i→j0)

l = (Z(i→j0)

iter )
−1

e−β
l(l+1)

2 κ1
∑

1≤j1<⋅ ⋅ ⋅<jl≤c

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

Ô(jk→i)
l ∏

jq∉{j1 ,...,jl}

Ê(jq→i)
l+1

⎤
⎥
⎥
⎥
⎥
⎦

,

O(i→j0)

l = (Z(i→j0)

iter )
−1

eβ[μ+l(ε− (l−1)
2 κ1)]

∑
1≤j1<⋅ ⋅ ⋅<jl≤c

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

R̂(jk→i)
l−1 ∏

jq∉{j1 ,...,jl}

F̂(jq→i)
l

⎤
⎥
⎥
⎥
⎥
⎦

,

R(i→j0)

l = (Z(i→j0)

iter )
−1

eβ[μ+l(ε− (l+1)
2 κ1)]

∑
1≤j1<⋅ ⋅ ⋅<jl≤c

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

R̂(jk→i)
l ∏

jq∉{j1 ,...,jl}

F̂(jq→i)
l+1

⎤
⎥
⎥
⎥
⎥
⎦

,

(8)

where the normalization factor Z(i→j0)

iter is such that ∑c
l=0(E

(i→j0)

l

+ F(i→j0)

l +O(i→j0)

l + R(i→j0)

l ) = 1. As discussed above, these equa-
tions become asymptotically exact in the thermodynamic limit, N
→∞, on random sparse lattices with a local tree-like structure (such
as RRGs) and they are exact for loop-less Cayley trees even at finite
N. For a generic tree-like graph of N nodes and connectivity c + 1,
Eq. (8) corresponds to a system of 4(c + 1)2N coupled non-linear
equations for the 4(c + 1) cavity fields defined on all the N(c + 1)
(directed) edges of the graph.

These local probabilities, however, are defined on intermediate
objects (the cavity sites) with one fewer link and one fewer neighbor
than nodes of the original lattice and hence are statistically different
from them. Most of the thermodynamic observables of the original
Bethe lattice, such as the free energy, the average density, the average
energy, and the specific heat, can nonetheless be computed from the
fixed point of the self-consistent equation (8).44,46 In order to do so,
one considers the process by which c + 1 cavity sites {j1, . . . , jc+1} are
connected to a central site i. Defining Ei and Oi as the probabilities
that a given site is empty or occupied, respectively, we obtain
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Ei = (Z(i)site)
−1c+1

∑
l=0

e−β
l(l−1)

2 κ1

⎧⎪⎪
⎨
⎪⎪⎩

∑
1≤j1<⋅ ⋅ ⋅<jl≤c+1

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

Ô(jk→i)
l−1 ∏

jq∉{j1 ,...,jl}

Ê(jq→i)
l

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

,

Oi = (Z(i)site)
−1c+1

∑
l=0

eβ[μ+l(ε− l−1
2 κ1)]

⎧⎪⎪
⎨
⎪⎪⎩

∑
1≤j1<⋅ ⋅ ⋅<jl≤c+1

⎡
⎢
⎢
⎢
⎢
⎣

l

∏
k=1

R̂(jk→i)
l−1 ∏

jq∉{j1 ,...,jl}

F̂(jq→i)
l

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

,

(9)

where the normalization factor Z(i)site is such that Ei +Oi = 1. The
average density on site i is then ρi = Oi/(Ei +Oi) = Oi. In order to
compute the system free energy, we follow Refs. 44, 46, and 48 in
applying the following construction:

● start with a (c + 1)-connected Bethe lattice of N nodes;
● pick and remove c + 1 edges i↔ j from the graph, leading to

2(c + 1) cavity sites; and
● add two nodes and connect each of them to c + 1 cavity sites,

leading to a (c + 1)-connected Bethe lattice of N + 2.

Because two sites were added, the free energy difference
between the resulting lattice with N + 2 nodes and the initial one
with N nodes is then simply twice the free energy per site. Averaging
over all possible choices of removed edges, the free energy per site
can then be written as

f =
1
N
⎛

⎝
∑

i
ΔF(i)site −∑

⟨i,j⟩
ΔF(i↔j)

link
⎞

⎠
, (10)

where e−βΔF(i)
site = Z(i)site and

e−βΔF(i↔j)
link =

c

∑
m1 ,m2=0

(E(i→j)
m1 E(j→i)

m2 + F(i→j)
m1 O(j→i)

m2

+ F(j→i)
m1 O(i→j)

m2 + eβϵR(i→j)
m1 R(j→i)

m2 )

× e−m1m2βκ2 (11)

are the free energy shifts due to the addition of site i and of edge
i↔ j, respectively.

Three kinds of relevant physical solutions of the recursion
equations (8) and (9) are possible:

● Translationally invariant solutions in which the cavity fields
do not fluctuate from site to site. These homogeneous solu-
tions are described in Sec. IV and correspond to the equilib-
rium disordered microphases (paramagnetic phase), which
are the main focus of this work, as well as to the gas–liquid
coexistence region (ferromagnetic phase).

● Layered or periodic solutions in which different generations
carry different cavity fields in a modulated way. These solu-
tions break translational invariance and correspond to the
periodic microphases described in Sec. V.37–42

● Disordered glassy solutions in which the cavity fields fluc-
tuate from one site to another without periodicity. Such
glassy phases have been found at low temperatures and high
packing fractions in lattice glass models on locally tree-
like graphs with short-ranged hard-core interactions.48–53 A

low temperature glass transition has also been reported in
SALR models54–59 in the framework of a Ginzburg–Landau
description and a mean-field approximation but has not
been evaluated in the context of lattice models. In the glassy
regime, the cavity fields are random variables and Eq. (8)
must be interpreted as recursive relations for their probabil-
ity distributions. In this article, we demonstrate the existence
of a glassy phase in some region of the phase diagram of the
family of SALR models described by Eq. (1) but leave this
regime for further study.

IV. HOMOGENEOUS SOLUTIONS
The disordered microphases, which are the main focus of this

work, correspond to the paramagnetic phase and hence are transla-
tionally invariant. Cavity fields then do not depend on the chosen
cavity site i and thus give rise to homogeneous solutions of Eq. (8).
In this case, the recursion relations simplify to

El = Z−1
itere

−β l(l−1)
2 κ1(

c
l
)Ôl

l−1Êc−l
l ,

Fl = Z−1
itere

−β l(l+1)
2 κ1(

c
l
)Ôl

lÊ
c−l
l+1,

Ol = Z−1
itere

β[μ+l(ε− (l−1)
2 κ1)](

c
l
)R̂l

l−1F̂c−l
l ,

Rl = Z−1
itere

β[μ+l(ε− (l+1)
2 κ1)](

c
l
)R̂l

lF̂
c−l
l+1,

(12)

where the normalization factor Ziter is such that ∑c
l=0(El + Fl

+Ol + Rl) = 1 and the auxiliary functions Êq, Ôq, F̂q, R̂q are defined
in Eq. (7). Equation (12) then gives rise to a system of 4(c + 1) cou-
pled algebraic equations, whose fixed point can be straightforwardly
determined by iterating numerically. Connecting c + 1 cavity sites to
a central site gives

E = Z−1
site

c+1

∑
l=0

e−β
l(l−1)

2 κ1(
c + 1

l
)Ôl

l−1Êc+1−l
l ,

O = Z−1
site

c+1

∑
l=0

eβ[μ+l(ε− (l−1)
2 κ1)](

c + 1
l
)R̂l

l−1F̂c+1−l
l ,

(13)

where the normalization factor Zsite is such that E +O = 1. The free
energy per site in Eq. (10) then becomes

f = ΔFsite −
c + 1

2
ΔFlink = ΔFiter −

c − 1
2

ΔFlink, (14)

where the second equality stems from site insertion involving the
addition of a new cavity site and a link between this cavity site and
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another cavity site, i.e., ΔFsite = ΔFiter + ΔFlink. Most of the thermo-
dynamic observables of interest can be computed directly as the
derivative of the free energy, e.g.,

ρ = −
∂(β f )
∂(βμ)

=
O

E +O
= O,

e − μρ =
∂(β f )
∂β

,

f = e − Ts − μρ = −P,

(15)

where e = ⟨H⟩/N is the average energy per site, s = S/N is the
entropy per site, and P is the pressure.

A. Percolation
An important structural feature of the high-temperature phase

is the percolation regime, which in microphase formers often results
in the formation of a gel-like structure. In order to delineate the
boundaries of this regime, we compute the probability that a particle
belongs to the percolating cluster C∞. For notational convenience,
we introduce the auxiliary probabilities pl and ql that the cavity site
i (in the absence of the backward site k) has wi→k = l occupied neigh-
bors (with 1 ≤ l ≤ c) with the backward site k occupied and belongs
to the semi-infinite percolating cluster on the branch originating
from i (see Ref. 53 for a similar calculation),

⎧⎪⎪
⎨
⎪⎪⎩

pl ≡ Prob(ni = 1 & nk = 1 & wi→k = l & i ∈ C∞),
ql ≡ Prob(ni = 1 & nk = 1 & wi→k = l & i ∉ C∞).

In order to express these probabilities in terms of cavity fields, we
introduce two auxiliary functions

p̂q = pB

c

∑
m=1

pme−mqβκ2 ,

q̂q = R0 +
c

∑
m=1
(Rm − pBpm)e−mqβκ2 .

The probability that two occupied nearest-neighbor sites are
bonded, pB, accounts for the percolation of a physical cluster, for
which one considers a site-bond percolation problem on top of the
geometrical cluster formed by occupied sites.60 Geometrical clusters
include all nearest-neighbor particles and are recovered by setting
pB = 1; physical clusters control the elastic response of the fluid.61–63

In fact, in a simple fluid, the percolation of geometrical clusters,
which develops well above the liquid–gas critical temperature, plays
no physical role. By contrast, for a suitable choice of pB, the perco-
lation of the latter is related to the percolation of critical droplets
associated with the gas–liquid phase transition. For the standard
lattice-gas model (κ = 0), it has been proven that for pB = 1 − e−βε/2

the percolation line intersects the liquid gas critical point60 [see
Figs. 2 and 3(a)]. By analogy with the standard lattice gas, we here
choose pB henceforth. The self-consistent equations for pl and ql
then read

pl = Z−1
p eβ[μ+l(ε− (l+1)

2 κ1)](
c
l
)F̂c−l

l+1

l

∑
k=1
(

l
k
)p̂k

l q̂l−k
l ,

ql = Z−1
p eβ[μ+l(ε− (l+1)

2 κ1)](
c
l
)q̂l

lF̂
c−l
l+1,

(16)

FIG. 2. Phase diagrams at ρ = 1/2 [with Z2 symmetry for μ given by Eq. (3)] for (a) c + 1 = 3 and (b) c + 1 = 5. At small κ, the critical line separates the high-temperature
fluid (paramagnetic) phase from low-temperature gas–liquid coexistence (ferromagnetic phase), and is initially in the Ising universality class. In (a), however, a line of
first-order transitions emerges before reaching the Lifshitz point at κL (black dot). For κ > κL, the transition to the ordered lamellar phase is in the XY universality class.
The multicritical Lifshitz point at (a) [κL = 0.1134, Tc(κL) = 0.0881] and (b) [κL = 0.0481, Tc(κL) = 0.407] separates one critical regime from the other. Its extension
to T < Tc(κL) smoothly connects to the energetic onset of modulation at T = 0 given by Eq. (5). The layer thickness λℓ along the critical line (dashed line, right axis)
diverges at the Lifshitz point. Because the nature of transitions meeting at κL differs, the critical scaling of λℓ (red dotted lines) also differs [see Eq. (26)]. The physical
percolation threshold (dashed lines) coincides with the critical point only for the standard lattice-gas (κ = 0) model, lying first above and then below Tc as κ increases. The
lines of χSG divergence (green dashed-dotted lines) offer a lower bound on the point at which the homogeneous solution—if somehow continued in through the layered
microphases—eventually becomes unstable toward glass formation.
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FIG. 3. Temperature–density phase diagram for c + 1 = 3 with (a) κ = 0 [Tc(0) = 0.455], (b) κ = 0.05 [Tc(0.05) = 0.301], and (c) κ = 0.25 [Tc(0.25) = 0.311]. Panels
(a) and (b) have κ < κL = 0.1134, while (c) has κ > κL. The ordered phase (red region) thus corresponds in (a) and (b) to gas–liquid coexistence—with a spinodal instability
(red dashed line)—and in (c) to periodic microphases. The geometrical [gray dashed lines in (a)] and physical (black dashed lines, CK for pB = 1 − e−βε/2) percolation
lines of clusters and voids coincide at low T , as pB → 1, but separate as T increases. The geometrical percolation line then tends to the random percolation threshold
ρ = 1/c = 1/2 in the T →∞ limit, while its physical counterpart terminates at a finite T . The blue dashed lines in (b) and (c) identify the locus of the heat capacity
maximum, as in Fig. 4. In panel (c), it coincides with the physical clustering crossover [defined as the density at which Π(s = 1) = 4Π(s = 2)/3, blue dotted lines]. The
χSG divergence (green dashed-dotted line) in (c) indicates where the homogeneous solution becomes unstable toward replica-symmetry breaking, thus providing a lower
bound for the fluid phase to undergo a glass transition.

where the normalization factor Zp is such that pn + qn = Rn and the
auxiliary function F̂q is defined in Eq. (7). The physical meaning of
Eq. (16) is transparent. In order for a given cavity site to belong to
the percolating cluster living on the semi-infinite branch of the lat-
tice originating from it, at least one of its nearest-neighbors must be
occupied and belong to the percolating cluster.

From the fixed point of Eq. (16), one can then compute P and
Q, defined as the probabilities that a site of the original lattice (with
connectivity c + 1) is occupied and belongs or not, respectively, to
the percolating clusters. Connecting c + 1 cavity sites to a central site,
one finds that these objects satisfy

P = Z−1
p

c+1

∑
l=1

c+1−l

∑
k=0

eβ[μ+(l+k)(ε− l+k−1
2 κ1)]

×
(c + 1)!

l!k!(c − l − k + 1)!
p̂l

l+k−1q̂k
l+k−1F̂c−l−k+1

l+k ,

Q = Z−1
p

c+1

∑
l=0

eβ[μ+l(ε− l−1
2 κ1)](

c + 1
l
)q̂l

l−1F̂c+1−l
l ,

(17)

where the normalization factorZp is such thatP +Q = ρ. Within the
high-temperature phase, a transition from a non-percolating phase
(P = 0) to a percolating phase (P > 0) takes place upon decreasing
temperature or increasing density (see Fig. 3). In the vicinity of the
percolation threshold, P behaves critically, scaling as expected for
the simple percolation mean-field universality class P∝ ρ − ρperc.64

B. Cluster size distribution
In order to identify and study cluster formation, we seek the

whole probability distribution Π(s) of clusters of s particles. We
first illustrate the computation of Π(s) for the simple case of site
percolation. In this case, each node of the lattice is occupied with
probability p and empty with probability 1 − p, which corresponds

to the percolation of geometric clusters (pB = 1) at infinite tem-
perature (ε = κ1 = κ2 = 0) of our model [with p = ρ = eβμ/(1 + eβμ)].
For a given cavity node i (once the edge with its backward site
has been removed), we define π(s) as the probability that, if occu-
pied, i belongs to a cluster of size s on the semi-infinite branch of
the lattice originating from it. It is obvious that s = 1 if and only
if all the c neighbors of i are empty, i.e., π(1) = (1 − p)c. Simi-
larly, for s = 2, all but one neighbor of i should be empty, and the
only occupied node should belong to a cluster of size 1 once the
edge which connects it to i is removed, i.e., π(2) = c(1 − p)c−1pπ(1).
For s = 3, two possibilities exist: Either i has only one occupied
neighbor and this neighbor belongs to a cluster of size 2 in the
absence of its edge with i, or i has two occupied neighbors with
s = 1, i.e., π(3) = c(1 − p)c−1pπ(2) + c(c − 1)(1 − p)c−2

[pπ(1)]2/2.
Following this line of reasoning, one can easily compute π(s) for
general s as

π(s) =
lmax

∑
l=1
(

c
l
)(1 − p)c−l

l

∏
α=1

⎡
⎢
⎢
⎢
⎣
∑
sα

pπ(sα)
⎤
⎥
⎥
⎥
⎦
δ(1 +

l

∑
α=1

sα − s),

where lmax is c if s > c and s − 1 otherwise. This exercise shows how
one can explicitly compute π(s) as a function of all the π(s′) with
s′ < s starting from s = 1 and up to a chosen threshold smax. Once
these objects are known, the probabilityΠ(s) that a given node of the
original lattice (in which all the sites have c + 1 neighbors) belongs
to a cluster of size s ≥ 1 is given by

Π(s) = p
lmax

∑
l=1
(

c + 1
l
)(1 − p)c+1−l

l

∏
α=1

⎡
⎢
⎢
⎢
⎣
∑
sα

pπ(sα)
⎤
⎥
⎥
⎥
⎦

× δ(1 +
l

∑
α=1

sα − s),

where lmax is c + 1 if s > c + 1 and s − 1 otherwise.
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The calculation of Π(s) for the SALR model described by
Eq. (1) is slightly more involved but follows the same logic. In order
to take into account the interaction terms of the Hamiltonian, one
needs to introduce the auxiliary probabilities πl,l1(s) on the cavity
site i that the node is occupied, with its backward site occupied and
with l total occupied neighbors, l1 of them belonging to the same
clusters Cs of size s on the semi-infinite branch of the Bethe lattice
originating from it. The variables l, l1, and s must further satisfy the
following constraints:

θ(s − 1) ≤ l1 ≤ max(c, s − 1), l1 ≤ l ≤ c,

where θ(s − 1) = 0 if s = 0 and 1 if s > 0. Obviously, the total number
of occupied neighbors must be larger than l1. If s > 1, then at least
one neighbor must belong to Cs and thus must be occupied; hence,
l1 ≥ 1. The maximum number of neighbors in the same cluster l1 is
bounded by c if s ≥ c + 1, otherwise l1 ≤ s − 1. If instead s = 1, then
l1 = 0 and l ∈ {0, . . . , c}.

These probabilities can be explicitly constructed by iterating
over s, starting from s = 1 and up to a chosen maximum smax,

πl,l1(s) = Z−1
itere

β[μ+l(ε− l+1
2 κ1)] c!

(c − l)!(l − l1)!l1!
F̂c−l

l+1[(1 − pB)R̂l]
l−l1

×

l1
∏
α=1

⎡
⎢
⎢
⎢
⎢
⎣

∑
sα

⎛

⎝

min{c,sα−1}

∑
mα=θ(sα)

c

∑
uα=mα

pBπuα ,mα(sα) e−mα lβκ2
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

× δ
⎛

⎝
1 +

l1
∑
α=1

sα = s
⎞

⎠
, (18)

where θ(sα) = 0 if sα = 1 and θ(sα) = 1 if sα > 1. One can show that
∑
+∞

s=1 ∑
l
l1=0πl,l1(s) = Rl, provided that the normalization factor Ziter

is taken as in Eq. (12). The auxiliary functions F̂q, R̂q are defined
in Eq. (7). As explained above, setting pB = 1 describes geometri-
cal clusters (in that case, only the terms with l = l1 are different
from zero), and setting pB = 1 − e−βε/2 describes physical clusters.
These probabilities can be computed sequentially because πl,l1(s)
are only functions of the cavity fields and of πl′ ,l′1(s

′
) for s′ < s. The

computational cost, however, increases exponentially with smax.
Finally, the probability that a particle on a given site of the

original lattice (with c + 1 neighbors) belongs to a cluster of size
1 < s < smax + 1 reads

Π(s) = Z−1
site

min{c+1,s−1}

∑
l1=1

c

∑
l=l1

eβ[μ+l(ε− l−1
2 κ1)]

×
(c + 1)!

(c + 1 − l)!(l − l1)!l1!
F̂c+1−l

l [(1 − pB)R̂l−1]
l−l1

×

l1
∏
α=1

⎡
⎢
⎢
⎢
⎢
⎣

∑
sα

⎛

⎝

min{c,sα−1}

∑
mα=θ(sα)

c

∑
uα=mα

pBπuα ,mα(sα) e−mα(l−1)βκ2
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

× δ
⎛

⎝
1 +

l1
∑
α=1

sα = s
⎞

⎠
. (19)

Again, it is possible to show that ∑+∞s=1 Π(s) = O = ρ, provided that
Zsite is chosen as in Eq. (13). Using the fixed point from Eq. (12),
Eqs. (18) and (19) can be solved numerically up to smax. Note, how-
ever, that upon approaching the percolation transition (from low

densities or high temperatures) Π(s) develops power-law tails at
large s,64 Π(s) ∼ s−3/2, so a diverging smax must then be used to
properly capture the distribution.

C. Correlation function and linear stability
The density–density correlation function between two points at

distance r on the lattice can be computed as the response to perturb-
ing the chemical potential.44,48 Taking a given node 0 as the origin
and numbering nodes on the tree at (Hamming) distance r from it
give Ω(r) = (c + 1)cr−1 neighbors. Applying an infinitesimal vari-
ation of the chemical potential on one of these nodes, exploiting
the homogeneity of the high-temperature phase, and applying the
fluctuation–dissipation theorem provide the connected correlation
function

⟨n0nr⟩c =
∂⟨n0⟩

∂(βμr)
, (20)

from which one immediately obtains the radial distribution function

g(r) ≡
⟨n0nr⟩

ρ2 = 1 +
1
ρ2

∂⟨n0⟩

∂(βμr)
. (21)

The correlation function is intimately related to the linear suscepti-
bility of the homogeneous solution (which is the response to a global
perturbation of μ),

χ ≡
∂ρ

∂(βμ)
= ρ(1 − ρ) +

∞

∑
r=1

Ω(r)⟨n0nr⟩c. (22)

Note that because the number of neighbors Ω(r) grows exponen-
tially with distance, the series converges only if the density–density
correlator decays exponentially over a correlation length ξ such that
ξ < 1/ln(c). If instead ξ ≥ 1/ln(c), the susceptibility diverges and
the homogeneous solution is unstable. Because ⟨n0⟩ = O0/(E0 +O0)

and E0 and O0 are only functions of the cavity fields on the neigh-
bors of 0 (at distance r = 1), one can use the chain rule to express the
derivative of Eq. (20) as

⟨n0nr⟩c =
∂⟨n0⟩

∂φ⃗1

∂φ⃗1

∂φ⃗2
. . .

∂φ⃗r−1

∂φ⃗r

∂φ⃗r

∂(βμr)
, (23)

where φ⃗n denotes the set of all 4(c + 1) cavity fields on the nth gen-
eration of the tree on the branch (0↔ 1↔ 2↔ ⋅ ⋅ ⋅↔ r − 1↔ r)
that connects site 0 with site r. Because in the high-temperature
phase, all these fields are equal and independent of r, we introduce
the 4(c + 1) × 4(c + 1) Jacobian matrix

J = ∂φ(i→j0)
m

∂ψ(j1→i)
m′

RRRRRRRRRRRh.s.

, (24)

where (φm,ψm) = {Em, Fm, Om, Rm}. As detailed in the Appendix,
the matrix elements of this Jacobian are computed by taking the
derivatives of Eq. (8) with respect to the cavity fields on one of the
neighbors (say, j1) and evaluating the resulting expressions when
all the cavity fields take the values corresponding to the homoge-
neous solution of Eq. (12) [see Eq. (A2)]. Denoting λmax as the
eigenvalue of largest modulus of J , from (23), one immediately
obtains that at large distance ⟨n0nr⟩c ∼ λr

max and ξ−1
= −ln(∣λmax∣).

Because Ω(r) ≈ cr , from Eq. (22), the stability criterion simply reads
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c∣λmax∣ ≤ 1. When c∣λmax∣ > 1, the paramagnetic solution is unstable
to perturbations that are homogeneous within a generation. This
instability is toward either gas–liquid coexistence (ferromagnetic
ordering) or periodic microphases, in which successive layers carry
different fields. Such an analysis can therefore be used to determine
the spinodal lines and the critical point of the gas–liquid coexistence
[Figs. 3(a) and 3(b)] as well as the order–disorder transition (ODT)
of periodic microphases. {At small connectivity [Fig. 3(c)], such as
c = 2 and c = 3, the transition is concomitant with the loss of local
stability of the high-temperature phase.}

Within the same framework, one can also consider an insta-
bility associated with the divergence of the non-linear (spin-glass)
susceptibility,

χSG = ρ2
(1 − ρ)2

+
∞

∑
r=1

Ω(r)⟨n0nr⟩
2
c . (25)

When χSG diverges, a replica-symmetry breaking65 instability
occurs, which appears as a widening of the variance of the cavity
fields under the recursion relations in Eq. (8).44,47–49,51,53 Such spin-
glass instability thus takes place when cλ2

max ≥ 1. The eigenvalue λmax
is the same as above because the transfer matrix is simply the square
of the Jacobian defined in Eq. (24). Although this condition is always
weaker than for the modulation instability, c∣λmax∣ > 1, it is putatively
relevant for RRGs, as discussed in Sec. V. The lines of the χSG diver-
gence are thus included in the phase diagrams of Figs. 2 and 3(c).
Note, however, that the actual glass transition may well take place at
higher temperatures.65

V. INHOMOGENEOUS SOLUTIONS
As anticipated above, at low temperatures and for strong

enough repulsion, the homogeneous solution becomes linearly
unstable toward microphase ordering in which different generations
of the recursive equations carry different cavity fields. In order to
study this inhomogeneous regime, in which the equilibrium phase is
no longer translationally invariant, one seeks solutions of the cavity
equations for which the cavity fields can vary periodically from one
lattice site to another.

Such solutions have already been studied in the context of
SALR models on loop-less Cayley trees in Refs. 37–42, and a rich
variety of low-temperature modulated phases have been identified
for different model parameters. While on a Cayley tree these phases
are all characterized by radial density profiles that vary periodi-
cally on subsequent concentric ring generations, such periodic solu-
tions are incompatible with the RRGs used to describe the homo-
geneous phases because loops frustrate periodic ordering. An alter-
native route is to design suitable tree-like (boundary-less) random
graphs that are compatible with the specific ordering of interest. For
succinctness, we here only consider the lamellar phase that estab-
lishes for ρ ∼ 1/2, but the same procedure could be adapted and
extended to other low-temperature modulated structures, such as
the columnar and crystal-cluster phases.

Consider L independent realizations of RRGs of connectivity
c − 1 and place them at consecutive positions along the x axis. Each
node of the RRG at position x is then connected to two randomly
chosen nodes of the RRGs at coordinates x − 1 and x + 1, in such a
way that the total connectivity of the graph remains c + 1. This con-
struction results in a layered version of the RRG that is anisotropic

in the x direction yet remains locally tree-like because two sites con-
nected by an edge within a given layer at coordinate x are not con-
nected (with high probability in the thermodynamic limit) on the
other layers and short loops are rare.

Imposing that in the lamellar phase the system is translation-
ally invariant along the transverse direction simplifies Eq. (8) to a
system of 12L(c + 1) coupled non-linear algebraic equations (which
we do not write down explicitly for the sake of concision) for the
set of cavity fields that depend only on the x-coordinate. The fixed
point of these equations, which can be found numerically by itera-
tion, gives access to all the thermodynamic observables of the striped
phase (such as the density profile, the average energy and entropy,
the free energy, and the correlation function) by adapting Eqs. (9)
and (14) to the particular graph geometry.

Two key technical difficulties, however, then arise. The first
is associated with the infinite number of possible lamellar solu-
tions, related by global translations of the density profile. In order
to pin one of those solutions and to converge numerically to a sin-
gle fixed point, two fully occupied layers are placed at coordinates
x = 0 and x = L + 1, and the recursion relations are only solved for
1 ≤ x ≤ L. The second is related to the commensurability constraint
for the number of layers with equilibrium periodicity λℓ, which is not
known a priori and depends on model parameters and thermody-
namic conditions. The recursion equations must therefore be solved
for several values of L in order to identify the striped solution with
the lowest free energy. (The same problem is observed, for instance,
in numerical simulations and is similarly solved.66–68)

It is interesting to note that in the Z2 symmetric case (ρ = 1/2)
and close to the critical point T ≲ Tc(κ), the equilibrium properties
of the lamellar phase found on the anisotropic layered RRG above
are the same as for the periodic antiphase found on concentric shells
of the Cayley tree in Ref. 41. Neither the value of Tc(κ) nor the
equilibrium periodicity λℓ is affected by the specific geometry of the
underlying lattice.

VI. DISCUSSION
Using the methods described in Secs. II–V, it is possible to

analyze the phase diagram and structural feature of the SALR
model defined by Eq. (1). We first determine the onset of peri-
odic microphases, in order to discern that regime from standard
liquid–gas coexistence. For simplicity, we specifically consider the
Z2 symmetric case with ρ = 1/2 (see Fig. 2) by setting the chem-
ical potential as in Eq. (3). In this case, the ODT temperature is
maximal for a given κ and, by symmetry, the ordered phase is
lamellar. As expected, at weak κ, there is no modulated solution
of the recursion relations, and along the critical line, Tc(κ), the
order–disorder transition remains in the Ising universality class
with Tc simply depressed. At large κ, however, a lamellar solution
with a periodic density profile, ρ(x) ≈ ρℓ sin(2πx/λℓ + ϕ), develops
below a critical temperature Tc(κ) (see Sec. V). For the (mean-field)
model considered here, the ODT to this lamellar phase is continu-
ous, with ρℓ vanishing at Tc(κ) upon increasing the temperature as
ρℓ ∼ (Tc(κ) − T)1/2 and with λℓ finite, except at the tricritical point,
as discussed below. (In three dimensions, the continuous ODT is
replaced by Brazovskii’s fluctuation-induced weakly first-order tran-
sition17,58,59,69–72). By symmetry, one expects the transition to be
in the XY universality class, which we confirm by noting that the
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linear susceptibility obtained from Eq. (22) diverges for T < Tc(κ)
in the whole lamellar phase. In other words, the pair correlation
Ω(r)⟨n0nr⟩c oscillates with a constant amplitude that does not decay
with r due to a massless Goldstone mode with long-range correlation
associated with global translations of the density profile along x.

Interestingly, the nature of the regime intermediate between
small and large κ depends on lattice connectivity. For c ≥ 4, a
standard Lifshitz tricritical point at [κL, Tc(κL)] separates the two
regimes. For 2 ≤ c ≤ 3, however, the Ising-like critical point first
transforms into a first-order transition before the multicritical point
is reached, as has been reported for a similar system.73 The onset
of the gas–liquid transition then proceeds discontinuously. In this
case, the Lifshitz point appears at the termination of the spinodal
line of the paramagnetic phase (Fig. 2). In addition, while for c ≥ 4
the homogeneous solution remains locally (meta)stable below Tc,
for 2 ≤ c ≤ 3, the transition to the layered microphase coincides with
its loss of linear stability. To the best of our knowledge, this last
peculiarity has not been noted before. Because they have no notable
impact on the microphase-forming regime beyond κL, we do not
here explore the matter further, but it might nevertheless affect the
phase structure of certain (low-dimensional) SALR models.

At T < Tc(κL), a similar distinction can be drawn between
gas–liquid coexistence and layered microphases. At T = 0, the tran-
sition is straightforwardly given by Eq. (5), while at finite T, the onset
of modulation can be determined from the inhomogeneous solu-
tions described in Sec. V. Similarly, this treatment can be used to
determine the equilibrium periodicity λℓ along the Tc(κ > κL) line,
which diverges at κL as

λℓ ≃
√

2π
3
4 (
√
κ −
√
κL)
−

1
2 ∝ (κ − κL)

−
1
2 , c ≥ 4,

λℓ ∝ (κ − κL)
−

1
4 , 2 ≤ c ≤ 3,

(26)

depending on the nature of the multicritical point.59

Figure 2 also shows how the physical percolation threshold
Tperc(κ) for ρ = 1/2 evolves. (For ρ = 1/2, clusters and voids geo-
metrically percolate for all T and c because the random percolation
threshold, i.e., for T →∞, on tree-like graphs is ρperc = 1/c ≤ 1/2.)
In the standard lattice gas (κ = 0) model, physical percolation (with
pB = 1 − e−ε/2) coincides with the critical point of gas–liquid coex-
istence.60 This feature underlies the efficient sampling of configu-
rations through Monte Carlo moves based on Fortuin–Kasteleyn
(FK) clusters (which coincide with Coniglio–Klein (CK) physical
percolation at the critical point), such as in the Swendsen–Wang
algorithm.74 Increasing κ, however, differently affects the percola-
tion threshold and the critical temperature, and hence, Tperc(κ) is
generically different from Tc(κ) for κ > 0. In particular, at small κ,
Fortuin–Kasteleyn clusters percolate well above Tc. This dissocia-
tion opens up a gel-like region, in which both particles and voids
percolate, and within which the system exhibits a finite macro-
scopic elastic response.61–63 This dissociation further suggests that
Fortuin–Kasteleyn cluster-based sampling algorithms then cannot
be used for meaningful structural relaxation, as has indeed been
reported for various frustrated models.75–80 At large κ, by contrast,
Tperc < Tc and therefore no equilibrium bicontinuous fluid structure
forms. A potentially long-lived metastable gel-like structure might
then only be achievable if periodic microphase ordering is dynam-
ically avoided upon supercooling below Tc (such as by considering

lattice geometries that inhibit the development of long-range peri-
odic order). Note that FK cluster-based algorithms are then never-
theless inefficient because they do not relax the relevant diverging
spatial correlations in the vicinity of Tc.

Further supercooling the fluid phase below Tc (while avoiding
periodic microphase ordering) eventually makes it unstable toward
replica-symmetry breaking, as indicated by the line of diverging
χSG from Eq. (25) (see Fig. 2).65 This finding implies the existence
of a glassy phase at low enough temperature and strong enough
repulsion, similarly to what was originally suggested in the con-
text of Ginzburg–Landau ϕ4 models with Coulomb repulsion.54–57

[The chaotic phases associated with strange attractors found in the
family of SALR models described by Eq. (1) on the Cayley tree in
Ref. 39 might also be a manifestation of this glass phase.] A more
careful study of the glassy regime and of the glass transition is, how-
ever, beyond the reach of the simple replica symmetric treatment
considered here. Upon lowering the temperature, one could indeed
either have a continuous spin-glass transition right at the instabil-
ity point,47 or (more likely) a random first-order glass transition
beforehand, as reported for certain continuous space SALR mod-
els.22,24,54–59 In order to distinguish between these two scenarios and
to determine the onset of glassiness, one would need to implement a
(much more involved) 1RSB solution of the model.43,47–53 The ques-
tion of whether or not a stable glassy phase can exist above Tc in a
SALR mean-field model is thus left for future investigations.

Having clarified the role of connectivity and of κ on the phase
behavior of the Z2 symmetric case, we next consider the overall
phase structure in the (ρ − T) plane for different κ above and below
κL. For the rest of this study, we set the total connectivity c + 1 = 3,
without loss of generality as long as we stay either well above or well
below κL. This particular connectivity is chosen largely for numerical
convenience, but also because it gives rise to slightly larger clusters
than larger c.

As reference, we first consider the case κ = 0, for which Eq. (1)
reduces to the standard lattice-gas Hamiltonian. As expected—and
as can be seen in Fig. 3(a)—the homogeneous (on average) fluid
phase then gives way to gas–liquid coexistence for T < Tc. The two
percolation lines—geometrical and physical—for both particle and
voids are naturally equivalent at low temperatures (because pB → 1
for T → 0) but separate as T increases. As expected, the geometri-
cal percolation line approaches 1/c = 1/2 as T →∞ and does not
capture much of the relevant physics of the fluid phase. (In subse-
quent cases, the geometrical percolation line is omitted for clarity.)
The physical (cluster and void) percolation lines, by contrast, closely
follow the spinodal instability line, cross at the critical point, and
terminate at a finite T.60 The supercritical fluid regime otherwise
exhibits no obvious inhomogeneity nor thermal anomaly. For κ > 0
yet still well below the Lifshitz point, interesting structural features
emerge in the fluid phase, as for κ = 0.05 in Fig. 3(b). In particu-
lar, even though the physical percolation lines still coincide with the
spinodal at low T, they eventually detach and cross well above the
critical point (as shown in Fig. 2). A region in which both particles
and voids percolate thus open up, resulting in a bicontinuous fluid
structure morphologically resembling a gel.

For frustration well beyond the Lifshitz point, such as κ
= 0.25 in Fig. 3(c), the model becomes structurally even richer.
Most obviously, gas–liquid coexistence transforms into periodic
microphases. By contrast to the envelope of the former, that of the
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latter—identified from the linear instability of the homogeneous
solution as in Sec. IV C—does not extend to a vanishing density at
low temperatures. It instead terminates at a finite ρ ∼ 0.1 (or ρ ∼ 0.9
at high density). As a result, the fluid phase survives over a broad
density range down to T = 0. Because this regime lies below the
physical percolation line, the low-density fluid is then a percolated,
mechanically rigid network supported by long-lived bonds between
nearest-neighbor particles.23,25,81 The reduction of the density
spread of periodic microphases can be made even more pronounced
as κ→ κL. Hence, SALR interactions lead to a complementary—and
possibly more experimentally accessible—route for producing a

stable low-density gel-like structure to that proposed in
Refs. 82–86 through decreasing the average particle coordina-
tion number. Because ordered microphases are suppressed on
RRGs, the physical percolation lines can also be followed within
the linear instability regime of the fluid phase. For the particular
κ considered, we find that these lines cross below Tc (Fig. 2).
Hence, for this (and larger) κ, no equilibrium bicontinuous fluid
structure forms. A potentially long-lived metastable structure might
nevertheless be achievable if microphase ordering is dynamically
avoided, and then it gets frozen in once the system undergoes a glass
transition (lower bounded by the line of diverging χSG).

FIG. 4. [(a) and (b)] Evolution of the specific heat C(T) = ∂e/∂T in the high-temperature phase for (a) κ = 0 and (b) κ = 0.25 at ρ = 0.01, 0.1, 0.2, 0.3, 0.5, from bottom
to top. For the standard lattice-gas case in (a), C increases monotonically as T decreases, up to the gas–liquid coexistence line. By contrast, in the clustering case (b), C is
maximal (red curve) well above the microphase ordering temperature (see Fig. 3). Note the difference in scale between the two panels and that C here does not diverge at
Tc because the associated critical exponent α generically vanishes in mean-field systems. Growth of the (c) pressure and (d) chemical potential with density at Tc for κ = 0
(blue solid line), 0.05 (red dashed line), and 0.25 (black dashed-dotted line). As expected, for κ < κL, the isothermal compressibility,∝ (∂ρ/∂P)T , diverges in the vicinity
of the critical density, ρc = 1/2. The critical regime also appears to be marginally larger for 0 < κ < κL. However, no hint of P or μ anomaly can be found near the onset of
clustering or percolation.
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For both κ = 0.05 and κ = 0.25, the heat capacity peaks within
the fluid regime (see Fig. 4). (For κ = 0, no such peak is found.)
Although this peak is somewhat broad, it narrows steadily as tem-
perature decreases. In certain models, this feature has been identified
with the onset of clustering, whose trend it generally follows.14,87–89

In order to assess this relationship, we separately consider the clus-
tering properties of Eq. (1), as detailed in Sec. IV B. Note that for
the sake of succinctness, we here specialize to the case κ = 0.25,
but similar observations could be made for other κ > κL. Figure 5
shows the evolution of the cluster size distribution sΠ(s), which is
proportional to the number of particles belonging to a cluster of
size s, with density and temperature, with Π(s) normalized to 1.
(In order for thermally relevant clusters alone to be considered, a
CK-like probabilistic treatment is applied, weighting interparticle
bonds by their Boltzmann weight, pB = 1 − e−βε/2. Although using
the simple lattice-gas pB for a SALR model might seem somewhat

arbitrary, the onset of clustering occurs at low T, where pB is close
to unity, and is thus largely independent of this choice.) At high
temperatures and low densities, the distribution is dominated by
single particles, as can be seen by the peak at s = 1 accompanied
by a simple exponential tail for n = 2 (dimers), n = 3, and so on.
This behavior is akin to that of simple fluids. Upon lowering T
or increasing ρ, however, the cluster size distribution qualitatively
changes. A second peak appears and then dominates as isolated par-
ticles rarefy. This crossover is smooth yet crisp. Further evolving T
and ρ then steadily increases the mode of that second peak as well
as its width, until either the cluster fluid becomes unstable to order-
ing or physical percolation is reached. Clustering being a smooth
crossover, different observables locate its onset at slightly different
conditions. In order to compare its position with that of the heat
capacity peak, we therefore have a certain freedom of choice. Here,
we phenomenologically define the onset of clustering as the density

FIG. 5. Cluster size distribution sΠ(s) in the high-temperature phase for c + 1 = 3, κ = 0.25, and (a) at T = 0.2 ≈ 2TL/3 for ρ = 0.001, 0.06, 0.12, 0.16, 0.254 and (b)
at ρ = 0.18 for T = 0.9, 0.7, 0.5, 0.3, and 0.1125, upon approaching the instability toward microphase ordering. Continuous lines correspond to physical (pB = 1 − e−βε/2)
clusters, while dashed lines to geometrical clusters (pB = 1). [(c) and (d)] Essentially featureless pair correlation function g(r) for the same temperatures and densities as
for the top panels.
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(or temperature) at which Π(s = 1) = 4Π(s = 2)/3. This condition
is quantitatively intermediate between (and correlated with) requir-
ing that Π(s) develops a peak at a value of s larger than 1, i.e.,
Π(s = 1) = Π(s = 2), and that sΠ(s) develops a peak for s > 1, i.e.,
Π(s = 1) = 2Π(s = 2). Although this choice is largely arbitrary, it is
nevertheless constrained by the relatively small cluster sizes observed
on RRGs (between 3 and 8 particles), compared to those reported
for comparable interactions in real space (20 particles and more),18

and the large cluster size fluctuations observed in both (see Ref. 18
for a more complete discussion of the latter point). The resulting
curve closely follows the heat capacity peak, at least up to ρ ≈ 1/3
(Fig. 3). This behavior contrasts with that of the equation of state
of off-lattice systems.16–18,68,90 The pressure signature of clustering
then only persists to a finite density, after peeling off of the heat
capacity curve. Our lattice model, however, does not provide fur-
ther insight into the origin of this effect because its equation of
state exhibits no such feature (see Fig. 4). The microscopic reason
for its absence is unclear. Similarly, the enhanced compressibility
predicted by liquid-state descriptions for 0 < κ < κL is here at most
marginal. Another limitation of our approach is that the cluster-
shape instability—from spherical to elongated—recently reported in
a continuum space SALR model18,23,25 cannot be directly assessed.
A spatially inhomogeneous version of the cluster equations would
then be needed, at a markedly larger analytic and computational
cost.

Interestingly, cluster aggregation leaves no obvious trace on the
pair correlation function, g(r), at least at short distances. Pair corre-
lations evolve smoothly in a way that is essentially indistinguishable
from what happens in a simple liquid. Although g(r) exhibits oscil-
lations precursor to periodic ordering on the characteristic λℓ scale,
as g(r) ∼ e−r/ξ sin(2πr/λℓ),55,58,59 cluster formation does not corre-
late with these oscillations, which persist even at high temperatures
and small density where Π(s) has a maximum in s = 1 followed by
a simple exponential decay. This behavior contrasts with the local
ordering signature carefully teased out for certain systems.91 At the
very least, this observation suggests that such a correlation is not
essential to cluster formation.

VII. CONCLUSION
In this work, we have solved a simple lattice SALR model on

a RRG. Although in many ways different from a real-space model,
let alone an experimental system, this exactly solvable model reca-
pitulates many of the key structural features observed in the high-
temperature fluid phase of a variety of more elaborate and realistic
models.18 This correspondence suggests that the strong universality
of periodic microphase formation extends to the disordered regime
as well.

This work also suggests that several directions remain to pursue
to capture the key physics of even elementary SALR models. First,
the emergence of a first-order transition ahead of the Lifshitz point
at low connectivity appears to be relatively robust, yet its physical
origin remains somewhat nebulous. Second, reconciling the differ-
ential evolution of the standard physical percolation threshold and
the critical point could significantly improve the design of cluster-
based Monte Carlo sampling. Third, resolving the interplay between
the structure and dynamics for disordered microphases could guide

the experimental design of microphase self-assembly more generally.
Finally, studying the glass transition T g of SALR models through a
RSB treatment might reveal that T g > Tc for some κ, which could be
of considerable theoretical and experimental interest for the study of
amorphous solids.

ACKNOWLEDGMENTS
We thank Yi Hu, Ye Liang, and Mingyuan Zheng for stimulat-

ing discussions as well as for sharing results ahead of publication.
P.C. was supported by the National Science Foundation (Grant No.
DMR-1749374).

APPENDIX: COMPUTATION OF THE JACOBIAN

In order to compute the Jacobian associated with the recursion
relations, we introduce eight (c + 1) × (c + 1) square matrices whose
elements are the derivatives of the numerators of the right-hand side
of the recursion relations in Eq. (8) with respect to the cavity fields
of neighbor j1 divided by the normalization Ziter. At the end of the
calculation, all the cavity fields are evaluated in the homogeneous
solution (h.s.) of Eq. (12), thus giving

J (EE)
l,l′ =

(c − l)e−βll′κ2 El

cÊl
,

J (EO)
l,l′ =

le−β(l−1)l′κ2 El

cÔl−1
,

J (FE)
l,l′ =

(c − l)e−β(l+1)l′κ2 Fl

cÊl+1
,

J (FO)
l,l′ =

leβll′κ2 Fl

cÔl
,

J (OF)
l,l′ =

(c − l)e−βll′κ2 Ol

cF̂l
,

J (OR)
l,l′ =

le−β(l−1)l′κ2 Ol

cR̂l−1
,

J (RF)
l,l′ =

(c − l)e−β(l+1)l′κ2 Rl

cF̂l+1
,

J (RR)
l,l′ =

le−βll′κ2 Rl

cR̂l
.

(A1)

The auxiliary functions Êq, Ôq, F̂q, R̂q are defined in Eq. (7). In terms
of these matrices, the elements of the Jacobian computed at the
homogeneous fixed point are given by

J =
∂φ(i→j0)

l

∂ψ(j1→i)
l′

RRRRRRRRRRRh.s.

=J (φψ)l,l′ − φl ∑
χ∈{E,F,O,R}

c

∑
m=0

J (χψ)m,l′ , (A2)

where (φ,ψ, χ) ∈ {E, F, O, R} and all cavity fields take values corre-
sponding to the solution of the homogeneous equation (12). The
eigenvalues of the Jacobian can be computed numerically, and
from the eigenvalue with the largest modulus, λmax, the linear and
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spin-glass instabilities of the paramagnetic phase can be determined
by solving c∣λmax∣ = 1 and cλ2

max = 1, respectively.
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